summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/db/version_set.cc
blob: 427af6e25f3c36827a3be29f4fae89d43c751800 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "db/version_set.h"

#include <algorithm>
#include <array>
#include <cinttypes>
#include <cstdio>
#include <list>
#include <map>
#include <set>
#include <string>
#include <unordered_map>
#include <vector>

#include "db/blob/blob_fetcher.h"
#include "db/blob/blob_file_cache.h"
#include "db/blob/blob_file_reader.h"
#include "db/blob/blob_index.h"
#include "db/blob/blob_log_format.h"
#include "db/blob/blob_source.h"
#include "db/compaction/compaction.h"
#include "db/compaction/file_pri.h"
#include "db/dbformat.h"
#include "db/internal_stats.h"
#include "db/log_reader.h"
#include "db/log_writer.h"
#include "db/memtable.h"
#include "db/merge_context.h"
#include "db/merge_helper.h"
#include "db/pinned_iterators_manager.h"
#include "db/table_cache.h"
#include "db/version_builder.h"
#include "db/version_edit_handler.h"
#if USE_COROUTINES
#include "folly/experimental/coro/BlockingWait.h"
#include "folly/experimental/coro/Collect.h"
#endif
#include "file/filename.h"
#include "file/random_access_file_reader.h"
#include "file/read_write_util.h"
#include "file/writable_file_writer.h"
#include "logging/logging.h"
#include "monitoring/file_read_sample.h"
#include "monitoring/perf_context_imp.h"
#include "monitoring/persistent_stats_history.h"
#include "options/options_helper.h"
#include "rocksdb/env.h"
#include "rocksdb/merge_operator.h"
#include "rocksdb/write_buffer_manager.h"
#include "table/format.h"
#include "table/get_context.h"
#include "table/internal_iterator.h"
#include "table/merging_iterator.h"
#include "table/meta_blocks.h"
#include "table/multiget_context.h"
#include "table/plain/plain_table_factory.h"
#include "table/table_reader.h"
#include "table/two_level_iterator.h"
#include "table/unique_id_impl.h"
#include "test_util/sync_point.h"
#include "util/cast_util.h"
#include "util/coding.h"
#include "util/coro_utils.h"
#include "util/stop_watch.h"
#include "util/string_util.h"
#include "util/user_comparator_wrapper.h"

// Generate the regular and coroutine versions of some methods by
// including version_set_sync_and_async.h twice
// Macros in the header will expand differently based on whether
// WITH_COROUTINES or WITHOUT_COROUTINES is defined
// clang-format off
#define WITHOUT_COROUTINES
#include "db/version_set_sync_and_async.h"
#undef WITHOUT_COROUTINES
#define WITH_COROUTINES
#include "db/version_set_sync_and_async.h"
#undef WITH_COROUTINES
// clang-format on

namespace ROCKSDB_NAMESPACE {

namespace {

// Find File in LevelFilesBrief data structure
// Within an index range defined by left and right
int FindFileInRange(const InternalKeyComparator& icmp,
                    const LevelFilesBrief& file_level, const Slice& key,
                    uint32_t left, uint32_t right) {
  auto cmp = [&](const FdWithKeyRange& f, const Slice& k) -> bool {
    return icmp.InternalKeyComparator::Compare(f.largest_key, k) < 0;
  };
  const auto& b = file_level.files;
  return static_cast<int>(std::lower_bound(b + left, b + right, key, cmp) - b);
}

Status OverlapWithIterator(const Comparator* ucmp,
                           const Slice& smallest_user_key,
                           const Slice& largest_user_key,
                           InternalIterator* iter, bool* overlap) {
  InternalKey range_start(smallest_user_key, kMaxSequenceNumber,
                          kValueTypeForSeek);
  iter->Seek(range_start.Encode());
  if (!iter->status().ok()) {
    return iter->status();
  }

  *overlap = false;
  if (iter->Valid()) {
    ParsedInternalKey seek_result;
    Status s = ParseInternalKey(iter->key(), &seek_result,
                                false /* log_err_key */);  // TODO
    if (!s.ok()) return s;

    if (ucmp->CompareWithoutTimestamp(seek_result.user_key, largest_user_key) <=
        0) {
      *overlap = true;
    }
  }

  return iter->status();
}

// Class to help choose the next file to search for the particular key.
// Searches and returns files level by level.
// We can search level-by-level since entries never hop across
// levels. Therefore we are guaranteed that if we find data
// in a smaller level, later levels are irrelevant (unless we
// are MergeInProgress).
class FilePicker {
 public:
  FilePicker(const Slice& user_key, const Slice& ikey,
             autovector<LevelFilesBrief>* file_levels, unsigned int num_levels,
             FileIndexer* file_indexer, const Comparator* user_comparator,
             const InternalKeyComparator* internal_comparator)
      : num_levels_(num_levels),
        curr_level_(static_cast<unsigned int>(-1)),
        returned_file_level_(static_cast<unsigned int>(-1)),
        hit_file_level_(static_cast<unsigned int>(-1)),
        search_left_bound_(0),
        search_right_bound_(FileIndexer::kLevelMaxIndex),
        level_files_brief_(file_levels),
        is_hit_file_last_in_level_(false),
        curr_file_level_(nullptr),
        user_key_(user_key),
        ikey_(ikey),
        file_indexer_(file_indexer),
        user_comparator_(user_comparator),
        internal_comparator_(internal_comparator) {
    // Setup member variables to search first level.
    search_ended_ = !PrepareNextLevel();
    if (!search_ended_) {
      // Prefetch Level 0 table data to avoid cache miss if possible.
      for (unsigned int i = 0; i < (*level_files_brief_)[0].num_files; ++i) {
        auto* r = (*level_files_brief_)[0].files[i].fd.table_reader;
        if (r) {
          r->Prepare(ikey);
        }
      }
    }
  }

  int GetCurrentLevel() const { return curr_level_; }

  FdWithKeyRange* GetNextFile() {
    while (!search_ended_) {  // Loops over different levels.
      while (curr_index_in_curr_level_ < curr_file_level_->num_files) {
        // Loops over all files in current level.
        FdWithKeyRange* f = &curr_file_level_->files[curr_index_in_curr_level_];
        hit_file_level_ = curr_level_;
        is_hit_file_last_in_level_ =
            curr_index_in_curr_level_ == curr_file_level_->num_files - 1;
        int cmp_largest = -1;

        // Do key range filtering of files or/and fractional cascading if:
        // (1) not all the files are in level 0, or
        // (2) there are more than 3 current level files
        // If there are only 3 or less current level files in the system, we
        // skip the key range filtering. In this case, more likely, the system
        // is highly tuned to minimize number of tables queried by each query,
        // so it is unlikely that key range filtering is more efficient than
        // querying the files.
        if (num_levels_ > 1 || curr_file_level_->num_files > 3) {
          // Check if key is within a file's range. If search left bound and
          // right bound point to the same find, we are sure key falls in
          // range.
          assert(curr_level_ == 0 ||
                 curr_index_in_curr_level_ == start_index_in_curr_level_ ||
                 user_comparator_->CompareWithoutTimestamp(
                     user_key_, ExtractUserKey(f->smallest_key)) <= 0);

          int cmp_smallest = user_comparator_->CompareWithoutTimestamp(
              user_key_, ExtractUserKey(f->smallest_key));
          if (cmp_smallest >= 0) {
            cmp_largest = user_comparator_->CompareWithoutTimestamp(
                user_key_, ExtractUserKey(f->largest_key));
          }

          // Setup file search bound for the next level based on the
          // comparison results
          if (curr_level_ > 0) {
            file_indexer_->GetNextLevelIndex(
                curr_level_, curr_index_in_curr_level_, cmp_smallest,
                cmp_largest, &search_left_bound_, &search_right_bound_);
          }
          // Key falls out of current file's range
          if (cmp_smallest < 0 || cmp_largest > 0) {
            if (curr_level_ == 0) {
              ++curr_index_in_curr_level_;
              continue;
            } else {
              // Search next level.
              break;
            }
          }
        }

        returned_file_level_ = curr_level_;
        if (curr_level_ > 0 && cmp_largest < 0) {
          // No more files to search in this level.
          search_ended_ = !PrepareNextLevel();
        } else {
          ++curr_index_in_curr_level_;
        }
        return f;
      }
      // Start searching next level.
      search_ended_ = !PrepareNextLevel();
    }
    // Search ended.
    return nullptr;
  }

  // getter for current file level
  // for GET_HIT_L0, GET_HIT_L1 & GET_HIT_L2_AND_UP counts
  unsigned int GetHitFileLevel() { return hit_file_level_; }

  // Returns true if the most recent "hit file" (i.e., one returned by
  // GetNextFile()) is at the last index in its level.
  bool IsHitFileLastInLevel() { return is_hit_file_last_in_level_; }

 private:
  unsigned int num_levels_;
  unsigned int curr_level_;
  unsigned int returned_file_level_;
  unsigned int hit_file_level_;
  int32_t search_left_bound_;
  int32_t search_right_bound_;
  autovector<LevelFilesBrief>* level_files_brief_;
  bool search_ended_;
  bool is_hit_file_last_in_level_;
  LevelFilesBrief* curr_file_level_;
  unsigned int curr_index_in_curr_level_;
  unsigned int start_index_in_curr_level_;
  Slice user_key_;
  Slice ikey_;
  FileIndexer* file_indexer_;
  const Comparator* user_comparator_;
  const InternalKeyComparator* internal_comparator_;

  // Setup local variables to search next level.
  // Returns false if there are no more levels to search.
  bool PrepareNextLevel() {
    curr_level_++;
    while (curr_level_ < num_levels_) {
      curr_file_level_ = &(*level_files_brief_)[curr_level_];
      if (curr_file_level_->num_files == 0) {
        // When current level is empty, the search bound generated from upper
        // level must be [0, -1] or [0, FileIndexer::kLevelMaxIndex] if it is
        // also empty.
        assert(search_left_bound_ == 0);
        assert(search_right_bound_ == -1 ||
               search_right_bound_ == FileIndexer::kLevelMaxIndex);
        // Since current level is empty, it will need to search all files in
        // the next level
        search_left_bound_ = 0;
        search_right_bound_ = FileIndexer::kLevelMaxIndex;
        curr_level_++;
        continue;
      }

      // Some files may overlap each other. We find
      // all files that overlap user_key and process them in order from
      // newest to oldest. In the context of merge-operator, this can occur at
      // any level. Otherwise, it only occurs at Level-0 (since Put/Deletes
      // are always compacted into a single entry).
      int32_t start_index;
      if (curr_level_ == 0) {
        // On Level-0, we read through all files to check for overlap.
        start_index = 0;
      } else {
        // On Level-n (n>=1), files are sorted. Binary search to find the
        // earliest file whose largest key >= ikey. Search left bound and
        // right bound are used to narrow the range.
        if (search_left_bound_ <= search_right_bound_) {
          if (search_right_bound_ == FileIndexer::kLevelMaxIndex) {
            search_right_bound_ =
                static_cast<int32_t>(curr_file_level_->num_files) - 1;
          }
          // `search_right_bound_` is an inclusive upper-bound, but since it was
          // determined based on user key, it is still possible the lookup key
          // falls to the right of `search_right_bound_`'s corresponding file.
          // So, pass a limit one higher, which allows us to detect this case.
          start_index =
              FindFileInRange(*internal_comparator_, *curr_file_level_, ikey_,
                              static_cast<uint32_t>(search_left_bound_),
                              static_cast<uint32_t>(search_right_bound_) + 1);
          if (start_index == search_right_bound_ + 1) {
            // `ikey_` comes after `search_right_bound_`. The lookup key does
            // not exist on this level, so let's skip this level and do a full
            // binary search on the next level.
            search_left_bound_ = 0;
            search_right_bound_ = FileIndexer::kLevelMaxIndex;
            curr_level_++;
            continue;
          }
        } else {
          // search_left_bound > search_right_bound, key does not exist in
          // this level. Since no comparison is done in this level, it will
          // need to search all files in the next level.
          search_left_bound_ = 0;
          search_right_bound_ = FileIndexer::kLevelMaxIndex;
          curr_level_++;
          continue;
        }
      }
      start_index_in_curr_level_ = start_index;
      curr_index_in_curr_level_ = start_index;

      return true;
    }
    // curr_level_ = num_levels_. So, no more levels to search.
    return false;
  }
};
}  // anonymous namespace

class FilePickerMultiGet {
 private:
  struct FilePickerContext;

 public:
  FilePickerMultiGet(MultiGetRange* range,
                     autovector<LevelFilesBrief>* file_levels,
                     unsigned int num_levels, FileIndexer* file_indexer,
                     const Comparator* user_comparator,
                     const InternalKeyComparator* internal_comparator)
      : num_levels_(num_levels),
        curr_level_(static_cast<unsigned int>(-1)),
        returned_file_level_(static_cast<unsigned int>(-1)),
        hit_file_level_(static_cast<unsigned int>(-1)),
        range_(*range, range->begin(), range->end()),
        maybe_repeat_key_(false),
        current_level_range_(*range, range->begin(), range->end()),
        current_file_range_(*range, range->begin(), range->end()),
        batch_iter_(range->begin()),
        batch_iter_prev_(range->begin()),
        upper_key_(range->begin()),
        level_files_brief_(file_levels),
        is_hit_file_last_in_level_(false),
        curr_file_level_(nullptr),
        file_indexer_(file_indexer),
        user_comparator_(user_comparator),
        internal_comparator_(internal_comparator),
        hit_file_(nullptr) {
    for (auto iter = range_.begin(); iter != range_.end(); ++iter) {
      fp_ctx_array_[iter.index()] =
          FilePickerContext(0, FileIndexer::kLevelMaxIndex);
    }

    // Setup member variables to search first level.
    search_ended_ = !PrepareNextLevel();
    if (!search_ended_) {
      // REVISIT
      // Prefetch Level 0 table data to avoid cache miss if possible.
      // As of now, only PlainTableReader and CuckooTableReader do any
      // prefetching. This may not be necessary anymore once we implement
      // batching in those table readers
      for (unsigned int i = 0; i < (*level_files_brief_)[0].num_files; ++i) {
        auto* r = (*level_files_brief_)[0].files[i].fd.table_reader;
        if (r) {
          for (auto iter = range_.begin(); iter != range_.end(); ++iter) {
            r->Prepare(iter->ikey);
          }
        }
      }
    }
  }

  FilePickerMultiGet(MultiGetRange* range, const FilePickerMultiGet& other)
      : num_levels_(other.num_levels_),
        curr_level_(other.curr_level_),
        returned_file_level_(other.returned_file_level_),
        hit_file_level_(other.hit_file_level_),
        fp_ctx_array_(other.fp_ctx_array_),
        range_(*range, range->begin(), range->end()),
        maybe_repeat_key_(false),
        current_level_range_(*range, range->begin(), range->end()),
        current_file_range_(*range, range->begin(), range->end()),
        batch_iter_(range->begin()),
        batch_iter_prev_(range->begin()),
        upper_key_(range->begin()),
        level_files_brief_(other.level_files_brief_),
        is_hit_file_last_in_level_(false),
        curr_file_level_(other.curr_file_level_),
        file_indexer_(other.file_indexer_),
        user_comparator_(other.user_comparator_),
        internal_comparator_(other.internal_comparator_),
        hit_file_(nullptr) {
    PrepareNextLevelForSearch();
  }

  int GetCurrentLevel() const { return curr_level_; }

  void PrepareNextLevelForSearch() { search_ended_ = !PrepareNextLevel(); }

  FdWithKeyRange* GetNextFileInLevel() {
    if (batch_iter_ == current_level_range_.end() || search_ended_) {
      hit_file_ = nullptr;
      return nullptr;
    } else {
      if (maybe_repeat_key_) {
        maybe_repeat_key_ = false;
        // Check if we found the final value for the last key in the
        // previous lookup range. If we did, then there's no need to look
        // any further for that key, so advance batch_iter_. Else, keep
        // batch_iter_ positioned on that key so we look it up again in
        // the next file
        // For L0, always advance the key because we will look in the next
        // file regardless for all keys not found yet
        if (current_level_range_.CheckKeyDone(batch_iter_) ||
            curr_level_ == 0) {
          batch_iter_ = upper_key_;
        }
      }
      // batch_iter_prev_ will become the start key for the next file
      // lookup
      batch_iter_prev_ = batch_iter_;
    }

    MultiGetRange next_file_range(current_level_range_, batch_iter_prev_,
                                  current_level_range_.end());
    size_t curr_file_index =
        (batch_iter_ != current_level_range_.end())
            ? fp_ctx_array_[batch_iter_.index()].curr_index_in_curr_level
            : curr_file_level_->num_files;
    FdWithKeyRange* f;
    bool is_last_key_in_file;
    if (!GetNextFileInLevelWithKeys(&next_file_range, &curr_file_index, &f,
                                    &is_last_key_in_file)) {
      hit_file_ = nullptr;
      return nullptr;
    } else {
      if (is_last_key_in_file) {
        // Since cmp_largest is 0, batch_iter_ still points to the last key
        // that falls in this file, instead of the next one. Increment
        // the file index for all keys between batch_iter_ and upper_key_
        auto tmp_iter = batch_iter_;
        while (tmp_iter != upper_key_) {
          ++(fp_ctx_array_[tmp_iter.index()].curr_index_in_curr_level);
          ++tmp_iter;
        }
        maybe_repeat_key_ = true;
      }
      // Set the range for this file
      current_file_range_ =
          MultiGetRange(next_file_range, batch_iter_prev_, upper_key_);
      returned_file_level_ = curr_level_;
      hit_file_level_ = curr_level_;
      is_hit_file_last_in_level_ =
          curr_file_index == curr_file_level_->num_files - 1;
      hit_file_ = f;
      return f;
    }
  }

  // getter for current file level
  // for GET_HIT_L0, GET_HIT_L1 & GET_HIT_L2_AND_UP counts
  unsigned int GetHitFileLevel() { return hit_file_level_; }

  FdWithKeyRange* GetHitFile() { return hit_file_; }

  // Returns true if the most recent "hit file" (i.e., one returned by
  // GetNextFile()) is at the last index in its level.
  bool IsHitFileLastInLevel() { return is_hit_file_last_in_level_; }

  bool KeyMaySpanNextFile() { return maybe_repeat_key_; }

  bool IsSearchEnded() { return search_ended_; }

  const MultiGetRange& CurrentFileRange() { return current_file_range_; }

  bool RemainingOverlapInLevel() {
    return !current_level_range_.Suffix(current_file_range_).empty();
  }

  MultiGetRange& GetRange() { return range_; }

  void ReplaceRange(const MultiGetRange& other) {
    assert(hit_file_ == nullptr);
    range_ = other;
    current_level_range_ = other;
  }

  FilePickerMultiGet(FilePickerMultiGet&& other)
      : num_levels_(other.num_levels_),
        curr_level_(other.curr_level_),
        returned_file_level_(other.returned_file_level_),
        hit_file_level_(other.hit_file_level_),
        fp_ctx_array_(std::move(other.fp_ctx_array_)),
        range_(std::move(other.range_)),
        maybe_repeat_key_(other.maybe_repeat_key_),
        current_level_range_(std::move(other.current_level_range_)),
        current_file_range_(std::move(other.current_file_range_)),
        batch_iter_(other.batch_iter_, &current_level_range_),
        batch_iter_prev_(other.batch_iter_prev_, &current_level_range_),
        upper_key_(other.upper_key_, &current_level_range_),
        level_files_brief_(other.level_files_brief_),
        search_ended_(other.search_ended_),
        is_hit_file_last_in_level_(other.is_hit_file_last_in_level_),
        curr_file_level_(other.curr_file_level_),
        file_indexer_(other.file_indexer_),
        user_comparator_(other.user_comparator_),
        internal_comparator_(other.internal_comparator_),
        hit_file_(other.hit_file_) {}

 private:
  unsigned int num_levels_;
  unsigned int curr_level_;
  unsigned int returned_file_level_;
  unsigned int hit_file_level_;

  struct FilePickerContext {
    int32_t search_left_bound;
    int32_t search_right_bound;
    unsigned int curr_index_in_curr_level;
    unsigned int start_index_in_curr_level;

    FilePickerContext(int32_t left, int32_t right)
        : search_left_bound(left),
          search_right_bound(right),
          curr_index_in_curr_level(0),
          start_index_in_curr_level(0) {}

    FilePickerContext() = default;
  };
  std::array<FilePickerContext, MultiGetContext::MAX_BATCH_SIZE> fp_ctx_array_;
  MultiGetRange range_;
  bool maybe_repeat_key_;
  MultiGetRange current_level_range_;
  MultiGetRange current_file_range_;
  // Iterator to iterate through the keys in a MultiGet batch, that gets reset
  // at the beginning of each level. Each call to GetNextFile() will position
  // batch_iter_ at or right after the last key that was found in the returned
  // SST file
  MultiGetRange::Iterator batch_iter_;
  // An iterator that records the previous position of batch_iter_, i.e last
  // key found in the previous SST file, in order to serve as the start of
  // the batch key range for the next SST file
  MultiGetRange::Iterator batch_iter_prev_;
  MultiGetRange::Iterator upper_key_;
  autovector<LevelFilesBrief>* level_files_brief_;
  bool search_ended_;
  bool is_hit_file_last_in_level_;
  LevelFilesBrief* curr_file_level_;
  FileIndexer* file_indexer_;
  const Comparator* user_comparator_;
  const InternalKeyComparator* internal_comparator_;
  FdWithKeyRange* hit_file_;

  // Iterates through files in the current level until it finds a file that
  // contains at least one key from the MultiGet batch
  bool GetNextFileInLevelWithKeys(MultiGetRange* next_file_range,
                                  size_t* file_index, FdWithKeyRange** fd,
                                  bool* is_last_key_in_file) {
    size_t curr_file_index = *file_index;
    FdWithKeyRange* f = nullptr;
    bool file_hit = false;
    int cmp_largest = -1;
    if (curr_file_index >= curr_file_level_->num_files) {
      // In the unlikely case the next key is a duplicate of the current key,
      // and the current key is the last in the level and the internal key
      // was not found, we need to skip lookup for the remaining keys and
      // reset the search bounds
      if (batch_iter_ != current_level_range_.end()) {
        ++batch_iter_;
        for (; batch_iter_ != current_level_range_.end(); ++batch_iter_) {
          struct FilePickerContext& fp_ctx = fp_ctx_array_[batch_iter_.index()];
          fp_ctx.search_left_bound = 0;
          fp_ctx.search_right_bound = FileIndexer::kLevelMaxIndex;
        }
      }
      return false;
    }
    // Loops over keys in the MultiGet batch until it finds a file with
    // atleast one of the keys. Then it keeps moving forward until the
    // last key in the batch that falls in that file
    while (batch_iter_ != current_level_range_.end() &&
           (fp_ctx_array_[batch_iter_.index()].curr_index_in_curr_level ==
                curr_file_index ||
            !file_hit)) {
      struct FilePickerContext& fp_ctx = fp_ctx_array_[batch_iter_.index()];
      f = &curr_file_level_->files[fp_ctx.curr_index_in_curr_level];
      Slice& user_key = batch_iter_->ukey_without_ts;

      // Do key range filtering of files or/and fractional cascading if:
      // (1) not all the files are in level 0, or
      // (2) there are more than 3 current level files
      // If there are only 3 or less current level files in the system, we
      // skip the key range filtering. In this case, more likely, the system
      // is highly tuned to minimize number of tables queried by each query,
      // so it is unlikely that key range filtering is more efficient than
      // querying the files.
      if (num_levels_ > 1 || curr_file_level_->num_files > 3) {
        // Check if key is within a file's range. If search left bound and
        // right bound point to the same find, we are sure key falls in
        // range.
        int cmp_smallest = user_comparator_->CompareWithoutTimestamp(
            user_key, false, ExtractUserKey(f->smallest_key), true);

        assert(curr_level_ == 0 ||
               fp_ctx.curr_index_in_curr_level ==
                   fp_ctx.start_index_in_curr_level ||
               cmp_smallest <= 0);

        if (cmp_smallest >= 0) {
          cmp_largest = user_comparator_->CompareWithoutTimestamp(
              user_key, false, ExtractUserKey(f->largest_key), true);
        } else {
          cmp_largest = -1;
        }

        // Setup file search bound for the next level based on the
        // comparison results
        if (curr_level_ > 0) {
          file_indexer_->GetNextLevelIndex(
              curr_level_, fp_ctx.curr_index_in_curr_level, cmp_smallest,
              cmp_largest, &fp_ctx.search_left_bound,
              &fp_ctx.search_right_bound);
        }
        // Key falls out of current file's range
        if (cmp_smallest < 0 || cmp_largest > 0) {
          next_file_range->SkipKey(batch_iter_);
        } else {
          file_hit = true;
        }
      } else {
        file_hit = true;
      }
      if (cmp_largest == 0) {
        // cmp_largest is 0, which means the next key will not be in this
        // file, so stop looking further. However, its possible there are
        // duplicates in the batch, so find the upper bound for the batch
        // in this file (upper_key_) by skipping past the duplicates. We
        // leave batch_iter_ as is since we may have to pick up from there
        // for the next file, if this file has a merge value rather than
        // final value
        upper_key_ = batch_iter_;
        ++upper_key_;
        while (upper_key_ != current_level_range_.end() &&
               user_comparator_->CompareWithoutTimestamp(
                   batch_iter_->ukey_without_ts, false,
                   upper_key_->ukey_without_ts, false) == 0) {
          ++upper_key_;
        }
        break;
      } else {
        if (curr_level_ == 0) {
          // We need to look through all files in level 0
          ++fp_ctx.curr_index_in_curr_level;
        }
        ++batch_iter_;
      }
      if (!file_hit) {
        curr_file_index =
            (batch_iter_ != current_level_range_.end())
                ? fp_ctx_array_[batch_iter_.index()].curr_index_in_curr_level
                : curr_file_level_->num_files;
      }
    }

    *fd = f;
    *file_index = curr_file_index;
    *is_last_key_in_file = cmp_largest == 0;
    if (!*is_last_key_in_file) {
      // If the largest key in the batch overlapping the file is not the
      // largest key in the file, upper_ley_ would not have been updated so
      // update it here
      upper_key_ = batch_iter_;
    }
    return file_hit;
  }

  // Setup local variables to search next level.
  // Returns false if there are no more levels to search.
  bool PrepareNextLevel() {
    if (curr_level_ == 0) {
      MultiGetRange::Iterator mget_iter = current_level_range_.begin();
      if (fp_ctx_array_[mget_iter.index()].curr_index_in_curr_level <
          curr_file_level_->num_files) {
        batch_iter_prev_ = current_level_range_.begin();
        upper_key_ = batch_iter_ = current_level_range_.begin();
        return true;
      }
    }

    curr_level_++;
    // Reset key range to saved value
    while (curr_level_ < num_levels_) {
      bool level_contains_keys = false;
      curr_file_level_ = &(*level_files_brief_)[curr_level_];
      if (curr_file_level_->num_files == 0) {
        // When current level is empty, the search bound generated from upper
        // level must be [0, -1] or [0, FileIndexer::kLevelMaxIndex] if it is
        // also empty.

        for (auto mget_iter = current_level_range_.begin();
             mget_iter != current_level_range_.end(); ++mget_iter) {
          struct FilePickerContext& fp_ctx = fp_ctx_array_[mget_iter.index()];

          assert(fp_ctx.search_left_bound == 0);
          assert(fp_ctx.search_right_bound == -1 ||
                 fp_ctx.search_right_bound == FileIndexer::kLevelMaxIndex);
          // Since current level is empty, it will need to search all files in
          // the next level
          fp_ctx.search_left_bound = 0;
          fp_ctx.search_right_bound = FileIndexer::kLevelMaxIndex;
        }
        // Skip all subsequent empty levels
        do {
          ++curr_level_;
        } while ((curr_level_ < num_levels_) &&
                 (*level_files_brief_)[curr_level_].num_files == 0);
        continue;
      }

      // Some files may overlap each other. We find
      // all files that overlap user_key and process them in order from
      // newest to oldest. In the context of merge-operator, this can occur at
      // any level. Otherwise, it only occurs at Level-0 (since Put/Deletes
      // are always compacted into a single entry).
      int32_t start_index = -1;
      current_level_range_ =
          MultiGetRange(range_, range_.begin(), range_.end());
      for (auto mget_iter = current_level_range_.begin();
           mget_iter != current_level_range_.end(); ++mget_iter) {
        struct FilePickerContext& fp_ctx = fp_ctx_array_[mget_iter.index()];
        if (curr_level_ == 0) {
          // On Level-0, we read through all files to check for overlap.
          start_index = 0;
          level_contains_keys = true;
        } else {
          // On Level-n (n>=1), files are sorted. Binary search to find the
          // earliest file whose largest key >= ikey. Search left bound and
          // right bound are used to narrow the range.
          if (fp_ctx.search_left_bound <= fp_ctx.search_right_bound) {
            if (fp_ctx.search_right_bound == FileIndexer::kLevelMaxIndex) {
              fp_ctx.search_right_bound =
                  static_cast<int32_t>(curr_file_level_->num_files) - 1;
            }
            // `search_right_bound_` is an inclusive upper-bound, but since it
            // was determined based on user key, it is still possible the lookup
            // key falls to the right of `search_right_bound_`'s corresponding
            // file. So, pass a limit one higher, which allows us to detect this
            // case.
            Slice& ikey = mget_iter->ikey;
            start_index = FindFileInRange(
                *internal_comparator_, *curr_file_level_, ikey,
                static_cast<uint32_t>(fp_ctx.search_left_bound),
                static_cast<uint32_t>(fp_ctx.search_right_bound) + 1);
            if (start_index == fp_ctx.search_right_bound + 1) {
              // `ikey_` comes after `search_right_bound_`. The lookup key does
              // not exist on this level, so let's skip this level and do a full
              // binary search on the next level.
              fp_ctx.search_left_bound = 0;
              fp_ctx.search_right_bound = FileIndexer::kLevelMaxIndex;
              current_level_range_.SkipKey(mget_iter);
              continue;
            } else {
              level_contains_keys = true;
            }
          } else {
            // search_left_bound > search_right_bound, key does not exist in
            // this level. Since no comparison is done in this level, it will
            // need to search all files in the next level.
            fp_ctx.search_left_bound = 0;
            fp_ctx.search_right_bound = FileIndexer::kLevelMaxIndex;
            current_level_range_.SkipKey(mget_iter);
            continue;
          }
        }
        fp_ctx.start_index_in_curr_level = start_index;
        fp_ctx.curr_index_in_curr_level = start_index;
      }
      if (level_contains_keys) {
        batch_iter_prev_ = current_level_range_.begin();
        upper_key_ = batch_iter_ = current_level_range_.begin();
        return true;
      }
      curr_level_++;
    }
    // curr_level_ = num_levels_. So, no more levels to search.
    return false;
  }
};

VersionStorageInfo::~VersionStorageInfo() { delete[] files_; }

Version::~Version() {
  assert(refs_ == 0);

  // Remove from linked list
  prev_->next_ = next_;
  next_->prev_ = prev_;

  // Drop references to files
  for (int level = 0; level < storage_info_.num_levels_; level++) {
    for (size_t i = 0; i < storage_info_.files_[level].size(); i++) {
      FileMetaData* f = storage_info_.files_[level][i];
      assert(f->refs > 0);
      f->refs--;
      if (f->refs <= 0) {
        assert(cfd_ != nullptr);
        uint32_t path_id = f->fd.GetPathId();
        assert(path_id < cfd_->ioptions()->cf_paths.size());
        vset_->obsolete_files_.push_back(
            ObsoleteFileInfo(f, cfd_->ioptions()->cf_paths[path_id].path,
                             cfd_->GetFileMetadataCacheReservationManager()));
      }
    }
  }
}

int FindFile(const InternalKeyComparator& icmp,
             const LevelFilesBrief& file_level, const Slice& key) {
  return FindFileInRange(icmp, file_level, key, 0,
                         static_cast<uint32_t>(file_level.num_files));
}

void DoGenerateLevelFilesBrief(LevelFilesBrief* file_level,
                               const std::vector<FileMetaData*>& files,
                               Arena* arena) {
  assert(file_level);
  assert(arena);

  size_t num = files.size();
  file_level->num_files = num;
  char* mem = arena->AllocateAligned(num * sizeof(FdWithKeyRange));
  file_level->files = new (mem) FdWithKeyRange[num];

  for (size_t i = 0; i < num; i++) {
    Slice smallest_key = files[i]->smallest.Encode();
    Slice largest_key = files[i]->largest.Encode();

    // Copy key slice to sequential memory
    size_t smallest_size = smallest_key.size();
    size_t largest_size = largest_key.size();
    mem = arena->AllocateAligned(smallest_size + largest_size);
    memcpy(mem, smallest_key.data(), smallest_size);
    memcpy(mem + smallest_size, largest_key.data(), largest_size);

    FdWithKeyRange& f = file_level->files[i];
    f.fd = files[i]->fd;
    f.file_metadata = files[i];
    f.smallest_key = Slice(mem, smallest_size);
    f.largest_key = Slice(mem + smallest_size, largest_size);
  }
}

static bool AfterFile(const Comparator* ucmp, const Slice* user_key,
                      const FdWithKeyRange* f) {
  // nullptr user_key occurs before all keys and is therefore never after *f
  return (user_key != nullptr &&
          ucmp->CompareWithoutTimestamp(*user_key,
                                        ExtractUserKey(f->largest_key)) > 0);
}

static bool BeforeFile(const Comparator* ucmp, const Slice* user_key,
                       const FdWithKeyRange* f) {
  // nullptr user_key occurs after all keys and is therefore never before *f
  return (user_key != nullptr &&
          ucmp->CompareWithoutTimestamp(*user_key,
                                        ExtractUserKey(f->smallest_key)) < 0);
}

bool SomeFileOverlapsRange(const InternalKeyComparator& icmp,
                           bool disjoint_sorted_files,
                           const LevelFilesBrief& file_level,
                           const Slice* smallest_user_key,
                           const Slice* largest_user_key) {
  const Comparator* ucmp = icmp.user_comparator();
  if (!disjoint_sorted_files) {
    // Need to check against all files
    for (size_t i = 0; i < file_level.num_files; i++) {
      const FdWithKeyRange* f = &(file_level.files[i]);
      if (AfterFile(ucmp, smallest_user_key, f) ||
          BeforeFile(ucmp, largest_user_key, f)) {
        // No overlap
      } else {
        return true;  // Overlap
      }
    }
    return false;
  }

  // Binary search over file list
  uint32_t index = 0;
  if (smallest_user_key != nullptr) {
    // Find the leftmost possible internal key for smallest_user_key
    InternalKey small;
    small.SetMinPossibleForUserKey(*smallest_user_key);
    index = FindFile(icmp, file_level, small.Encode());
  }

  if (index >= file_level.num_files) {
    // beginning of range is after all files, so no overlap.
    return false;
  }

  return !BeforeFile(ucmp, largest_user_key, &file_level.files[index]);
}

namespace {

class LevelIterator final : public InternalIterator {
 public:
  // @param read_options Must outlive this iterator.
  LevelIterator(
      TableCache* table_cache, const ReadOptions& read_options,
      const FileOptions& file_options, const InternalKeyComparator& icomparator,
      const LevelFilesBrief* flevel,
      const std::shared_ptr<const SliceTransform>& prefix_extractor,
      bool should_sample, HistogramImpl* file_read_hist,
      TableReaderCaller caller, bool skip_filters, int level,
      RangeDelAggregator* range_del_agg,
      const std::vector<AtomicCompactionUnitBoundary>* compaction_boundaries =
          nullptr,
      bool allow_unprepared_value = false,
      TruncatedRangeDelIterator**** range_tombstone_iter_ptr_ = nullptr)
      : table_cache_(table_cache),
        read_options_(read_options),
        file_options_(file_options),
        icomparator_(icomparator),
        user_comparator_(icomparator.user_comparator()),
        flevel_(flevel),
        prefix_extractor_(prefix_extractor),
        file_read_hist_(file_read_hist),
        should_sample_(should_sample),
        caller_(caller),
        skip_filters_(skip_filters),
        allow_unprepared_value_(allow_unprepared_value),
        file_index_(flevel_->num_files),
        level_(level),
        range_del_agg_(range_del_agg),
        pinned_iters_mgr_(nullptr),
        compaction_boundaries_(compaction_boundaries),
        is_next_read_sequential_(false),
        range_tombstone_iter_(nullptr),
        to_return_sentinel_(false) {
    // Empty level is not supported.
    assert(flevel_ != nullptr && flevel_->num_files > 0);
    if (range_tombstone_iter_ptr_) {
      *range_tombstone_iter_ptr_ = &range_tombstone_iter_;
    }
  }

  ~LevelIterator() override { delete file_iter_.Set(nullptr); }

  // Seek to the first file with a key >= target.
  // If range_tombstone_iter_ is not nullptr, then we pretend that file
  // boundaries are fake keys (sentinel keys). These keys are used to keep range
  // tombstones alive even when all point keys in an SST file are exhausted.
  // These sentinel keys will be skipped in merging iterator.
  void Seek(const Slice& target) override;
  void SeekForPrev(const Slice& target) override;
  void SeekToFirst() override;
  void SeekToLast() override;
  void Next() final override;
  bool NextAndGetResult(IterateResult* result) override;
  void Prev() override;

  // In addition to valid and invalid state (!file_iter.Valid() and
  // status.ok()), a third state of the iterator is when !file_iter_.Valid() and
  // to_return_sentinel_. This means we are at the end of a file, and a sentinel
  // key (the file boundary that we pretend as a key) is to be returned next.
  // file_iter_.Valid() and to_return_sentinel_ should not both be true.
  bool Valid() const override {
    assert(!(file_iter_.Valid() && to_return_sentinel_));
    return file_iter_.Valid() || to_return_sentinel_;
  }
  Slice key() const override {
    assert(Valid());
    if (to_return_sentinel_) {
      // Sentinel should be returned after file_iter_ reaches the end of the
      // file
      assert(!file_iter_.Valid());
      return sentinel_;
    }
    return file_iter_.key();
  }

  Slice value() const override {
    assert(Valid());
    assert(!to_return_sentinel_);
    return file_iter_.value();
  }

  Status status() const override {
    return file_iter_.iter() ? file_iter_.status() : Status::OK();
  }

  bool PrepareValue() override { return file_iter_.PrepareValue(); }

  inline bool MayBeOutOfLowerBound() override {
    assert(Valid());
    return may_be_out_of_lower_bound_ && file_iter_.MayBeOutOfLowerBound();
  }

  inline IterBoundCheck UpperBoundCheckResult() override {
    if (Valid()) {
      return file_iter_.UpperBoundCheckResult();
    } else {
      return IterBoundCheck::kUnknown;
    }
  }

  void SetPinnedItersMgr(PinnedIteratorsManager* pinned_iters_mgr) override {
    pinned_iters_mgr_ = pinned_iters_mgr;
    if (file_iter_.iter()) {
      file_iter_.SetPinnedItersMgr(pinned_iters_mgr);
    }
  }

  bool IsKeyPinned() const override {
    return pinned_iters_mgr_ && pinned_iters_mgr_->PinningEnabled() &&
           file_iter_.iter() && file_iter_.IsKeyPinned();
  }

  bool IsValuePinned() const override {
    return pinned_iters_mgr_ && pinned_iters_mgr_->PinningEnabled() &&
           file_iter_.iter() && file_iter_.IsValuePinned();
  }

  bool IsDeleteRangeSentinelKey() const override { return to_return_sentinel_; }

 private:
  // Return true if at least one invalid file is seen and skipped.
  bool SkipEmptyFileForward();
  void SkipEmptyFileBackward();
  void SetFileIterator(InternalIterator* iter);
  void InitFileIterator(size_t new_file_index);

  const Slice& file_smallest_key(size_t file_index) {
    assert(file_index < flevel_->num_files);
    return flevel_->files[file_index].smallest_key;
  }

  const Slice& file_largest_key(size_t file_index) {
    assert(file_index < flevel_->num_files);
    return flevel_->files[file_index].largest_key;
  }

  bool KeyReachedUpperBound(const Slice& internal_key) {
    return read_options_.iterate_upper_bound != nullptr &&
           user_comparator_.CompareWithoutTimestamp(
               ExtractUserKey(internal_key), /*a_has_ts=*/true,
               *read_options_.iterate_upper_bound, /*b_has_ts=*/false) >= 0;
  }

  void ClearRangeTombstoneIter() {
    if (range_tombstone_iter_ && *range_tombstone_iter_) {
      delete *range_tombstone_iter_;
      *range_tombstone_iter_ = nullptr;
    }
  }

  // Move file_iter_ to the file at file_index_.
  // range_tombstone_iter_ is updated with a range tombstone iterator
  // into the new file. Old range tombstone iterator is cleared.
  InternalIterator* NewFileIterator() {
    assert(file_index_ < flevel_->num_files);
    auto file_meta = flevel_->files[file_index_];
    if (should_sample_) {
      sample_file_read_inc(file_meta.file_metadata);
    }

    const InternalKey* smallest_compaction_key = nullptr;
    const InternalKey* largest_compaction_key = nullptr;
    if (compaction_boundaries_ != nullptr) {
      smallest_compaction_key = (*compaction_boundaries_)[file_index_].smallest;
      largest_compaction_key = (*compaction_boundaries_)[file_index_].largest;
    }
    CheckMayBeOutOfLowerBound();
    ClearRangeTombstoneIter();
    return table_cache_->NewIterator(
        read_options_, file_options_, icomparator_, *file_meta.file_metadata,
        range_del_agg_, prefix_extractor_,
        nullptr /* don't need reference to table */, file_read_hist_, caller_,
        /*arena=*/nullptr, skip_filters_, level_,
        /*max_file_size_for_l0_meta_pin=*/0, smallest_compaction_key,
        largest_compaction_key, allow_unprepared_value_, range_tombstone_iter_);
  }

  // Check if current file being fully within iterate_lower_bound.
  //
  // Note MyRocks may update iterate bounds between seek. To workaround it,
  // we need to check and update may_be_out_of_lower_bound_ accordingly.
  void CheckMayBeOutOfLowerBound() {
    if (read_options_.iterate_lower_bound != nullptr &&
        file_index_ < flevel_->num_files) {
      may_be_out_of_lower_bound_ =
          user_comparator_.CompareWithoutTimestamp(
              ExtractUserKey(file_smallest_key(file_index_)), /*a_has_ts=*/true,
              *read_options_.iterate_lower_bound, /*b_has_ts=*/false) < 0;
    }
  }

  TableCache* table_cache_;
  const ReadOptions& read_options_;
  const FileOptions& file_options_;
  const InternalKeyComparator& icomparator_;
  const UserComparatorWrapper user_comparator_;
  const LevelFilesBrief* flevel_;
  mutable FileDescriptor current_value_;
  // `prefix_extractor_` may be non-null even for total order seek. Checking
  // this variable is not the right way to identify whether prefix iterator
  // is used.
  const std::shared_ptr<const SliceTransform>& prefix_extractor_;

  HistogramImpl* file_read_hist_;
  bool should_sample_;
  TableReaderCaller caller_;
  bool skip_filters_;
  bool allow_unprepared_value_;
  bool may_be_out_of_lower_bound_ = true;
  size_t file_index_;
  int level_;
  RangeDelAggregator* range_del_agg_;
  IteratorWrapper file_iter_;  // May be nullptr
  PinnedIteratorsManager* pinned_iters_mgr_;

  // To be propagated to RangeDelAggregator in order to safely truncate range
  // tombstones.
  const std::vector<AtomicCompactionUnitBoundary>* compaction_boundaries_;

  bool is_next_read_sequential_;

  // This is set when this level iterator is used under a merging iterator
  // that processes range tombstones. range_tombstone_iter_ points to where the
  // merging iterator stores the range tombstones iterator for this level. When
  // this level iterator moves to a new SST file, it updates the range
  // tombstones accordingly through this pointer. So the merging iterator always
  // has access to the current SST file's range tombstones.
  //
  // The level iterator treats file boundary as fake keys (sentinel keys) to
  // keep range tombstones alive if needed and make upper level, i.e. merging
  // iterator, aware of file changes (when level iterator moves to a new SST
  // file, there is some bookkeeping work that needs to be done at merging
  // iterator end).
  //
  // *range_tombstone_iter_ points to range tombstones of the current SST file
  TruncatedRangeDelIterator** range_tombstone_iter_;

  // Whether next/prev key is a sentinel key.
  bool to_return_sentinel_ = false;
  // The sentinel key to be returned
  Slice sentinel_;
  // Sets flags for if we should return the sentinel key next.
  // The condition for returning sentinel is reaching the end of current
  // file_iter_: !Valid() && status.().ok().
  void TrySetDeleteRangeSentinel(const Slice& boundary_key);
  void ClearSentinel() { to_return_sentinel_ = false; }

  // Set in Seek() when a prefix seek reaches end of the current file,
  // and the next file has a different prefix. SkipEmptyFileForward()
  // will not move to next file when this flag is set.
  bool prefix_exhausted_ = false;
};

void LevelIterator::TrySetDeleteRangeSentinel(const Slice& boundary_key) {
  assert(range_tombstone_iter_);
  if (file_iter_.iter() != nullptr && !file_iter_.Valid() &&
      file_iter_.status().ok()) {
    to_return_sentinel_ = true;
    sentinel_ = boundary_key;
  }
}

void LevelIterator::Seek(const Slice& target) {
  prefix_exhausted_ = false;
  ClearSentinel();
  // Check whether the seek key fall under the same file
  bool need_to_reseek = true;
  if (file_iter_.iter() != nullptr && file_index_ < flevel_->num_files) {
    const FdWithKeyRange& cur_file = flevel_->files[file_index_];
    if (icomparator_.InternalKeyComparator::Compare(
            target, cur_file.largest_key) <= 0 &&
        icomparator_.InternalKeyComparator::Compare(
            target, cur_file.smallest_key) >= 0) {
      need_to_reseek = false;
      assert(static_cast<size_t>(FindFile(icomparator_, *flevel_, target)) ==
             file_index_);
    }
  }
  if (need_to_reseek) {
    TEST_SYNC_POINT("LevelIterator::Seek:BeforeFindFile");
    size_t new_file_index = FindFile(icomparator_, *flevel_, target);
    InitFileIterator(new_file_index);
  }

  if (file_iter_.iter() != nullptr) {
    file_iter_.Seek(target);
    // Status::TryAgain indicates asynchronous request for retrieval of data
    // blocks has been submitted. So it should return at this point and Seek
    // should be called again to retrieve the requested block and execute the
    // remaining code.
    if (file_iter_.status() == Status::TryAgain()) {
      return;
    }
    if (!file_iter_.Valid() && file_iter_.status().ok() &&
        prefix_extractor_ != nullptr && !read_options_.total_order_seek &&
        !read_options_.auto_prefix_mode &&
        file_index_ < flevel_->num_files - 1) {
      size_t ts_sz = user_comparator_.user_comparator()->timestamp_size();
      Slice target_user_key_without_ts =
          ExtractUserKeyAndStripTimestamp(target, ts_sz);
      Slice next_file_first_user_key_without_ts =
          ExtractUserKeyAndStripTimestamp(file_smallest_key(file_index_ + 1),
                                          ts_sz);
      if (prefix_extractor_->InDomain(target_user_key_without_ts) &&
          (!prefix_extractor_->InDomain(next_file_first_user_key_without_ts) ||
           user_comparator_.CompareWithoutTimestamp(
               prefix_extractor_->Transform(target_user_key_without_ts), false,
               prefix_extractor_->Transform(
                   next_file_first_user_key_without_ts),
               false) != 0)) {
        // SkipEmptyFileForward() will not advance to next file when this flag
        // is set for reason detailed below.
        //
        // The file we initially positioned to has no keys under the target
        // prefix, and the next file's smallest key has a different prefix than
        // target. When doing prefix iterator seek, when keys for one prefix
        // have been exhausted, it can jump to any key that is larger. Here we
        // are enforcing a stricter contract than that, in order to make it
        // easier for higher layers (merging and DB iterator) to reason the
        // correctness:
        // 1. Within the prefix, the result should be accurate.
        // 2. If keys for the prefix is exhausted, it is either positioned to
        // the next key after the prefix, or make the iterator invalid.
        // A side benefit will be that it invalidates the iterator earlier so
        // that the upper level merging iterator can merge fewer child
        // iterators.
        //
        // The flag is cleared in Seek*() calls. There is no need to clear the
        // flag in Prev() since Prev() will not be called when the flag is set
        // for reasons explained below. If range_tombstone_iter_ is nullptr,
        // then there is no file boundary sentinel key. Since
        // !file_iter_.Valid() from the if condition above, this level iterator
        // is !Valid(), so Prev() will not be called. If range_tombstone_iter_
        // is not nullptr, there are two cases depending on if this level
        // iterator reaches top of the heap in merging iterator (the upper
        // layer).
        //  If so, merging iterator will see the sentinel key, call
        //  NextAndGetResult() and the call to NextAndGetResult() will skip the
        //  sentinel key and makes this level iterator invalid. If not, then it
        //  could be because the upper layer is done before any method of this
        //  level iterator is called or another Seek*() call is invoked. Either
        //  way, Prev() is never called before Seek*().
        // The flag should not be cleared at the beginning of
        // Next/NextAndGetResult() since it is used in SkipEmptyFileForward()
        // called in Next/NextAndGetResult().
        prefix_exhausted_ = true;
      }
    }

    if (range_tombstone_iter_) {
      TrySetDeleteRangeSentinel(file_largest_key(file_index_));
    }
  }
  SkipEmptyFileForward();
  CheckMayBeOutOfLowerBound();
}

void LevelIterator::SeekForPrev(const Slice& target) {
  prefix_exhausted_ = false;
  ClearSentinel();
  size_t new_file_index = FindFile(icomparator_, *flevel_, target);
  // Seek beyond this level's smallest key
  if (new_file_index == 0 &&
      icomparator_.Compare(target, file_smallest_key(0)) < 0) {
    SetFileIterator(nullptr);
    ClearRangeTombstoneIter();
    CheckMayBeOutOfLowerBound();
    return;
  }
  if (new_file_index >= flevel_->num_files) {
    new_file_index = flevel_->num_files - 1;
  }

  InitFileIterator(new_file_index);
  if (file_iter_.iter() != nullptr) {
    file_iter_.SeekForPrev(target);
    if (range_tombstone_iter_ &&
        icomparator_.Compare(target, file_smallest_key(file_index_)) >= 0) {
      // In SeekForPrev() case, it is possible that the target is less than
      // file's lower boundary since largest key is used to determine file index
      // (FindFile()). When target is less than file's lower boundary, sentinel
      // key should not be set so that SeekForPrev() does not result in a key
      // larger than target. This is correct in that there is no need to keep
      // the range tombstones in this file alive as they only cover keys
      // starting from the file's lower boundary, which is after `target`.
      TrySetDeleteRangeSentinel(file_smallest_key(file_index_));
    }
    SkipEmptyFileBackward();
  }
  CheckMayBeOutOfLowerBound();
}

void LevelIterator::SeekToFirst() {
  prefix_exhausted_ = false;
  ClearSentinel();
  InitFileIterator(0);
  if (file_iter_.iter() != nullptr) {
    file_iter_.SeekToFirst();
    if (range_tombstone_iter_) {
      // We do this in SeekToFirst() and SeekToLast() since
      // we could have an empty file with only range tombstones.
      TrySetDeleteRangeSentinel(file_largest_key(file_index_));
    }
  }
  SkipEmptyFileForward();
  CheckMayBeOutOfLowerBound();
}

void LevelIterator::SeekToLast() {
  prefix_exhausted_ = false;
  ClearSentinel();
  InitFileIterator(flevel_->num_files - 1);
  if (file_iter_.iter() != nullptr) {
    file_iter_.SeekToLast();
    if (range_tombstone_iter_) {
      TrySetDeleteRangeSentinel(file_smallest_key(file_index_));
    }
  }
  SkipEmptyFileBackward();
  CheckMayBeOutOfLowerBound();
}

void LevelIterator::Next() {
  assert(Valid());
  if (to_return_sentinel_) {
    // file_iter_ is at EOF already when to_return_sentinel_
    ClearSentinel();
  } else {
    file_iter_.Next();
    if (range_tombstone_iter_) {
      TrySetDeleteRangeSentinel(file_largest_key(file_index_));
    }
  }
  SkipEmptyFileForward();
}

bool LevelIterator::NextAndGetResult(IterateResult* result) {
  assert(Valid());
  // file_iter_ is at EOF already when to_return_sentinel_
  bool is_valid = !to_return_sentinel_ && file_iter_.NextAndGetResult(result);
  if (!is_valid) {
    if (to_return_sentinel_) {
      ClearSentinel();
    } else if (range_tombstone_iter_) {
      TrySetDeleteRangeSentinel(file_largest_key(file_index_));
    }
    is_next_read_sequential_ = true;
    SkipEmptyFileForward();
    is_next_read_sequential_ = false;
    is_valid = Valid();
    if (is_valid) {
      // This could be set in TrySetDeleteRangeSentinel() or
      // SkipEmptyFileForward() above.
      if (to_return_sentinel_) {
        result->key = sentinel_;
        result->bound_check_result = IterBoundCheck::kUnknown;
        result->value_prepared = true;
      } else {
        result->key = key();
        result->bound_check_result = file_iter_.UpperBoundCheckResult();
        // Ideally, we should return the real file_iter_.value_prepared but the
        // information is not here. It would casue an extra PrepareValue()
        // for the first key of a file.
        result->value_prepared = !allow_unprepared_value_;
      }
    }
  }
  return is_valid;
}

void LevelIterator::Prev() {
  assert(Valid());
  if (to_return_sentinel_) {
    ClearSentinel();
  } else {
    file_iter_.Prev();
    if (range_tombstone_iter_) {
      TrySetDeleteRangeSentinel(file_smallest_key(file_index_));
    }
  }
  SkipEmptyFileBackward();
}

bool LevelIterator::SkipEmptyFileForward() {
  bool seen_empty_file = false;
  // Pause at sentinel key
  while (!to_return_sentinel_ &&
         (file_iter_.iter() == nullptr ||
          (!file_iter_.Valid() && file_iter_.status().ok() &&
           file_iter_.iter()->UpperBoundCheckResult() !=
               IterBoundCheck::kOutOfBound))) {
    seen_empty_file = true;
    // Move to next file
    if (file_index_ >= flevel_->num_files - 1 ||
        KeyReachedUpperBound(file_smallest_key(file_index_ + 1)) ||
        prefix_exhausted_) {
      SetFileIterator(nullptr);
      ClearRangeTombstoneIter();
      break;
    }
    // may init a new *range_tombstone_iter
    InitFileIterator(file_index_ + 1);
    // We moved to a new SST file
    // Seek range_tombstone_iter_ to reset its !Valid() default state.
    // We do not need to call range_tombstone_iter_.Seek* in
    // LevelIterator::Seek* since when the merging iterator calls
    // LevelIterator::Seek*, it should also call Seek* into the corresponding
    // range tombstone iterator.
    if (file_iter_.iter() != nullptr) {
      file_iter_.SeekToFirst();
      if (range_tombstone_iter_) {
        if (*range_tombstone_iter_) {
          (*range_tombstone_iter_)->SeekToFirst();
        }
        TrySetDeleteRangeSentinel(file_largest_key(file_index_));
      }
    }
  }
  return seen_empty_file;
}

void LevelIterator::SkipEmptyFileBackward() {
  // Pause at sentinel key
  while (!to_return_sentinel_ &&
         (file_iter_.iter() == nullptr ||
          (!file_iter_.Valid() && file_iter_.status().ok()))) {
    // Move to previous file
    if (file_index_ == 0) {
      // Already the first file
      SetFileIterator(nullptr);
      ClearRangeTombstoneIter();
      return;
    }
    InitFileIterator(file_index_ - 1);
    // We moved to a new SST file
    // Seek range_tombstone_iter_ to reset its !Valid() default state.
    if (file_iter_.iter() != nullptr) {
      file_iter_.SeekToLast();
      if (range_tombstone_iter_) {
        if (*range_tombstone_iter_) {
          (*range_tombstone_iter_)->SeekToLast();
        }
        TrySetDeleteRangeSentinel(file_smallest_key(file_index_));
        if (to_return_sentinel_) {
          break;
        }
      }
    }
  }
}

void LevelIterator::SetFileIterator(InternalIterator* iter) {
  if (pinned_iters_mgr_ && iter) {
    iter->SetPinnedItersMgr(pinned_iters_mgr_);
  }

  InternalIterator* old_iter = file_iter_.Set(iter);

  // Update the read pattern for PrefetchBuffer.
  if (is_next_read_sequential_) {
    file_iter_.UpdateReadaheadState(old_iter);
  }

  if (pinned_iters_mgr_ && pinned_iters_mgr_->PinningEnabled()) {
    pinned_iters_mgr_->PinIterator(old_iter);
  } else {
    delete old_iter;
  }
}

void LevelIterator::InitFileIterator(size_t new_file_index) {
  if (new_file_index >= flevel_->num_files) {
    file_index_ = new_file_index;
    SetFileIterator(nullptr);
    ClearRangeTombstoneIter();
    return;
  } else {
    // If the file iterator shows incomplete, we try it again if users seek
    // to the same file, as this time we may go to a different data block
    // which is cached in block cache.
    //
    if (file_iter_.iter() != nullptr && !file_iter_.status().IsIncomplete() &&
        new_file_index == file_index_) {
      // file_iter_ is already constructed with this iterator, so
      // no need to change anything
    } else {
      file_index_ = new_file_index;
      InternalIterator* iter = NewFileIterator();
      SetFileIterator(iter);
    }
  }
}
}  // anonymous namespace

Status Version::GetTableProperties(std::shared_ptr<const TableProperties>* tp,
                                   const FileMetaData* file_meta,
                                   const std::string* fname) const {
  auto table_cache = cfd_->table_cache();
  auto ioptions = cfd_->ioptions();
  Status s = table_cache->GetTableProperties(
      file_options_, cfd_->internal_comparator(), *file_meta, tp,
      mutable_cf_options_.prefix_extractor, true /* no io */);
  if (s.ok()) {
    return s;
  }

  // We only ignore error type `Incomplete` since it's by design that we
  // disallow table when it's not in table cache.
  if (!s.IsIncomplete()) {
    return s;
  }

  // 2. Table is not present in table cache, we'll read the table properties
  // directly from the properties block in the file.
  std::unique_ptr<FSRandomAccessFile> file;
  std::string file_name;
  if (fname != nullptr) {
    file_name = *fname;
  } else {
    file_name = TableFileName(ioptions->cf_paths, file_meta->fd.GetNumber(),
                              file_meta->fd.GetPathId());
  }
  s = ioptions->fs->NewRandomAccessFile(file_name, file_options_, &file,
                                        nullptr);
  if (!s.ok()) {
    return s;
  }

  // By setting the magic number to kNullTableMagicNumber, we can bypass
  // the magic number check in the footer.
  std::unique_ptr<RandomAccessFileReader> file_reader(
      new RandomAccessFileReader(
          std::move(file), file_name, nullptr /* env */, io_tracer_,
          nullptr /* stats */, 0 /* hist_type */, nullptr /* file_read_hist */,
          nullptr /* rate_limiter */, ioptions->listeners));
  std::unique_ptr<TableProperties> props;
  s = ReadTableProperties(
      file_reader.get(), file_meta->fd.GetFileSize(),
      Footer::kNullTableMagicNumber /* table's magic number */, *ioptions,
      &props);
  if (!s.ok()) {
    return s;
  }
  *tp = std::move(props);
  RecordTick(ioptions->stats, NUMBER_DIRECT_LOAD_TABLE_PROPERTIES);
  return s;
}

Status Version::GetPropertiesOfAllTables(TablePropertiesCollection* props) {
  Status s;
  for (int level = 0; level < storage_info_.num_levels_; level++) {
    s = GetPropertiesOfAllTables(props, level);
    if (!s.ok()) {
      return s;
    }
  }

  return Status::OK();
}

Status Version::TablesRangeTombstoneSummary(int max_entries_to_print,
                                            std::string* out_str) {
  if (max_entries_to_print <= 0) {
    return Status::OK();
  }
  int num_entries_left = max_entries_to_print;

  std::stringstream ss;

  for (int level = 0; level < storage_info_.num_levels_; level++) {
    for (const auto& file_meta : storage_info_.files_[level]) {
      auto fname =
          TableFileName(cfd_->ioptions()->cf_paths, file_meta->fd.GetNumber(),
                        file_meta->fd.GetPathId());

      ss << "=== file : " << fname << " ===\n";

      TableCache* table_cache = cfd_->table_cache();
      std::unique_ptr<FragmentedRangeTombstoneIterator> tombstone_iter;

      Status s = table_cache->GetRangeTombstoneIterator(
          ReadOptions(), cfd_->internal_comparator(), *file_meta,
          &tombstone_iter);
      if (!s.ok()) {
        return s;
      }
      if (tombstone_iter) {
        tombstone_iter->SeekToFirst();

        // TODO: print timestamp
        while (tombstone_iter->Valid() && num_entries_left > 0) {
          ss << "start: " << tombstone_iter->start_key().ToString(true)
             << " end: " << tombstone_iter->end_key().ToString(true)
             << " seq: " << tombstone_iter->seq() << '\n';
          tombstone_iter->Next();
          num_entries_left--;
        }
        if (num_entries_left <= 0) {
          break;
        }
      }
    }
    if (num_entries_left <= 0) {
      break;
    }
  }
  assert(num_entries_left >= 0);
  if (num_entries_left <= 0) {
    ss << "(results may not be complete)\n";
  }

  *out_str = ss.str();
  return Status::OK();
}

Status Version::GetPropertiesOfAllTables(TablePropertiesCollection* props,
                                         int level) {
  for (const auto& file_meta : storage_info_.files_[level]) {
    auto fname =
        TableFileName(cfd_->ioptions()->cf_paths, file_meta->fd.GetNumber(),
                      file_meta->fd.GetPathId());
    // 1. If the table is already present in table cache, load table
    // properties from there.
    std::shared_ptr<const TableProperties> table_properties;
    Status s = GetTableProperties(&table_properties, file_meta, &fname);
    if (s.ok()) {
      props->insert({fname, table_properties});
    } else {
      return s;
    }
  }

  return Status::OK();
}

Status Version::GetPropertiesOfTablesInRange(
    const Range* range, std::size_t n, TablePropertiesCollection* props) const {
  for (int level = 0; level < storage_info_.num_non_empty_levels(); level++) {
    for (decltype(n) i = 0; i < n; i++) {
      // Convert user_key into a corresponding internal key.
      InternalKey k1(range[i].start, kMaxSequenceNumber, kValueTypeForSeek);
      InternalKey k2(range[i].limit, kMaxSequenceNumber, kValueTypeForSeek);
      std::vector<FileMetaData*> files;
      storage_info_.GetOverlappingInputs(level, &k1, &k2, &files, -1, nullptr,
                                         false);
      for (const auto& file_meta : files) {
        auto fname =
            TableFileName(cfd_->ioptions()->cf_paths, file_meta->fd.GetNumber(),
                          file_meta->fd.GetPathId());
        if (props->count(fname) == 0) {
          // 1. If the table is already present in table cache, load table
          // properties from there.
          std::shared_ptr<const TableProperties> table_properties;
          Status s = GetTableProperties(&table_properties, file_meta, &fname);
          if (s.ok()) {
            props->insert({fname, table_properties});
          } else {
            return s;
          }
        }
      }
    }
  }

  return Status::OK();
}

Status Version::GetAggregatedTableProperties(
    std::shared_ptr<const TableProperties>* tp, int level) {
  TablePropertiesCollection props;
  Status s;
  if (level < 0) {
    s = GetPropertiesOfAllTables(&props);
  } else {
    s = GetPropertiesOfAllTables(&props, level);
  }
  if (!s.ok()) {
    return s;
  }

  auto* new_tp = new TableProperties();
  for (const auto& item : props) {
    new_tp->Add(*item.second);
  }
  tp->reset(new_tp);
  return Status::OK();
}

size_t Version::GetMemoryUsageByTableReaders() {
  size_t total_usage = 0;
  for (auto& file_level : storage_info_.level_files_brief_) {
    for (size_t i = 0; i < file_level.num_files; i++) {
      total_usage += cfd_->table_cache()->GetMemoryUsageByTableReader(
          file_options_, cfd_->internal_comparator(),
          *file_level.files[i].file_metadata,
          mutable_cf_options_.prefix_extractor);
    }
  }
  return total_usage;
}

void Version::GetColumnFamilyMetaData(ColumnFamilyMetaData* cf_meta) {
  assert(cf_meta);
  assert(cfd_);

  cf_meta->name = cfd_->GetName();
  cf_meta->size = 0;
  cf_meta->file_count = 0;
  cf_meta->levels.clear();

  cf_meta->blob_file_size = 0;
  cf_meta->blob_file_count = 0;
  cf_meta->blob_files.clear();

  auto* ioptions = cfd_->ioptions();
  auto* vstorage = storage_info();

  for (int level = 0; level < cfd_->NumberLevels(); level++) {
    uint64_t level_size = 0;
    cf_meta->file_count += vstorage->LevelFiles(level).size();
    std::vector<SstFileMetaData> files;
    for (const auto& file : vstorage->LevelFiles(level)) {
      uint32_t path_id = file->fd.GetPathId();
      std::string file_path;
      if (path_id < ioptions->cf_paths.size()) {
        file_path = ioptions->cf_paths[path_id].path;
      } else {
        assert(!ioptions->cf_paths.empty());
        file_path = ioptions->cf_paths.back().path;
      }
      const uint64_t file_number = file->fd.GetNumber();
      files.emplace_back(
          MakeTableFileName("", file_number), file_number, file_path,
          file->fd.GetFileSize(), file->fd.smallest_seqno,
          file->fd.largest_seqno, file->smallest.user_key().ToString(),
          file->largest.user_key().ToString(),
          file->stats.num_reads_sampled.load(std::memory_order_relaxed),
          file->being_compacted, file->temperature,
          file->oldest_blob_file_number, file->TryGetOldestAncesterTime(),
          file->TryGetFileCreationTime(), file->file_checksum,
          file->file_checksum_func_name);
      files.back().num_entries = file->num_entries;
      files.back().num_deletions = file->num_deletions;
      level_size += file->fd.GetFileSize();
    }
    cf_meta->levels.emplace_back(level, level_size, std::move(files));
    cf_meta->size += level_size;
  }
  for (const auto& meta : vstorage->GetBlobFiles()) {
    assert(meta);

    cf_meta->blob_files.emplace_back(
        meta->GetBlobFileNumber(), BlobFileName("", meta->GetBlobFileNumber()),
        ioptions->cf_paths.front().path, meta->GetBlobFileSize(),
        meta->GetTotalBlobCount(), meta->GetTotalBlobBytes(),
        meta->GetGarbageBlobCount(), meta->GetGarbageBlobBytes(),
        meta->GetChecksumMethod(), meta->GetChecksumValue());
    ++cf_meta->blob_file_count;
    cf_meta->blob_file_size += meta->GetBlobFileSize();
  }
}

uint64_t Version::GetSstFilesSize() {
  uint64_t sst_files_size = 0;
  for (int level = 0; level < storage_info_.num_levels_; level++) {
    for (const auto& file_meta : storage_info_.LevelFiles(level)) {
      sst_files_size += file_meta->fd.GetFileSize();
    }
  }
  return sst_files_size;
}

void Version::GetCreationTimeOfOldestFile(uint64_t* creation_time) {
  uint64_t oldest_time = std::numeric_limits<uint64_t>::max();
  for (int level = 0; level < storage_info_.num_non_empty_levels_; level++) {
    for (FileMetaData* meta : storage_info_.LevelFiles(level)) {
      assert(meta->fd.table_reader != nullptr);
      uint64_t file_creation_time = meta->TryGetFileCreationTime();
      if (file_creation_time == kUnknownFileCreationTime) {
        *creation_time = 0;
        return;
      }
      if (file_creation_time < oldest_time) {
        oldest_time = file_creation_time;
      }
    }
  }
  *creation_time = oldest_time;
}

InternalIterator* Version::TEST_GetLevelIterator(
    const ReadOptions& read_options, MergeIteratorBuilder* merge_iter_builder,
    int level, bool allow_unprepared_value) {
  auto* arena = merge_iter_builder->GetArena();
  auto* mem = arena->AllocateAligned(sizeof(LevelIterator));
  TruncatedRangeDelIterator*** tombstone_iter_ptr = nullptr;
  auto level_iter = new (mem) LevelIterator(
      cfd_->table_cache(), read_options, file_options_,
      cfd_->internal_comparator(), &storage_info_.LevelFilesBrief(level),
      mutable_cf_options_.prefix_extractor, should_sample_file_read(),
      cfd_->internal_stats()->GetFileReadHist(level),
      TableReaderCaller::kUserIterator, IsFilterSkipped(level), level,
      nullptr /* range_del_agg */, nullptr /* compaction_boundaries */,
      allow_unprepared_value, &tombstone_iter_ptr);
  if (read_options.ignore_range_deletions) {
    merge_iter_builder->AddIterator(level_iter);
  } else {
    merge_iter_builder->AddPointAndTombstoneIterator(
        level_iter, nullptr /* tombstone_iter */, tombstone_iter_ptr);
  }
  return level_iter;
}

uint64_t VersionStorageInfo::GetEstimatedActiveKeys() const {
  // Estimation will be inaccurate when:
  // (1) there exist merge keys
  // (2) keys are directly overwritten
  // (3) deletion on non-existing keys
  // (4) low number of samples
  if (current_num_samples_ == 0) {
    return 0;
  }

  if (current_num_non_deletions_ <= current_num_deletions_) {
    return 0;
  }

  uint64_t est = current_num_non_deletions_ - current_num_deletions_;

  uint64_t file_count = 0;
  for (int level = 0; level < num_levels_; ++level) {
    file_count += files_[level].size();
  }

  if (current_num_samples_ < file_count) {
    // casting to avoid overflowing
    return static_cast<uint64_t>(
        (est * static_cast<double>(file_count) / current_num_samples_));
  } else {
    return est;
  }
}

double VersionStorageInfo::GetEstimatedCompressionRatioAtLevel(
    int level) const {
  assert(level < num_levels_);
  uint64_t sum_file_size_bytes = 0;
  uint64_t sum_data_size_bytes = 0;
  for (auto* file_meta : files_[level]) {
    sum_file_size_bytes += file_meta->fd.GetFileSize();
    sum_data_size_bytes += file_meta->raw_key_size + file_meta->raw_value_size;
  }
  if (sum_file_size_bytes == 0) {
    return -1.0;
  }
  return static_cast<double>(sum_data_size_bytes) / sum_file_size_bytes;
}

void Version::AddIterators(const ReadOptions& read_options,
                           const FileOptions& soptions,
                           MergeIteratorBuilder* merge_iter_builder,
                           bool allow_unprepared_value) {
  assert(storage_info_.finalized_);

  for (int level = 0; level < storage_info_.num_non_empty_levels(); level++) {
    AddIteratorsForLevel(read_options, soptions, merge_iter_builder, level,
                         allow_unprepared_value);
  }
}

void Version::AddIteratorsForLevel(const ReadOptions& read_options,
                                   const FileOptions& soptions,
                                   MergeIteratorBuilder* merge_iter_builder,
                                   int level, bool allow_unprepared_value) {
  assert(storage_info_.finalized_);
  if (level >= storage_info_.num_non_empty_levels()) {
    // This is an empty level
    return;
  } else if (storage_info_.LevelFilesBrief(level).num_files == 0) {
    // No files in this level
    return;
  }

  bool should_sample = should_sample_file_read();

  auto* arena = merge_iter_builder->GetArena();
  if (level == 0) {
    // Merge all level zero files together since they may overlap
    TruncatedRangeDelIterator* tombstone_iter = nullptr;
    for (size_t i = 0; i < storage_info_.LevelFilesBrief(0).num_files; i++) {
      const auto& file = storage_info_.LevelFilesBrief(0).files[i];
      auto table_iter = cfd_->table_cache()->NewIterator(
          read_options, soptions, cfd_->internal_comparator(),
          *file.file_metadata, /*range_del_agg=*/nullptr,
          mutable_cf_options_.prefix_extractor, nullptr,
          cfd_->internal_stats()->GetFileReadHist(0),
          TableReaderCaller::kUserIterator, arena,
          /*skip_filters=*/false, /*level=*/0, max_file_size_for_l0_meta_pin_,
          /*smallest_compaction_key=*/nullptr,
          /*largest_compaction_key=*/nullptr, allow_unprepared_value,
          &tombstone_iter);
      if (read_options.ignore_range_deletions) {
        merge_iter_builder->AddIterator(table_iter);
      } else {
        merge_iter_builder->AddPointAndTombstoneIterator(table_iter,
                                                         tombstone_iter);
      }
    }
    if (should_sample) {
      // Count ones for every L0 files. This is done per iterator creation
      // rather than Seek(), while files in other levels are recored per seek.
      // If users execute one range query per iterator, there may be some
      // discrepancy here.
      for (FileMetaData* meta : storage_info_.LevelFiles(0)) {
        sample_file_read_inc(meta);
      }
    }
  } else if (storage_info_.LevelFilesBrief(level).num_files > 0) {
    // For levels > 0, we can use a concatenating iterator that sequentially
    // walks through the non-overlapping files in the level, opening them
    // lazily.
    auto* mem = arena->AllocateAligned(sizeof(LevelIterator));
    TruncatedRangeDelIterator*** tombstone_iter_ptr = nullptr;
    auto level_iter = new (mem) LevelIterator(
        cfd_->table_cache(), read_options, soptions,
        cfd_->internal_comparator(), &storage_info_.LevelFilesBrief(level),
        mutable_cf_options_.prefix_extractor, should_sample_file_read(),
        cfd_->internal_stats()->GetFileReadHist(level),
        TableReaderCaller::kUserIterator, IsFilterSkipped(level), level,
        /*range_del_agg=*/nullptr, /*compaction_boundaries=*/nullptr,
        allow_unprepared_value, &tombstone_iter_ptr);
    if (read_options.ignore_range_deletions) {
      merge_iter_builder->AddIterator(level_iter);
    } else {
      merge_iter_builder->AddPointAndTombstoneIterator(
          level_iter, nullptr /* tombstone_iter */, tombstone_iter_ptr);
    }
  }
}

Status Version::OverlapWithLevelIterator(const ReadOptions& read_options,
                                         const FileOptions& file_options,
                                         const Slice& smallest_user_key,
                                         const Slice& largest_user_key,
                                         int level, bool* overlap) {
  assert(storage_info_.finalized_);

  auto icmp = cfd_->internal_comparator();
  auto ucmp = icmp.user_comparator();

  Arena arena;
  Status status;
  ReadRangeDelAggregator range_del_agg(&icmp,
                                       kMaxSequenceNumber /* upper_bound */);

  *overlap = false;

  if (level == 0) {
    for (size_t i = 0; i < storage_info_.LevelFilesBrief(0).num_files; i++) {
      const auto file = &storage_info_.LevelFilesBrief(0).files[i];
      if (AfterFile(ucmp, &smallest_user_key, file) ||
          BeforeFile(ucmp, &largest_user_key, file)) {
        continue;
      }
      ScopedArenaIterator iter(cfd_->table_cache()->NewIterator(
          read_options, file_options, cfd_->internal_comparator(),
          *file->file_metadata, &range_del_agg,
          mutable_cf_options_.prefix_extractor, nullptr,
          cfd_->internal_stats()->GetFileReadHist(0),
          TableReaderCaller::kUserIterator, &arena,
          /*skip_filters=*/false, /*level=*/0, max_file_size_for_l0_meta_pin_,
          /*smallest_compaction_key=*/nullptr,
          /*largest_compaction_key=*/nullptr,
          /*allow_unprepared_value=*/false));
      status = OverlapWithIterator(ucmp, smallest_user_key, largest_user_key,
                                   iter.get(), overlap);
      if (!status.ok() || *overlap) {
        break;
      }
    }
  } else if (storage_info_.LevelFilesBrief(level).num_files > 0) {
    auto mem = arena.AllocateAligned(sizeof(LevelIterator));
    ScopedArenaIterator iter(new (mem) LevelIterator(
        cfd_->table_cache(), read_options, file_options,
        cfd_->internal_comparator(), &storage_info_.LevelFilesBrief(level),
        mutable_cf_options_.prefix_extractor, should_sample_file_read(),
        cfd_->internal_stats()->GetFileReadHist(level),
        TableReaderCaller::kUserIterator, IsFilterSkipped(level), level,
        &range_del_agg));
    status = OverlapWithIterator(ucmp, smallest_user_key, largest_user_key,
                                 iter.get(), overlap);
  }

  if (status.ok() && *overlap == false &&
      range_del_agg.IsRangeOverlapped(smallest_user_key, largest_user_key)) {
    *overlap = true;
  }
  return status;
}

VersionStorageInfo::VersionStorageInfo(
    const InternalKeyComparator* internal_comparator,
    const Comparator* user_comparator, int levels,
    CompactionStyle compaction_style, VersionStorageInfo* ref_vstorage,
    bool _force_consistency_checks)
    : internal_comparator_(internal_comparator),
      user_comparator_(user_comparator),
      // cfd is nullptr if Version is dummy
      num_levels_(levels),
      num_non_empty_levels_(0),
      file_indexer_(user_comparator),
      compaction_style_(compaction_style),
      files_(new std::vector<FileMetaData*>[num_levels_]),
      base_level_(num_levels_ == 1 ? -1 : 1),
      level_multiplier_(0.0),
      files_by_compaction_pri_(num_levels_),
      level0_non_overlapping_(false),
      next_file_to_compact_by_size_(num_levels_),
      compaction_score_(num_levels_),
      compaction_level_(num_levels_),
      l0_delay_trigger_count_(0),
      compact_cursor_(num_levels_),
      accumulated_file_size_(0),
      accumulated_raw_key_size_(0),
      accumulated_raw_value_size_(0),
      accumulated_num_non_deletions_(0),
      accumulated_num_deletions_(0),
      current_num_non_deletions_(0),
      current_num_deletions_(0),
      current_num_samples_(0),
      estimated_compaction_needed_bytes_(0),
      finalized_(false),
      force_consistency_checks_(_force_consistency_checks) {
  if (ref_vstorage != nullptr) {
    accumulated_file_size_ = ref_vstorage->accumulated_file_size_;
    accumulated_raw_key_size_ = ref_vstorage->accumulated_raw_key_size_;
    accumulated_raw_value_size_ = ref_vstorage->accumulated_raw_value_size_;
    accumulated_num_non_deletions_ =
        ref_vstorage->accumulated_num_non_deletions_;
    accumulated_num_deletions_ = ref_vstorage->accumulated_num_deletions_;
    current_num_non_deletions_ = ref_vstorage->current_num_non_deletions_;
    current_num_deletions_ = ref_vstorage->current_num_deletions_;
    current_num_samples_ = ref_vstorage->current_num_samples_;
    oldest_snapshot_seqnum_ = ref_vstorage->oldest_snapshot_seqnum_;
    compact_cursor_ = ref_vstorage->compact_cursor_;
    compact_cursor_.resize(num_levels_);
  }
}

Version::Version(ColumnFamilyData* column_family_data, VersionSet* vset,
                 const FileOptions& file_opt,
                 const MutableCFOptions mutable_cf_options,
                 const std::shared_ptr<IOTracer>& io_tracer,
                 uint64_t version_number)
    : env_(vset->env_),
      clock_(vset->clock_),
      cfd_(column_family_data),
      info_log_((cfd_ == nullptr) ? nullptr : cfd_->ioptions()->logger),
      db_statistics_((cfd_ == nullptr) ? nullptr : cfd_->ioptions()->stats),
      table_cache_((cfd_ == nullptr) ? nullptr : cfd_->table_cache()),
      blob_source_(cfd_ ? cfd_->blob_source() : nullptr),
      merge_operator_(
          (cfd_ == nullptr) ? nullptr : cfd_->ioptions()->merge_operator.get()),
      storage_info_(
          (cfd_ == nullptr) ? nullptr : &cfd_->internal_comparator(),
          (cfd_ == nullptr) ? nullptr : cfd_->user_comparator(),
          cfd_ == nullptr ? 0 : cfd_->NumberLevels(),
          cfd_ == nullptr ? kCompactionStyleLevel
                          : cfd_->ioptions()->compaction_style,
          (cfd_ == nullptr || cfd_->current() == nullptr)
              ? nullptr
              : cfd_->current()->storage_info(),
          cfd_ == nullptr ? false : cfd_->ioptions()->force_consistency_checks),
      vset_(vset),
      next_(this),
      prev_(this),
      refs_(0),
      file_options_(file_opt),
      mutable_cf_options_(mutable_cf_options),
      max_file_size_for_l0_meta_pin_(
          MaxFileSizeForL0MetaPin(mutable_cf_options_)),
      version_number_(version_number),
      io_tracer_(io_tracer) {}

Status Version::GetBlob(const ReadOptions& read_options, const Slice& user_key,
                        const Slice& blob_index_slice,
                        FilePrefetchBuffer* prefetch_buffer,
                        PinnableSlice* value, uint64_t* bytes_read) const {
  BlobIndex blob_index;

  {
    Status s = blob_index.DecodeFrom(blob_index_slice);
    if (!s.ok()) {
      return s;
    }
  }

  return GetBlob(read_options, user_key, blob_index, prefetch_buffer, value,
                 bytes_read);
}

Status Version::GetBlob(const ReadOptions& read_options, const Slice& user_key,
                        const BlobIndex& blob_index,
                        FilePrefetchBuffer* prefetch_buffer,
                        PinnableSlice* value, uint64_t* bytes_read) const {
  assert(value);

  if (blob_index.HasTTL() || blob_index.IsInlined()) {
    return Status::Corruption("Unexpected TTL/inlined blob index");
  }

  const uint64_t blob_file_number = blob_index.file_number();

  auto blob_file_meta = storage_info_.GetBlobFileMetaData(blob_file_number);
  if (!blob_file_meta) {
    return Status::Corruption("Invalid blob file number");
  }

  assert(blob_source_);
  value->Reset();
  const Status s = blob_source_->GetBlob(
      read_options, user_key, blob_file_number, blob_index.offset(),
      blob_file_meta->GetBlobFileSize(), blob_index.size(),
      blob_index.compression(), prefetch_buffer, value, bytes_read);

  return s;
}

void Version::MultiGetBlob(
    const ReadOptions& read_options, MultiGetRange& range,
    std::unordered_map<uint64_t, BlobReadContexts>& blob_ctxs) {
  assert(!blob_ctxs.empty());

  autovector<BlobFileReadRequests> blob_reqs;

  for (auto& ctx : blob_ctxs) {
    const auto file_number = ctx.first;
    const auto blob_file_meta = storage_info_.GetBlobFileMetaData(file_number);

    autovector<BlobReadRequest> blob_reqs_in_file;
    BlobReadContexts& blobs_in_file = ctx.second;
    for (const auto& blob : blobs_in_file) {
      const BlobIndex& blob_index = blob.first;
      const KeyContext& key_context = blob.second;

      if (!blob_file_meta) {
        *key_context.s = Status::Corruption("Invalid blob file number");
        continue;
      }

      if (blob_index.HasTTL() || blob_index.IsInlined()) {
        *key_context.s =
            Status::Corruption("Unexpected TTL/inlined blob index");
        continue;
      }

      key_context.value->Reset();
      blob_reqs_in_file.emplace_back(
          key_context.ukey_with_ts, blob_index.offset(), blob_index.size(),
          blob_index.compression(), key_context.value, key_context.s);
    }
    if (blob_reqs_in_file.size() > 0) {
      const auto file_size = blob_file_meta->GetBlobFileSize();
      blob_reqs.emplace_back(file_number, file_size, blob_reqs_in_file);
    }
  }

  if (blob_reqs.size() > 0) {
    blob_source_->MultiGetBlob(read_options, blob_reqs, /*bytes_read=*/nullptr);
  }

  for (auto& ctx : blob_ctxs) {
    BlobReadContexts& blobs_in_file = ctx.second;
    for (const auto& blob : blobs_in_file) {
      const KeyContext& key_context = blob.second;
      if (key_context.s->ok()) {
        range.AddValueSize(key_context.value->size());
        if (range.GetValueSize() > read_options.value_size_soft_limit) {
          *key_context.s = Status::Aborted();
        }
      } else if (key_context.s->IsIncomplete()) {
        // read_options.read_tier == kBlockCacheTier
        // Cannot read blob(s): no disk I/O allowed
        assert(key_context.get_context);
        auto& get_context = *(key_context.get_context);
        get_context.MarkKeyMayExist();
      }
    }
  }
}

void Version::Get(const ReadOptions& read_options, const LookupKey& k,
                  PinnableSlice* value, PinnableWideColumns* columns,
                  std::string* timestamp, Status* status,
                  MergeContext* merge_context,
                  SequenceNumber* max_covering_tombstone_seq,
                  PinnedIteratorsManager* pinned_iters_mgr, bool* value_found,
                  bool* key_exists, SequenceNumber* seq, ReadCallback* callback,
                  bool* is_blob, bool do_merge) {
  Slice ikey = k.internal_key();
  Slice user_key = k.user_key();

  assert(status->ok() || status->IsMergeInProgress());

  if (key_exists != nullptr) {
    // will falsify below if not found
    *key_exists = true;
  }

  uint64_t tracing_get_id = BlockCacheTraceHelper::kReservedGetId;
  if (vset_ && vset_->block_cache_tracer_ &&
      vset_->block_cache_tracer_->is_tracing_enabled()) {
    tracing_get_id = vset_->block_cache_tracer_->NextGetId();
  }

  // Note: the old StackableDB-based BlobDB passes in
  // GetImplOptions::is_blob_index; for the integrated BlobDB implementation, we
  // need to provide it here.
  bool is_blob_index = false;
  bool* const is_blob_to_use = is_blob ? is_blob : &is_blob_index;
  BlobFetcher blob_fetcher(this, read_options);

  assert(pinned_iters_mgr);
  GetContext get_context(
      user_comparator(), merge_operator_, info_log_, db_statistics_,
      status->ok() ? GetContext::kNotFound : GetContext::kMerge, user_key,
      do_merge ? value : nullptr, do_merge ? columns : nullptr,
      do_merge ? timestamp : nullptr, value_found, merge_context, do_merge,
      max_covering_tombstone_seq, clock_, seq,
      merge_operator_ ? pinned_iters_mgr : nullptr, callback, is_blob_to_use,
      tracing_get_id, &blob_fetcher);

  // Pin blocks that we read to hold merge operands
  if (merge_operator_) {
    pinned_iters_mgr->StartPinning();
  }

  FilePicker fp(user_key, ikey, &storage_info_.level_files_brief_,
                storage_info_.num_non_empty_levels_,
                &storage_info_.file_indexer_, user_comparator(),
                internal_comparator());
  FdWithKeyRange* f = fp.GetNextFile();

  while (f != nullptr) {
    if (*max_covering_tombstone_seq > 0) {
      // The remaining files we look at will only contain covered keys, so we
      // stop here.
      break;
    }
    if (get_context.sample()) {
      sample_file_read_inc(f->file_metadata);
    }

    bool timer_enabled =
        GetPerfLevel() >= PerfLevel::kEnableTimeExceptForMutex &&
        get_perf_context()->per_level_perf_context_enabled;
    StopWatchNano timer(clock_, timer_enabled /* auto_start */);
    *status = table_cache_->Get(
        read_options, *internal_comparator(), *f->file_metadata, ikey,
        &get_context, mutable_cf_options_.prefix_extractor,
        cfd_->internal_stats()->GetFileReadHist(fp.GetHitFileLevel()),
        IsFilterSkipped(static_cast<int>(fp.GetHitFileLevel()),
                        fp.IsHitFileLastInLevel()),
        fp.GetHitFileLevel(), max_file_size_for_l0_meta_pin_);
    // TODO: examine the behavior for corrupted key
    if (timer_enabled) {
      PERF_COUNTER_BY_LEVEL_ADD(get_from_table_nanos, timer.ElapsedNanos(),
                                fp.GetHitFileLevel());
    }
    if (!status->ok()) {
      if (db_statistics_ != nullptr) {
        get_context.ReportCounters();
      }
      return;
    }

    // report the counters before returning
    if (get_context.State() != GetContext::kNotFound &&
        get_context.State() != GetContext::kMerge &&
        db_statistics_ != nullptr) {
      get_context.ReportCounters();
    }
    switch (get_context.State()) {
      case GetContext::kNotFound:
        // Keep searching in other files
        break;
      case GetContext::kMerge:
        // TODO: update per-level perfcontext user_key_return_count for kMerge
        break;
      case GetContext::kFound:
        if (fp.GetHitFileLevel() == 0) {
          RecordTick(db_statistics_, GET_HIT_L0);
        } else if (fp.GetHitFileLevel() == 1) {
          RecordTick(db_statistics_, GET_HIT_L1);
        } else if (fp.GetHitFileLevel() >= 2) {
          RecordTick(db_statistics_, GET_HIT_L2_AND_UP);
        }

        PERF_COUNTER_BY_LEVEL_ADD(user_key_return_count, 1,
                                  fp.GetHitFileLevel());

        if (is_blob_index) {
          if (do_merge && value) {
            TEST_SYNC_POINT_CALLBACK("Version::Get::TamperWithBlobIndex",
                                     value);

            constexpr FilePrefetchBuffer* prefetch_buffer = nullptr;
            constexpr uint64_t* bytes_read = nullptr;

            *status = GetBlob(read_options, user_key, *value, prefetch_buffer,
                              value, bytes_read);
            if (!status->ok()) {
              if (status->IsIncomplete()) {
                get_context.MarkKeyMayExist();
              }
              return;
            }
          }
        }

        return;
      case GetContext::kDeleted:
        // Use empty error message for speed
        *status = Status::NotFound();
        return;
      case GetContext::kCorrupt:
        *status = Status::Corruption("corrupted key for ", user_key);
        return;
      case GetContext::kUnexpectedBlobIndex:
        ROCKS_LOG_ERROR(info_log_, "Encounter unexpected blob index.");
        *status = Status::NotSupported(
            "Encounter unexpected blob index. Please open DB with "
            "ROCKSDB_NAMESPACE::blob_db::BlobDB instead.");
        return;
    }
    f = fp.GetNextFile();
  }
  if (db_statistics_ != nullptr) {
    get_context.ReportCounters();
  }
  if (GetContext::kMerge == get_context.State()) {
    if (!do_merge) {
      *status = Status::OK();
      return;
    }
    if (!merge_operator_) {
      *status = Status::InvalidArgument(
          "merge_operator is not properly initialized.");
      return;
    }
    // merge_operands are in saver and we hit the beginning of the key history
    // do a final merge of nullptr and operands;
    if (value || columns) {
      std::string result;
      *status = MergeHelper::TimedFullMerge(
          merge_operator_, user_key, nullptr, merge_context->GetOperands(),
          &result, info_log_, db_statistics_, clock_,
          /* result_operand */ nullptr, /* update_num_ops_stats */ true);
      if (status->ok()) {
        if (LIKELY(value != nullptr)) {
          *(value->GetSelf()) = std::move(result);
          value->PinSelf();
        } else {
          assert(columns != nullptr);
          columns->SetPlainValue(result);
        }
      }
    }
  } else {
    if (key_exists != nullptr) {
      *key_exists = false;
    }
    *status = Status::NotFound();  // Use an empty error message for speed
  }
}

void Version::MultiGet(const ReadOptions& read_options, MultiGetRange* range,
                       ReadCallback* callback) {
  PinnedIteratorsManager pinned_iters_mgr;

  // Pin blocks that we read to hold merge operands
  if (merge_operator_) {
    pinned_iters_mgr.StartPinning();
  }
  uint64_t tracing_mget_id = BlockCacheTraceHelper::kReservedGetId;

  if (vset_ && vset_->block_cache_tracer_ &&
      vset_->block_cache_tracer_->is_tracing_enabled()) {
    tracing_mget_id = vset_->block_cache_tracer_->NextGetId();
  }
  // Even though we know the batch size won't be > MAX_BATCH_SIZE,
  // use autovector in order to avoid unnecessary construction of GetContext
  // objects, which is expensive
  autovector<GetContext, 16> get_ctx;
  BlobFetcher blob_fetcher(this, read_options);
  for (auto iter = range->begin(); iter != range->end(); ++iter) {
    assert(iter->s->ok() || iter->s->IsMergeInProgress());
    get_ctx.emplace_back(
        user_comparator(), merge_operator_, info_log_, db_statistics_,
        iter->s->ok() ? GetContext::kNotFound : GetContext::kMerge,
        iter->ukey_with_ts, iter->value, /*columns=*/nullptr, iter->timestamp,
        nullptr, &(iter->merge_context), true,
        &iter->max_covering_tombstone_seq, clock_, nullptr,
        merge_operator_ ? &pinned_iters_mgr : nullptr, callback,
        &iter->is_blob_index, tracing_mget_id, &blob_fetcher);
    // MergeInProgress status, if set, has been transferred to the get_context
    // state, so we set status to ok here. From now on, the iter status will
    // be used for IO errors, and get_context state will be used for any
    // key level errors
    *(iter->s) = Status::OK();
  }
  int get_ctx_index = 0;
  for (auto iter = range->begin(); iter != range->end();
       ++iter, get_ctx_index++) {
    iter->get_context = &(get_ctx[get_ctx_index]);
  }

  Status s;
  // blob_file => [[blob_idx, it], ...]
  std::unordered_map<uint64_t, BlobReadContexts> blob_ctxs;
  MultiGetRange keys_with_blobs_range(*range, range->begin(), range->end());
#if USE_COROUTINES
  if (read_options.async_io && read_options.optimize_multiget_for_io &&
      using_coroutines()) {
    s = MultiGetAsync(read_options, range, &blob_ctxs);
  } else
#endif  // USE_COROUTINES
  {
    MultiGetRange file_picker_range(*range, range->begin(), range->end());
    FilePickerMultiGet fp(&file_picker_range, &storage_info_.level_files_brief_,
                          storage_info_.num_non_empty_levels_,
                          &storage_info_.file_indexer_, user_comparator(),
                          internal_comparator());
    FdWithKeyRange* f = fp.GetNextFileInLevel();
    uint64_t num_index_read = 0;
    uint64_t num_filter_read = 0;
    uint64_t num_sst_read = 0;
    uint64_t num_level_read = 0;

    int prev_level = -1;

    while (!fp.IsSearchEnded()) {
      // This will be set to true later if we actually look up in a file in L0.
      // For per level stats purposes, an L0 file is treated as a level
      bool dump_stats_for_l0_file = false;

      // Avoid using the coroutine version if we're looking in a L0 file, since
      // L0 files won't be parallelized anyway. The regular synchronous version
      // is faster.
      if (!read_options.async_io || !using_coroutines() ||
          fp.GetHitFileLevel() == 0 || !fp.RemainingOverlapInLevel()) {
        if (f) {
          bool skip_filters =
              IsFilterSkipped(static_cast<int>(fp.GetHitFileLevel()),
                              fp.IsHitFileLastInLevel());
          // Call MultiGetFromSST for looking up a single file
          s = MultiGetFromSST(read_options, fp.CurrentFileRange(),
                              fp.GetHitFileLevel(), skip_filters,
                              /*skip_range_deletions=*/false, f, blob_ctxs,
                              /*table_handle=*/nullptr, num_filter_read,
                              num_index_read, num_sst_read);
          if (fp.GetHitFileLevel() == 0) {
            dump_stats_for_l0_file = true;
          }
        }
        if (s.ok()) {
          f = fp.GetNextFileInLevel();
        }
#if USE_COROUTINES
      } else {
        std::vector<folly::coro::Task<Status>> mget_tasks;
        while (f != nullptr) {
          MultiGetRange file_range = fp.CurrentFileRange();
          Cache::Handle* table_handle = nullptr;
          bool skip_filters =
              IsFilterSkipped(static_cast<int>(fp.GetHitFileLevel()),
                              fp.IsHitFileLastInLevel());
          bool skip_range_deletions = false;
          if (!skip_filters) {
            Status status = table_cache_->MultiGetFilter(
                read_options, *internal_comparator(), *f->file_metadata,
                mutable_cf_options_.prefix_extractor,
                cfd_->internal_stats()->GetFileReadHist(fp.GetHitFileLevel()),
                fp.GetHitFileLevel(), &file_range, &table_handle);
            skip_range_deletions = true;
            if (status.ok()) {
              skip_filters = true;
            } else if (!status.IsNotSupported()) {
              s = status;
            }
          }

          if (!s.ok()) {
            break;
          }

          if (!file_range.empty()) {
            mget_tasks.emplace_back(MultiGetFromSSTCoroutine(
                read_options, file_range, fp.GetHitFileLevel(), skip_filters,
                skip_range_deletions, f, blob_ctxs, table_handle,
                num_filter_read, num_index_read, num_sst_read));
          }
          if (fp.KeyMaySpanNextFile()) {
            break;
          }
          f = fp.GetNextFileInLevel();
        }
        if (mget_tasks.size() > 0) {
          RecordTick(db_statistics_, MULTIGET_COROUTINE_COUNT,
                     mget_tasks.size());
          // Collect all results so far
          std::vector<Status> statuses = folly::coro::blockingWait(
              folly::coro::collectAllRange(std::move(mget_tasks))
                  .scheduleOn(&range->context()->executor()));
          if (s.ok()) {
            for (Status stat : statuses) {
              if (!stat.ok()) {
                s = std::move(stat);
                break;
              }
            }
          }

          if (s.ok() && fp.KeyMaySpanNextFile()) {
            f = fp.GetNextFileInLevel();
          }
        }
#endif  // USE_COROUTINES
      }
      // If bad status or we found final result for all the keys
      if (!s.ok() || file_picker_range.empty()) {
        break;
      }
      if (!f) {
        // Reached the end of this level. Prepare the next level
        fp.PrepareNextLevelForSearch();
        if (!fp.IsSearchEnded()) {
          // Its possible there is no overlap on this level and f is nullptr
          f = fp.GetNextFileInLevel();
        }
        if (dump_stats_for_l0_file ||
            (prev_level != 0 && prev_level != (int)fp.GetHitFileLevel())) {
          // Dump the stats if the search has moved to the next level and
          // reset for next level.
          if (num_filter_read + num_index_read) {
            RecordInHistogram(db_statistics_,
                              NUM_INDEX_AND_FILTER_BLOCKS_READ_PER_LEVEL,
                              num_index_read + num_filter_read);
          }
          if (num_sst_read) {
            RecordInHistogram(db_statistics_, NUM_SST_READ_PER_LEVEL,
                              num_sst_read);
            num_level_read++;
          }
          num_filter_read = 0;
          num_index_read = 0;
          num_sst_read = 0;
        }
        prev_level = fp.GetHitFileLevel();
      }
    }

    // Dump stats for most recent level
    if (num_filter_read + num_index_read) {
      RecordInHistogram(db_statistics_,
                        NUM_INDEX_AND_FILTER_BLOCKS_READ_PER_LEVEL,
                        num_index_read + num_filter_read);
    }
    if (num_sst_read) {
      RecordInHistogram(db_statistics_, NUM_SST_READ_PER_LEVEL, num_sst_read);
      num_level_read++;
    }
    if (num_level_read) {
      RecordInHistogram(db_statistics_, NUM_LEVEL_READ_PER_MULTIGET,
                        num_level_read);
    }
  }

  if (s.ok() && !blob_ctxs.empty()) {
    MultiGetBlob(read_options, keys_with_blobs_range, blob_ctxs);
  }

  // Process any left over keys
  for (auto iter = range->begin(); s.ok() && iter != range->end(); ++iter) {
    GetContext& get_context = *iter->get_context;
    Status* status = iter->s;
    Slice user_key = iter->lkey->user_key();

    if (db_statistics_ != nullptr) {
      get_context.ReportCounters();
    }
    if (GetContext::kMerge == get_context.State()) {
      if (!merge_operator_) {
        *status = Status::InvalidArgument(
            "merge_operator is not properly initialized.");
        range->MarkKeyDone(iter);
        continue;
      }
      // merge_operands are in saver and we hit the beginning of the key history
      // do a final merge of nullptr and operands;
      std::string* str_value =
          iter->value != nullptr ? iter->value->GetSelf() : nullptr;
      *status = MergeHelper::TimedFullMerge(
          merge_operator_, user_key, nullptr, iter->merge_context.GetOperands(),
          str_value, info_log_, db_statistics_, clock_,
          /* result_operand */ nullptr, /* update_num_ops_stats */ true);
      if (LIKELY(iter->value != nullptr)) {
        iter->value->PinSelf();
        range->AddValueSize(iter->value->size());
        range->MarkKeyDone(iter);
        if (range->GetValueSize() > read_options.value_size_soft_limit) {
          s = Status::Aborted();
          break;
        }
      }
    } else {
      range->MarkKeyDone(iter);
      *status = Status::NotFound();  // Use an empty error message for speed
    }
  }

  for (auto iter = range->begin(); iter != range->end(); ++iter) {
    range->MarkKeyDone(iter);
    *(iter->s) = s;
  }
}

#ifdef USE_COROUTINES
Status Version::ProcessBatch(
    const ReadOptions& read_options, FilePickerMultiGet* batch,
    std::vector<folly::coro::Task<Status>>& mget_tasks,
    std::unordered_map<uint64_t, BlobReadContexts>* blob_ctxs,
    autovector<FilePickerMultiGet, 4>& batches, std::deque<size_t>& waiting,
    std::deque<size_t>& to_process, unsigned int& num_tasks_queued,
    std::unordered_map<int, std::tuple<uint64_t, uint64_t, uint64_t>>&
        mget_stats) {
  FilePickerMultiGet& fp = *batch;
  MultiGetRange range = fp.GetRange();
  // Initialize a new empty range. Any keys that are not in this level will
  // eventually become part of the new range.
  MultiGetRange leftover(range, range.begin(), range.begin());
  FdWithKeyRange* f = nullptr;
  Status s;

  f = fp.GetNextFileInLevel();
  while (!f) {
    fp.PrepareNextLevelForSearch();
    if (!fp.IsSearchEnded()) {
      f = fp.GetNextFileInLevel();
    } else {
      break;
    }
  }
  while (f) {
    MultiGetRange file_range = fp.CurrentFileRange();
    Cache::Handle* table_handle = nullptr;
    bool skip_filters = IsFilterSkipped(static_cast<int>(fp.GetHitFileLevel()),
                                        fp.IsHitFileLastInLevel());
    bool skip_range_deletions = false;
    if (!skip_filters) {
      Status status = table_cache_->MultiGetFilter(
          read_options, *internal_comparator(), *f->file_metadata,
          mutable_cf_options_.prefix_extractor,
          cfd_->internal_stats()->GetFileReadHist(fp.GetHitFileLevel()),
          fp.GetHitFileLevel(), &file_range, &table_handle);
      if (status.ok()) {
        skip_filters = true;
        skip_range_deletions = true;
      } else if (!status.IsNotSupported()) {
        s = status;
      }
    }
    if (!s.ok()) {
      break;
    }
    // At this point, file_range contains any keys that are likely in this
    // file. It may have false positives, but that's ok since higher level
    // lookups for the key are dependent on this lookup anyway.
    // Add the complement of file_range to leftover. That's the set of keys
    // definitely not in this level.
    // Subtract the complement of file_range from range, since they will be
    // processed in a separate batch in parallel.
    leftover += ~file_range;
    range -= ~file_range;
    if (!file_range.empty()) {
      int level = fp.GetHitFileLevel();
      auto stat = mget_stats.find(level);
      if (stat == mget_stats.end()) {
        auto entry = mget_stats.insert({level, {0, 0, 0}});
        assert(entry.second);
        stat = entry.first;
      }

      if (waiting.empty() && to_process.empty() &&
          !fp.RemainingOverlapInLevel() && leftover.empty() &&
          mget_tasks.empty()) {
        // All keys are in one SST file, so take the fast path
        s = MultiGetFromSST(read_options, file_range, fp.GetHitFileLevel(),
                            skip_filters, skip_range_deletions, f, *blob_ctxs,
                            table_handle, std::get<0>(stat->second),
                            std::get<1>(stat->second),
                            std::get<2>(stat->second));
      } else {
        mget_tasks.emplace_back(MultiGetFromSSTCoroutine(
            read_options, file_range, fp.GetHitFileLevel(), skip_filters,
            skip_range_deletions, f, *blob_ctxs, table_handle,
            std::get<0>(stat->second), std::get<1>(stat->second),
            std::get<2>(stat->second)));
        ++num_tasks_queued;
      }
    }
    if (fp.KeyMaySpanNextFile() && !file_range.empty()) {
      break;
    }
    f = fp.GetNextFileInLevel();
  }
  // Split the current batch only if some keys are likely in this level and
  // some are not. Only split if we're done with this level, i.e f is null.
  // Otherwise, it means there are more files in this level to look at.
  if (s.ok() && !f && !leftover.empty() && !range.empty()) {
    fp.ReplaceRange(range);
    batches.emplace_back(&leftover, fp);
    to_process.emplace_back(batches.size() - 1);
  }
  // 1. If f is non-null, that means we might not be done with this level.
  //    This can happen if one of the keys is the last key in the file, i.e
  //    fp.KeyMaySpanNextFile() is true.
  // 2. If range is empty, then we're done with this range and no need to
  //    prepare the next level
  // 3. If some tasks were queued for this range, then the next level will be
  //    prepared after executing those tasks
  if (!f && !range.empty() && !num_tasks_queued) {
    fp.PrepareNextLevelForSearch();
  }
  return s;
}

Status Version::MultiGetAsync(
    const ReadOptions& options, MultiGetRange* range,
    std::unordered_map<uint64_t, BlobReadContexts>* blob_ctxs) {
  autovector<FilePickerMultiGet, 4> batches;
  std::deque<size_t> waiting;
  std::deque<size_t> to_process;
  Status s;
  std::vector<folly::coro::Task<Status>> mget_tasks;
  std::unordered_map<int, std::tuple<uint64_t, uint64_t, uint64_t>> mget_stats;

  // Create the initial batch with the input range
  batches.emplace_back(range, &storage_info_.level_files_brief_,
                       storage_info_.num_non_empty_levels_,
                       &storage_info_.file_indexer_, user_comparator(),
                       internal_comparator());
  to_process.emplace_back(0);

  while (!to_process.empty()) {
    // As we process a batch, it may get split into two. So reserve space for
    // an additional batch in the autovector in order to prevent later moves
    // of elements in ProcessBatch().
    batches.reserve(batches.size() + 1);

    size_t idx = to_process.front();
    FilePickerMultiGet* batch = &batches.at(idx);
    unsigned int num_tasks_queued = 0;
    to_process.pop_front();
    if (batch->IsSearchEnded() || batch->GetRange().empty()) {
      // If to_process is empty, i.e no more batches to look at, then we need
      // schedule the enqueued coroutines and wait for them. Otherwise, we
      // skip this batch and move to the next one in to_process.
      if (!to_process.empty()) {
        continue;
      }
    } else {
      // Look through one level. This may split the batch and enqueue it to
      // to_process
      s = ProcessBatch(options, batch, mget_tasks, blob_ctxs, batches, waiting,
                       to_process, num_tasks_queued, mget_stats);
      // If ProcessBatch didn't enqueue any coroutine tasks, it means all
      // keys were filtered out. So put the batch back in to_process to
      // lookup in the next level
      if (!num_tasks_queued && !batch->IsSearchEnded()) {
        // Put this back in the processing queue
        to_process.emplace_back(idx);
      } else if (num_tasks_queued) {
        waiting.emplace_back(idx);
      }
    }
    // If ProcessBatch() returned an error, then schedule the enqueued
    // coroutines and wait for them, then abort the MultiGet.
    if (to_process.empty() || !s.ok()) {
      if (mget_tasks.size() > 0) {
        assert(waiting.size());
        RecordTick(db_statistics_, MULTIGET_COROUTINE_COUNT, mget_tasks.size());
        // Collect all results so far
        std::vector<Status> statuses = folly::coro::blockingWait(
            folly::coro::collectAllRange(std::move(mget_tasks))
                .scheduleOn(&range->context()->executor()));
        mget_tasks.clear();
        if (s.ok()) {
          for (Status stat : statuses) {
            if (!stat.ok()) {
              s = std::move(stat);
              break;
            }
          }
        }

        if (!s.ok()) {
          break;
        }

        for (size_t wait_idx : waiting) {
          FilePickerMultiGet& fp = batches.at(wait_idx);
          // 1. If fp.GetHitFile() is non-null, then there could be more
          // overlap in this level. So skip preparing next level.
          // 2. If fp.GetRange() is empty, then this batch is completed
          // and no need to prepare the next level.
          if (!fp.GetHitFile() && !fp.GetRange().empty()) {
            fp.PrepareNextLevelForSearch();
          }
        }
        to_process.swap(waiting);
      } else {
        assert(!s.ok() || waiting.size() == 0);
      }
    }
    if (!s.ok()) {
      break;
    }
  }

  uint64_t num_levels = 0;
  for (auto& stat : mget_stats) {
    if (stat.first == 0) {
      num_levels += std::get<2>(stat.second);
    } else {
      num_levels++;
    }

    uint64_t num_meta_reads =
        std::get<0>(stat.second) + std::get<1>(stat.second);
    uint64_t num_sst_reads = std::get<2>(stat.second);
    if (num_meta_reads > 0) {
      RecordInHistogram(db_statistics_,
                        NUM_INDEX_AND_FILTER_BLOCKS_READ_PER_LEVEL,
                        num_meta_reads);
    }
    if (num_sst_reads > 0) {
      RecordInHistogram(db_statistics_, NUM_SST_READ_PER_LEVEL, num_sst_reads);
    }
  }
  if (num_levels > 0) {
    RecordInHistogram(db_statistics_, NUM_LEVEL_READ_PER_MULTIGET, num_levels);
  }

  return s;
}
#endif

bool Version::IsFilterSkipped(int level, bool is_file_last_in_level) {
  // Reaching the bottom level implies misses at all upper levels, so we'll
  // skip checking the filters when we predict a hit.
  return cfd_->ioptions()->optimize_filters_for_hits &&
         (level > 0 || is_file_last_in_level) &&
         level == storage_info_.num_non_empty_levels() - 1;
}

void VersionStorageInfo::GenerateLevelFilesBrief() {
  level_files_brief_.resize(num_non_empty_levels_);
  for (int level = 0; level < num_non_empty_levels_; level++) {
    DoGenerateLevelFilesBrief(&level_files_brief_[level], files_[level],
                              &arena_);
  }
}

void VersionStorageInfo::PrepareForVersionAppend(
    const ImmutableOptions& immutable_options,
    const MutableCFOptions& mutable_cf_options) {
  ComputeCompensatedSizes();
  UpdateNumNonEmptyLevels();
  CalculateBaseBytes(immutable_options, mutable_cf_options);
  UpdateFilesByCompactionPri(immutable_options, mutable_cf_options);
  GenerateFileIndexer();
  GenerateLevelFilesBrief();
  GenerateLevel0NonOverlapping();
  if (!immutable_options.allow_ingest_behind) {
    GenerateBottommostFiles();
  }
  GenerateFileLocationIndex();
}

void Version::PrepareAppend(const MutableCFOptions& mutable_cf_options,
                            bool update_stats) {
  TEST_SYNC_POINT_CALLBACK(
      "Version::PrepareAppend:forced_check",
      reinterpret_cast<void*>(&storage_info_.force_consistency_checks_));

  if (update_stats) {
    UpdateAccumulatedStats();
  }

  storage_info_.PrepareForVersionAppend(*cfd_->ioptions(), mutable_cf_options);
}

bool Version::MaybeInitializeFileMetaData(FileMetaData* file_meta) {
  if (file_meta->init_stats_from_file || file_meta->compensated_file_size > 0) {
    return false;
  }
  std::shared_ptr<const TableProperties> tp;
  Status s = GetTableProperties(&tp, file_meta);
  file_meta->init_stats_from_file = true;
  if (!s.ok()) {
    ROCKS_LOG_ERROR(vset_->db_options_->info_log,
                    "Unable to load table properties for file %" PRIu64
                    " --- %s\n",
                    file_meta->fd.GetNumber(), s.ToString().c_str());
    return false;
  }
  if (tp.get() == nullptr) return false;
  file_meta->num_entries = tp->num_entries;
  file_meta->num_deletions = tp->num_deletions;
  file_meta->raw_value_size = tp->raw_value_size;
  file_meta->raw_key_size = tp->raw_key_size;

  return true;
}

void VersionStorageInfo::UpdateAccumulatedStats(FileMetaData* file_meta) {
  TEST_SYNC_POINT_CALLBACK("VersionStorageInfo::UpdateAccumulatedStats",
                           nullptr);

  assert(file_meta->init_stats_from_file);
  accumulated_file_size_ += file_meta->fd.GetFileSize();
  accumulated_raw_key_size_ += file_meta->raw_key_size;
  accumulated_raw_value_size_ += file_meta->raw_value_size;
  accumulated_num_non_deletions_ +=
      file_meta->num_entries - file_meta->num_deletions;
  accumulated_num_deletions_ += file_meta->num_deletions;

  current_num_non_deletions_ +=
      file_meta->num_entries - file_meta->num_deletions;
  current_num_deletions_ += file_meta->num_deletions;
  current_num_samples_++;
}

void VersionStorageInfo::RemoveCurrentStats(FileMetaData* file_meta) {
  if (file_meta->init_stats_from_file) {
    current_num_non_deletions_ -=
        file_meta->num_entries - file_meta->num_deletions;
    current_num_deletions_ -= file_meta->num_deletions;
    current_num_samples_--;
  }
}

void Version::UpdateAccumulatedStats() {
  // maximum number of table properties loaded from files.
  const int kMaxInitCount = 20;
  int init_count = 0;
  // here only the first kMaxInitCount files which haven't been
  // initialized from file will be updated with num_deletions.
  // The motivation here is to cap the maximum I/O per Version creation.
  // The reason for choosing files from lower-level instead of higher-level
  // is that such design is able to propagate the initialization from
  // lower-level to higher-level:  When the num_deletions of lower-level
  // files are updated, it will make the lower-level files have accurate
  // compensated_file_size, making lower-level to higher-level compaction
  // will be triggered, which creates higher-level files whose num_deletions
  // will be updated here.
  for (int level = 0;
       level < storage_info_.num_levels_ && init_count < kMaxInitCount;
       ++level) {
    for (auto* file_meta : storage_info_.files_[level]) {
      if (MaybeInitializeFileMetaData(file_meta)) {
        // each FileMeta will be initialized only once.
        storage_info_.UpdateAccumulatedStats(file_meta);
        // when option "max_open_files" is -1, all the file metadata has
        // already been read, so MaybeInitializeFileMetaData() won't incur
        // any I/O cost. "max_open_files=-1" means that the table cache passed
        // to the VersionSet and then to the ColumnFamilySet has a size of
        // TableCache::kInfiniteCapacity
        if (vset_->GetColumnFamilySet()->get_table_cache()->GetCapacity() ==
            TableCache::kInfiniteCapacity) {
          continue;
        }
        if (++init_count >= kMaxInitCount) {
          break;
        }
      }
    }
  }
  // In case all sampled-files contain only deletion entries, then we
  // load the table-property of a file in higher-level to initialize
  // that value.
  for (int level = storage_info_.num_levels_ - 1;
       storage_info_.accumulated_raw_value_size_ == 0 && level >= 0; --level) {
    for (int i = static_cast<int>(storage_info_.files_[level].size()) - 1;
         storage_info_.accumulated_raw_value_size_ == 0 && i >= 0; --i) {
      if (MaybeInitializeFileMetaData(storage_info_.files_[level][i])) {
        storage_info_.UpdateAccumulatedStats(storage_info_.files_[level][i]);
      }
    }
  }
}

void VersionStorageInfo::ComputeCompensatedSizes() {
  static const int kDeletionWeightOnCompaction = 2;
  uint64_t average_value_size = GetAverageValueSize();

  // compute the compensated size
  for (int level = 0; level < num_levels_; level++) {
    for (auto* file_meta : files_[level]) {
      // Here we only compute compensated_file_size for those file_meta
      // which compensated_file_size is uninitialized (== 0). This is true only
      // for files that have been created right now and no other thread has
      // access to them. That's why we can safely mutate compensated_file_size.
      if (file_meta->compensated_file_size == 0) {
        file_meta->compensated_file_size = file_meta->fd.GetFileSize();
        // Here we only boost the size of deletion entries of a file only
        // when the number of deletion entries is greater than the number of
        // non-deletion entries in the file.  The motivation here is that in
        // a stable workload, the number of deletion entries should be roughly
        // equal to the number of non-deletion entries.  If we compensate the
        // size of deletion entries in a stable workload, the deletion
        // compensation logic might introduce unwanted effet which changes the
        // shape of LSM tree.
        if (file_meta->num_deletions * 2 >= file_meta->num_entries) {
          file_meta->compensated_file_size +=
              (file_meta->num_deletions * 2 - file_meta->num_entries) *
              average_value_size * kDeletionWeightOnCompaction;
        }
      }
    }
  }
}

int VersionStorageInfo::MaxInputLevel() const {
  if (compaction_style_ == kCompactionStyleLevel) {
    return num_levels() - 2;
  }
  return 0;
}

int VersionStorageInfo::MaxOutputLevel(bool allow_ingest_behind) const {
  if (allow_ingest_behind) {
    assert(num_levels() > 1);
    return num_levels() - 2;
  }
  return num_levels() - 1;
}

void VersionStorageInfo::EstimateCompactionBytesNeeded(
    const MutableCFOptions& mutable_cf_options) {
  // Only implemented for level-based compaction
  if (compaction_style_ != kCompactionStyleLevel) {
    estimated_compaction_needed_bytes_ = 0;
    return;
  }

  // Start from Level 0, if level 0 qualifies compaction to level 1,
  // we estimate the size of compaction.
  // Then we move on to the next level and see whether it qualifies compaction
  // to the next level. The size of the level is estimated as the actual size
  // on the level plus the input bytes from the previous level if there is any.
  // If it exceeds, take the exceeded bytes as compaction input and add the size
  // of the compaction size to tatal size.
  // We keep doing it to Level 2, 3, etc, until the last level and return the
  // accumulated bytes.

  uint64_t bytes_compact_to_next_level = 0;
  uint64_t level_size = 0;
  for (auto* f : files_[0]) {
    level_size += f->fd.GetFileSize();
  }
  // Level 0
  bool level0_compact_triggered = false;
  if (static_cast<int>(files_[0].size()) >=
          mutable_cf_options.level0_file_num_compaction_trigger ||
      level_size >= mutable_cf_options.max_bytes_for_level_base) {
    level0_compact_triggered = true;
    estimated_compaction_needed_bytes_ = level_size;
    bytes_compact_to_next_level = level_size;
  } else {
    estimated_compaction_needed_bytes_ = 0;
  }

  // Level 1 and up.
  uint64_t bytes_next_level = 0;
  for (int level = base_level(); level <= MaxInputLevel(); level++) {
    level_size = 0;
    if (bytes_next_level > 0) {
#ifndef NDEBUG
      uint64_t level_size2 = 0;
      for (auto* f : files_[level]) {
        level_size2 += f->fd.GetFileSize();
      }
      assert(level_size2 == bytes_next_level);
#endif
      level_size = bytes_next_level;
      bytes_next_level = 0;
    } else {
      for (auto* f : files_[level]) {
        level_size += f->fd.GetFileSize();
      }
    }
    if (level == base_level() && level0_compact_triggered) {
      // Add base level size to compaction if level0 compaction triggered.
      estimated_compaction_needed_bytes_ += level_size;
    }
    // Add size added by previous compaction
    level_size += bytes_compact_to_next_level;
    bytes_compact_to_next_level = 0;
    uint64_t level_target = MaxBytesForLevel(level);
    if (level_size > level_target) {
      bytes_compact_to_next_level = level_size - level_target;
      // Estimate the actual compaction fan-out ratio as size ratio between
      // the two levels.

      assert(bytes_next_level == 0);
      if (level + 1 < num_levels_) {
        for (auto* f : files_[level + 1]) {
          bytes_next_level += f->fd.GetFileSize();
        }
      }
      if (bytes_next_level > 0) {
        assert(level_size > 0);
        estimated_compaction_needed_bytes_ += static_cast<uint64_t>(
            static_cast<double>(bytes_compact_to_next_level) *
            (static_cast<double>(bytes_next_level) /
                 static_cast<double>(level_size) +
             1));
      }
    }
  }
}

namespace {
uint32_t GetExpiredTtlFilesCount(const ImmutableOptions& ioptions,
                                 const MutableCFOptions& mutable_cf_options,
                                 const std::vector<FileMetaData*>& files) {
  uint32_t ttl_expired_files_count = 0;

  int64_t _current_time;
  auto status = ioptions.clock->GetCurrentTime(&_current_time);
  if (status.ok()) {
    const uint64_t current_time = static_cast<uint64_t>(_current_time);
    for (FileMetaData* f : files) {
      if (!f->being_compacted) {
        uint64_t oldest_ancester_time = f->TryGetOldestAncesterTime();
        if (oldest_ancester_time != 0 &&
            oldest_ancester_time < (current_time - mutable_cf_options.ttl)) {
          ttl_expired_files_count++;
        }
      }
    }
  }
  return ttl_expired_files_count;
}
}  // anonymous namespace

void VersionStorageInfo::ComputeCompactionScore(
    const ImmutableOptions& immutable_options,
    const MutableCFOptions& mutable_cf_options) {
  double total_downcompact_bytes = 0.0;
  // Historically, score is defined as actual bytes in a level divided by
  // the level's target size, and 1.0 is the threshold for triggering
  // compaction. Higher score means higher prioritization.
  // Now we keep the compaction triggering condition, but consider more
  // factors for priorization, while still keeping the 1.0 threshold.
  // In order to provide flexibility for reducing score while still
  // maintaining it to be over 1.0, we scale the original score by 10x
  // if it is larger than 1.0.
  const double kScoreScale = 10.0;
  for (int level = 0; level <= MaxInputLevel(); level++) {
    double score;
    if (level == 0) {
      // We treat level-0 specially by bounding the number of files
      // instead of number of bytes for two reasons:
      //
      // (1) With larger write-buffer sizes, it is nice not to do too
      // many level-0 compactions.
      //
      // (2) The files in level-0 are merged on every read and
      // therefore we wish to avoid too many files when the individual
      // file size is small (perhaps because of a small write-buffer
      // setting, or very high compression ratios, or lots of
      // overwrites/deletions).
      int num_sorted_runs = 0;
      uint64_t total_size = 0;
      for (auto* f : files_[level]) {
        total_downcompact_bytes += static_cast<double>(f->fd.GetFileSize());
        if (!f->being_compacted) {
          total_size += f->compensated_file_size;
          num_sorted_runs++;
        }
      }
      if (compaction_style_ == kCompactionStyleUniversal) {
        // For universal compaction, we use level0 score to indicate
        // compaction score for the whole DB. Adding other levels as if
        // they are L0 files.
        for (int i = 1; i < num_levels(); i++) {
          // Its possible that a subset of the files in a level may be in a
          // compaction, due to delete triggered compaction or trivial move.
          // In that case, the below check may not catch a level being
          // compacted as it only checks the first file. The worst that can
          // happen is a scheduled compaction thread will find nothing to do.
          if (!files_[i].empty() && !files_[i][0]->being_compacted) {
            num_sorted_runs++;
          }
        }
      }

      if (compaction_style_ == kCompactionStyleFIFO) {
        score = static_cast<double>(total_size) /
                mutable_cf_options.compaction_options_fifo.max_table_files_size;
        if (mutable_cf_options.compaction_options_fifo.allow_compaction ||
            mutable_cf_options.compaction_options_fifo.age_for_warm > 0) {
          // Warm tier move can happen at any time. It's too expensive to
          // check very file's timestamp now. For now, just trigger it
          // slightly more frequently than FIFO compaction so that this
          // happens first.
          score = std::max(
              static_cast<double>(num_sorted_runs) /
                  mutable_cf_options.level0_file_num_compaction_trigger,
              score);
        }
        if (mutable_cf_options.ttl > 0) {
          score = std::max(
              static_cast<double>(GetExpiredTtlFilesCount(
                  immutable_options, mutable_cf_options, files_[level])),
              score);
        }
      } else {
        score = static_cast<double>(num_sorted_runs) /
                mutable_cf_options.level0_file_num_compaction_trigger;
        if (compaction_style_ == kCompactionStyleLevel && num_levels() > 1) {
          // Level-based involves L0->L0 compactions that can lead to oversized
          // L0 files. Take into account size as well to avoid later giant
          // compactions to the base level.
          // If score in L0 is always too high, L0->L1 will always be
          // prioritized over L1->L2 compaction and L1 will accumulate to
          // too large. But if L0 score isn't high enough, L0 will accumulate
          // and data is not moved to L1 fast enough. With potential L0->L0
          // compaction, number of L0 files aren't always an indication of
          // L0 oversizing, and we also need to consider total size of L0.
          if (immutable_options.level_compaction_dynamic_level_bytes) {
            if (total_size >= mutable_cf_options.max_bytes_for_level_base) {
              // When calculating estimated_compaction_needed_bytes, we assume
              // L0 is qualified as pending compactions. We will need to make
              // sure that it qualifies for compaction.
              // It might be guafanteed by logic below anyway, but we are
              // explicit here to make sure we don't stop writes with no
              // compaction scheduled.
              score = std::max(score, 1.01);
            }
            if (total_size > level_max_bytes_[base_level_]) {
              // In this case, we compare L0 size with actual L1 size and make
              // sure score is more than 1.0 (10.0 after scaled) if L0 is larger
              // than L1. Since in this case L1 score is lower than 10.0, L0->L1
              // is prioritized over L1->L2.
              uint64_t base_level_size = 0;
              for (auto f : files_[base_level_]) {
                base_level_size += f->compensated_file_size;
              }
              score = std::max(score, static_cast<double>(total_size) /
                                          static_cast<double>(std::max(
                                              base_level_size,
                                              level_max_bytes_[base_level_])));
            }
            if (score > 1.0) {
              score *= kScoreScale;
            }
          } else {
            score = std::max(score,
                             static_cast<double>(total_size) /
                                 mutable_cf_options.max_bytes_for_level_base);
          }
        }
      }
    } else {
      // Compute the ratio of current size to size limit.
      uint64_t level_bytes_no_compacting = 0;
      uint64_t level_total_bytes = 0;
      for (auto f : files_[level]) {
        level_total_bytes += f->fd.GetFileSize();
        if (!f->being_compacted) {
          level_bytes_no_compacting += f->compensated_file_size;
        }
      }
      if (!immutable_options.level_compaction_dynamic_level_bytes ||
          level_bytes_no_compacting < MaxBytesForLevel(level)) {
        score = static_cast<double>(level_bytes_no_compacting) /
                MaxBytesForLevel(level);
      } else {
        // If there are a large mount of data being compacted down to the
        // current level soon, we would de-prioritize compaction from
        // a level where the incoming data would be a large ratio. We do
        // it by dividing level size not by target level size, but
        // the target size and the incoming compaction bytes.
        score = static_cast<double>(level_bytes_no_compacting) /
                (MaxBytesForLevel(level) + total_downcompact_bytes) *
                kScoreScale;
      }
      if (level_total_bytes > MaxBytesForLevel(level)) {
        total_downcompact_bytes +=
            static_cast<double>(level_total_bytes - MaxBytesForLevel(level));
      }
    }
    compaction_level_[level] = level;
    compaction_score_[level] = score;
  }

  // sort all the levels based on their score. Higher scores get listed
  // first. Use bubble sort because the number of entries are small.
  for (int i = 0; i < num_levels() - 2; i++) {
    for (int j = i + 1; j < num_levels() - 1; j++) {
      if (compaction_score_[i] < compaction_score_[j]) {
        double score = compaction_score_[i];
        int level = compaction_level_[i];
        compaction_score_[i] = compaction_score_[j];
        compaction_level_[i] = compaction_level_[j];
        compaction_score_[j] = score;
        compaction_level_[j] = level;
      }
    }
  }
  ComputeFilesMarkedForCompaction();
  if (!immutable_options.allow_ingest_behind) {
    ComputeBottommostFilesMarkedForCompaction();
  }
  if (mutable_cf_options.ttl > 0) {
    ComputeExpiredTtlFiles(immutable_options, mutable_cf_options.ttl);
  }
  if (mutable_cf_options.periodic_compaction_seconds > 0) {
    ComputeFilesMarkedForPeriodicCompaction(
        immutable_options, mutable_cf_options.periodic_compaction_seconds);
  }

  if (mutable_cf_options.enable_blob_garbage_collection &&
      mutable_cf_options.blob_garbage_collection_age_cutoff > 0.0 &&
      mutable_cf_options.blob_garbage_collection_force_threshold < 1.0) {
    ComputeFilesMarkedForForcedBlobGC(
        mutable_cf_options.blob_garbage_collection_age_cutoff,
        mutable_cf_options.blob_garbage_collection_force_threshold);
  }

  EstimateCompactionBytesNeeded(mutable_cf_options);
}

void VersionStorageInfo::ComputeFilesMarkedForCompaction() {
  files_marked_for_compaction_.clear();
  int last_qualify_level = 0;

  // Do not include files from the last level with data
  // If table properties collector suggests a file on the last level,
  // we should not move it to a new level.
  for (int level = num_levels() - 1; level >= 1; level--) {
    if (!files_[level].empty()) {
      last_qualify_level = level - 1;
      break;
    }
  }

  for (int level = 0; level <= last_qualify_level; level++) {
    for (auto* f : files_[level]) {
      if (!f->being_compacted && f->marked_for_compaction) {
        files_marked_for_compaction_.emplace_back(level, f);
      }
    }
  }
}

void VersionStorageInfo::ComputeExpiredTtlFiles(
    const ImmutableOptions& ioptions, const uint64_t ttl) {
  assert(ttl > 0);

  expired_ttl_files_.clear();

  int64_t _current_time;
  auto status = ioptions.clock->GetCurrentTime(&_current_time);
  if (!status.ok()) {
    return;
  }
  const uint64_t current_time = static_cast<uint64_t>(_current_time);

  for (int level = 0; level < num_levels() - 1; level++) {
    for (FileMetaData* f : files_[level]) {
      if (!f->being_compacted) {
        uint64_t oldest_ancester_time = f->TryGetOldestAncesterTime();
        if (oldest_ancester_time > 0 &&
            oldest_ancester_time < (current_time - ttl)) {
          expired_ttl_files_.emplace_back(level, f);
        }
      }
    }
  }
}

void VersionStorageInfo::ComputeFilesMarkedForPeriodicCompaction(
    const ImmutableOptions& ioptions,
    const uint64_t periodic_compaction_seconds) {
  assert(periodic_compaction_seconds > 0);

  files_marked_for_periodic_compaction_.clear();

  int64_t temp_current_time;
  auto status = ioptions.clock->GetCurrentTime(&temp_current_time);
  if (!status.ok()) {
    return;
  }
  const uint64_t current_time = static_cast<uint64_t>(temp_current_time);

  // If periodic_compaction_seconds is larger than current time, periodic
  // compaction can't possibly be triggered.
  if (periodic_compaction_seconds > current_time) {
    return;
  }

  const uint64_t allowed_time_limit =
      current_time - periodic_compaction_seconds;

  for (int level = 0; level < num_levels(); level++) {
    for (auto f : files_[level]) {
      if (!f->being_compacted) {
        // Compute a file's modification time in the following order:
        // 1. Use file_creation_time table property if it is > 0.
        // 2. Use creation_time table property if it is > 0.
        // 3. Use file's mtime metadata if the above two table properties are 0.
        // Don't consider the file at all if the modification time cannot be
        // correctly determined based on the above conditions.
        uint64_t file_modification_time = f->TryGetFileCreationTime();
        if (file_modification_time == kUnknownFileCreationTime) {
          file_modification_time = f->TryGetOldestAncesterTime();
        }
        if (file_modification_time == kUnknownOldestAncesterTime) {
          auto file_path = TableFileName(ioptions.cf_paths, f->fd.GetNumber(),
                                         f->fd.GetPathId());
          status = ioptions.env->GetFileModificationTime(
              file_path, &file_modification_time);
          if (!status.ok()) {
            ROCKS_LOG_WARN(ioptions.logger,
                           "Can't get file modification time: %s: %s",
                           file_path.c_str(), status.ToString().c_str());
            continue;
          }
        }
        if (file_modification_time > 0 &&
            file_modification_time < allowed_time_limit) {
          files_marked_for_periodic_compaction_.emplace_back(level, f);
        }
      }
    }
  }
}

void VersionStorageInfo::ComputeFilesMarkedForForcedBlobGC(
    double blob_garbage_collection_age_cutoff,
    double blob_garbage_collection_force_threshold) {
  files_marked_for_forced_blob_gc_.clear();

  if (blob_files_.empty()) {
    return;
  }

  // Number of blob files eligible for GC based on age
  const size_t cutoff_count = static_cast<size_t>(
      blob_garbage_collection_age_cutoff * blob_files_.size());
  if (!cutoff_count) {
    return;
  }

  // Compute the sum of total and garbage bytes over the oldest batch of blob
  // files. The oldest batch is defined as the set of blob files which are
  // kept alive by the same SSTs as the very oldest one. Here is a toy example.
  // Let's assume we have three SSTs 1, 2, and 3, and four blob files 10, 11,
  // 12, and 13. Also, let's say SSTs 1 and 2 both rely on blob file 10 and
  // potentially some higher-numbered ones, while SST 3 relies on blob file 12
  // and potentially some higher-numbered ones. Then, the SST to oldest blob
  // file mapping is as follows:
  //
  // SST file number               Oldest blob file number
  // 1                             10
  // 2                             10
  // 3                             12
  //
  // This is what the same thing looks like from the blob files' POV. (Note that
  // the linked SSTs simply denote the inverse mapping of the above.)
  //
  // Blob file number              Linked SST set
  // 10                            {1, 2}
  // 11                            {}
  // 12                            {3}
  // 13                            {}
  //
  // Then, the oldest batch of blob files consists of blob files 10 and 11,
  // and we can get rid of them by forcing the compaction of SSTs 1 and 2.
  //
  // Note that the overall ratio of garbage computed for the batch has to exceed
  // blob_garbage_collection_force_threshold and the entire batch has to be
  // eligible for GC according to blob_garbage_collection_age_cutoff in order
  // for us to schedule any compactions.
  const auto& oldest_meta = blob_files_.front();
  assert(oldest_meta);

  const auto& linked_ssts = oldest_meta->GetLinkedSsts();
  assert(!linked_ssts.empty());

  size_t count = 1;
  uint64_t sum_total_blob_bytes = oldest_meta->GetTotalBlobBytes();
  uint64_t sum_garbage_blob_bytes = oldest_meta->GetGarbageBlobBytes();

  assert(cutoff_count <= blob_files_.size());

  for (; count < cutoff_count; ++count) {
    const auto& meta = blob_files_[count];
    assert(meta);

    if (!meta->GetLinkedSsts().empty()) {
      // Found the beginning of the next batch of blob files
      break;
    }

    sum_total_blob_bytes += meta->GetTotalBlobBytes();
    sum_garbage_blob_bytes += meta->GetGarbageBlobBytes();
  }

  if (count < blob_files_.size()) {
    const auto& meta = blob_files_[count];
    assert(meta);

    if (meta->GetLinkedSsts().empty()) {
      // Some files in the oldest batch are not eligible for GC
      return;
    }
  }

  if (sum_garbage_blob_bytes <
      blob_garbage_collection_force_threshold * sum_total_blob_bytes) {
    return;
  }

  for (uint64_t sst_file_number : linked_ssts) {
    const FileLocation location = GetFileLocation(sst_file_number);
    assert(location.IsValid());

    const int level = location.GetLevel();
    assert(level >= 0);

    const size_t pos = location.GetPosition();

    FileMetaData* const sst_meta = files_[level][pos];
    assert(sst_meta);

    if (sst_meta->being_compacted) {
      continue;
    }

    files_marked_for_forced_blob_gc_.emplace_back(level, sst_meta);
  }
}

namespace {

// used to sort files by size
struct Fsize {
  size_t index;
  FileMetaData* file;
};

// Comparator that is used to sort files based on their size
// In normal mode: descending size
bool CompareCompensatedSizeDescending(const Fsize& first, const Fsize& second) {
  return (first.file->compensated_file_size >
          second.file->compensated_file_size);
}
}  // anonymous namespace

void VersionStorageInfo::AddFile(int level, FileMetaData* f) {
  auto& level_files = files_[level];
  level_files.push_back(f);

  f->refs++;
}

void VersionStorageInfo::AddBlobFile(
    std::shared_ptr<BlobFileMetaData> blob_file_meta) {
  assert(blob_file_meta);

  assert(blob_files_.empty() ||
         (blob_files_.back() && blob_files_.back()->GetBlobFileNumber() <
                                    blob_file_meta->GetBlobFileNumber()));

  blob_files_.emplace_back(std::move(blob_file_meta));
}

VersionStorageInfo::BlobFiles::const_iterator
VersionStorageInfo::GetBlobFileMetaDataLB(uint64_t blob_file_number) const {
  return std::lower_bound(
      blob_files_.begin(), blob_files_.end(), blob_file_number,
      [](const std::shared_ptr<BlobFileMetaData>& lhs, uint64_t rhs) {
        assert(lhs);
        return lhs->GetBlobFileNumber() < rhs;
      });
}

void VersionStorageInfo::SetFinalized() {
  finalized_ = true;

#ifndef NDEBUG
  if (compaction_style_ != kCompactionStyleLevel) {
    // Not level based compaction.
    return;
  }
  assert(base_level_ < 0 || num_levels() == 1 ||
         (base_level_ >= 1 && base_level_ < num_levels()));
  // Verify all levels newer than base_level are empty except L0
  for (int level = 1; level < base_level(); level++) {
    assert(NumLevelBytes(level) == 0);
  }
  uint64_t max_bytes_prev_level = 0;
  for (int level = base_level(); level < num_levels() - 1; level++) {
    if (LevelFiles(level).size() == 0) {
      continue;
    }
    assert(MaxBytesForLevel(level) >= max_bytes_prev_level);
    max_bytes_prev_level = MaxBytesForLevel(level);
  }
  for (int level = 0; level < num_levels(); level++) {
    assert(LevelFiles(level).size() == 0 ||
           LevelFiles(level).size() == LevelFilesBrief(level).num_files);
    if (LevelFiles(level).size() > 0) {
      assert(level < num_non_empty_levels());
    }
  }
  assert(compaction_level_.size() > 0);
  assert(compaction_level_.size() == compaction_score_.size());
#endif
}

void VersionStorageInfo::UpdateNumNonEmptyLevels() {
  num_non_empty_levels_ = num_levels_;
  for (int i = num_levels_ - 1; i >= 0; i--) {
    if (files_[i].size() != 0) {
      return;
    } else {
      num_non_empty_levels_ = i;
    }
  }
}

namespace {
// Sort `temp` based on ratio of overlapping size over file size
void SortFileByOverlappingRatio(
    const InternalKeyComparator& icmp, const std::vector<FileMetaData*>& files,
    const std::vector<FileMetaData*>& next_level_files, SystemClock* clock,
    int level, int num_non_empty_levels, uint64_t ttl,
    std::vector<Fsize>* temp) {
  std::unordered_map<uint64_t, uint64_t> file_to_order;
  auto next_level_it = next_level_files.begin();

  int64_t curr_time;
  Status status = clock->GetCurrentTime(&curr_time);
  if (!status.ok()) {
    // If we can't get time, disable TTL.
    ttl = 0;
  }

  FileTtlBooster ttl_booster(static_cast<uint64_t>(curr_time), ttl,
                             num_non_empty_levels, level);

  for (auto& file : files) {
    uint64_t overlapping_bytes = 0;
    // Skip files in next level that is smaller than current file
    while (next_level_it != next_level_files.end() &&
           icmp.Compare((*next_level_it)->largest, file->smallest) < 0) {
      next_level_it++;
    }

    while (next_level_it != next_level_files.end() &&
           icmp.Compare((*next_level_it)->smallest, file->largest) < 0) {
      overlapping_bytes += (*next_level_it)->fd.file_size;

      if (icmp.Compare((*next_level_it)->largest, file->largest) > 0) {
        // next level file cross large boundary of current file.
        break;
      }
      next_level_it++;
    }

    uint64_t ttl_boost_score = (ttl > 0) ? ttl_booster.GetBoostScore(file) : 1;
    assert(ttl_boost_score > 0);
    assert(file->compensated_file_size != 0);
    file_to_order[file->fd.GetNumber()] = overlapping_bytes * 1024U /
                                          file->compensated_file_size /
                                          ttl_boost_score;
  }

  size_t num_to_sort = temp->size() > VersionStorageInfo::kNumberFilesToSort
                           ? VersionStorageInfo::kNumberFilesToSort
                           : temp->size();

  std::partial_sort(temp->begin(), temp->begin() + num_to_sort, temp->end(),
                    [&](const Fsize& f1, const Fsize& f2) -> bool {
                      // If score is the same, pick file with smaller keys.
                      // This makes the algorithm more deterministic, and also
                      // help the trivial move case to have more files to
                      // extend.
                      if (file_to_order[f1.file->fd.GetNumber()] ==
                          file_to_order[f2.file->fd.GetNumber()]) {
                        return icmp.Compare(f1.file->smallest,
                                            f2.file->smallest) < 0;
                      }
                      return file_to_order[f1.file->fd.GetNumber()] <
                             file_to_order[f2.file->fd.GetNumber()];
                    });
}

void SortFileByRoundRobin(const InternalKeyComparator& icmp,
                          std::vector<InternalKey>* compact_cursor,
                          bool level0_non_overlapping, int level,
                          std::vector<Fsize>* temp) {
  if (level == 0 && !level0_non_overlapping) {
    // Using kOldestSmallestSeqFirst when level === 0, since the
    // files may overlap (not fully sorted)
    std::sort(temp->begin(), temp->end(),
              [](const Fsize& f1, const Fsize& f2) -> bool {
                return f1.file->fd.smallest_seqno < f2.file->fd.smallest_seqno;
              });
    return;
  }

  bool should_move_files =
      compact_cursor->at(level).size() > 0 && temp->size() > 1;

  // The iterator points to the Fsize with smallest key larger than or equal to
  // the given cursor
  std::vector<Fsize>::iterator current_file_iter;
  if (should_move_files) {
    // Find the file of which the smallest key is larger than or equal to
    // the cursor (the smallest key in the successor file of the last
    // chosen file), skip this if the cursor is invalid or there is only
    // one file in this level
    current_file_iter = std::lower_bound(
        temp->begin(), temp->end(), compact_cursor->at(level),
        [&](const Fsize& f, const InternalKey& cursor) -> bool {
          return icmp.Compare(cursor, f.file->smallest) > 0;
        });

    should_move_files =
        current_file_iter != temp->end() && current_file_iter != temp->begin();
  }
  if (should_move_files) {
    // Construct a local temporary vector
    std::vector<Fsize> local_temp;
    local_temp.reserve(temp->size());
    // Move the selected File into the first position and its successors
    // into the second, third, ..., positions
    for (auto iter = current_file_iter; iter != temp->end(); iter++) {
      local_temp.push_back(*iter);
    }
    // Move the origin predecessors of the selected file in a round-robin
    // manner
    for (auto iter = temp->begin(); iter != current_file_iter; iter++) {
      local_temp.push_back(*iter);
    }
    // Replace all the items in temp
    for (size_t i = 0; i < local_temp.size(); i++) {
      temp->at(i) = local_temp[i];
    }
  }
}
}  // anonymous namespace

void VersionStorageInfo::UpdateFilesByCompactionPri(
    const ImmutableOptions& ioptions, const MutableCFOptions& options) {
  if (compaction_style_ == kCompactionStyleNone ||
      compaction_style_ == kCompactionStyleFIFO ||
      compaction_style_ == kCompactionStyleUniversal) {
    // don't need this
    return;
  }
  // No need to sort the highest level because it is never compacted.
  for (int level = 0; level < num_levels() - 1; level++) {
    const std::vector<FileMetaData*>& files = files_[level];
    auto& files_by_compaction_pri = files_by_compaction_pri_[level];
    assert(files_by_compaction_pri.size() == 0);

    // populate a temp vector for sorting based on size
    std::vector<Fsize> temp(files.size());
    for (size_t i = 0; i < files.size(); i++) {
      temp[i].index = i;
      temp[i].file = files[i];
    }

    // sort the top number_of_files_to_sort_ based on file size
    size_t num = VersionStorageInfo::kNumberFilesToSort;
    if (num > temp.size()) {
      num = temp.size();
    }
    switch (ioptions.compaction_pri) {
      case kByCompensatedSize:
        std::partial_sort(temp.begin(), temp.begin() + num, temp.end(),
                          CompareCompensatedSizeDescending);
        break;
      case kOldestLargestSeqFirst:
        std::sort(temp.begin(), temp.end(),
                  [](const Fsize& f1, const Fsize& f2) -> bool {
                    return f1.file->fd.largest_seqno <
                           f2.file->fd.largest_seqno;
                  });
        break;
      case kOldestSmallestSeqFirst:
        std::sort(temp.begin(), temp.end(),
                  [](const Fsize& f1, const Fsize& f2) -> bool {
                    return f1.file->fd.smallest_seqno <
                           f2.file->fd.smallest_seqno;
                  });
        break;
      case kMinOverlappingRatio:
        SortFileByOverlappingRatio(*internal_comparator_, files_[level],
                                   files_[level + 1], ioptions.clock, level,
                                   num_non_empty_levels_, options.ttl, &temp);
        break;
      case kRoundRobin:
        SortFileByRoundRobin(*internal_comparator_, &compact_cursor_,
                             level0_non_overlapping_, level, &temp);
        break;
      default:
        assert(false);
    }
    assert(temp.size() == files.size());

    // initialize files_by_compaction_pri_
    for (size_t i = 0; i < temp.size(); i++) {
      files_by_compaction_pri.push_back(static_cast<int>(temp[i].index));
    }
    next_file_to_compact_by_size_[level] = 0;
    assert(files_[level].size() == files_by_compaction_pri_[level].size());
  }
}

void VersionStorageInfo::GenerateLevel0NonOverlapping() {
  assert(!finalized_);
  level0_non_overlapping_ = true;
  if (level_files_brief_.size() == 0) {
    return;
  }

  // A copy of L0 files sorted by smallest key
  std::vector<FdWithKeyRange> level0_sorted_file(
      level_files_brief_[0].files,
      level_files_brief_[0].files + level_files_brief_[0].num_files);
  std::sort(level0_sorted_file.begin(), level0_sorted_file.end(),
            [this](const FdWithKeyRange& f1, const FdWithKeyRange& f2) -> bool {
              return (internal_comparator_->Compare(f1.smallest_key,
                                                    f2.smallest_key) < 0);
            });

  for (size_t i = 1; i < level0_sorted_file.size(); ++i) {
    FdWithKeyRange& f = level0_sorted_file[i];
    FdWithKeyRange& prev = level0_sorted_file[i - 1];
    if (internal_comparator_->Compare(prev.largest_key, f.smallest_key) >= 0) {
      level0_non_overlapping_ = false;
      break;
    }
  }
}

void VersionStorageInfo::GenerateBottommostFiles() {
  assert(!finalized_);
  assert(bottommost_files_.empty());
  for (size_t level = 0; level < level_files_brief_.size(); ++level) {
    for (size_t file_idx = 0; file_idx < level_files_brief_[level].num_files;
         ++file_idx) {
      const FdWithKeyRange& f = level_files_brief_[level].files[file_idx];
      int l0_file_idx;
      if (level == 0) {
        l0_file_idx = static_cast<int>(file_idx);
      } else {
        l0_file_idx = -1;
      }
      Slice smallest_user_key = ExtractUserKey(f.smallest_key);
      Slice largest_user_key = ExtractUserKey(f.largest_key);
      if (!RangeMightExistAfterSortedRun(smallest_user_key, largest_user_key,
                                         static_cast<int>(level),
                                         l0_file_idx)) {
        bottommost_files_.emplace_back(static_cast<int>(level),
                                       f.file_metadata);
      }
    }
  }
}

void VersionStorageInfo::GenerateFileLocationIndex() {
  size_t num_files = 0;

  for (int level = 0; level < num_levels_; ++level) {
    num_files += files_[level].size();
  }

  file_locations_.reserve(num_files);

  for (int level = 0; level < num_levels_; ++level) {
    for (size_t pos = 0; pos < files_[level].size(); ++pos) {
      const FileMetaData* const meta = files_[level][pos];
      assert(meta);

      const uint64_t file_number = meta->fd.GetNumber();

      assert(file_locations_.find(file_number) == file_locations_.end());
      file_locations_.emplace(file_number, FileLocation(level, pos));
    }
  }
}

void VersionStorageInfo::UpdateOldestSnapshot(SequenceNumber seqnum) {
  assert(seqnum >= oldest_snapshot_seqnum_);
  oldest_snapshot_seqnum_ = seqnum;
  if (oldest_snapshot_seqnum_ > bottommost_files_mark_threshold_) {
    ComputeBottommostFilesMarkedForCompaction();
  }
}

void VersionStorageInfo::ComputeBottommostFilesMarkedForCompaction() {
  bottommost_files_marked_for_compaction_.clear();
  bottommost_files_mark_threshold_ = kMaxSequenceNumber;
  for (auto& level_and_file : bottommost_files_) {
    if (!level_and_file.second->being_compacted &&
        level_and_file.second->fd.largest_seqno != 0) {
      // largest_seqno might be nonzero due to containing the final key in an
      // earlier compaction, whose seqnum we didn't zero out. Multiple deletions
      // ensures the file really contains deleted or overwritten keys.
      if (level_and_file.second->fd.largest_seqno < oldest_snapshot_seqnum_) {
        bottommost_files_marked_for_compaction_.push_back(level_and_file);
      } else {
        bottommost_files_mark_threshold_ =
            std::min(bottommost_files_mark_threshold_,
                     level_and_file.second->fd.largest_seqno);
      }
    }
  }
}

void Version::Ref() { ++refs_; }

bool Version::Unref() {
  assert(refs_ >= 1);
  --refs_;
  if (refs_ == 0) {
    delete this;
    return true;
  }
  return false;
}

bool VersionStorageInfo::OverlapInLevel(int level,
                                        const Slice* smallest_user_key,
                                        const Slice* largest_user_key) {
  if (level >= num_non_empty_levels_) {
    // empty level, no overlap
    return false;
  }
  return SomeFileOverlapsRange(*internal_comparator_, (level > 0),
                               level_files_brief_[level], smallest_user_key,
                               largest_user_key);
}

// Store in "*inputs" all files in "level" that overlap [begin,end]
// If hint_index is specified, then it points to a file in the
// overlapping range.
// The file_index returns a pointer to any file in an overlapping range.
void VersionStorageInfo::GetOverlappingInputs(
    int level, const InternalKey* begin, const InternalKey* end,
    std::vector<FileMetaData*>* inputs, int hint_index, int* file_index,
    bool expand_range, InternalKey** next_smallest) const {
  if (level >= num_non_empty_levels_) {
    // this level is empty, no overlapping inputs
    return;
  }

  inputs->clear();
  if (file_index) {
    *file_index = -1;
  }
  const Comparator* user_cmp = user_comparator_;
  if (level > 0) {
    GetOverlappingInputsRangeBinarySearch(level, begin, end, inputs, hint_index,
                                          file_index, false, next_smallest);
    return;
  }

  if (next_smallest) {
    // next_smallest key only makes sense for non-level 0, where files are
    // non-overlapping
    *next_smallest = nullptr;
  }

  Slice user_begin, user_end;
  if (begin != nullptr) {
    user_begin = begin->user_key();
  }
  if (end != nullptr) {
    user_end = end->user_key();
  }

  // index stores the file index need to check.
  std::list<size_t> index;
  for (size_t i = 0; i < level_files_brief_[level].num_files; i++) {
    index.emplace_back(i);
  }

  while (!index.empty()) {
    bool found_overlapping_file = false;
    auto iter = index.begin();
    while (iter != index.end()) {
      FdWithKeyRange* f = &(level_files_brief_[level].files[*iter]);
      const Slice file_start = ExtractUserKey(f->smallest_key);
      const Slice file_limit = ExtractUserKey(f->largest_key);
      if (begin != nullptr &&
          user_cmp->CompareWithoutTimestamp(file_limit, user_begin) < 0) {
        // "f" is completely before specified range; skip it
        iter++;
      } else if (end != nullptr &&
                 user_cmp->CompareWithoutTimestamp(file_start, user_end) > 0) {
        // "f" is completely after specified range; skip it
        iter++;
      } else {
        // if overlap
        inputs->emplace_back(files_[level][*iter]);
        found_overlapping_file = true;
        // record the first file index.
        if (file_index && *file_index == -1) {
          *file_index = static_cast<int>(*iter);
        }
        // the related file is overlap, erase to avoid checking again.
        iter = index.erase(iter);
        if (expand_range) {
          if (begin != nullptr &&
              user_cmp->CompareWithoutTimestamp(file_start, user_begin) < 0) {
            user_begin = file_start;
          }
          if (end != nullptr &&
              user_cmp->CompareWithoutTimestamp(file_limit, user_end) > 0) {
            user_end = file_limit;
          }
        }
      }
    }
    // if all the files left are not overlap, break
    if (!found_overlapping_file) {
      break;
    }
  }
}

// Store in "*inputs" files in "level" that within range [begin,end]
// Guarantee a "clean cut" boundary between the files in inputs
// and the surrounding files and the maxinum number of files.
// This will ensure that no parts of a key are lost during compaction.
// If hint_index is specified, then it points to a file in the range.
// The file_index returns a pointer to any file in an overlapping range.
void VersionStorageInfo::GetCleanInputsWithinInterval(
    int level, const InternalKey* begin, const InternalKey* end,
    std::vector<FileMetaData*>* inputs, int hint_index, int* file_index) const {
  inputs->clear();
  if (file_index) {
    *file_index = -1;
  }
  if (level >= num_non_empty_levels_ || level == 0 ||
      level_files_brief_[level].num_files == 0) {
    // this level is empty, no inputs within range
    // also don't support clean input interval within L0
    return;
  }

  GetOverlappingInputsRangeBinarySearch(level, begin, end, inputs, hint_index,
                                        file_index, true /* within_interval */);
}

// Store in "*inputs" all files in "level" that overlap [begin,end]
// Employ binary search to find at least one file that overlaps the
// specified range. From that file, iterate backwards and
// forwards to find all overlapping files.
// if within_range is set, then only store the maximum clean inputs
// within range [begin, end]. "clean" means there is a boundary
// between the files in "*inputs" and the surrounding files
void VersionStorageInfo::GetOverlappingInputsRangeBinarySearch(
    int level, const InternalKey* begin, const InternalKey* end,
    std::vector<FileMetaData*>* inputs, int hint_index, int* file_index,
    bool within_interval, InternalKey** next_smallest) const {
  assert(level > 0);

  auto user_cmp = user_comparator_;
  const FdWithKeyRange* files = level_files_brief_[level].files;
  const int num_files = static_cast<int>(level_files_brief_[level].num_files);

  // begin to use binary search to find lower bound
  // and upper bound.
  int start_index = 0;
  int end_index = num_files;

  if (begin != nullptr) {
    // if within_interval is true, with file_key would find
    // not overlapping ranges in std::lower_bound.
    auto cmp = [&user_cmp, &within_interval](const FdWithKeyRange& f,
                                             const InternalKey* k) {
      auto& file_key = within_interval ? f.file_metadata->smallest
                                       : f.file_metadata->largest;
      return sstableKeyCompare(user_cmp, file_key, *k) < 0;
    };

    start_index = static_cast<int>(
        std::lower_bound(files,
                         files + (hint_index == -1 ? num_files : hint_index),
                         begin, cmp) -
        files);

    if (start_index > 0 && within_interval) {
      bool is_overlapping = true;
      while (is_overlapping && start_index < num_files) {
        auto& pre_limit = files[start_index - 1].file_metadata->largest;
        auto& cur_start = files[start_index].file_metadata->smallest;
        is_overlapping = sstableKeyCompare(user_cmp, pre_limit, cur_start) == 0;
        start_index += is_overlapping;
      }
    }
  }

  if (end != nullptr) {
    // if within_interval is true, with file_key would find
    // not overlapping ranges in std::upper_bound.
    auto cmp = [&user_cmp, &within_interval](const InternalKey* k,
                                             const FdWithKeyRange& f) {
      auto& file_key = within_interval ? f.file_metadata->largest
                                       : f.file_metadata->smallest;
      return sstableKeyCompare(user_cmp, *k, file_key) < 0;
    };

    end_index = static_cast<int>(
        std::upper_bound(files + start_index, files + num_files, end, cmp) -
        files);

    if (end_index < num_files && within_interval) {
      bool is_overlapping = true;
      while (is_overlapping && end_index > start_index) {
        auto& next_start = files[end_index].file_metadata->smallest;
        auto& cur_limit = files[end_index - 1].file_metadata->largest;
        is_overlapping =
            sstableKeyCompare(user_cmp, cur_limit, next_start) == 0;
        end_index -= is_overlapping;
      }
    }
  }

  assert(start_index <= end_index);

  // If there were no overlapping files, return immediately.
  if (start_index == end_index) {
    if (next_smallest) {
      *next_smallest = nullptr;
    }
    return;
  }

  assert(start_index < end_index);

  // returns the index where an overlap is found
  if (file_index) {
    *file_index = start_index;
  }

  // insert overlapping files into vector
  for (int i = start_index; i < end_index; i++) {
    inputs->push_back(files_[level][i]);
  }

  if (next_smallest != nullptr) {
    // Provide the next key outside the range covered by inputs
    if (end_index < static_cast<int>(files_[level].size())) {
      **next_smallest = files_[level][end_index]->smallest;
    } else {
      *next_smallest = nullptr;
    }
  }
}

uint64_t VersionStorageInfo::NumLevelBytes(int level) const {
  assert(level >= 0);
  assert(level < num_levels());
  return TotalFileSize(files_[level]);
}

const char* VersionStorageInfo::LevelSummary(
    LevelSummaryStorage* scratch) const {
  int len = 0;
  if (compaction_style_ == kCompactionStyleLevel && num_levels() > 1) {
    assert(base_level_ < static_cast<int>(level_max_bytes_.size()));
    if (level_multiplier_ != 0.0) {
      len = snprintf(
          scratch->buffer, sizeof(scratch->buffer),
          "base level %d level multiplier %.2f max bytes base %" PRIu64 " ",
          base_level_, level_multiplier_, level_max_bytes_[base_level_]);
    }
  }
  len +=
      snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, "files[");
  for (int i = 0; i < num_levels(); i++) {
    int sz = sizeof(scratch->buffer) - len;
    int ret = snprintf(scratch->buffer + len, sz, "%d ", int(files_[i].size()));
    if (ret < 0 || ret >= sz) break;
    len += ret;
  }
  if (len > 0) {
    // overwrite the last space
    --len;
  }
  len += snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
                  "] max score %.2f", compaction_score_[0]);

  if (!files_marked_for_compaction_.empty()) {
    snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len,
             " (%" ROCKSDB_PRIszt " files need compaction)",
             files_marked_for_compaction_.size());
  }

  return scratch->buffer;
}

const char* VersionStorageInfo::LevelFileSummary(FileSummaryStorage* scratch,
                                                 int level) const {
  int len = snprintf(scratch->buffer, sizeof(scratch->buffer), "files_size[");
  for (const auto& f : files_[level]) {
    int sz = sizeof(scratch->buffer) - len;
    char sztxt[16];
    AppendHumanBytes(f->fd.GetFileSize(), sztxt, sizeof(sztxt));
    int ret = snprintf(scratch->buffer + len, sz,
                       "#%" PRIu64 "(seq=%" PRIu64 ",sz=%s,%d) ",
                       f->fd.GetNumber(), f->fd.smallest_seqno, sztxt,
                       static_cast<int>(f->being_compacted));
    if (ret < 0 || ret >= sz) break;
    len += ret;
  }
  // overwrite the last space (only if files_[level].size() is non-zero)
  if (files_[level].size() && len > 0) {
    --len;
  }
  snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, "]");
  return scratch->buffer;
}

uint64_t VersionStorageInfo::MaxNextLevelOverlappingBytes() {
  uint64_t result = 0;
  std::vector<FileMetaData*> overlaps;
  for (int level = 1; level < num_levels() - 1; level++) {
    for (const auto& f : files_[level]) {
      GetOverlappingInputs(level + 1, &f->smallest, &f->largest, &overlaps);
      const uint64_t sum = TotalFileSize(overlaps);
      if (sum > result) {
        result = sum;
      }
    }
  }
  return result;
}

uint64_t VersionStorageInfo::MaxBytesForLevel(int level) const {
  // Note: the result for level zero is not really used since we set
  // the level-0 compaction threshold based on number of files.
  assert(level >= 0);
  assert(level < static_cast<int>(level_max_bytes_.size()));
  return level_max_bytes_[level];
}

void VersionStorageInfo::CalculateBaseBytes(const ImmutableOptions& ioptions,
                                            const MutableCFOptions& options) {
  // Special logic to set number of sorted runs.
  // It is to match the previous behavior when all files are in L0.
  int num_l0_count = static_cast<int>(files_[0].size());
  if (compaction_style_ == kCompactionStyleUniversal) {
    // For universal compaction, we use level0 score to indicate
    // compaction score for the whole DB. Adding other levels as if
    // they are L0 files.
    for (int i = 1; i < num_levels(); i++) {
      if (!files_[i].empty()) {
        num_l0_count++;
      }
    }
  }
  set_l0_delay_trigger_count(num_l0_count);

  level_max_bytes_.resize(ioptions.num_levels);
  if (!ioptions.level_compaction_dynamic_level_bytes) {
    base_level_ = (ioptions.compaction_style == kCompactionStyleLevel) ? 1 : -1;

    // Calculate for static bytes base case
    for (int i = 0; i < ioptions.num_levels; ++i) {
      if (i == 0 && ioptions.compaction_style == kCompactionStyleUniversal) {
        level_max_bytes_[i] = options.max_bytes_for_level_base;
      } else if (i > 1) {
        level_max_bytes_[i] = MultiplyCheckOverflow(
            MultiplyCheckOverflow(level_max_bytes_[i - 1],
                                  options.max_bytes_for_level_multiplier),
            options.MaxBytesMultiplerAdditional(i - 1));
      } else {
        level_max_bytes_[i] = options.max_bytes_for_level_base;
      }
    }
  } else {
    uint64_t max_level_size = 0;

    int first_non_empty_level = -1;
    // Find size of non-L0 level of most data.
    // Cannot use the size of the last level because it can be empty or less
    // than previous levels after compaction.
    for (int i = 1; i < num_levels_; i++) {
      uint64_t total_size = 0;
      for (const auto& f : files_[i]) {
        total_size += f->fd.GetFileSize();
      }
      if (total_size > 0 && first_non_empty_level == -1) {
        first_non_empty_level = i;
      }
      if (total_size > max_level_size) {
        max_level_size = total_size;
      }
    }

    // Prefill every level's max bytes to disallow compaction from there.
    for (int i = 0; i < num_levels_; i++) {
      level_max_bytes_[i] = std::numeric_limits<uint64_t>::max();
    }

    if (max_level_size == 0) {
      // No data for L1 and up. L0 compacts to last level directly.
      // No compaction from L1+ needs to be scheduled.
      base_level_ = num_levels_ - 1;
    } else {
      uint64_t base_bytes_max = options.max_bytes_for_level_base;
      uint64_t base_bytes_min = static_cast<uint64_t>(
          base_bytes_max / options.max_bytes_for_level_multiplier);

      // Try whether we can make last level's target size to be max_level_size
      uint64_t cur_level_size = max_level_size;
      for (int i = num_levels_ - 2; i >= first_non_empty_level; i--) {
        // Round up after dividing
        cur_level_size = static_cast<uint64_t>(
            cur_level_size / options.max_bytes_for_level_multiplier);
      }

      // Calculate base level and its size.
      uint64_t base_level_size;
      if (cur_level_size <= base_bytes_min) {
        // Case 1. If we make target size of last level to be max_level_size,
        // target size of the first non-empty level would be smaller than
        // base_bytes_min. We set it be base_bytes_min.
        base_level_size = base_bytes_min + 1U;
        base_level_ = first_non_empty_level;
        ROCKS_LOG_INFO(ioptions.logger,
                       "More existing levels in DB than needed. "
                       "max_bytes_for_level_multiplier may not be guaranteed.");
      } else {
        // Find base level (where L0 data is compacted to).
        base_level_ = first_non_empty_level;
        while (base_level_ > 1 && cur_level_size > base_bytes_max) {
          --base_level_;
          cur_level_size = static_cast<uint64_t>(
              cur_level_size / options.max_bytes_for_level_multiplier);
        }
        if (cur_level_size > base_bytes_max) {
          // Even L1 will be too large
          assert(base_level_ == 1);
          base_level_size = base_bytes_max;
        } else {
          base_level_size = cur_level_size;
        }
      }

      level_multiplier_ = options.max_bytes_for_level_multiplier;
      assert(base_level_size > 0);

      uint64_t level_size = base_level_size;
      for (int i = base_level_; i < num_levels_; i++) {
        if (i > base_level_) {
          level_size = MultiplyCheckOverflow(level_size, level_multiplier_);
        }
        // Don't set any level below base_bytes_max. Otherwise, the LSM can
        // assume an hourglass shape where L1+ sizes are smaller than L0. This
        // causes compaction scoring, which depends on level sizes, to favor L1+
        // at the expense of L0, which may fill up and stall.
        level_max_bytes_[i] = std::max(level_size, base_bytes_max);
      }
    }
  }
}

uint64_t VersionStorageInfo::EstimateLiveDataSize() const {
  // Estimate the live data size by adding up the size of a maximal set of
  // sst files with no range overlap in same or higher level. The less
  // compacted, the more optimistic (smaller) this estimate is. Also,
  // for multiple sorted runs within a level, file order will matter.
  uint64_t size = 0;

  auto ikey_lt = [this](InternalKey* x, InternalKey* y) {
    return internal_comparator_->Compare(*x, *y) < 0;
  };
  // (Ordered) map of largest keys in files being included in size estimate
  std::map<InternalKey*, FileMetaData*, decltype(ikey_lt)> ranges(ikey_lt);

  for (int l = num_levels_ - 1; l >= 0; l--) {
    bool found_end = false;
    for (auto file : files_[l]) {
      // Find the first file already included with largest key is larger than
      // the smallest key of `file`. If that file does not overlap with the
      // current file, none of the files in the map does. If there is
      // no potential overlap, we can safely insert the rest of this level
      // (if the level is not 0) into the map without checking again because
      // the elements in the level are sorted and non-overlapping.
      auto lb = (found_end && l != 0) ? ranges.end()
                                      : ranges.lower_bound(&file->smallest);
      found_end = (lb == ranges.end());
      if (found_end || internal_comparator_->Compare(
                           file->largest, (*lb).second->smallest) < 0) {
        ranges.emplace_hint(lb, &file->largest, file);
        size += file->fd.file_size;
      }
    }
  }

  // For BlobDB, the result also includes the exact value of live bytes in the
  // blob files of the version.
  for (const auto& meta : blob_files_) {
    assert(meta);

    size += meta->GetTotalBlobBytes();
    size -= meta->GetGarbageBlobBytes();
  }

  return size;
}

bool VersionStorageInfo::RangeMightExistAfterSortedRun(
    const Slice& smallest_user_key, const Slice& largest_user_key,
    int last_level, int last_l0_idx) {
  assert((last_l0_idx != -1) == (last_level == 0));
  // TODO(ajkr): this preserves earlier behavior where we considered an L0 file
  // bottommost only if it's the oldest L0 file and there are no files on older
  // levels. It'd be better to consider it bottommost if there's no overlap in
  // older levels/files.
  if (last_level == 0 &&
      last_l0_idx != static_cast<int>(LevelFiles(0).size() - 1)) {
    return true;
  }

  // Checks whether there are files living beyond the `last_level`. If lower
  // levels have files, it checks for overlap between [`smallest_key`,
  // `largest_key`] and those files. Bottomlevel optimizations can be made if
  // there are no files in lower levels or if there is no overlap with the files
  // in the lower levels.
  for (int level = last_level + 1; level < num_levels(); level++) {
    // The range is not in the bottommost level if there are files in lower
    // levels when the `last_level` is 0 or if there are files in lower levels
    // which overlap with [`smallest_key`, `largest_key`].
    if (files_[level].size() > 0 &&
        (last_level == 0 ||
         OverlapInLevel(level, &smallest_user_key, &largest_user_key))) {
      return true;
    }
  }
  return false;
}

void Version::AddLiveFiles(std::vector<uint64_t>* live_table_files,
                           std::vector<uint64_t>* live_blob_files) const {
  assert(live_table_files);
  assert(live_blob_files);

  for (int level = 0; level < storage_info_.num_levels(); ++level) {
    const auto& level_files = storage_info_.LevelFiles(level);
    for (const auto& meta : level_files) {
      assert(meta);

      live_table_files->emplace_back(meta->fd.GetNumber());
    }
  }

  const auto& blob_files = storage_info_.GetBlobFiles();
  for (const auto& meta : blob_files) {
    assert(meta);

    live_blob_files->emplace_back(meta->GetBlobFileNumber());
  }
}

void Version::RemoveLiveFiles(
    std::vector<ObsoleteFileInfo>& sst_delete_candidates,
    std::vector<ObsoleteBlobFileInfo>& blob_delete_candidates) const {
  for (ObsoleteFileInfo& fi : sst_delete_candidates) {
    if (!fi.only_delete_metadata &&
        storage_info()->GetFileLocation(fi.metadata->fd.GetNumber()) !=
            VersionStorageInfo::FileLocation::Invalid()) {
      fi.only_delete_metadata = true;
    }
  }

  blob_delete_candidates.erase(
      std::remove_if(
          blob_delete_candidates.begin(), blob_delete_candidates.end(),
          [this](ObsoleteBlobFileInfo& x) {
            return storage_info()->GetBlobFileMetaData(x.GetBlobFileNumber());
          }),
      blob_delete_candidates.end());
}

std::string Version::DebugString(bool hex, bool print_stats) const {
  std::string r;
  for (int level = 0; level < storage_info_.num_levels_; level++) {
    // E.g.,
    //   --- level 1 ---
    //   17:123[1 .. 124]['a' .. 'd']
    //   20:43[124 .. 128]['e' .. 'g']
    //
    // if print_stats=true:
    //   17:123[1 .. 124]['a' .. 'd'](4096)
    r.append("--- level ");
    AppendNumberTo(&r, level);
    r.append(" --- version# ");
    AppendNumberTo(&r, version_number_);
    if (storage_info_.compact_cursor_[level].Valid()) {
      r.append(" --- compact_cursor: ");
      r.append(storage_info_.compact_cursor_[level].DebugString(hex));
    }
    r.append(" ---\n");
    const std::vector<FileMetaData*>& files = storage_info_.files_[level];
    for (size_t i = 0; i < files.size(); i++) {
      r.push_back(' ');
      AppendNumberTo(&r, files[i]->fd.GetNumber());
      r.push_back(':');
      AppendNumberTo(&r, files[i]->fd.GetFileSize());
      r.append("[");
      AppendNumberTo(&r, files[i]->fd.smallest_seqno);
      r.append(" .. ");
      AppendNumberTo(&r, files[i]->fd.largest_seqno);
      r.append("]");
      r.append("[");
      r.append(files[i]->smallest.DebugString(hex));
      r.append(" .. ");
      r.append(files[i]->largest.DebugString(hex));
      r.append("]");
      if (files[i]->oldest_blob_file_number != kInvalidBlobFileNumber) {
        r.append(" blob_file:");
        AppendNumberTo(&r, files[i]->oldest_blob_file_number);
      }
      if (print_stats) {
        r.append("(");
        r.append(std::to_string(
            files[i]->stats.num_reads_sampled.load(std::memory_order_relaxed)));
        r.append(")");
      }
      r.append("\n");
    }
  }

  const auto& blob_files = storage_info_.GetBlobFiles();
  if (!blob_files.empty()) {
    r.append("--- blob files --- version# ");
    AppendNumberTo(&r, version_number_);
    r.append(" ---\n");
    for (const auto& blob_file_meta : blob_files) {
      assert(blob_file_meta);

      r.append(blob_file_meta->DebugString());
      r.push_back('\n');
    }
  }

  return r;
}

// this is used to batch writes to the manifest file
struct VersionSet::ManifestWriter {
  Status status;
  bool done;
  InstrumentedCondVar cv;
  ColumnFamilyData* cfd;
  const MutableCFOptions mutable_cf_options;
  const autovector<VersionEdit*>& edit_list;
  const std::function<void(const Status&)> manifest_write_callback;

  explicit ManifestWriter(
      InstrumentedMutex* mu, ColumnFamilyData* _cfd,
      const MutableCFOptions& cf_options, const autovector<VersionEdit*>& e,
      const std::function<void(const Status&)>& manifest_wcb)
      : done(false),
        cv(mu),
        cfd(_cfd),
        mutable_cf_options(cf_options),
        edit_list(e),
        manifest_write_callback(manifest_wcb) {}
  ~ManifestWriter() { status.PermitUncheckedError(); }

  bool IsAllWalEdits() const {
    bool all_wal_edits = true;
    for (const auto& e : edit_list) {
      if (!e->IsWalManipulation()) {
        all_wal_edits = false;
        break;
      }
    }
    return all_wal_edits;
  }
};

Status AtomicGroupReadBuffer::AddEdit(VersionEdit* edit) {
  assert(edit);
  if (edit->is_in_atomic_group_) {
    TEST_SYNC_POINT("AtomicGroupReadBuffer::AddEdit:AtomicGroup");
    if (replay_buffer_.empty()) {
      replay_buffer_.resize(edit->remaining_entries_ + 1);
      TEST_SYNC_POINT_CALLBACK(
          "AtomicGroupReadBuffer::AddEdit:FirstInAtomicGroup", edit);
    }
    read_edits_in_atomic_group_++;
    if (read_edits_in_atomic_group_ + edit->remaining_entries_ !=
        static_cast<uint32_t>(replay_buffer_.size())) {
      TEST_SYNC_POINT_CALLBACK(
          "AtomicGroupReadBuffer::AddEdit:IncorrectAtomicGroupSize", edit);
      return Status::Corruption("corrupted atomic group");
    }
    replay_buffer_[read_edits_in_atomic_group_ - 1] = *edit;
    if (read_edits_in_atomic_group_ == replay_buffer_.size()) {
      TEST_SYNC_POINT_CALLBACK(
          "AtomicGroupReadBuffer::AddEdit:LastInAtomicGroup", edit);
      return Status::OK();
    }
    return Status::OK();
  }

  // A normal edit.
  if (!replay_buffer().empty()) {
    TEST_SYNC_POINT_CALLBACK(
        "AtomicGroupReadBuffer::AddEdit:AtomicGroupMixedWithNormalEdits", edit);
    return Status::Corruption("corrupted atomic group");
  }
  return Status::OK();
}

bool AtomicGroupReadBuffer::IsFull() const {
  return read_edits_in_atomic_group_ == replay_buffer_.size();
}

bool AtomicGroupReadBuffer::IsEmpty() const { return replay_buffer_.empty(); }

void AtomicGroupReadBuffer::Clear() {
  read_edits_in_atomic_group_ = 0;
  replay_buffer_.clear();
}

VersionSet::VersionSet(const std::string& dbname,
                       const ImmutableDBOptions* _db_options,
                       const FileOptions& storage_options, Cache* table_cache,
                       WriteBufferManager* write_buffer_manager,
                       WriteController* write_controller,
                       BlockCacheTracer* const block_cache_tracer,
                       const std::shared_ptr<IOTracer>& io_tracer,
                       const std::string& db_id,
                       const std::string& db_session_id)
    : column_family_set_(new ColumnFamilySet(
          dbname, _db_options, storage_options, table_cache,
          write_buffer_manager, write_controller, block_cache_tracer, io_tracer,
          db_id, db_session_id)),
      table_cache_(table_cache),
      env_(_db_options->env),
      fs_(_db_options->fs, io_tracer),
      clock_(_db_options->clock),
      dbname_(dbname),
      db_options_(_db_options),
      next_file_number_(2),
      manifest_file_number_(0),  // Filled by Recover()
      options_file_number_(0),
      options_file_size_(0),
      pending_manifest_file_number_(0),
      last_sequence_(0),
      last_allocated_sequence_(0),
      last_published_sequence_(0),
      prev_log_number_(0),
      current_version_number_(0),
      manifest_file_size_(0),
      file_options_(storage_options),
      block_cache_tracer_(block_cache_tracer),
      io_tracer_(io_tracer),
      db_session_id_(db_session_id) {}

VersionSet::~VersionSet() {
  // we need to delete column_family_set_ because its destructor depends on
  // VersionSet
  column_family_set_.reset();
  for (auto& file : obsolete_files_) {
    if (file.metadata->table_reader_handle) {
      table_cache_->Release(file.metadata->table_reader_handle);
      TableCache::Evict(table_cache_, file.metadata->fd.GetNumber());
    }
    file.DeleteMetadata();
  }
  obsolete_files_.clear();
  io_status_.PermitUncheckedError();
}

void VersionSet::Reset() {
  if (column_family_set_) {
    WriteBufferManager* wbm = column_family_set_->write_buffer_manager();
    WriteController* wc = column_family_set_->write_controller();
    // db_id becomes the source of truth after DBImpl::Recover():
    // https://github.com/facebook/rocksdb/blob/v7.3.1/db/db_impl/db_impl_open.cc#L527
    // Note: we may not be able to recover db_id from MANIFEST if
    // options.write_dbid_to_manifest is false (default).
    column_family_set_.reset(new ColumnFamilySet(
        dbname_, db_options_, file_options_, table_cache_, wbm, wc,
        block_cache_tracer_, io_tracer_, db_id_, db_session_id_));
  }
  db_id_.clear();
  next_file_number_.store(2);
  min_log_number_to_keep_.store(0);
  manifest_file_number_ = 0;
  options_file_number_ = 0;
  pending_manifest_file_number_ = 0;
  last_sequence_.store(0);
  last_allocated_sequence_.store(0);
  last_published_sequence_.store(0);
  prev_log_number_ = 0;
  descriptor_log_.reset();
  current_version_number_ = 0;
  manifest_writers_.clear();
  manifest_file_size_ = 0;
  obsolete_files_.clear();
  obsolete_manifests_.clear();
  wals_.Reset();
}

void VersionSet::AppendVersion(ColumnFamilyData* column_family_data,
                               Version* v) {
  // compute new compaction score
  v->storage_info()->ComputeCompactionScore(
      *column_family_data->ioptions(),
      *column_family_data->GetLatestMutableCFOptions());

  // Mark v finalized
  v->storage_info_.SetFinalized();

  // Make "v" current
  assert(v->refs_ == 0);
  Version* current = column_family_data->current();
  assert(v != current);
  if (current != nullptr) {
    assert(current->refs_ > 0);
    current->Unref();
  }
  column_family_data->SetCurrent(v);
  v->Ref();

  // Append to linked list
  v->prev_ = column_family_data->dummy_versions()->prev_;
  v->next_ = column_family_data->dummy_versions();
  v->prev_->next_ = v;
  v->next_->prev_ = v;
}

Status VersionSet::ProcessManifestWrites(
    std::deque<ManifestWriter>& writers, InstrumentedMutex* mu,
    FSDirectory* dir_contains_current_file, bool new_descriptor_log,
    const ColumnFamilyOptions* new_cf_options) {
  mu->AssertHeld();
  assert(!writers.empty());
  ManifestWriter& first_writer = writers.front();
  ManifestWriter* last_writer = &first_writer;

  assert(!manifest_writers_.empty());
  assert(manifest_writers_.front() == &first_writer);

  autovector<VersionEdit*> batch_edits;
  autovector<Version*> versions;
  autovector<const MutableCFOptions*> mutable_cf_options_ptrs;
  std::vector<std::unique_ptr<BaseReferencedVersionBuilder>> builder_guards;

  // Tracking `max_last_sequence` is needed to ensure we write
  // `VersionEdit::last_sequence_`s in non-decreasing order according to the
  // recovery code's requirement. It also allows us to defer updating
  // `descriptor_last_sequence_` until the apply phase, after the log phase
  // succeeds.
  SequenceNumber max_last_sequence = descriptor_last_sequence_;

  if (first_writer.edit_list.front()->IsColumnFamilyManipulation()) {
    // No group commits for column family add or drop
    LogAndApplyCFHelper(first_writer.edit_list.front(), &max_last_sequence);
    batch_edits.push_back(first_writer.edit_list.front());
  } else {
    auto it = manifest_writers_.cbegin();
    size_t group_start = std::numeric_limits<size_t>::max();
    while (it != manifest_writers_.cend()) {
      if ((*it)->edit_list.front()->IsColumnFamilyManipulation()) {
        // no group commits for column family add or drop
        break;
      }
      last_writer = *(it++);
      assert(last_writer != nullptr);
      assert(last_writer->cfd != nullptr);
      if (last_writer->cfd->IsDropped()) {
        // If we detect a dropped CF at this point, and the corresponding
        // version edits belong to an atomic group, then we need to find out
        // the preceding version edits in the same atomic group, and update
        // their `remaining_entries_` member variable because we are NOT going
        // to write the version edits' of dropped CF to the MANIFEST. If we
        // don't update, then Recover can report corrupted atomic group because
        // the `remaining_entries_` do not match.
        if (!batch_edits.empty()) {
          if (batch_edits.back()->is_in_atomic_group_ &&
              batch_edits.back()->remaining_entries_ > 0) {
            assert(group_start < batch_edits.size());
            const auto& edit_list = last_writer->edit_list;
            size_t k = 0;
            while (k < edit_list.size()) {
              if (!edit_list[k]->is_in_atomic_group_) {
                break;
              } else if (edit_list[k]->remaining_entries_ == 0) {
                ++k;
                break;
              }
              ++k;
            }
            for (auto i = group_start; i < batch_edits.size(); ++i) {
              assert(static_cast<uint32_t>(k) <=
                     batch_edits.back()->remaining_entries_);
              batch_edits[i]->remaining_entries_ -= static_cast<uint32_t>(k);
            }
          }
        }
        continue;
      }
      // We do a linear search on versions because versions is small.
      // TODO(yanqin) maybe consider unordered_map
      Version* version = nullptr;
      VersionBuilder* builder = nullptr;
      for (int i = 0; i != static_cast<int>(versions.size()); ++i) {
        uint32_t cf_id = last_writer->cfd->GetID();
        if (versions[i]->cfd()->GetID() == cf_id) {
          version = versions[i];
          assert(!builder_guards.empty() &&
                 builder_guards.size() == versions.size());
          builder = builder_guards[i]->version_builder();
          TEST_SYNC_POINT_CALLBACK(
              "VersionSet::ProcessManifestWrites:SameColumnFamily", &cf_id);
          break;
        }
      }
      if (version == nullptr) {
        // WAL manipulations do not need to be applied to versions.
        if (!last_writer->IsAllWalEdits()) {
          version = new Version(last_writer->cfd, this, file_options_,
                                last_writer->mutable_cf_options, io_tracer_,
                                current_version_number_++);
          versions.push_back(version);
          mutable_cf_options_ptrs.push_back(&last_writer->mutable_cf_options);
          builder_guards.emplace_back(
              new BaseReferencedVersionBuilder(last_writer->cfd));
          builder = builder_guards.back()->version_builder();
        }
        assert(last_writer->IsAllWalEdits() || builder);
        assert(last_writer->IsAllWalEdits() || version);
        TEST_SYNC_POINT_CALLBACK("VersionSet::ProcessManifestWrites:NewVersion",
                                 version);
      }
      for (const auto& e : last_writer->edit_list) {
        if (e->is_in_atomic_group_) {
          if (batch_edits.empty() || !batch_edits.back()->is_in_atomic_group_ ||
              (batch_edits.back()->is_in_atomic_group_ &&
               batch_edits.back()->remaining_entries_ == 0)) {
            group_start = batch_edits.size();
          }
        } else if (group_start != std::numeric_limits<size_t>::max()) {
          group_start = std::numeric_limits<size_t>::max();
        }
        Status s = LogAndApplyHelper(last_writer->cfd, builder, e,
                                     &max_last_sequence, mu);
        if (!s.ok()) {
          // free up the allocated memory
          for (auto v : versions) {
            delete v;
          }
          return s;
        }
        batch_edits.push_back(e);
      }
    }
    for (int i = 0; i < static_cast<int>(versions.size()); ++i) {
      assert(!builder_guards.empty() &&
             builder_guards.size() == versions.size());
      auto* builder = builder_guards[i]->version_builder();
      Status s = builder->SaveTo(versions[i]->storage_info());
      if (!s.ok()) {
        // free up the allocated memory
        for (auto v : versions) {
          delete v;
        }
        return s;
      }
    }
  }

#ifndef NDEBUG
  // Verify that version edits of atomic groups have correct
  // remaining_entries_.
  size_t k = 0;
  while (k < batch_edits.size()) {
    while (k < batch_edits.size() && !batch_edits[k]->is_in_atomic_group_) {
      ++k;
    }
    if (k == batch_edits.size()) {
      break;
    }
    size_t i = k;
    while (i < batch_edits.size()) {
      if (!batch_edits[i]->is_in_atomic_group_) {
        break;
      }
      assert(i - k + batch_edits[i]->remaining_entries_ ==
             batch_edits[k]->remaining_entries_);
      if (batch_edits[i]->remaining_entries_ == 0) {
        ++i;
        break;
      }
      ++i;
    }
    assert(batch_edits[i - 1]->is_in_atomic_group_);
    assert(0 == batch_edits[i - 1]->remaining_entries_);
    std::vector<VersionEdit*> tmp;
    for (size_t j = k; j != i; ++j) {
      tmp.emplace_back(batch_edits[j]);
    }
    TEST_SYNC_POINT_CALLBACK(
        "VersionSet::ProcessManifestWrites:CheckOneAtomicGroup", &tmp);
    k = i;
  }
#endif  // NDEBUG

  assert(pending_manifest_file_number_ == 0);
  if (!descriptor_log_ ||
      manifest_file_size_ > db_options_->max_manifest_file_size) {
    TEST_SYNC_POINT("VersionSet::ProcessManifestWrites:BeforeNewManifest");
    new_descriptor_log = true;
  } else {
    pending_manifest_file_number_ = manifest_file_number_;
  }

  // Local cached copy of state variable(s). WriteCurrentStateToManifest()
  // reads its content after releasing db mutex to avoid race with
  // SwitchMemtable().
  std::unordered_map<uint32_t, MutableCFState> curr_state;
  VersionEdit wal_additions;
  if (new_descriptor_log) {
    pending_manifest_file_number_ = NewFileNumber();
    batch_edits.back()->SetNextFile(next_file_number_.load());

    // if we are writing out new snapshot make sure to persist max column
    // family.
    if (column_family_set_->GetMaxColumnFamily() > 0) {
      first_writer.edit_list.front()->SetMaxColumnFamily(
          column_family_set_->GetMaxColumnFamily());
    }
    for (const auto* cfd : *column_family_set_) {
      assert(curr_state.find(cfd->GetID()) == curr_state.end());
      curr_state.emplace(std::make_pair(
          cfd->GetID(),
          MutableCFState(cfd->GetLogNumber(), cfd->GetFullHistoryTsLow())));
    }

    for (const auto& wal : wals_.GetWals()) {
      wal_additions.AddWal(wal.first, wal.second);
    }
  }

  uint64_t new_manifest_file_size = 0;
  Status s;
  IOStatus io_s;
  IOStatus manifest_io_status;
  {
    FileOptions opt_file_opts = fs_->OptimizeForManifestWrite(file_options_);
    mu->Unlock();
    TEST_SYNC_POINT("VersionSet::LogAndApply:WriteManifestStart");
    TEST_SYNC_POINT_CALLBACK("VersionSet::LogAndApply:WriteManifest", nullptr);
    if (!first_writer.edit_list.front()->IsColumnFamilyManipulation()) {
      for (int i = 0; i < static_cast<int>(versions.size()); ++i) {
        assert(!builder_guards.empty() &&
               builder_guards.size() == versions.size());
        assert(!mutable_cf_options_ptrs.empty() &&
               builder_guards.size() == versions.size());
        ColumnFamilyData* cfd = versions[i]->cfd_;
        s = builder_guards[i]->version_builder()->LoadTableHandlers(
            cfd->internal_stats(), 1 /* max_threads */,
            true /* prefetch_index_and_filter_in_cache */,
            false /* is_initial_load */,
            mutable_cf_options_ptrs[i]->prefix_extractor,
            MaxFileSizeForL0MetaPin(*mutable_cf_options_ptrs[i]));
        if (!s.ok()) {
          if (db_options_->paranoid_checks) {
            break;
          }
          s = Status::OK();
        }
      }
    }

    if (s.ok() && new_descriptor_log) {
      // This is fine because everything inside of this block is serialized --
      // only one thread can be here at the same time
      // create new manifest file
      ROCKS_LOG_INFO(db_options_->info_log, "Creating manifest %" PRIu64 "\n",
                     pending_manifest_file_number_);
      std::string descriptor_fname =
          DescriptorFileName(dbname_, pending_manifest_file_number_);
      std::unique_ptr<FSWritableFile> descriptor_file;
      io_s = NewWritableFile(fs_.get(), descriptor_fname, &descriptor_file,
                             opt_file_opts);
      if (io_s.ok()) {
        descriptor_file->SetPreallocationBlockSize(
            db_options_->manifest_preallocation_size);
        FileTypeSet tmp_set = db_options_->checksum_handoff_file_types;
        std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter(
            std::move(descriptor_file), descriptor_fname, opt_file_opts, clock_,
            io_tracer_, nullptr, db_options_->listeners, nullptr,
            tmp_set.Contains(FileType::kDescriptorFile),
            tmp_set.Contains(FileType::kDescriptorFile)));
        descriptor_log_.reset(
            new log::Writer(std::move(file_writer), 0, false));
        s = WriteCurrentStateToManifest(curr_state, wal_additions,
                                        descriptor_log_.get(), io_s);
      } else {
        manifest_io_status = io_s;
        s = io_s;
      }
    }

    if (s.ok()) {
      if (!first_writer.edit_list.front()->IsColumnFamilyManipulation()) {
        constexpr bool update_stats = true;

        for (int i = 0; i < static_cast<int>(versions.size()); ++i) {
          versions[i]->PrepareAppend(*mutable_cf_options_ptrs[i], update_stats);
        }
      }

      // Write new records to MANIFEST log
#ifndef NDEBUG
      size_t idx = 0;
#endif
      for (auto& e : batch_edits) {
        std::string record;
        if (!e->EncodeTo(&record)) {
          s = Status::Corruption("Unable to encode VersionEdit:" +
                                 e->DebugString(true));
          break;
        }
        TEST_KILL_RANDOM_WITH_WEIGHT("VersionSet::LogAndApply:BeforeAddRecord",
                                     REDUCE_ODDS2);
#ifndef NDEBUG
        if (batch_edits.size() > 1 && batch_edits.size() - 1 == idx) {
          TEST_SYNC_POINT_CALLBACK(
              "VersionSet::ProcessManifestWrites:BeforeWriteLastVersionEdit:0",
              nullptr);
          TEST_SYNC_POINT(
              "VersionSet::ProcessManifestWrites:BeforeWriteLastVersionEdit:1");
        }
        ++idx;
#endif /* !NDEBUG */
        io_s = descriptor_log_->AddRecord(record);
        if (!io_s.ok()) {
          s = io_s;
          manifest_io_status = io_s;
          break;
        }
      }
      if (s.ok()) {
        io_s = SyncManifest(db_options_, descriptor_log_->file());
        manifest_io_status = io_s;
        TEST_SYNC_POINT_CALLBACK(
            "VersionSet::ProcessManifestWrites:AfterSyncManifest", &io_s);
      }
      if (!io_s.ok()) {
        s = io_s;
        ROCKS_LOG_ERROR(db_options_->info_log, "MANIFEST write %s\n",
                        s.ToString().c_str());
      }
    }

    // If we just created a new descriptor file, install it by writing a
    // new CURRENT file that points to it.
    if (s.ok()) {
      assert(manifest_io_status.ok());
    }
    if (s.ok() && new_descriptor_log) {
      io_s = SetCurrentFile(fs_.get(), dbname_, pending_manifest_file_number_,
                            dir_contains_current_file);
      if (!io_s.ok()) {
        s = io_s;
      }
    }

    if (s.ok()) {
      // find offset in manifest file where this version is stored.
      new_manifest_file_size = descriptor_log_->file()->GetFileSize();
    }

    if (first_writer.edit_list.front()->is_column_family_drop_) {
      TEST_SYNC_POINT("VersionSet::LogAndApply::ColumnFamilyDrop:0");
      TEST_SYNC_POINT("VersionSet::LogAndApply::ColumnFamilyDrop:1");
      TEST_SYNC_POINT("VersionSet::LogAndApply::ColumnFamilyDrop:2");
    }

    LogFlush(db_options_->info_log);
    TEST_SYNC_POINT("VersionSet::LogAndApply:WriteManifestDone");
    mu->Lock();
  }

  if (s.ok()) {
    // Apply WAL edits, DB mutex must be held.
    for (auto& e : batch_edits) {
      if (e->IsWalAddition()) {
        s = wals_.AddWals(e->GetWalAdditions());
      } else if (e->IsWalDeletion()) {
        s = wals_.DeleteWalsBefore(e->GetWalDeletion().GetLogNumber());
      }
      if (!s.ok()) {
        break;
      }
    }
  }

  if (!io_s.ok()) {
    if (io_status_.ok()) {
      io_status_ = io_s;
    }
  } else if (!io_status_.ok()) {
    io_status_ = io_s;
  }

  // Append the old manifest file to the obsolete_manifest_ list to be deleted
  // by PurgeObsoleteFiles later.
  if (s.ok() && new_descriptor_log) {
    obsolete_manifests_.emplace_back(
        DescriptorFileName("", manifest_file_number_));
  }

  // Install the new versions
  if (s.ok()) {
    if (first_writer.edit_list.front()->is_column_family_add_) {
      assert(batch_edits.size() == 1);
      assert(new_cf_options != nullptr);
      assert(max_last_sequence == descriptor_last_sequence_);
      CreateColumnFamily(*new_cf_options, first_writer.edit_list.front());
    } else if (first_writer.edit_list.front()->is_column_family_drop_) {
      assert(batch_edits.size() == 1);
      assert(max_last_sequence == descriptor_last_sequence_);
      first_writer.cfd->SetDropped();
      first_writer.cfd->UnrefAndTryDelete();
    } else {
      // Each version in versions corresponds to a column family.
      // For each column family, update its log number indicating that logs
      // with number smaller than this should be ignored.
      uint64_t last_min_log_number_to_keep = 0;
      for (const auto& e : batch_edits) {
        ColumnFamilyData* cfd = nullptr;
        if (!e->IsColumnFamilyManipulation()) {
          cfd = column_family_set_->GetColumnFamily(e->column_family_);
          // e would not have been added to batch_edits if its corresponding
          // column family is dropped.
          assert(cfd);
        }
        if (cfd) {
          if (e->has_log_number_ && e->log_number_ > cfd->GetLogNumber()) {
            cfd->SetLogNumber(e->log_number_);
          }
          if (e->HasFullHistoryTsLow()) {
            cfd->SetFullHistoryTsLow(e->GetFullHistoryTsLow());
          }
        }
        if (e->has_min_log_number_to_keep_) {
          last_min_log_number_to_keep =
              std::max(last_min_log_number_to_keep, e->min_log_number_to_keep_);
        }
      }

      if (last_min_log_number_to_keep != 0) {
        MarkMinLogNumberToKeep(last_min_log_number_to_keep);
      }

      for (int i = 0; i < static_cast<int>(versions.size()); ++i) {
        ColumnFamilyData* cfd = versions[i]->cfd_;
        AppendVersion(cfd, versions[i]);
      }
    }
    assert(max_last_sequence >= descriptor_last_sequence_);
    descriptor_last_sequence_ = max_last_sequence;
    manifest_file_number_ = pending_manifest_file_number_;
    manifest_file_size_ = new_manifest_file_size;
    prev_log_number_ = first_writer.edit_list.front()->prev_log_number_;
  } else {
    std::string version_edits;
    for (auto& e : batch_edits) {
      version_edits += ("\n" + e->DebugString(true));
    }
    ROCKS_LOG_ERROR(db_options_->info_log,
                    "Error in committing version edit to MANIFEST: %s",
                    version_edits.c_str());
    for (auto v : versions) {
      delete v;
    }
    if (manifest_io_status.ok()) {
      manifest_file_number_ = pending_manifest_file_number_;
      manifest_file_size_ = new_manifest_file_size;
    }
    // If manifest append failed for whatever reason, the file could be
    // corrupted. So we need to force the next version update to start a
    // new manifest file.
    descriptor_log_.reset();
    // If manifest operations failed, then we know the CURRENT file still
    // points to the original MANIFEST. Therefore, we can safely delete the
    // new MANIFEST.
    // If manifest operations succeeded, and we are here, then it is possible
    // that renaming tmp file to CURRENT failed.
    //
    // On local POSIX-compliant FS, the CURRENT must point to the original
    // MANIFEST. We can delete the new MANIFEST for simplicity, but we can also
    // keep it. Future recovery will ignore this MANIFEST. It's also ok for the
    // process not to crash and continue using the db. Any future LogAndApply()
    // call will switch to a new MANIFEST and update CURRENT, still ignoring
    // this one.
    //
    // On non-local FS, it is
    // possible that the rename operation succeeded on the server (remote)
    // side, but the client somehow returns a non-ok status to RocksDB. Note
    // that this does not violate atomicity. Should we delete the new MANIFEST
    // successfully, a subsequent recovery attempt will likely see the CURRENT
    // pointing to the new MANIFEST, thus fail. We will not be able to open the
    // DB again. Therefore, if manifest operations succeed, we should keep the
    // the new MANIFEST. If the process proceeds, any future LogAndApply() call
    // will switch to a new MANIFEST and update CURRENT. If user tries to
    // re-open the DB,
    // a) CURRENT points to the new MANIFEST, and the new MANIFEST is present.
    // b) CURRENT points to the original MANIFEST, and the original MANIFEST
    //    also exists.
    if (new_descriptor_log && !manifest_io_status.ok()) {
      ROCKS_LOG_INFO(db_options_->info_log,
                     "Deleting manifest %" PRIu64 " current manifest %" PRIu64
                     "\n",
                     pending_manifest_file_number_, manifest_file_number_);
      Status manifest_del_status = env_->DeleteFile(
          DescriptorFileName(dbname_, pending_manifest_file_number_));
      if (!manifest_del_status.ok()) {
        ROCKS_LOG_WARN(db_options_->info_log,
                       "Failed to delete manifest %" PRIu64 ": %s",
                       pending_manifest_file_number_,
                       manifest_del_status.ToString().c_str());
      }
    }
  }

  pending_manifest_file_number_ = 0;

#ifndef NDEBUG
  // This is here kind of awkwardly because there's no other consistency
  // checks on `VersionSet`'s updates for the new `Version`s. We might want
  // to move it to a dedicated function, or remove it if we gain enough
  // confidence in `descriptor_last_sequence_`.
  if (s.ok()) {
    for (const auto* v : versions) {
      const auto* vstorage = v->storage_info();
      for (int level = 0; level < vstorage->num_levels(); ++level) {
        for (const auto& file : vstorage->LevelFiles(level)) {
          assert(file->fd.largest_seqno <= descriptor_last_sequence_);
        }
      }
    }
  }
#endif  // NDEBUG

  // wake up all the waiting writers
  while (true) {
    ManifestWriter* ready = manifest_writers_.front();
    manifest_writers_.pop_front();
    bool need_signal = true;
    for (const auto& w : writers) {
      if (&w == ready) {
        need_signal = false;
        break;
      }
    }
    ready->status = s;
    ready->done = true;
    if (ready->manifest_write_callback) {
      (ready->manifest_write_callback)(s);
    }
    if (need_signal) {
      ready->cv.Signal();
    }
    if (ready == last_writer) {
      break;
    }
  }
  if (!manifest_writers_.empty()) {
    manifest_writers_.front()->cv.Signal();
  }
  return s;
}

void VersionSet::WakeUpWaitingManifestWriters() {
  // wake up all the waiting writers
  // Notify new head of manifest write queue.
  if (!manifest_writers_.empty()) {
    manifest_writers_.front()->cv.Signal();
  }
}

// 'datas' is grammatically incorrect. We still use this notation to indicate
// that this variable represents a collection of column_family_data.
Status VersionSet::LogAndApply(
    const autovector<ColumnFamilyData*>& column_family_datas,
    const autovector<const MutableCFOptions*>& mutable_cf_options_list,
    const autovector<autovector<VersionEdit*>>& edit_lists,
    InstrumentedMutex* mu, FSDirectory* dir_contains_current_file,
    bool new_descriptor_log, const ColumnFamilyOptions* new_cf_options,
    const std::vector<std::function<void(const Status&)>>& manifest_wcbs) {
  mu->AssertHeld();
  int num_edits = 0;
  for (const auto& elist : edit_lists) {
    num_edits += static_cast<int>(elist.size());
  }
  if (num_edits == 0) {
    return Status::OK();
  } else if (num_edits > 1) {
#ifndef NDEBUG
    for (const auto& edit_list : edit_lists) {
      for (const auto& edit : edit_list) {
        assert(!edit->IsColumnFamilyManipulation());
      }
    }
#endif /* ! NDEBUG */
  }

  int num_cfds = static_cast<int>(column_family_datas.size());
  if (num_cfds == 1 && column_family_datas[0] == nullptr) {
    assert(edit_lists.size() == 1 && edit_lists[0].size() == 1);
    assert(edit_lists[0][0]->is_column_family_add_);
    assert(new_cf_options != nullptr);
  }
  std::deque<ManifestWriter> writers;
  if (num_cfds > 0) {
    assert(static_cast<size_t>(num_cfds) == mutable_cf_options_list.size());
    assert(static_cast<size_t>(num_cfds) == edit_lists.size());
  }
  for (int i = 0; i < num_cfds; ++i) {
    const auto wcb =
        manifest_wcbs.empty() ? [](const Status&) {} : manifest_wcbs[i];
    writers.emplace_back(mu, column_family_datas[i],
                         *mutable_cf_options_list[i], edit_lists[i], wcb);
    manifest_writers_.push_back(&writers[i]);
  }
  assert(!writers.empty());
  ManifestWriter& first_writer = writers.front();
  TEST_SYNC_POINT_CALLBACK("VersionSet::LogAndApply:BeforeWriterWaiting",
                           nullptr);
  while (!first_writer.done && &first_writer != manifest_writers_.front()) {
    first_writer.cv.Wait();
  }
  if (first_writer.done) {
    // All non-CF-manipulation operations can be grouped together and committed
    // to MANIFEST. They should all have finished. The status code is stored in
    // the first manifest writer.
#ifndef NDEBUG
    for (const auto& writer : writers) {
      assert(writer.done);
    }
    TEST_SYNC_POINT_CALLBACK("VersionSet::LogAndApply:WakeUpAndDone", mu);
#endif /* !NDEBUG */
    return first_writer.status;
  }

  int num_undropped_cfds = 0;
  for (auto cfd : column_family_datas) {
    // if cfd == nullptr, it is a column family add.
    if (cfd == nullptr || !cfd->IsDropped()) {
      ++num_undropped_cfds;
    }
  }
  if (0 == num_undropped_cfds) {
    for (int i = 0; i != num_cfds; ++i) {
      manifest_writers_.pop_front();
    }
    // Notify new head of manifest write queue.
    if (!manifest_writers_.empty()) {
      manifest_writers_.front()->cv.Signal();
    }
    return Status::ColumnFamilyDropped();
  }
  return ProcessManifestWrites(writers, mu, dir_contains_current_file,
                               new_descriptor_log, new_cf_options);
}

void VersionSet::LogAndApplyCFHelper(VersionEdit* edit,
                                     SequenceNumber* max_last_sequence) {
  assert(max_last_sequence != nullptr);
  assert(edit->IsColumnFamilyManipulation());
  edit->SetNextFile(next_file_number_.load());
  assert(!edit->HasLastSequence());
  edit->SetLastSequence(*max_last_sequence);
  if (edit->is_column_family_drop_) {
    // if we drop column family, we have to make sure to save max column family,
    // so that we don't reuse existing ID
    edit->SetMaxColumnFamily(column_family_set_->GetMaxColumnFamily());
  }
}

Status VersionSet::LogAndApplyHelper(ColumnFamilyData* cfd,
                                     VersionBuilder* builder, VersionEdit* edit,
                                     SequenceNumber* max_last_sequence,
                                     InstrumentedMutex* mu) {
#ifdef NDEBUG
  (void)cfd;
#endif
  mu->AssertHeld();
  assert(!edit->IsColumnFamilyManipulation());
  assert(max_last_sequence != nullptr);

  if (edit->has_log_number_) {
    assert(edit->log_number_ >= cfd->GetLogNumber());
    assert(edit->log_number_ < next_file_number_.load());
  }

  if (!edit->has_prev_log_number_) {
    edit->SetPrevLogNumber(prev_log_number_);
  }
  edit->SetNextFile(next_file_number_.load());
  if (edit->HasLastSequence() && edit->GetLastSequence() > *max_last_sequence) {
    *max_last_sequence = edit->GetLastSequence();
  } else {
    edit->SetLastSequence(*max_last_sequence);
  }

  // The builder can be nullptr only if edit is WAL manipulation,
  // because WAL edits do not need to be applied to versions,
  // we return Status::OK() in this case.
  assert(builder || edit->IsWalManipulation());
  return builder ? builder->Apply(edit) : Status::OK();
}

Status VersionSet::GetCurrentManifestPath(const std::string& dbname,
                                          FileSystem* fs,
                                          std::string* manifest_path,
                                          uint64_t* manifest_file_number) {
  assert(fs != nullptr);
  assert(manifest_path != nullptr);
  assert(manifest_file_number != nullptr);

  std::string fname;
  Status s = ReadFileToString(fs, CurrentFileName(dbname), &fname);
  if (!s.ok()) {
    return s;
  }
  if (fname.empty() || fname.back() != '\n') {
    return Status::Corruption("CURRENT file does not end with newline");
  }
  // remove the trailing '\n'
  fname.resize(fname.size() - 1);
  FileType type;
  bool parse_ok = ParseFileName(fname, manifest_file_number, &type);
  if (!parse_ok || type != kDescriptorFile) {
    return Status::Corruption("CURRENT file corrupted");
  }
  *manifest_path = dbname;
  if (dbname.back() != '/') {
    manifest_path->push_back('/');
  }
  manifest_path->append(fname);
  return Status::OK();
}

Status VersionSet::Recover(
    const std::vector<ColumnFamilyDescriptor>& column_families, bool read_only,
    std::string* db_id, bool no_error_if_files_missing) {
  // Read "CURRENT" file, which contains a pointer to the current manifest file
  std::string manifest_path;
  Status s = GetCurrentManifestPath(dbname_, fs_.get(), &manifest_path,
                                    &manifest_file_number_);
  if (!s.ok()) {
    return s;
  }

  ROCKS_LOG_INFO(db_options_->info_log, "Recovering from manifest file: %s\n",
                 manifest_path.c_str());

  std::unique_ptr<SequentialFileReader> manifest_file_reader;
  {
    std::unique_ptr<FSSequentialFile> manifest_file;
    s = fs_->NewSequentialFile(manifest_path,
                               fs_->OptimizeForManifestRead(file_options_),
                               &manifest_file, nullptr);
    if (!s.ok()) {
      return s;
    }
    manifest_file_reader.reset(new SequentialFileReader(
        std::move(manifest_file), manifest_path,
        db_options_->log_readahead_size, io_tracer_, db_options_->listeners));
  }
  uint64_t current_manifest_file_size = 0;
  uint64_t log_number = 0;
  {
    VersionSet::LogReporter reporter;
    Status log_read_status;
    reporter.status = &log_read_status;
    log::Reader reader(nullptr, std::move(manifest_file_reader), &reporter,
                       true /* checksum */, 0 /* log_number */);
    VersionEditHandler handler(
        read_only, column_families, const_cast<VersionSet*>(this),
        /*track_missing_files=*/false, no_error_if_files_missing, io_tracer_);
    handler.Iterate(reader, &log_read_status);
    s = handler.status();
    if (s.ok()) {
      log_number = handler.GetVersionEditParams().log_number_;
      current_manifest_file_size = reader.GetReadOffset();
      assert(current_manifest_file_size != 0);
      handler.GetDbId(db_id);
    }
  }

  if (s.ok()) {
    manifest_file_size_ = current_manifest_file_size;
    ROCKS_LOG_INFO(
        db_options_->info_log,
        "Recovered from manifest file:%s succeeded,"
        "manifest_file_number is %" PRIu64 ", next_file_number is %" PRIu64
        ", last_sequence is %" PRIu64 ", log_number is %" PRIu64
        ",prev_log_number is %" PRIu64 ",max_column_family is %" PRIu32
        ",min_log_number_to_keep is %" PRIu64 "\n",
        manifest_path.c_str(), manifest_file_number_, next_file_number_.load(),
        last_sequence_.load(), log_number, prev_log_number_,
        column_family_set_->GetMaxColumnFamily(), min_log_number_to_keep());

    for (auto cfd : *column_family_set_) {
      if (cfd->IsDropped()) {
        continue;
      }
      ROCKS_LOG_INFO(db_options_->info_log,
                     "Column family [%s] (ID %" PRIu32
                     "), log number is %" PRIu64 "\n",
                     cfd->GetName().c_str(), cfd->GetID(), cfd->GetLogNumber());
    }
  }

  return s;
}

namespace {
class ManifestPicker {
 public:
  explicit ManifestPicker(const std::string& dbname,
                          const std::vector<std::string>& files_in_dbname);
  // REQUIRES Valid() == true
  std::string GetNextManifest(uint64_t* file_number, std::string* file_name);
  bool Valid() const { return manifest_file_iter_ != manifest_files_.end(); }

 private:
  const std::string& dbname_;
  // MANIFEST file names(s)
  std::vector<std::string> manifest_files_;
  std::vector<std::string>::const_iterator manifest_file_iter_;
};

ManifestPicker::ManifestPicker(const std::string& dbname,
                               const std::vector<std::string>& files_in_dbname)
    : dbname_(dbname) {
  // populate manifest files
  assert(!files_in_dbname.empty());
  for (const auto& fname : files_in_dbname) {
    uint64_t file_num = 0;
    FileType file_type;
    bool parse_ok = ParseFileName(fname, &file_num, &file_type);
    if (parse_ok && file_type == kDescriptorFile) {
      manifest_files_.push_back(fname);
    }
  }
  // seek to first manifest
  std::sort(manifest_files_.begin(), manifest_files_.end(),
            [](const std::string& lhs, const std::string& rhs) {
              uint64_t num1 = 0;
              uint64_t num2 = 0;
              FileType type1;
              FileType type2;
              bool parse_ok1 = ParseFileName(lhs, &num1, &type1);
              bool parse_ok2 = ParseFileName(rhs, &num2, &type2);
#ifndef NDEBUG
              assert(parse_ok1);
              assert(parse_ok2);
#else
              (void)parse_ok1;
              (void)parse_ok2;
#endif
              return num1 > num2;
            });
  manifest_file_iter_ = manifest_files_.begin();
}

std::string ManifestPicker::GetNextManifest(uint64_t* number,
                                            std::string* file_name) {
  assert(Valid());
  std::string ret;
  if (manifest_file_iter_ != manifest_files_.end()) {
    ret.assign(dbname_);
    if (ret.back() != kFilePathSeparator) {
      ret.push_back(kFilePathSeparator);
    }
    ret.append(*manifest_file_iter_);
    if (number) {
      FileType type;
      bool parse = ParseFileName(*manifest_file_iter_, number, &type);
      assert(type == kDescriptorFile);
#ifndef NDEBUG
      assert(parse);
#else
      (void)parse;
#endif
    }
    if (file_name) {
      *file_name = *manifest_file_iter_;
    }
    ++manifest_file_iter_;
  }
  return ret;
}
}  // anonymous namespace

Status VersionSet::TryRecover(
    const std::vector<ColumnFamilyDescriptor>& column_families, bool read_only,
    const std::vector<std::string>& files_in_dbname, std::string* db_id,
    bool* has_missing_table_file) {
  ManifestPicker manifest_picker(dbname_, files_in_dbname);
  if (!manifest_picker.Valid()) {
    return Status::Corruption("Cannot locate MANIFEST file in " + dbname_);
  }
  Status s;
  std::string manifest_path =
      manifest_picker.GetNextManifest(&manifest_file_number_, nullptr);
  while (!manifest_path.empty()) {
    s = TryRecoverFromOneManifest(manifest_path, column_families, read_only,
                                  db_id, has_missing_table_file);
    if (s.ok() || !manifest_picker.Valid()) {
      break;
    }
    Reset();
    manifest_path =
        manifest_picker.GetNextManifest(&manifest_file_number_, nullptr);
  }
  return s;
}

Status VersionSet::TryRecoverFromOneManifest(
    const std::string& manifest_path,
    const std::vector<ColumnFamilyDescriptor>& column_families, bool read_only,
    std::string* db_id, bool* has_missing_table_file) {
  ROCKS_LOG_INFO(db_options_->info_log, "Trying to recover from manifest: %s\n",
                 manifest_path.c_str());
  std::unique_ptr<SequentialFileReader> manifest_file_reader;
  Status s;
  {
    std::unique_ptr<FSSequentialFile> manifest_file;
    s = fs_->NewSequentialFile(manifest_path,
                               fs_->OptimizeForManifestRead(file_options_),
                               &manifest_file, nullptr);
    if (!s.ok()) {
      return s;
    }
    manifest_file_reader.reset(new SequentialFileReader(
        std::move(manifest_file), manifest_path,
        db_options_->log_readahead_size, io_tracer_, db_options_->listeners));
  }

  assert(s.ok());
  VersionSet::LogReporter reporter;
  reporter.status = &s;
  log::Reader reader(nullptr, std::move(manifest_file_reader), &reporter,
                     /*checksum=*/true, /*log_num=*/0);
  VersionEditHandlerPointInTime handler_pit(
      read_only, column_families, const_cast<VersionSet*>(this), io_tracer_);

  handler_pit.Iterate(reader, &s);

  handler_pit.GetDbId(db_id);

  assert(nullptr != has_missing_table_file);
  *has_missing_table_file = handler_pit.HasMissingFiles();

  return handler_pit.status();
}

Status VersionSet::ListColumnFamilies(std::vector<std::string>* column_families,
                                      const std::string& dbname,
                                      FileSystem* fs) {
  // Read "CURRENT" file, which contains a pointer to the current manifest file
  std::string manifest_path;
  uint64_t manifest_file_number;
  Status s =
      GetCurrentManifestPath(dbname, fs, &manifest_path, &manifest_file_number);
  if (!s.ok()) {
    return s;
  }
  return ListColumnFamiliesFromManifest(manifest_path, fs, column_families);
}

Status VersionSet::ListColumnFamiliesFromManifest(
    const std::string& manifest_path, FileSystem* fs,
    std::vector<std::string>* column_families) {
  std::unique_ptr<SequentialFileReader> file_reader;
  Status s;
  {
    std::unique_ptr<FSSequentialFile> file;
    // these are just for performance reasons, not correctness,
    // so we're fine using the defaults
    s = fs->NewSequentialFile(manifest_path, FileOptions(), &file, nullptr);
    if (!s.ok()) {
      return s;
    }
    file_reader = std::make_unique<SequentialFileReader>(
        std::move(file), manifest_path, /*io_tracer=*/nullptr);
  }

  VersionSet::LogReporter reporter;
  reporter.status = &s;
  log::Reader reader(nullptr, std::move(file_reader), &reporter,
                     true /* checksum */, 0 /* log_number */);

  ListColumnFamiliesHandler handler;
  handler.Iterate(reader, &s);

  assert(column_families);
  column_families->clear();
  if (handler.status().ok()) {
    for (const auto& iter : handler.GetColumnFamilyNames()) {
      column_families->push_back(iter.second);
    }
  }

  return handler.status();
}

#ifndef ROCKSDB_LITE
Status VersionSet::ReduceNumberOfLevels(const std::string& dbname,
                                        const Options* options,
                                        const FileOptions& file_options,
                                        int new_levels) {
  if (new_levels <= 1) {
    return Status::InvalidArgument(
        "Number of levels needs to be bigger than 1");
  }

  ImmutableDBOptions db_options(*options);
  ColumnFamilyOptions cf_options(*options);
  std::shared_ptr<Cache> tc(NewLRUCache(options->max_open_files - 10,
                                        options->table_cache_numshardbits));
  WriteController wc(options->delayed_write_rate);
  WriteBufferManager wb(options->db_write_buffer_size);
  VersionSet versions(dbname, &db_options, file_options, tc.get(), &wb, &wc,
                      nullptr /*BlockCacheTracer*/, nullptr /*IOTracer*/,
                      /*db_id*/ "",
                      /*db_session_id*/ "");
  Status status;

  std::vector<ColumnFamilyDescriptor> dummy;
  ColumnFamilyDescriptor dummy_descriptor(kDefaultColumnFamilyName,
                                          ColumnFamilyOptions(*options));
  dummy.push_back(dummy_descriptor);
  status = versions.Recover(dummy);
  if (!status.ok()) {
    return status;
  }

  Version* current_version =
      versions.GetColumnFamilySet()->GetDefault()->current();
  auto* vstorage = current_version->storage_info();
  int current_levels = vstorage->num_levels();

  if (current_levels <= new_levels) {
    return Status::OK();
  }

  // Make sure there are file only on one level from
  // (new_levels-1) to (current_levels-1)
  int first_nonempty_level = -1;
  int first_nonempty_level_filenum = 0;
  for (int i = new_levels - 1; i < current_levels; i++) {
    int file_num = vstorage->NumLevelFiles(i);
    if (file_num != 0) {
      if (first_nonempty_level < 0) {
        first_nonempty_level = i;
        first_nonempty_level_filenum = file_num;
      } else {
        char msg[255];
        snprintf(msg, sizeof(msg),
                 "Found at least two levels containing files: "
                 "[%d:%d],[%d:%d].\n",
                 first_nonempty_level, first_nonempty_level_filenum, i,
                 file_num);
        return Status::InvalidArgument(msg);
      }
    }
  }

  // we need to allocate an array with the old number of levels size to
  // avoid SIGSEGV in WriteCurrentStatetoManifest()
  // however, all levels bigger or equal to new_levels will be empty
  std::vector<FileMetaData*>* new_files_list =
      new std::vector<FileMetaData*>[current_levels];
  for (int i = 0; i < new_levels - 1; i++) {
    new_files_list[i] = vstorage->LevelFiles(i);
  }

  if (first_nonempty_level > 0) {
    auto& new_last_level = new_files_list[new_levels - 1];

    new_last_level = vstorage->LevelFiles(first_nonempty_level);

    for (size_t i = 0; i < new_last_level.size(); ++i) {
      const FileMetaData* const meta = new_last_level[i];
      assert(meta);

      const uint64_t file_number = meta->fd.GetNumber();

      vstorage->file_locations_[file_number] =
          VersionStorageInfo::FileLocation(new_levels - 1, i);
    }
  }

  delete[] vstorage->files_;
  vstorage->files_ = new_files_list;
  vstorage->num_levels_ = new_levels;
  vstorage->ResizeCompactCursors(new_levels);

  MutableCFOptions mutable_cf_options(*options);
  VersionEdit ve;
  InstrumentedMutex dummy_mutex;
  InstrumentedMutexLock l(&dummy_mutex);
  return versions.LogAndApply(versions.GetColumnFamilySet()->GetDefault(),
                              mutable_cf_options, &ve, &dummy_mutex, nullptr,
                              true);
}

// Get the checksum information including the checksum and checksum function
// name of all SST and blob files in VersionSet. Store the information in
// FileChecksumList which contains a map from file number to its checksum info.
// If DB is not running, make sure call VersionSet::Recover() to load the file
// metadata from Manifest to VersionSet before calling this function.
Status VersionSet::GetLiveFilesChecksumInfo(FileChecksumList* checksum_list) {
  // Clean the previously stored checksum information if any.
  Status s;
  if (checksum_list == nullptr) {
    s = Status::InvalidArgument("checksum_list is nullptr");
    return s;
  }
  checksum_list->reset();

  for (auto cfd : *column_family_set_) {
    assert(cfd);

    if (cfd->IsDropped() || !cfd->initialized()) {
      continue;
    }

    const auto* current = cfd->current();
    assert(current);

    const auto* vstorage = current->storage_info();
    assert(vstorage);

    /* SST files */
    for (int level = 0; level < cfd->NumberLevels(); level++) {
      const auto& level_files = vstorage->LevelFiles(level);

      for (const auto& file : level_files) {
        assert(file);

        s = checksum_list->InsertOneFileChecksum(file->fd.GetNumber(),
                                                 file->file_checksum,
                                                 file->file_checksum_func_name);
        if (!s.ok()) {
          return s;
        }
      }
    }

    /* Blob files */
    const auto& blob_files = vstorage->GetBlobFiles();
    for (const auto& meta : blob_files) {
      assert(meta);

      std::string checksum_value = meta->GetChecksumValue();
      std::string checksum_method = meta->GetChecksumMethod();
      assert(checksum_value.empty() == checksum_method.empty());
      if (meta->GetChecksumMethod().empty()) {
        checksum_value = kUnknownFileChecksum;
        checksum_method = kUnknownFileChecksumFuncName;
      }

      s = checksum_list->InsertOneFileChecksum(meta->GetBlobFileNumber(),
                                               checksum_value, checksum_method);
      if (!s.ok()) {
        return s;
      }
    }
  }

  return s;
}

Status VersionSet::DumpManifest(Options& options, std::string& dscname,
                                bool verbose, bool hex, bool json) {
  assert(options.env);
  std::vector<std::string> column_families;
  Status s = ListColumnFamiliesFromManifest(
      dscname, options.env->GetFileSystem().get(), &column_families);
  if (!s.ok()) {
    return s;
  }

  // Open the specified manifest file.
  std::unique_ptr<SequentialFileReader> file_reader;
  {
    std::unique_ptr<FSSequentialFile> file;
    const std::shared_ptr<FileSystem>& fs = options.env->GetFileSystem();
    s = fs->NewSequentialFile(
        dscname, fs->OptimizeForManifestRead(file_options_), &file, nullptr);
    if (!s.ok()) {
      return s;
    }
    file_reader = std::make_unique<SequentialFileReader>(
        std::move(file), dscname, db_options_->log_readahead_size, io_tracer_);
  }

  std::vector<ColumnFamilyDescriptor> cf_descs;
  for (const auto& cf : column_families) {
    cf_descs.emplace_back(cf, options);
  }

  DumpManifestHandler handler(cf_descs, this, io_tracer_, verbose, hex, json);
  {
    VersionSet::LogReporter reporter;
    reporter.status = &s;
    log::Reader reader(nullptr, std::move(file_reader), &reporter,
                       true /* checksum */, 0 /* log_number */);
    handler.Iterate(reader, &s);
  }

  return handler.status();
}
#endif  // ROCKSDB_LITE

void VersionSet::MarkFileNumberUsed(uint64_t number) {
  // only called during recovery and repair which are single threaded, so this
  // works because there can't be concurrent calls
  if (next_file_number_.load(std::memory_order_relaxed) <= number) {
    next_file_number_.store(number + 1, std::memory_order_relaxed);
  }
}
// Called only either from ::LogAndApply which is protected by mutex or during
// recovery which is single-threaded.
void VersionSet::MarkMinLogNumberToKeep(uint64_t number) {
  if (min_log_number_to_keep_.load(std::memory_order_relaxed) < number) {
    min_log_number_to_keep_.store(number, std::memory_order_relaxed);
  }
}

Status VersionSet::WriteCurrentStateToManifest(
    const std::unordered_map<uint32_t, MutableCFState>& curr_state,
    const VersionEdit& wal_additions, log::Writer* log, IOStatus& io_s) {
  // TODO: Break up into multiple records to reduce memory usage on recovery?

  // WARNING: This method doesn't hold a mutex!!

  // This is done without DB mutex lock held, but only within single-threaded
  // LogAndApply. Column family manipulations can only happen within LogAndApply
  // (the same single thread), so we're safe to iterate.

  assert(io_s.ok());
  if (db_options_->write_dbid_to_manifest) {
    VersionEdit edit_for_db_id;
    assert(!db_id_.empty());
    edit_for_db_id.SetDBId(db_id_);
    std::string db_id_record;
    if (!edit_for_db_id.EncodeTo(&db_id_record)) {
      return Status::Corruption("Unable to Encode VersionEdit:" +
                                edit_for_db_id.DebugString(true));
    }
    io_s = log->AddRecord(db_id_record);
    if (!io_s.ok()) {
      return io_s;
    }
  }

  // Save WALs.
  if (!wal_additions.GetWalAdditions().empty()) {
    TEST_SYNC_POINT_CALLBACK("VersionSet::WriteCurrentStateToManifest:SaveWal",
                             const_cast<VersionEdit*>(&wal_additions));
    std::string record;
    if (!wal_additions.EncodeTo(&record)) {
      return Status::Corruption("Unable to Encode VersionEdit: " +
                                wal_additions.DebugString(true));
    }
    io_s = log->AddRecord(record);
    if (!io_s.ok()) {
      return io_s;
    }
  }

  for (auto cfd : *column_family_set_) {
    assert(cfd);

    if (cfd->IsDropped()) {
      continue;
    }
    assert(cfd->initialized());
    {
      // Store column family info
      VersionEdit edit;
      if (cfd->GetID() != 0) {
        // default column family is always there,
        // no need to explicitly write it
        edit.AddColumnFamily(cfd->GetName());
        edit.SetColumnFamily(cfd->GetID());
      }
      edit.SetComparatorName(
          cfd->internal_comparator().user_comparator()->Name());
      std::string record;
      if (!edit.EncodeTo(&record)) {
        return Status::Corruption("Unable to Encode VersionEdit:" +
                                  edit.DebugString(true));
      }
      io_s = log->AddRecord(record);
      if (!io_s.ok()) {
        return io_s;
      }
    }

    {
      // Save files
      VersionEdit edit;
      edit.SetColumnFamily(cfd->GetID());

      const auto* current = cfd->current();
      assert(current);

      const auto* vstorage = current->storage_info();
      assert(vstorage);

      for (int level = 0; level < cfd->NumberLevels(); level++) {
        const auto& level_files = vstorage->LevelFiles(level);

        for (const auto& f : level_files) {
          assert(f);

          edit.AddFile(level, f->fd.GetNumber(), f->fd.GetPathId(),
                       f->fd.GetFileSize(), f->smallest, f->largest,
                       f->fd.smallest_seqno, f->fd.largest_seqno,
                       f->marked_for_compaction, f->temperature,
                       f->oldest_blob_file_number, f->oldest_ancester_time,
                       f->file_creation_time, f->file_checksum,
                       f->file_checksum_func_name, f->unique_id);
        }
      }

      edit.SetCompactCursors(vstorage->GetCompactCursors());

      const auto& blob_files = vstorage->GetBlobFiles();
      for (const auto& meta : blob_files) {
        assert(meta);

        const uint64_t blob_file_number = meta->GetBlobFileNumber();

        edit.AddBlobFile(blob_file_number, meta->GetTotalBlobCount(),
                         meta->GetTotalBlobBytes(), meta->GetChecksumMethod(),
                         meta->GetChecksumValue());
        if (meta->GetGarbageBlobCount() > 0) {
          edit.AddBlobFileGarbage(blob_file_number, meta->GetGarbageBlobCount(),
                                  meta->GetGarbageBlobBytes());
        }
      }

      const auto iter = curr_state.find(cfd->GetID());
      assert(iter != curr_state.end());
      uint64_t log_number = iter->second.log_number;
      edit.SetLogNumber(log_number);

      if (cfd->GetID() == 0) {
        // min_log_number_to_keep is for the whole db, not for specific column
        // family. So it does not need to be set for every column family, just
        // need to be set once. Since default CF can never be dropped, we set
        // the min_log to the default CF here.
        uint64_t min_log = min_log_number_to_keep();
        if (min_log != 0) {
          edit.SetMinLogNumberToKeep(min_log);
        }
      }

      const std::string& full_history_ts_low = iter->second.full_history_ts_low;
      if (!full_history_ts_low.empty()) {
        edit.SetFullHistoryTsLow(full_history_ts_low);
      }

      edit.SetLastSequence(descriptor_last_sequence_);

      std::string record;
      if (!edit.EncodeTo(&record)) {
        return Status::Corruption("Unable to Encode VersionEdit:" +
                                  edit.DebugString(true));
      }
      io_s = log->AddRecord(record);
      if (!io_s.ok()) {
        return io_s;
      }
    }
  }
  return Status::OK();
}

// TODO(aekmekji): in CompactionJob::GenSubcompactionBoundaries(), this
// function is called repeatedly with consecutive pairs of slices. For example
// if the slice list is [a, b, c, d] this function is called with arguments
// (a,b) then (b,c) then (c,d). Knowing this, an optimization is possible where
// we avoid doing binary search for the keys b and c twice and instead somehow
// maintain state of where they first appear in the files.
uint64_t VersionSet::ApproximateSize(const SizeApproximationOptions& options,
                                     Version* v, const Slice& start,
                                     const Slice& end, int start_level,
                                     int end_level, TableReaderCaller caller) {
  const auto& icmp = v->cfd_->internal_comparator();

  // pre-condition
  assert(icmp.Compare(start, end) <= 0);

  uint64_t total_full_size = 0;
  const auto* vstorage = v->storage_info();
  const int num_non_empty_levels = vstorage->num_non_empty_levels();
  end_level = (end_level == -1) ? num_non_empty_levels
                                : std::min(end_level, num_non_empty_levels);

  assert(start_level <= end_level);

  // Outline of the optimization that uses options.files_size_error_margin.
  // When approximating the files total size that is used to store a keys range,
  // we first sum up the sizes of the files that fully fall into the range.
  // Then we sum up the sizes of all the files that may intersect with the range
  // (this includes all files in L0 as well). Then, if total_intersecting_size
  // is smaller than total_full_size * options.files_size_error_margin - we can
  // infer that the intersecting files have a sufficiently negligible
  // contribution to the total size, and we can approximate the storage required
  // for the keys in range as just half of the intersecting_files_size.
  // E.g., if the value of files_size_error_margin is 0.1, then the error of the
  // approximation is limited to only ~10% of the total size of files that fully
  // fall into the keys range. In such case, this helps to avoid a costly
  // process of binary searching the intersecting files that is required only
  // for a more precise calculation of the total size.

  autovector<FdWithKeyRange*, 32> first_files;
  autovector<FdWithKeyRange*, 16> last_files;

  // scan all the levels
  for (int level = start_level; level < end_level; ++level) {
    const LevelFilesBrief& files_brief = vstorage->LevelFilesBrief(level);
    if (files_brief.num_files == 0) {
      // empty level, skip exploration
      continue;
    }

    if (level == 0) {
      // level 0 files are not in sorted order, we need to iterate through
      // the list to compute the total bytes that require scanning,
      // so handle the case explicitly (similarly to first_files case)
      for (size_t i = 0; i < files_brief.num_files; i++) {
        first_files.push_back(&files_brief.files[i]);
      }
      continue;
    }

    assert(level > 0);
    assert(files_brief.num_files > 0);

    // identify the file position for start key
    const int idx_start =
        FindFileInRange(icmp, files_brief, start, 0,
                        static_cast<uint32_t>(files_brief.num_files - 1));
    assert(static_cast<size_t>(idx_start) < files_brief.num_files);

    // identify the file position for end key
    int idx_end = idx_start;
    if (icmp.Compare(files_brief.files[idx_end].largest_key, end) < 0) {
      idx_end =
          FindFileInRange(icmp, files_brief, end, idx_start,
                          static_cast<uint32_t>(files_brief.num_files - 1));
    }
    assert(idx_end >= idx_start &&
           static_cast<size_t>(idx_end) < files_brief.num_files);

    // scan all files from the starting index to the ending index
    // (inferred from the sorted order)

    // first scan all the intermediate full files (excluding first and last)
    for (int i = idx_start + 1; i < idx_end; ++i) {
      uint64_t file_size = files_brief.files[i].fd.GetFileSize();
      // The entire file falls into the range, so we can just take its size.
      assert(file_size ==
             ApproximateSize(v, files_brief.files[i], start, end, caller));
      total_full_size += file_size;
    }

    // save the first and the last files (which may be the same file), so we
    // can scan them later.
    first_files.push_back(&files_brief.files[idx_start]);
    if (idx_start != idx_end) {
      // we need to estimate size for both files, only if they are different
      last_files.push_back(&files_brief.files[idx_end]);
    }
  }

  // The sum of all file sizes that intersect the [start, end] keys range.
  uint64_t total_intersecting_size = 0;
  for (const auto* file_ptr : first_files) {
    total_intersecting_size += file_ptr->fd.GetFileSize();
  }
  for (const auto* file_ptr : last_files) {
    total_intersecting_size += file_ptr->fd.GetFileSize();
  }

  // Now scan all the first & last files at each level, and estimate their size.
  // If the total_intersecting_size is less than X% of the total_full_size - we
  // want to approximate the result in order to avoid the costly binary search
  // inside ApproximateSize. We use half of file size as an approximation below.

  const double margin = options.files_size_error_margin;
  if (margin > 0 && total_intersecting_size <
                        static_cast<uint64_t>(total_full_size * margin)) {
    total_full_size += total_intersecting_size / 2;
  } else {
    // Estimate for all the first files (might also be last files), at each
    // level
    for (const auto file_ptr : first_files) {
      total_full_size += ApproximateSize(v, *file_ptr, start, end, caller);
    }

    // Estimate for all the last files, at each level
    for (const auto file_ptr : last_files) {
      // We could use ApproximateSize here, but calling ApproximateOffsetOf
      // directly is just more efficient.
      total_full_size += ApproximateOffsetOf(v, *file_ptr, end, caller);
    }
  }

  return total_full_size;
}

uint64_t VersionSet::ApproximateOffsetOf(Version* v, const FdWithKeyRange& f,
                                         const Slice& key,
                                         TableReaderCaller caller) {
  // pre-condition
  assert(v);
  const auto& icmp = v->cfd_->internal_comparator();

  uint64_t result = 0;
  if (icmp.Compare(f.largest_key, key) <= 0) {
    // Entire file is before "key", so just add the file size
    result = f.fd.GetFileSize();
  } else if (icmp.Compare(f.smallest_key, key) > 0) {
    // Entire file is after "key", so ignore
    result = 0;
  } else {
    // "key" falls in the range for this table.  Add the
    // approximate offset of "key" within the table.
    TableCache* table_cache = v->cfd_->table_cache();
    if (table_cache != nullptr) {
      result = table_cache->ApproximateOffsetOf(
          key, *f.file_metadata, caller, icmp,
          v->GetMutableCFOptions().prefix_extractor);
    }
  }
  return result;
}

uint64_t VersionSet::ApproximateSize(Version* v, const FdWithKeyRange& f,
                                     const Slice& start, const Slice& end,
                                     TableReaderCaller caller) {
  // pre-condition
  assert(v);
  const auto& icmp = v->cfd_->internal_comparator();
  assert(icmp.Compare(start, end) <= 0);

  if (icmp.Compare(f.largest_key, start) <= 0 ||
      icmp.Compare(f.smallest_key, end) > 0) {
    // Entire file is before or after the start/end keys range
    return 0;
  }

  if (icmp.Compare(f.smallest_key, start) >= 0) {
    // Start of the range is before the file start - approximate by end offset
    return ApproximateOffsetOf(v, f, end, caller);
  }

  if (icmp.Compare(f.largest_key, end) < 0) {
    // End of the range is after the file end - approximate by subtracting
    // start offset from the file size
    uint64_t start_offset = ApproximateOffsetOf(v, f, start, caller);
    assert(f.fd.GetFileSize() >= start_offset);
    return f.fd.GetFileSize() - start_offset;
  }

  // The interval falls entirely in the range for this file.
  TableCache* table_cache = v->cfd_->table_cache();
  if (table_cache == nullptr) {
    return 0;
  }
  return table_cache->ApproximateSize(
      start, end, *f.file_metadata, caller, icmp,
      v->GetMutableCFOptions().prefix_extractor);
}

void VersionSet::RemoveLiveFiles(
    std::vector<ObsoleteFileInfo>& sst_delete_candidates,
    std::vector<ObsoleteBlobFileInfo>& blob_delete_candidates) const {
  assert(column_family_set_);
  for (auto cfd : *column_family_set_) {
    assert(cfd);
    if (!cfd->initialized()) {
      continue;
    }

    auto* current = cfd->current();
    bool found_current = false;

    Version* const dummy_versions = cfd->dummy_versions();
    assert(dummy_versions);

    for (Version* v = dummy_versions->next_; v != dummy_versions;
         v = v->next_) {
      v->RemoveLiveFiles(sst_delete_candidates, blob_delete_candidates);
      if (v == current) {
        found_current = true;
      }
    }

    if (!found_current && current != nullptr) {
      // Should never happen unless it is a bug.
      assert(false);
      current->RemoveLiveFiles(sst_delete_candidates, blob_delete_candidates);
    }
  }
}

void VersionSet::AddLiveFiles(std::vector<uint64_t>* live_table_files,
                              std::vector<uint64_t>* live_blob_files) const {
  assert(live_table_files);
  assert(live_blob_files);

  // pre-calculate space requirement
  size_t total_table_files = 0;
  size_t total_blob_files = 0;

  assert(column_family_set_);
  for (auto cfd : *column_family_set_) {
    assert(cfd);

    if (!cfd->initialized()) {
      continue;
    }

    Version* const dummy_versions = cfd->dummy_versions();
    assert(dummy_versions);

    for (Version* v = dummy_versions->next_; v != dummy_versions;
         v = v->next_) {
      assert(v);

      const auto* vstorage = v->storage_info();
      assert(vstorage);

      for (int level = 0; level < vstorage->num_levels(); ++level) {
        total_table_files += vstorage->LevelFiles(level).size();
      }

      total_blob_files += vstorage->GetBlobFiles().size();
    }
  }

  // just one time extension to the right size
  live_table_files->reserve(live_table_files->size() + total_table_files);
  live_blob_files->reserve(live_blob_files->size() + total_blob_files);

  assert(column_family_set_);
  for (auto cfd : *column_family_set_) {
    assert(cfd);
    if (!cfd->initialized()) {
      continue;
    }

    auto* current = cfd->current();
    bool found_current = false;

    Version* const dummy_versions = cfd->dummy_versions();
    assert(dummy_versions);

    for (Version* v = dummy_versions->next_; v != dummy_versions;
         v = v->next_) {
      v->AddLiveFiles(live_table_files, live_blob_files);
      if (v == current) {
        found_current = true;
      }
    }

    if (!found_current && current != nullptr) {
      // Should never happen unless it is a bug.
      assert(false);
      current->AddLiveFiles(live_table_files, live_blob_files);
    }
  }
}

InternalIterator* VersionSet::MakeInputIterator(
    const ReadOptions& read_options, const Compaction* c,
    RangeDelAggregator* range_del_agg,
    const FileOptions& file_options_compactions,
    const std::optional<const Slice>& start,
    const std::optional<const Slice>& end) {
  auto cfd = c->column_family_data();
  // Level-0 files have to be merged together.  For other levels,
  // we will make a concatenating iterator per level.
  // TODO(opt): use concatenating iterator for level-0 if there is no overlap
  const size_t space = (c->level() == 0 ? c->input_levels(0)->num_files +
                                              c->num_input_levels() - 1
                                        : c->num_input_levels());
  InternalIterator** list = new InternalIterator*[space];
  size_t num = 0;
  for (size_t which = 0; which < c->num_input_levels(); which++) {
    if (c->input_levels(which)->num_files != 0) {
      if (c->level(which) == 0) {
        const LevelFilesBrief* flevel = c->input_levels(which);
        for (size_t i = 0; i < flevel->num_files; i++) {
          const FileMetaData& fmd = *flevel->files[i].file_metadata;
          if (start.has_value() &&
              cfd->user_comparator()->CompareWithoutTimestamp(
                  start.value(), fmd.largest.user_key()) > 0) {
            continue;
          }
          // We should be able to filter out the case where the end key
          // equals to the end boundary, since the end key is exclusive.
          // We try to be extra safe here.
          if (end.has_value() &&
              cfd->user_comparator()->CompareWithoutTimestamp(
                  end.value(), fmd.smallest.user_key()) < 0) {
            continue;
          }

          list[num++] = cfd->table_cache()->NewIterator(
              read_options, file_options_compactions,
              cfd->internal_comparator(), fmd, range_del_agg,
              c->mutable_cf_options()->prefix_extractor,
              /*table_reader_ptr=*/nullptr,
              /*file_read_hist=*/nullptr, TableReaderCaller::kCompaction,
              /*arena=*/nullptr,
              /*skip_filters=*/false,
              /*level=*/static_cast<int>(c->level(which)),
              MaxFileSizeForL0MetaPin(*c->mutable_cf_options()),
              /*smallest_compaction_key=*/nullptr,
              /*largest_compaction_key=*/nullptr,
              /*allow_unprepared_value=*/false);
        }
      } else {
        // Create concatenating iterator for the files from this level
        list[num++] = new LevelIterator(
            cfd->table_cache(), read_options, file_options_compactions,
            cfd->internal_comparator(), c->input_levels(which),
            c->mutable_cf_options()->prefix_extractor,
            /*should_sample=*/false,
            /*no per level latency histogram=*/nullptr,
            TableReaderCaller::kCompaction, /*skip_filters=*/false,
            /*level=*/static_cast<int>(c->level(which)), range_del_agg,
            c->boundaries(which));
      }
    }
  }
  assert(num <= space);
  InternalIterator* result =
      NewMergingIterator(&c->column_family_data()->internal_comparator(), list,
                         static_cast<int>(num));
  delete[] list;
  return result;
}

Status VersionSet::GetMetadataForFile(uint64_t number, int* filelevel,
                                      FileMetaData** meta,
                                      ColumnFamilyData** cfd) {
  for (auto cfd_iter : *column_family_set_) {
    if (!cfd_iter->initialized()) {
      continue;
    }
    Version* version = cfd_iter->current();
    const auto* vstorage = version->storage_info();
    for (int level = 0; level < vstorage->num_levels(); level++) {
      for (const auto& file : vstorage->LevelFiles(level)) {
        if (file->fd.GetNumber() == number) {
          *meta = file;
          *filelevel = level;
          *cfd = cfd_iter;
          return Status::OK();
        }
      }
    }
  }
  return Status::NotFound("File not present in any level");
}

void VersionSet::GetLiveFilesMetaData(std::vector<LiveFileMetaData>* metadata) {
  for (auto cfd : *column_family_set_) {
    if (cfd->IsDropped() || !cfd->initialized()) {
      continue;
    }
    for (int level = 0; level < cfd->NumberLevels(); level++) {
      for (const auto& file :
           cfd->current()->storage_info()->LevelFiles(level)) {
        LiveFileMetaData filemetadata;
        filemetadata.column_family_name = cfd->GetName();
        uint32_t path_id = file->fd.GetPathId();
        if (path_id < cfd->ioptions()->cf_paths.size()) {
          filemetadata.db_path = cfd->ioptions()->cf_paths[path_id].path;
        } else {
          assert(!cfd->ioptions()->cf_paths.empty());
          filemetadata.db_path = cfd->ioptions()->cf_paths.back().path;
        }
        filemetadata.directory = filemetadata.db_path;
        const uint64_t file_number = file->fd.GetNumber();
        filemetadata.name = MakeTableFileName("", file_number);
        filemetadata.relative_filename = filemetadata.name.substr(1);
        filemetadata.file_number = file_number;
        filemetadata.level = level;
        filemetadata.size = file->fd.GetFileSize();
        filemetadata.smallestkey = file->smallest.user_key().ToString();
        filemetadata.largestkey = file->largest.user_key().ToString();
        filemetadata.smallest_seqno = file->fd.smallest_seqno;
        filemetadata.largest_seqno = file->fd.largest_seqno;
        filemetadata.num_reads_sampled =
            file->stats.num_reads_sampled.load(std::memory_order_relaxed);
        filemetadata.being_compacted = file->being_compacted;
        filemetadata.num_entries = file->num_entries;
        filemetadata.num_deletions = file->num_deletions;
        filemetadata.oldest_blob_file_number = file->oldest_blob_file_number;
        filemetadata.file_checksum = file->file_checksum;
        filemetadata.file_checksum_func_name = file->file_checksum_func_name;
        filemetadata.temperature = file->temperature;
        filemetadata.oldest_ancester_time = file->TryGetOldestAncesterTime();
        filemetadata.file_creation_time = file->TryGetFileCreationTime();
        metadata->push_back(filemetadata);
      }
    }
  }
}

void VersionSet::GetObsoleteFiles(std::vector<ObsoleteFileInfo>* files,
                                  std::vector<ObsoleteBlobFileInfo>* blob_files,
                                  std::vector<std::string>* manifest_filenames,
                                  uint64_t min_pending_output) {
  assert(files);
  assert(blob_files);
  assert(manifest_filenames);
  assert(files->empty());
  assert(blob_files->empty());
  assert(manifest_filenames->empty());

  std::vector<ObsoleteFileInfo> pending_files;
  for (auto& f : obsolete_files_) {
    if (f.metadata->fd.GetNumber() < min_pending_output) {
      files->emplace_back(std::move(f));
    } else {
      pending_files.emplace_back(std::move(f));
    }
  }
  obsolete_files_.swap(pending_files);

  std::vector<ObsoleteBlobFileInfo> pending_blob_files;
  for (auto& blob_file : obsolete_blob_files_) {
    if (blob_file.GetBlobFileNumber() < min_pending_output) {
      blob_files->emplace_back(std::move(blob_file));
    } else {
      pending_blob_files.emplace_back(std::move(blob_file));
    }
  }
  obsolete_blob_files_.swap(pending_blob_files);

  obsolete_manifests_.swap(*manifest_filenames);
}

ColumnFamilyData* VersionSet::CreateColumnFamily(
    const ColumnFamilyOptions& cf_options, const VersionEdit* edit) {
  assert(edit->is_column_family_add_);

  MutableCFOptions dummy_cf_options;
  Version* dummy_versions =
      new Version(nullptr, this, file_options_, dummy_cf_options, io_tracer_);
  // Ref() dummy version once so that later we can call Unref() to delete it
  // by avoiding calling "delete" explicitly (~Version is private)
  dummy_versions->Ref();
  auto new_cfd = column_family_set_->CreateColumnFamily(
      edit->column_family_name_, edit->column_family_, dummy_versions,
      cf_options);

  Version* v = new Version(new_cfd, this, file_options_,
                           *new_cfd->GetLatestMutableCFOptions(), io_tracer_,
                           current_version_number_++);

  constexpr bool update_stats = false;

  v->PrepareAppend(*new_cfd->GetLatestMutableCFOptions(), update_stats);

  AppendVersion(new_cfd, v);
  // GetLatestMutableCFOptions() is safe here without mutex since the
  // cfd is not available to client
  new_cfd->CreateNewMemtable(*new_cfd->GetLatestMutableCFOptions(),
                             LastSequence());
  new_cfd->SetLogNumber(edit->log_number_);
  return new_cfd;
}

uint64_t VersionSet::GetNumLiveVersions(Version* dummy_versions) {
  uint64_t count = 0;
  for (Version* v = dummy_versions->next_; v != dummy_versions; v = v->next_) {
    count++;
  }
  return count;
}

uint64_t VersionSet::GetTotalSstFilesSize(Version* dummy_versions) {
  std::unordered_set<uint64_t> unique_files;
  uint64_t total_files_size = 0;
  for (Version* v = dummy_versions->next_; v != dummy_versions; v = v->next_) {
    VersionStorageInfo* storage_info = v->storage_info();
    for (int level = 0; level < storage_info->num_levels_; level++) {
      for (const auto& file_meta : storage_info->LevelFiles(level)) {
        if (unique_files.find(file_meta->fd.packed_number_and_path_id) ==
            unique_files.end()) {
          unique_files.insert(file_meta->fd.packed_number_and_path_id);
          total_files_size += file_meta->fd.GetFileSize();
        }
      }
    }
  }
  return total_files_size;
}

uint64_t VersionSet::GetTotalBlobFileSize(Version* dummy_versions) {
  std::unordered_set<uint64_t> unique_blob_files;

  uint64_t all_versions_blob_file_size = 0;

  for (auto* v = dummy_versions->next_; v != dummy_versions; v = v->next_) {
    // iterate all the versions
    const auto* vstorage = v->storage_info();
    assert(vstorage);

    const auto& blob_files = vstorage->GetBlobFiles();

    for (const auto& meta : blob_files) {
      assert(meta);

      const uint64_t blob_file_number = meta->GetBlobFileNumber();

      if (unique_blob_files.find(blob_file_number) == unique_blob_files.end()) {
        // find Blob file that has not been counted
        unique_blob_files.insert(blob_file_number);
        all_versions_blob_file_size += meta->GetBlobFileSize();
      }
    }
  }

  return all_versions_blob_file_size;
}

Status VersionSet::VerifyFileMetadata(ColumnFamilyData* cfd,
                                      const std::string& fpath, int level,
                                      const FileMetaData& meta) {
  uint64_t fsize = 0;
  Status status = fs_->GetFileSize(fpath, IOOptions(), &fsize, nullptr);
  if (status.ok()) {
    if (fsize != meta.fd.GetFileSize()) {
      status = Status::Corruption("File size mismatch: " + fpath);
    }
  }
  if (status.ok() && db_options_->verify_sst_unique_id_in_manifest) {
    assert(cfd);
    TableCache* table_cache = cfd->table_cache();
    assert(table_cache);

    const MutableCFOptions* const cf_opts = cfd->GetLatestMutableCFOptions();
    assert(cf_opts);
    std::shared_ptr<const SliceTransform> pe = cf_opts->prefix_extractor;
    size_t max_sz_for_l0_meta_pin = MaxFileSizeForL0MetaPin(*cf_opts);

    const FileOptions& file_opts = file_options();

    Version* version = cfd->current();
    assert(version);
    VersionStorageInfo& storage_info = version->storage_info_;
    const InternalKeyComparator* icmp = storage_info.InternalComparator();
    assert(icmp);

    InternalStats* internal_stats = cfd->internal_stats();

    FileMetaData meta_copy = meta;
    status = table_cache->FindTable(
        ReadOptions(), file_opts, *icmp, meta_copy,
        &(meta_copy.table_reader_handle), pe,
        /*no_io=*/false, /*record_read_stats=*/true,
        internal_stats->GetFileReadHist(level), false, level,
        /*prefetch_index_and_filter_in_cache*/ false, max_sz_for_l0_meta_pin,
        meta_copy.temperature);
    if (meta_copy.table_reader_handle) {
      table_cache->ReleaseHandle(meta_copy.table_reader_handle);
    }
  }
  return status;
}

ReactiveVersionSet::ReactiveVersionSet(
    const std::string& dbname, const ImmutableDBOptions* _db_options,
    const FileOptions& _file_options, Cache* table_cache,
    WriteBufferManager* write_buffer_manager, WriteController* write_controller,
    const std::shared_ptr<IOTracer>& io_tracer)
    : VersionSet(dbname, _db_options, _file_options, table_cache,
                 write_buffer_manager, write_controller,
                 /*block_cache_tracer=*/nullptr, io_tracer, /*db_id*/ "",
                 /*db_session_id*/ "") {}

ReactiveVersionSet::~ReactiveVersionSet() {}

Status ReactiveVersionSet::Recover(
    const std::vector<ColumnFamilyDescriptor>& column_families,
    std::unique_ptr<log::FragmentBufferedReader>* manifest_reader,
    std::unique_ptr<log::Reader::Reporter>* manifest_reporter,
    std::unique_ptr<Status>* manifest_reader_status) {
  assert(manifest_reader != nullptr);
  assert(manifest_reporter != nullptr);
  assert(manifest_reader_status != nullptr);

  manifest_reader_status->reset(new Status());
  manifest_reporter->reset(new LogReporter());
  static_cast_with_check<LogReporter>(manifest_reporter->get())->status =
      manifest_reader_status->get();
  Status s = MaybeSwitchManifest(manifest_reporter->get(), manifest_reader);
  if (!s.ok()) {
    return s;
  }
  log::Reader* reader = manifest_reader->get();
  assert(reader);

  manifest_tailer_.reset(new ManifestTailer(
      column_families, const_cast<ReactiveVersionSet*>(this), io_tracer_));

  manifest_tailer_->Iterate(*reader, manifest_reader_status->get());

  return manifest_tailer_->status();
}

Status ReactiveVersionSet::ReadAndApply(
    InstrumentedMutex* mu,
    std::unique_ptr<log::FragmentBufferedReader>* manifest_reader,
    Status* manifest_read_status,
    std::unordered_set<ColumnFamilyData*>* cfds_changed) {
  assert(manifest_reader != nullptr);
  assert(cfds_changed != nullptr);
  mu->AssertHeld();

  Status s;
  log::Reader* reader = manifest_reader->get();
  assert(reader);
  s = MaybeSwitchManifest(reader->GetReporter(), manifest_reader);
  if (!s.ok()) {
    return s;
  }
  manifest_tailer_->Iterate(*(manifest_reader->get()), manifest_read_status);
  s = manifest_tailer_->status();
  if (s.ok()) {
    *cfds_changed = std::move(manifest_tailer_->GetUpdatedColumnFamilies());
  }

  return s;
}

Status ReactiveVersionSet::MaybeSwitchManifest(
    log::Reader::Reporter* reporter,
    std::unique_ptr<log::FragmentBufferedReader>* manifest_reader) {
  assert(manifest_reader != nullptr);
  Status s;
  std::string manifest_path;
  s = GetCurrentManifestPath(dbname_, fs_.get(), &manifest_path,
                             &manifest_file_number_);
  if (!s.ok()) {
    return s;
  }
  std::unique_ptr<FSSequentialFile> manifest_file;
  if (manifest_reader->get() != nullptr &&
      manifest_reader->get()->file()->file_name() == manifest_path) {
    // CURRENT points to the same MANIFEST as before, no need to switch
    // MANIFEST.
    return s;
  }
  assert(nullptr == manifest_reader->get() ||
         manifest_reader->get()->file()->file_name() != manifest_path);
  s = fs_->FileExists(manifest_path, IOOptions(), nullptr);
  if (s.IsNotFound()) {
    return Status::TryAgain(
        "The primary may have switched to a new MANIFEST and deleted the old "
        "one.");
  } else if (!s.ok()) {
    return s;
  }
  TEST_SYNC_POINT(
      "ReactiveVersionSet::MaybeSwitchManifest:"
      "AfterGetCurrentManifestPath:0");
  TEST_SYNC_POINT(
      "ReactiveVersionSet::MaybeSwitchManifest:"
      "AfterGetCurrentManifestPath:1");
  // The primary can also delete the MANIFEST while the secondary is reading
  // it. This is OK on POSIX. For other file systems, maybe create a hard link
  // to MANIFEST. The hard link should be cleaned up later by the secondary.
  s = fs_->NewSequentialFile(manifest_path,
                             fs_->OptimizeForManifestRead(file_options_),
                             &manifest_file, nullptr);
  std::unique_ptr<SequentialFileReader> manifest_file_reader;
  if (s.ok()) {
    manifest_file_reader.reset(new SequentialFileReader(
        std::move(manifest_file), manifest_path,
        db_options_->log_readahead_size, io_tracer_, db_options_->listeners));
    manifest_reader->reset(new log::FragmentBufferedReader(
        nullptr, std::move(manifest_file_reader), reporter, true /* checksum */,
        0 /* log_number */));
    ROCKS_LOG_INFO(db_options_->info_log, "Switched to new manifest: %s\n",
                   manifest_path.c_str());
    if (manifest_tailer_) {
      manifest_tailer_->PrepareToReadNewManifest();
    }
  } else if (s.IsPathNotFound()) {
    // This can happen if the primary switches to a new MANIFEST after the
    // secondary reads the CURRENT file but before the secondary actually tries
    // to open the MANIFEST.
    s = Status::TryAgain(
        "The primary may have switched to a new MANIFEST and deleted the old "
        "one.");
  }
  return s;
}

#ifndef NDEBUG
uint64_t ReactiveVersionSet::TEST_read_edits_in_atomic_group() const {
  assert(manifest_tailer_);
  return manifest_tailer_->GetReadBuffer().TEST_read_edits_in_atomic_group();
}
#endif  // !NDEBUG

std::vector<VersionEdit>& ReactiveVersionSet::replay_buffer() {
  assert(manifest_tailer_);
  return manifest_tailer_->GetReadBuffer().replay_buffer();
}

}  // namespace ROCKSDB_NAMESPACE