summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/tools/db_bench_tool.cc
blob: 7182528b317a0246f3e577fff6cf0dd696302329 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#ifdef GFLAGS
#ifdef NUMA
#include <numa.h>
#endif
#ifndef OS_WIN
#include <unistd.h>
#endif
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#ifdef __APPLE__
#include <mach/host_info.h>
#include <mach/mach_host.h>
#include <sys/sysctl.h>
#endif
#ifdef __FreeBSD__
#include <sys/sysctl.h>
#endif
#include <atomic>
#include <cinttypes>
#include <condition_variable>
#include <cstddef>
#include <iostream>
#include <memory>
#include <mutex>
#include <queue>
#include <thread>
#include <unordered_map>

#include "db/db_impl/db_impl.h"
#include "db/malloc_stats.h"
#include "db/version_set.h"
#include "monitoring/histogram.h"
#include "monitoring/statistics.h"
#include "options/cf_options.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/cache.h"
#include "rocksdb/convenience.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/options.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/persistent_cache.h"
#include "rocksdb/rate_limiter.h"
#include "rocksdb/secondary_cache.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/stats_history.h"
#include "rocksdb/table.h"
#include "rocksdb/utilities/backup_engine.h"
#include "rocksdb/utilities/object_registry.h"
#include "rocksdb/utilities/optimistic_transaction_db.h"
#include "rocksdb/utilities/options_type.h"
#include "rocksdb/utilities/options_util.h"
#ifndef ROCKSDB_LITE
#include "rocksdb/utilities/replayer.h"
#endif  // ROCKSDB_LITE
#include "rocksdb/utilities/sim_cache.h"
#include "rocksdb/utilities/transaction.h"
#include "rocksdb/utilities/transaction_db.h"
#include "rocksdb/write_batch.h"
#include "test_util/testutil.h"
#include "test_util/transaction_test_util.h"
#include "tools/simulated_hybrid_file_system.h"
#include "util/cast_util.h"
#include "util/compression.h"
#include "util/crc32c.h"
#include "util/file_checksum_helper.h"
#include "util/gflags_compat.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/stderr_logger.h"
#include "util/string_util.h"
#include "util/xxhash.h"
#include "utilities/blob_db/blob_db.h"
#include "utilities/counted_fs.h"
#include "utilities/merge_operators.h"
#include "utilities/merge_operators/bytesxor.h"
#include "utilities/merge_operators/sortlist.h"
#include "utilities/persistent_cache/block_cache_tier.h"

#ifdef MEMKIND
#include "memory/memkind_kmem_allocator.h"
#endif

#ifdef OS_WIN
#include <io.h>  // open/close
#endif

using GFLAGS_NAMESPACE::ParseCommandLineFlags;
using GFLAGS_NAMESPACE::RegisterFlagValidator;
using GFLAGS_NAMESPACE::SetUsageMessage;
using GFLAGS_NAMESPACE::SetVersionString;

#ifdef ROCKSDB_LITE
#define IF_ROCKSDB_LITE(Then, Else) Then
#else
#define IF_ROCKSDB_LITE(Then, Else) Else
#endif

DEFINE_string(
    benchmarks,
    "fillseq,"
    "fillseqdeterministic,"
    "fillsync,"
    "fillrandom,"
    "filluniquerandomdeterministic,"
    "overwrite,"
    "readrandom,"
    "newiterator,"
    "newiteratorwhilewriting,"
    "seekrandom,"
    "seekrandomwhilewriting,"
    "seekrandomwhilemerging,"
    "readseq,"
    "readreverse,"
    "compact,"
    "compactall,"
    "flush,"
IF_ROCKSDB_LITE("",
    "compact0,"
    "compact1,"
    "waitforcompaction,"
)
    "multireadrandom,"
    "mixgraph,"
    "readseq,"
    "readtorowcache,"
    "readtocache,"
    "readreverse,"
    "readwhilewriting,"
    "readwhilemerging,"
    "readwhilescanning,"
    "readrandomwriterandom,"
    "updaterandom,"
    "xorupdaterandom,"
    "approximatesizerandom,"
    "randomwithverify,"
    "fill100K,"
    "crc32c,"
    "xxhash,"
    "xxhash64,"
    "xxh3,"
    "compress,"
    "uncompress,"
    "acquireload,"
    "fillseekseq,"
    "randomtransaction,"
    "randomreplacekeys,"
    "timeseries,"
    "getmergeoperands,",
    "readrandomoperands,"
    "backup,"
    "restore"

    "Comma-separated list of operations to run in the specified"
    " order. Available benchmarks:\n"
    "\tfillseq       -- write N values in sequential key"
    " order in async mode\n"
    "\tfillseqdeterministic       -- write N values in the specified"
    " key order and keep the shape of the LSM tree\n"
    "\tfillrandom    -- write N values in random key order in async"
    " mode\n"
    "\tfilluniquerandomdeterministic       -- write N values in a random"
    " key order and keep the shape of the LSM tree\n"
    "\toverwrite     -- overwrite N values in random key order in "
    "async mode\n"
    "\tfillsync      -- write N/1000 values in random key order in "
    "sync mode\n"
    "\tfill100K      -- write N/1000 100K values in random order in"
    " async mode\n"
    "\tdeleteseq     -- delete N keys in sequential order\n"
    "\tdeleterandom  -- delete N keys in random order\n"
    "\treadseq       -- read N times sequentially\n"
    "\treadtocache   -- 1 thread reading database sequentially\n"
    "\treadreverse   -- read N times in reverse order\n"
    "\treadrandom    -- read N times in random order\n"
    "\treadmissing   -- read N missing keys in random order\n"
    "\treadwhilewriting      -- 1 writer, N threads doing random "
    "reads\n"
    "\treadwhilemerging      -- 1 merger, N threads doing random "
    "reads\n"
    "\treadwhilescanning     -- 1 thread doing full table scan, "
    "N threads doing random reads\n"
    "\treadrandomwriterandom -- N threads doing random-read, "
    "random-write\n"
    "\tupdaterandom  -- N threads doing read-modify-write for random "
    "keys\n"
    "\txorupdaterandom  -- N threads doing read-XOR-write for "
    "random keys\n"
    "\tappendrandom  -- N threads doing read-modify-write with "
    "growing values\n"
    "\tmergerandom   -- same as updaterandom/appendrandom using merge"
    " operator. "
    "Must be used with merge_operator\n"
    "\treadrandommergerandom -- perform N random read-or-merge "
    "operations. Must be used with merge_operator\n"
    "\tnewiterator   -- repeated iterator creation\n"
    "\tseekrandom    -- N random seeks, call Next seek_nexts times "
    "per seek\n"
    "\tseekrandomwhilewriting -- seekrandom and 1 thread doing "
    "overwrite\n"
    "\tseekrandomwhilemerging -- seekrandom and 1 thread doing "
    "merge\n"
    "\tcrc32c        -- repeated crc32c of <block size> data\n"
    "\txxhash        -- repeated xxHash of <block size> data\n"
    "\txxhash64      -- repeated xxHash64 of <block size> data\n"
    "\txxh3          -- repeated XXH3 of <block size> data\n"
    "\tacquireload   -- load N*1000 times\n"
    "\tfillseekseq   -- write N values in sequential key, then read "
    "them by seeking to each key\n"
    "\trandomtransaction     -- execute N random transactions and "
    "verify correctness\n"
    "\trandomreplacekeys     -- randomly replaces N keys by deleting "
    "the old version and putting the new version\n\n"
    "\ttimeseries            -- 1 writer generates time series data "
    "and multiple readers doing random reads on id\n\n"
    "Meta operations:\n"
    "\tcompact     -- Compact the entire DB; If multiple, randomly choose one\n"
    "\tcompactall  -- Compact the entire DB\n"
IF_ROCKSDB_LITE("",
    "\tcompact0  -- compact L0 into L1\n"
    "\tcompact1  -- compact L1 into L2\n"
    "\twaitforcompaction - pause until compaction is (probably) done\n"
)
    "\tflush - flush the memtable\n"
    "\tstats       -- Print DB stats\n"
    "\tresetstats  -- Reset DB stats\n"
    "\tlevelstats  -- Print the number of files and bytes per level\n"
    "\tmemstats  -- Print memtable stats\n"
    "\tsstables    -- Print sstable info\n"
    "\theapprofile -- Dump a heap profile (if supported by this port)\n"
IF_ROCKSDB_LITE("",
    "\treplay      -- replay the trace file specified with trace_file\n"
)
    "\tgetmergeoperands -- Insert lots of merge records which are a list of "
    "sorted ints for a key and then compare performance of lookup for another "
    "key by doing a Get followed by binary searching in the large sorted list "
    "vs doing a GetMergeOperands and binary searching in the operands which "
    "are sorted sub-lists. The MergeOperator used is sortlist.h\n"
    "\treadrandomoperands -- read random keys using `GetMergeOperands()`. An "
    "operation includes a rare but possible retry in case it got "
    "`Status::Incomplete()`. This happens upon encountering more keys than "
    "have ever been seen by the thread (or eight initially)\n"
    "\tbackup --  Create a backup of the current DB and verify that a new backup is corrected. "
    "Rate limit can be specified through --backup_rate_limit\n"
    "\trestore -- Restore the DB from the latest backup available, rate limit can be specified through --restore_rate_limit\n");

DEFINE_int64(num, 1000000, "Number of key/values to place in database");

DEFINE_int64(numdistinct, 1000,
             "Number of distinct keys to use. Used in RandomWithVerify to "
             "read/write on fewer keys so that gets are more likely to find the"
             " key and puts are more likely to update the same key");

DEFINE_int64(merge_keys, -1,
             "Number of distinct keys to use for MergeRandom and "
             "ReadRandomMergeRandom. "
             "If negative, there will be FLAGS_num keys.");
DEFINE_int32(num_column_families, 1, "Number of Column Families to use.");

DEFINE_int32(
    num_hot_column_families, 0,
    "Number of Hot Column Families. If more than 0, only write to this "
    "number of column families. After finishing all the writes to them, "
    "create new set of column families and insert to them. Only used "
    "when num_column_families > 1.");

DEFINE_string(column_family_distribution, "",
              "Comma-separated list of percentages, where the ith element "
              "indicates the probability of an op using the ith column family. "
              "The number of elements must be `num_hot_column_families` if "
              "specified; otherwise, it must be `num_column_families`. The "
              "sum of elements must be 100. E.g., if `num_column_families=4`, "
              "and `num_hot_column_families=0`, a valid list could be "
              "\"10,20,30,40\".");

DEFINE_int64(reads, -1,
             "Number of read operations to do.  "
             "If negative, do FLAGS_num reads.");

DEFINE_int64(deletes, -1,
             "Number of delete operations to do.  "
             "If negative, do FLAGS_num deletions.");

DEFINE_int32(bloom_locality, 0, "Control bloom filter probes locality");

DEFINE_int64(seed, 0,
             "Seed base for random number generators. "
             "When 0 it is derived from the current time.");
static int64_t seed_base;

DEFINE_int32(threads, 1, "Number of concurrent threads to run.");

DEFINE_int32(duration, 0,
             "Time in seconds for the random-ops tests to run."
             " When 0 then num & reads determine the test duration");

DEFINE_string(value_size_distribution_type, "fixed",
              "Value size distribution type: fixed, uniform, normal");

DEFINE_int32(value_size, 100, "Size of each value in fixed distribution");
static unsigned int value_size = 100;

DEFINE_int32(value_size_min, 100, "Min size of random value");

DEFINE_int32(value_size_max, 102400, "Max size of random value");

DEFINE_int32(seek_nexts, 0,
             "How many times to call Next() after Seek() in "
             "fillseekseq, seekrandom, seekrandomwhilewriting and "
             "seekrandomwhilemerging");

DEFINE_bool(reverse_iterator, false,
            "When true use Prev rather than Next for iterators that do "
            "Seek and then Next");

DEFINE_bool(auto_prefix_mode, false, "Set auto_prefix_mode for seek benchmark");

DEFINE_int64(max_scan_distance, 0,
             "Used to define iterate_upper_bound (or iterate_lower_bound "
             "if FLAGS_reverse_iterator is set to true) when value is nonzero");

DEFINE_bool(use_uint64_comparator, false, "use Uint64 user comparator");

DEFINE_int64(batch_size, 1, "Batch size");

static bool ValidateKeySize(const char* /*flagname*/, int32_t /*value*/) {
  return true;
}

static bool ValidateUint32Range(const char* flagname, uint64_t value) {
  if (value > std::numeric_limits<uint32_t>::max()) {
    fprintf(stderr, "Invalid value for --%s: %lu, overflow\n", flagname,
            (unsigned long)value);
    return false;
  }
  return true;
}

DEFINE_int32(key_size, 16, "size of each key");

DEFINE_int32(user_timestamp_size, 0,
             "number of bytes in a user-defined timestamp");

DEFINE_int32(num_multi_db, 0,
             "Number of DBs used in the benchmark. 0 means single DB.");

DEFINE_double(compression_ratio, 0.5,
              "Arrange to generate values that shrink to this fraction of "
              "their original size after compression");

DEFINE_double(
    overwrite_probability, 0.0,
    "Used in 'filluniquerandom' benchmark: for each write operation, "
    "we give a probability to perform an overwrite instead. The key used for "
    "the overwrite is randomly chosen from the last 'overwrite_window_size' "
    "keys previously inserted into the DB. "
    "Valid overwrite_probability values: [0.0, 1.0].");

DEFINE_uint32(overwrite_window_size, 1,
              "Used in 'filluniquerandom' benchmark. For each write operation,"
              " when the overwrite_probability flag is set by the user, the "
              "key used to perform an overwrite is randomly chosen from the "
              "last 'overwrite_window_size' keys previously inserted into DB. "
              "Warning: large values can affect throughput. "
              "Valid overwrite_window_size values: [1, kMaxUint32].");

DEFINE_uint64(
    disposable_entries_delete_delay, 0,
    "Minimum delay in microseconds for the series of Deletes "
    "to be issued. When 0 the insertion of the last disposable entry is "
    "immediately followed by the issuance of the Deletes. "
    "(only compatible with fillanddeleteuniquerandom benchmark).");

DEFINE_uint64(disposable_entries_batch_size, 0,
              "Number of consecutively inserted disposable KV entries "
              "that will be deleted after 'delete_delay' microseconds. "
              "A series of Deletes is always issued once all the "
              "disposable KV entries it targets have been inserted "
              "into the DB. When 0 no deletes are issued and a "
              "regular 'filluniquerandom' benchmark occurs. "
              "(only compatible with fillanddeleteuniquerandom benchmark)");

DEFINE_int32(disposable_entries_value_size, 64,
             "Size of the values (in bytes) of the entries targeted by "
             "selective deletes. "
             "(only compatible with fillanddeleteuniquerandom benchmark)");

DEFINE_uint64(
    persistent_entries_batch_size, 0,
    "Number of KV entries being inserted right before the deletes "
    "targeting the disposable KV entries are issued. These "
    "persistent keys are not targeted by the deletes, and will always "
    "remain valid in the DB. (only compatible with "
    "--benchmarks='fillanddeleteuniquerandom' "
    "and used when--disposable_entries_batch_size is > 0).");

DEFINE_int32(persistent_entries_value_size, 64,
             "Size of the values (in bytes) of the entries not targeted by "
             "deletes. (only compatible with "
             "--benchmarks='fillanddeleteuniquerandom' "
             "and used when--disposable_entries_batch_size is > 0).");

DEFINE_double(read_random_exp_range, 0.0,
              "Read random's key will be generated using distribution of "
              "num * exp(-r) where r is uniform number from 0 to this value. "
              "The larger the number is, the more skewed the reads are. "
              "Only used in readrandom and multireadrandom benchmarks.");

DEFINE_bool(histogram, false, "Print histogram of operation timings");

DEFINE_bool(confidence_interval_only, false,
            "Print 95% confidence interval upper and lower bounds only for "
            "aggregate stats.");

DEFINE_bool(enable_numa, false,
            "Make operations aware of NUMA architecture and bind memory "
            "and cpus corresponding to nodes together. In NUMA, memory "
            "in same node as CPUs are closer when compared to memory in "
            "other nodes. Reads can be faster when the process is bound to "
            "CPU and memory of same node. Use \"$numactl --hardware\" command "
            "to see NUMA memory architecture.");

DEFINE_int64(db_write_buffer_size,
             ROCKSDB_NAMESPACE::Options().db_write_buffer_size,
             "Number of bytes to buffer in all memtables before compacting");

DEFINE_bool(cost_write_buffer_to_cache, false,
            "The usage of memtable is costed to the block cache");

DEFINE_int64(arena_block_size, ROCKSDB_NAMESPACE::Options().arena_block_size,
             "The size, in bytes, of one block in arena memory allocation.");

DEFINE_int64(write_buffer_size, ROCKSDB_NAMESPACE::Options().write_buffer_size,
             "Number of bytes to buffer in memtable before compacting");

DEFINE_int32(max_write_buffer_number,
             ROCKSDB_NAMESPACE::Options().max_write_buffer_number,
             "The number of in-memory memtables. Each memtable is of size"
             " write_buffer_size bytes.");

DEFINE_int32(min_write_buffer_number_to_merge,
             ROCKSDB_NAMESPACE::Options().min_write_buffer_number_to_merge,
             "The minimum number of write buffers that will be merged together"
             "before writing to storage. This is cheap because it is an"
             "in-memory merge. If this feature is not enabled, then all these"
             "write buffers are flushed to L0 as separate files and this "
             "increases read amplification because a get request has to check"
             " in all of these files. Also, an in-memory merge may result in"
             " writing less data to storage if there are duplicate records "
             " in each of these individual write buffers.");

DEFINE_int32(max_write_buffer_number_to_maintain,
             ROCKSDB_NAMESPACE::Options().max_write_buffer_number_to_maintain,
             "The total maximum number of write buffers to maintain in memory "
             "including copies of buffers that have already been flushed. "
             "Unlike max_write_buffer_number, this parameter does not affect "
             "flushing. This controls the minimum amount of write history "
             "that will be available in memory for conflict checking when "
             "Transactions are used. If this value is too low, some "
             "transactions may fail at commit time due to not being able to "
             "determine whether there were any write conflicts. Setting this "
             "value to 0 will cause write buffers to be freed immediately "
             "after they are flushed.  If this value is set to -1, "
             "'max_write_buffer_number' will be used.");

DEFINE_int64(max_write_buffer_size_to_maintain,
             ROCKSDB_NAMESPACE::Options().max_write_buffer_size_to_maintain,
             "The total maximum size of write buffers to maintain in memory "
             "including copies of buffers that have already been flushed. "
             "Unlike max_write_buffer_number, this parameter does not affect "
             "flushing. This controls the minimum amount of write history "
             "that will be available in memory for conflict checking when "
             "Transactions are used. If this value is too low, some "
             "transactions may fail at commit time due to not being able to "
             "determine whether there were any write conflicts. Setting this "
             "value to 0 will cause write buffers to be freed immediately "
             "after they are flushed.  If this value is set to -1, "
             "'max_write_buffer_number' will be used.");

DEFINE_int32(max_background_jobs,
             ROCKSDB_NAMESPACE::Options().max_background_jobs,
             "The maximum number of concurrent background jobs that can occur "
             "in parallel.");

DEFINE_int32(num_bottom_pri_threads, 0,
             "The number of threads in the bottom-priority thread pool (used "
             "by universal compaction only).");

DEFINE_int32(num_high_pri_threads, 0,
             "The maximum number of concurrent background compactions"
             " that can occur in parallel.");

DEFINE_int32(num_low_pri_threads, 0,
             "The maximum number of concurrent background compactions"
             " that can occur in parallel.");

DEFINE_int32(max_background_compactions,
             ROCKSDB_NAMESPACE::Options().max_background_compactions,
             "The maximum number of concurrent background compactions"
             " that can occur in parallel.");

DEFINE_uint64(subcompactions, 1,
              "Maximum number of subcompactions to divide L0-L1 compactions "
              "into.");
static const bool FLAGS_subcompactions_dummy __attribute__((__unused__)) =
    RegisterFlagValidator(&FLAGS_subcompactions, &ValidateUint32Range);

DEFINE_int32(max_background_flushes,
             ROCKSDB_NAMESPACE::Options().max_background_flushes,
             "The maximum number of concurrent background flushes"
             " that can occur in parallel.");

static ROCKSDB_NAMESPACE::CompactionStyle FLAGS_compaction_style_e;
DEFINE_int32(compaction_style,
             (int32_t)ROCKSDB_NAMESPACE::Options().compaction_style,
             "style of compaction: level-based, universal and fifo");

static ROCKSDB_NAMESPACE::CompactionPri FLAGS_compaction_pri_e;
DEFINE_int32(compaction_pri,
             (int32_t)ROCKSDB_NAMESPACE::Options().compaction_pri,
             "priority of files to compaction: by size or by data age");

DEFINE_int32(universal_size_ratio, 0,
             "Percentage flexibility while comparing file size "
             "(for universal compaction only).");

DEFINE_int32(universal_min_merge_width, 0,
             "The minimum number of files in a single compaction run "
             "(for universal compaction only).");

DEFINE_int32(universal_max_merge_width, 0,
             "The max number of files to compact in universal style "
             "compaction");

DEFINE_int32(universal_max_size_amplification_percent, 0,
             "The max size amplification for universal style compaction");

DEFINE_int32(universal_compression_size_percent, -1,
             "The percentage of the database to compress for universal "
             "compaction. -1 means compress everything.");

DEFINE_bool(universal_allow_trivial_move, false,
            "Allow trivial move in universal compaction.");

DEFINE_bool(universal_incremental, false,
            "Enable incremental compactions in universal compaction.");

DEFINE_int64(cache_size, 8 << 20,  // 8MB
             "Number of bytes to use as a cache of uncompressed data");

DEFINE_int32(cache_numshardbits, -1,
             "Number of shards for the block cache"
             " is 2 ** cache_numshardbits. Negative means use default settings."
             " This is applied only if FLAGS_cache_size is non-negative.");

DEFINE_double(cache_high_pri_pool_ratio, 0.0,
              "Ratio of block cache reserve for high pri blocks. "
              "If > 0.0, we also enable "
              "cache_index_and_filter_blocks_with_high_priority.");

DEFINE_double(cache_low_pri_pool_ratio, 0.0,
              "Ratio of block cache reserve for low pri blocks.");

DEFINE_string(cache_type, "lru_cache", "Type of block cache.");

DEFINE_bool(use_compressed_secondary_cache, false,
            "Use the CompressedSecondaryCache as the secondary cache.");

DEFINE_int64(compressed_secondary_cache_size, 8 << 20,  // 8MB
             "Number of bytes to use as a cache of data");

DEFINE_int32(compressed_secondary_cache_numshardbits, 6,
             "Number of shards for the block cache"
             " is 2 ** compressed_secondary_cache_numshardbits."
             " Negative means use default settings."
             " This is applied only if FLAGS_cache_size is non-negative.");

DEFINE_double(compressed_secondary_cache_high_pri_pool_ratio, 0.0,
              "Ratio of block cache reserve for high pri blocks. "
              "If > 0.0, we also enable "
              "cache_index_and_filter_blocks_with_high_priority.");

DEFINE_double(compressed_secondary_cache_low_pri_pool_ratio, 0.0,
              "Ratio of block cache reserve for low pri blocks.");

DEFINE_string(compressed_secondary_cache_compression_type, "lz4",
              "The compression algorithm to use for large "
              "values stored in CompressedSecondaryCache.");
static enum ROCKSDB_NAMESPACE::CompressionType
    FLAGS_compressed_secondary_cache_compression_type_e =
        ROCKSDB_NAMESPACE::kLZ4Compression;

DEFINE_uint32(
    compressed_secondary_cache_compress_format_version, 2,
    "compress_format_version can have two values: "
    "compress_format_version == 1 -- decompressed size is not included"
    " in the block header."
    "compress_format_version == 2 -- decompressed size is included"
    " in the block header in varint32 format.");

DEFINE_int64(simcache_size, -1,
             "Number of bytes to use as a simcache of "
             "uncompressed data. Nagative value disables simcache.");

DEFINE_bool(cache_index_and_filter_blocks, false,
            "Cache index/filter blocks in block cache.");

DEFINE_bool(use_cache_jemalloc_no_dump_allocator, false,
            "Use JemallocNodumpAllocator for block/blob cache.");

DEFINE_bool(use_cache_memkind_kmem_allocator, false,
            "Use memkind kmem allocator for block/blob cache.");

DEFINE_bool(partition_index_and_filters, false,
            "Partition index and filter blocks.");

DEFINE_bool(partition_index, false, "Partition index blocks");

DEFINE_bool(index_with_first_key, false, "Include first key in the index");

DEFINE_bool(
    optimize_filters_for_memory,
    ROCKSDB_NAMESPACE::BlockBasedTableOptions().optimize_filters_for_memory,
    "Minimize memory footprint of filters");

DEFINE_int64(
    index_shortening_mode, 2,
    "mode to shorten index: 0 for no shortening; 1 for only shortening "
    "separaters; 2 for shortening shortening and successor");

DEFINE_int64(metadata_block_size,
             ROCKSDB_NAMESPACE::BlockBasedTableOptions().metadata_block_size,
             "Max partition size when partitioning index/filters");

// The default reduces the overhead of reading time with flash. With HDD, which
// offers much less throughput, however, this number better to be set to 1.
DEFINE_int32(ops_between_duration_checks, 1000,
             "Check duration limit every x ops");

DEFINE_bool(pin_l0_filter_and_index_blocks_in_cache, false,
            "Pin index/filter blocks of L0 files in block cache.");

DEFINE_bool(
    pin_top_level_index_and_filter, false,
    "Pin top-level index of partitioned index/filter blocks in block cache.");

DEFINE_int32(block_size,
             static_cast<int32_t>(
                 ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_size),
             "Number of bytes in a block.");

DEFINE_int32(format_version,
             static_cast<int32_t>(
                 ROCKSDB_NAMESPACE::BlockBasedTableOptions().format_version),
             "Format version of SST files.");

DEFINE_int32(block_restart_interval,
             ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_restart_interval,
             "Number of keys between restart points "
             "for delta encoding of keys in data block.");

DEFINE_int32(
    index_block_restart_interval,
    ROCKSDB_NAMESPACE::BlockBasedTableOptions().index_block_restart_interval,
    "Number of keys between restart points "
    "for delta encoding of keys in index block.");

DEFINE_int32(read_amp_bytes_per_bit,
             ROCKSDB_NAMESPACE::BlockBasedTableOptions().read_amp_bytes_per_bit,
             "Number of bytes per bit to be used in block read-amp bitmap");

DEFINE_bool(
    enable_index_compression,
    ROCKSDB_NAMESPACE::BlockBasedTableOptions().enable_index_compression,
    "Compress the index block");

DEFINE_bool(block_align,
            ROCKSDB_NAMESPACE::BlockBasedTableOptions().block_align,
            "Align data blocks on page size");

DEFINE_int64(prepopulate_block_cache, 0,
             "Pre-populate hot/warm blocks in block cache. 0 to disable and 1 "
             "to insert during flush");

DEFINE_bool(use_data_block_hash_index, false,
            "if use kDataBlockBinaryAndHash "
            "instead of kDataBlockBinarySearch. "
            "This is valid if only we use BlockTable");

DEFINE_double(data_block_hash_table_util_ratio, 0.75,
              "util ratio for data block hash index table. "
              "This is only valid if use_data_block_hash_index is "
              "set to true");

DEFINE_int64(compressed_cache_size, -1,
             "Number of bytes to use as a cache of compressed data.");

DEFINE_int64(row_cache_size, 0,
             "Number of bytes to use as a cache of individual rows"
             " (0 = disabled).");

DEFINE_int32(open_files, ROCKSDB_NAMESPACE::Options().max_open_files,
             "Maximum number of files to keep open at the same time"
             " (use default if == 0)");

DEFINE_int32(file_opening_threads,
             ROCKSDB_NAMESPACE::Options().max_file_opening_threads,
             "If open_files is set to -1, this option set the number of "
             "threads that will be used to open files during DB::Open()");

DEFINE_int32(compaction_readahead_size, 0, "Compaction readahead size");

DEFINE_int32(log_readahead_size, 0, "WAL and manifest readahead size");

DEFINE_int32(random_access_max_buffer_size, 1024 * 1024,
             "Maximum windows randomaccess buffer size");

DEFINE_int32(writable_file_max_buffer_size, 1024 * 1024,
             "Maximum write buffer for Writable File");

DEFINE_int32(bloom_bits, -1,
             "Bloom filter bits per key. Negative means use default."
             "Zero disables.");

DEFINE_bool(use_ribbon_filter, false, "Use Ribbon instead of Bloom filter");

DEFINE_double(memtable_bloom_size_ratio, 0,
              "Ratio of memtable size used for bloom filter. 0 means no bloom "
              "filter.");
DEFINE_bool(memtable_whole_key_filtering, false,
            "Try to use whole key bloom filter in memtables.");
DEFINE_bool(memtable_use_huge_page, false,
            "Try to use huge page in memtables.");

DEFINE_bool(whole_key_filtering,
            ROCKSDB_NAMESPACE::BlockBasedTableOptions().whole_key_filtering,
            "Use whole keys (in addition to prefixes) in SST bloom filter.");

DEFINE_bool(use_existing_db, false,
            "If true, do not destroy the existing database.  If you set this "
            "flag and also specify a benchmark that wants a fresh database, "
            "that benchmark will fail.");

DEFINE_bool(use_existing_keys, false,
            "If true, uses existing keys in the DB, "
            "rather than generating new ones. This involves some startup "
            "latency to load all keys into memory. It is supported for the "
            "same read/overwrite benchmarks as `-use_existing_db=true`, which "
            "must also be set for this flag to be enabled. When this flag is "
            "set, the value for `-num` will be ignored.");

DEFINE_bool(show_table_properties, false,
            "If true, then per-level table"
            " properties will be printed on every stats-interval when"
            " stats_interval is set and stats_per_interval is on.");

DEFINE_string(db, "", "Use the db with the following name.");

DEFINE_bool(progress_reports, true,
            "If true, db_bench will report number of finished operations.");

// Read cache flags

DEFINE_string(read_cache_path, "",
              "If not empty string, a read cache will be used in this path");

DEFINE_int64(read_cache_size, 4LL * 1024 * 1024 * 1024,
             "Maximum size of the read cache");

DEFINE_bool(read_cache_direct_write, true,
            "Whether to use Direct IO for writing to the read cache");

DEFINE_bool(read_cache_direct_read, true,
            "Whether to use Direct IO for reading from read cache");

DEFINE_bool(use_keep_filter, false, "Whether to use a noop compaction filter");

static bool ValidateCacheNumshardbits(const char* flagname, int32_t value) {
  if (value >= 20) {
    fprintf(stderr, "Invalid value for --%s: %d, must be < 20\n", flagname,
            value);
    return false;
  }
  return true;
}

DEFINE_bool(verify_checksum, true,
            "Verify checksum for every block read from storage");

DEFINE_int32(checksum_type,
             ROCKSDB_NAMESPACE::BlockBasedTableOptions().checksum,
             "ChecksumType as an int");

DEFINE_bool(statistics, false, "Database statistics");
DEFINE_int32(stats_level, ROCKSDB_NAMESPACE::StatsLevel::kExceptDetailedTimers,
             "stats level for statistics");
DEFINE_string(statistics_string, "", "Serialized statistics string");
static class std::shared_ptr<ROCKSDB_NAMESPACE::Statistics> dbstats;

DEFINE_int64(writes, -1,
             "Number of write operations to do. If negative, do --num reads.");

DEFINE_bool(finish_after_writes, false,
            "Write thread terminates after all writes are finished");

DEFINE_bool(sync, false, "Sync all writes to disk");

DEFINE_bool(use_fsync, false, "If true, issue fsync instead of fdatasync");

DEFINE_bool(disable_wal, false, "If true, do not write WAL for write.");

DEFINE_bool(manual_wal_flush, false,
            "If true, buffer WAL until buffer is full or a manual FlushWAL().");

DEFINE_string(wal_compression, "none",
              "Algorithm to use for WAL compression. none to disable.");
static enum ROCKSDB_NAMESPACE::CompressionType FLAGS_wal_compression_e =
    ROCKSDB_NAMESPACE::kNoCompression;

DEFINE_string(wal_dir, "", "If not empty, use the given dir for WAL");

DEFINE_string(truth_db, "/dev/shm/truth_db/dbbench",
              "Truth key/values used when using verify");

DEFINE_int32(num_levels, 7, "The total number of levels");

DEFINE_int64(target_file_size_base,
             ROCKSDB_NAMESPACE::Options().target_file_size_base,
             "Target file size at level-1");

DEFINE_int32(target_file_size_multiplier,
             ROCKSDB_NAMESPACE::Options().target_file_size_multiplier,
             "A multiplier to compute target level-N file size (N >= 2)");

DEFINE_uint64(max_bytes_for_level_base,
              ROCKSDB_NAMESPACE::Options().max_bytes_for_level_base,
              "Max bytes for level-1");

DEFINE_bool(level_compaction_dynamic_level_bytes, false,
            "Whether level size base is dynamic");

DEFINE_double(max_bytes_for_level_multiplier, 10,
              "A multiplier to compute max bytes for level-N (N >= 2)");

static std::vector<int> FLAGS_max_bytes_for_level_multiplier_additional_v;
DEFINE_string(max_bytes_for_level_multiplier_additional, "",
              "A vector that specifies additional fanout per level");

DEFINE_int32(level0_stop_writes_trigger,
             ROCKSDB_NAMESPACE::Options().level0_stop_writes_trigger,
             "Number of files in level-0 that will trigger put stop.");

DEFINE_int32(level0_slowdown_writes_trigger,
             ROCKSDB_NAMESPACE::Options().level0_slowdown_writes_trigger,
             "Number of files in level-0 that will slow down writes.");

DEFINE_int32(level0_file_num_compaction_trigger,
             ROCKSDB_NAMESPACE::Options().level0_file_num_compaction_trigger,
             "Number of files in level-0 when compactions start.");

DEFINE_uint64(periodic_compaction_seconds,
              ROCKSDB_NAMESPACE::Options().periodic_compaction_seconds,
              "Files older than this will be picked up for compaction and"
              " rewritten to the same level");

DEFINE_uint64(ttl_seconds, ROCKSDB_NAMESPACE::Options().ttl, "Set options.ttl");

static bool ValidateInt32Percent(const char* flagname, int32_t value) {
  if (value <= 0 || value >= 100) {
    fprintf(stderr, "Invalid value for --%s: %d, 0< pct <100 \n", flagname,
            value);
    return false;
  }
  return true;
}
DEFINE_int32(readwritepercent, 90,
             "Ratio of reads to reads/writes (expressed as percentage) for "
             "the ReadRandomWriteRandom workload. The default value 90 means "
             "90% operations out of all reads and writes operations are "
             "reads. In other words, 9 gets for every 1 put.");

DEFINE_int32(mergereadpercent, 70,
             "Ratio of merges to merges&reads (expressed as percentage) for "
             "the ReadRandomMergeRandom workload. The default value 70 means "
             "70% out of all read and merge operations are merges. In other "
             "words, 7 merges for every 3 gets.");

DEFINE_int32(deletepercent, 2,
             "Percentage of deletes out of reads/writes/deletes (used in "
             "RandomWithVerify only). RandomWithVerify "
             "calculates writepercent as (100 - FLAGS_readwritepercent - "
             "deletepercent), so deletepercent must be smaller than (100 - "
             "FLAGS_readwritepercent)");

DEFINE_bool(optimize_filters_for_hits,
            ROCKSDB_NAMESPACE::Options().optimize_filters_for_hits,
            "Optimizes bloom filters for workloads for most lookups return "
            "a value. For now this doesn't create bloom filters for the max "
            "level of the LSM to reduce metadata that should fit in RAM. ");

DEFINE_bool(paranoid_checks, ROCKSDB_NAMESPACE::Options().paranoid_checks,
            "RocksDB will aggressively check consistency of the data.");

DEFINE_bool(force_consistency_checks,
            ROCKSDB_NAMESPACE::Options().force_consistency_checks,
            "Runs consistency checks on the LSM every time a change is "
            "applied.");

DEFINE_bool(check_flush_compaction_key_order,
            ROCKSDB_NAMESPACE::Options().check_flush_compaction_key_order,
            "During flush or compaction, check whether keys inserted to "
            "output files are in order.");

DEFINE_uint64(delete_obsolete_files_period_micros, 0,
              "Ignored. Left here for backward compatibility");

DEFINE_int64(writes_before_delete_range, 0,
             "Number of writes before DeleteRange is called regularly.");

DEFINE_int64(writes_per_range_tombstone, 0,
             "Number of writes between range tombstones");

DEFINE_int64(range_tombstone_width, 100, "Number of keys in tombstone's range");

DEFINE_int64(max_num_range_tombstones, 0,
             "Maximum number of range tombstones to insert.");

DEFINE_bool(expand_range_tombstones, false,
            "Expand range tombstone into sequential regular tombstones.");

#ifndef ROCKSDB_LITE
// Transactions Options
DEFINE_bool(optimistic_transaction_db, false,
            "Open a OptimisticTransactionDB instance. "
            "Required for randomtransaction benchmark.");

DEFINE_bool(transaction_db, false,
            "Open a TransactionDB instance. "
            "Required for randomtransaction benchmark.");

DEFINE_uint64(transaction_sets, 2,
              "Number of keys each transaction will "
              "modify (use in RandomTransaction only).  Max: 9999");

DEFINE_bool(transaction_set_snapshot, false,
            "Setting to true will have each transaction call SetSnapshot()"
            " upon creation.");

DEFINE_int32(transaction_sleep, 0,
             "Max microseconds to sleep in between "
             "reading and writing a value (used in RandomTransaction only). ");

DEFINE_uint64(transaction_lock_timeout, 100,
              "If using a transaction_db, specifies the lock wait timeout in"
              " milliseconds before failing a transaction waiting on a lock");
DEFINE_string(
    options_file, "",
    "The path to a RocksDB options file.  If specified, then db_bench will "
    "run with the RocksDB options in the default column family of the "
    "specified options file. "
    "Note that with this setting, db_bench will ONLY accept the following "
    "RocksDB options related command-line arguments, all other arguments "
    "that are related to RocksDB options will be ignored:\n"
    "\t--use_existing_db\n"
    "\t--use_existing_keys\n"
    "\t--statistics\n"
    "\t--row_cache_size\n"
    "\t--row_cache_numshardbits\n"
    "\t--enable_io_prio\n"
    "\t--dump_malloc_stats\n"
    "\t--num_multi_db\n");

// FIFO Compaction Options
DEFINE_uint64(fifo_compaction_max_table_files_size_mb, 0,
              "The limit of total table file sizes to trigger FIFO compaction");

DEFINE_bool(fifo_compaction_allow_compaction, true,
            "Allow compaction in FIFO compaction.");

DEFINE_uint64(fifo_compaction_ttl, 0, "TTL for the SST Files in seconds.");

DEFINE_uint64(fifo_age_for_warm, 0, "age_for_warm for FIFO compaction.");

// Stacked BlobDB Options
DEFINE_bool(use_blob_db, false, "[Stacked BlobDB] Open a BlobDB instance.");

DEFINE_bool(
    blob_db_enable_gc,
    ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().enable_garbage_collection,
    "[Stacked BlobDB] Enable BlobDB garbage collection.");

DEFINE_double(
    blob_db_gc_cutoff,
    ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().garbage_collection_cutoff,
    "[Stacked BlobDB] Cutoff ratio for BlobDB garbage collection.");

DEFINE_bool(blob_db_is_fifo,
            ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().is_fifo,
            "[Stacked BlobDB] Enable FIFO eviction strategy in BlobDB.");

DEFINE_uint64(blob_db_max_db_size,
              ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().max_db_size,
              "[Stacked BlobDB] Max size limit of the directory where blob "
              "files are stored.");

DEFINE_uint64(blob_db_max_ttl_range, 0,
              "[Stacked BlobDB] TTL range to generate BlobDB data (in "
              "seconds). 0 means no TTL.");

DEFINE_uint64(
    blob_db_ttl_range_secs,
    ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().ttl_range_secs,
    "[Stacked BlobDB] TTL bucket size to use when creating blob files.");

DEFINE_uint64(
    blob_db_min_blob_size,
    ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().min_blob_size,
    "[Stacked BlobDB] Smallest blob to store in a file. Blobs "
    "smaller than this will be inlined with the key in the LSM tree.");

DEFINE_uint64(blob_db_bytes_per_sync,
              ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().bytes_per_sync,
              "[Stacked BlobDB] Bytes to sync blob file at.");

DEFINE_uint64(blob_db_file_size,
              ROCKSDB_NAMESPACE::blob_db::BlobDBOptions().blob_file_size,
              "[Stacked BlobDB] Target size of each blob file.");

DEFINE_string(
    blob_db_compression_type, "snappy",
    "[Stacked BlobDB] Algorithm to use to compress blobs in blob files.");
static enum ROCKSDB_NAMESPACE::CompressionType
    FLAGS_blob_db_compression_type_e = ROCKSDB_NAMESPACE::kSnappyCompression;

#endif  // ROCKSDB_LITE

// Integrated BlobDB options
DEFINE_bool(
    enable_blob_files,
    ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().enable_blob_files,
    "[Integrated BlobDB] Enable writing large values to separate blob files.");

DEFINE_uint64(min_blob_size,
              ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().min_blob_size,
              "[Integrated BlobDB] The size of the smallest value to be stored "
              "separately in a blob file.");

DEFINE_uint64(blob_file_size,
              ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().blob_file_size,
              "[Integrated BlobDB] The size limit for blob files.");

DEFINE_string(blob_compression_type, "none",
              "[Integrated BlobDB] The compression algorithm to use for large "
              "values stored in blob files.");

DEFINE_bool(enable_blob_garbage_collection,
            ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
                .enable_blob_garbage_collection,
            "[Integrated BlobDB] Enable blob garbage collection.");

DEFINE_double(blob_garbage_collection_age_cutoff,
              ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
                  .blob_garbage_collection_age_cutoff,
              "[Integrated BlobDB] The cutoff in terms of blob file age for "
              "garbage collection.");

DEFINE_double(blob_garbage_collection_force_threshold,
              ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
                  .blob_garbage_collection_force_threshold,
              "[Integrated BlobDB] The threshold for the ratio of garbage in "
              "the oldest blob files for forcing garbage collection.");

DEFINE_uint64(blob_compaction_readahead_size,
              ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions()
                  .blob_compaction_readahead_size,
              "[Integrated BlobDB] Compaction readahead for blob files.");

DEFINE_int32(
    blob_file_starting_level,
    ROCKSDB_NAMESPACE::AdvancedColumnFamilyOptions().blob_file_starting_level,
    "[Integrated BlobDB] The starting level for blob files.");

DEFINE_bool(use_blob_cache, false, "[Integrated BlobDB] Enable blob cache.");

DEFINE_bool(
    use_shared_block_and_blob_cache, true,
    "[Integrated BlobDB] Use a shared backing cache for both block "
    "cache and blob cache. It only takes effect if use_blob_cache is enabled.");

DEFINE_uint64(
    blob_cache_size, 8 << 20,
    "[Integrated BlobDB] Number of bytes to use as a cache of blobs. It only "
    "takes effect if the block and blob caches are different "
    "(use_shared_block_and_blob_cache = false).");

DEFINE_int32(blob_cache_numshardbits, 6,
             "[Integrated BlobDB] Number of shards for the blob cache is 2 ** "
             "blob_cache_numshardbits. Negative means use default settings. "
             "It only takes effect if blob_cache_size is greater than 0, and "
             "the block and blob caches are different "
             "(use_shared_block_and_blob_cache = false).");

DEFINE_int32(prepopulate_blob_cache, 0,
             "[Integrated BlobDB] Pre-populate hot/warm blobs in blob cache. 0 "
             "to disable and 1 to insert during flush.");

#ifndef ROCKSDB_LITE

// Secondary DB instance Options
DEFINE_bool(use_secondary_db, false,
            "Open a RocksDB secondary instance. A primary instance can be "
            "running in another db_bench process.");

DEFINE_string(secondary_path, "",
              "Path to a directory used by the secondary instance to store "
              "private files, e.g. info log.");

DEFINE_int32(secondary_update_interval, 5,
             "Secondary instance attempts to catch up with the primary every "
             "secondary_update_interval seconds.");

#endif  // ROCKSDB_LITE

DEFINE_bool(report_bg_io_stats, false,
            "Measure times spents on I/Os while in compactions. ");

DEFINE_bool(use_stderr_info_logger, false,
            "Write info logs to stderr instead of to LOG file. ");

#ifndef ROCKSDB_LITE

DEFINE_string(trace_file, "", "Trace workload to a file. ");

DEFINE_double(trace_replay_fast_forward, 1.0,
              "Fast forward trace replay, must > 0.0.");
DEFINE_int32(block_cache_trace_sampling_frequency, 1,
             "Block cache trace sampling frequency, termed s. It uses spatial "
             "downsampling and samples accesses to one out of s blocks.");
DEFINE_int64(
    block_cache_trace_max_trace_file_size_in_bytes,
    uint64_t{64} * 1024 * 1024 * 1024,
    "The maximum block cache trace file size in bytes. Block cache accesses "
    "will not be logged if the trace file size exceeds this threshold. Default "
    "is 64 GB.");
DEFINE_string(block_cache_trace_file, "", "Block cache trace file path.");
DEFINE_int32(trace_replay_threads, 1,
             "The number of threads to replay, must >=1.");

DEFINE_bool(io_uring_enabled, true,
            "If true, enable the use of IO uring if the platform supports it");
extern "C" bool RocksDbIOUringEnable() { return FLAGS_io_uring_enabled; }
#endif  // ROCKSDB_LITE

DEFINE_bool(adaptive_readahead, false,
            "carry forward internal auto readahead size from one file to next "
            "file at each level during iteration");

DEFINE_bool(rate_limit_user_ops, false,
            "When true use Env::IO_USER priority level to charge internal rate "
            "limiter for reads associated with user operations.");

DEFINE_bool(file_checksum, false,
            "When true use FileChecksumGenCrc32cFactory for "
            "file_checksum_gen_factory.");

DEFINE_bool(rate_limit_auto_wal_flush, false,
            "When true use Env::IO_USER priority level to charge internal rate "
            "limiter for automatic WAL flush (`Options::manual_wal_flush` == "
            "false) after the user write operation.");

DEFINE_bool(async_io, false,
            "When set true, RocksDB does asynchronous reads for internal auto "
            "readahead prefetching.");

DEFINE_bool(optimize_multiget_for_io, true,
            "When set true, RocksDB does asynchronous reads for SST files in "
            "multiple levels for MultiGet.");

DEFINE_bool(charge_compression_dictionary_building_buffer, false,
            "Setting for "
            "CacheEntryRoleOptions::charged of "
            "CacheEntryRole::kCompressionDictionaryBuildingBuffer");

DEFINE_bool(charge_filter_construction, false,
            "Setting for "
            "CacheEntryRoleOptions::charged of "
            "CacheEntryRole::kFilterConstruction");

DEFINE_bool(charge_table_reader, false,
            "Setting for "
            "CacheEntryRoleOptions::charged of "
            "CacheEntryRole::kBlockBasedTableReader");

DEFINE_bool(charge_file_metadata, false,
            "Setting for "
            "CacheEntryRoleOptions::charged of "
            "CacheEntryRole::kFileMetadata");

DEFINE_bool(charge_blob_cache, false,
            "Setting for "
            "CacheEntryRoleOptions::charged of "
            "CacheEntryRole::kBlobCache");

DEFINE_uint64(backup_rate_limit, 0ull,
              "If non-zero, db_bench will rate limit reads and writes for DB "
              "backup. This "
              "is the global rate in ops/second.");

DEFINE_uint64(restore_rate_limit, 0ull,
              "If non-zero, db_bench will rate limit reads and writes for DB "
              "restore. This "
              "is the global rate in ops/second.");

DEFINE_string(backup_dir, "",
              "If not empty string, use the given dir for backup.");

DEFINE_string(restore_dir, "",
              "If not empty string, use the given dir for restore.");

DEFINE_uint64(
    initial_auto_readahead_size,
    ROCKSDB_NAMESPACE::BlockBasedTableOptions().initial_auto_readahead_size,
    "RocksDB does auto-readahead for iterators on noticing more than two reads "
    "for a table file if user doesn't provide readahead_size. The readahead "
    "size starts at initial_auto_readahead_size");

DEFINE_uint64(
    max_auto_readahead_size,
    ROCKSDB_NAMESPACE::BlockBasedTableOptions().max_auto_readahead_size,
    "Rocksdb implicit readahead starts at "
    "BlockBasedTableOptions.initial_auto_readahead_size and doubles on every "
    "additional read upto max_auto_readahead_size");

DEFINE_uint64(
    num_file_reads_for_auto_readahead,
    ROCKSDB_NAMESPACE::BlockBasedTableOptions()
        .num_file_reads_for_auto_readahead,
    "Rocksdb implicit readahead is enabled if reads are sequential and "
    "num_file_reads_for_auto_readahead indicates after how many sequential "
    "reads into that file internal auto prefetching should be start.");

static enum ROCKSDB_NAMESPACE::CompressionType StringToCompressionType(
    const char* ctype) {
  assert(ctype);

  if (!strcasecmp(ctype, "none"))
    return ROCKSDB_NAMESPACE::kNoCompression;
  else if (!strcasecmp(ctype, "snappy"))
    return ROCKSDB_NAMESPACE::kSnappyCompression;
  else if (!strcasecmp(ctype, "zlib"))
    return ROCKSDB_NAMESPACE::kZlibCompression;
  else if (!strcasecmp(ctype, "bzip2"))
    return ROCKSDB_NAMESPACE::kBZip2Compression;
  else if (!strcasecmp(ctype, "lz4"))
    return ROCKSDB_NAMESPACE::kLZ4Compression;
  else if (!strcasecmp(ctype, "lz4hc"))
    return ROCKSDB_NAMESPACE::kLZ4HCCompression;
  else if (!strcasecmp(ctype, "xpress"))
    return ROCKSDB_NAMESPACE::kXpressCompression;
  else if (!strcasecmp(ctype, "zstd"))
    return ROCKSDB_NAMESPACE::kZSTD;
  else {
    fprintf(stderr, "Cannot parse compression type '%s'\n", ctype);
    exit(1);
  }
}

static std::string ColumnFamilyName(size_t i) {
  if (i == 0) {
    return ROCKSDB_NAMESPACE::kDefaultColumnFamilyName;
  } else {
    char name[100];
    snprintf(name, sizeof(name), "column_family_name_%06zu", i);
    return std::string(name);
  }
}

DEFINE_string(compression_type, "snappy",
              "Algorithm to use to compress the database");
static enum ROCKSDB_NAMESPACE::CompressionType FLAGS_compression_type_e =
    ROCKSDB_NAMESPACE::kSnappyCompression;

DEFINE_int64(sample_for_compression, 0, "Sample every N block for compression");

DEFINE_int32(compression_level, ROCKSDB_NAMESPACE::CompressionOptions().level,
             "Compression level. The meaning of this value is library-"
             "dependent. If unset, we try to use the default for the library "
             "specified in `--compression_type`");

DEFINE_int32(compression_max_dict_bytes,
             ROCKSDB_NAMESPACE::CompressionOptions().max_dict_bytes,
             "Maximum size of dictionary used to prime the compression "
             "library.");

DEFINE_int32(compression_zstd_max_train_bytes,
             ROCKSDB_NAMESPACE::CompressionOptions().zstd_max_train_bytes,
             "Maximum size of training data passed to zstd's dictionary "
             "trainer.");

DEFINE_int32(min_level_to_compress, -1,
             "If non-negative, compression starts"
             " from this level. Levels with number < min_level_to_compress are"
             " not compressed. Otherwise, apply compression_type to "
             "all levels.");

DEFINE_int32(compression_parallel_threads, 1,
             "Number of threads for parallel compression.");

DEFINE_uint64(compression_max_dict_buffer_bytes,
              ROCKSDB_NAMESPACE::CompressionOptions().max_dict_buffer_bytes,
              "Maximum bytes to buffer to collect samples for dictionary.");

DEFINE_bool(compression_use_zstd_dict_trainer,
            ROCKSDB_NAMESPACE::CompressionOptions().use_zstd_dict_trainer,
            "If true, use ZSTD_TrainDictionary() to create dictionary, else"
            "use ZSTD_FinalizeDictionary() to create dictionary");

static bool ValidateTableCacheNumshardbits(const char* flagname,
                                           int32_t value) {
  if (0 >= value || value >= 20) {
    fprintf(stderr, "Invalid value for --%s: %d, must be  0 < val < 20\n",
            flagname, value);
    return false;
  }
  return true;
}
DEFINE_int32(table_cache_numshardbits, 4, "");

#ifndef ROCKSDB_LITE
DEFINE_string(env_uri, "",
              "URI for registry Env lookup. Mutually exclusive with --fs_uri");
DEFINE_string(fs_uri, "",
              "URI for registry Filesystem lookup. Mutually exclusive"
              " with --env_uri."
              " Creates a default environment with the specified filesystem.");
#endif  // ROCKSDB_LITE
DEFINE_string(simulate_hybrid_fs_file, "",
              "File for Store Metadata for Simulate hybrid FS. Empty means "
              "disable the feature. Now, if it is set, last_level_temperature "
              "is set to kWarm.");
DEFINE_int32(simulate_hybrid_hdd_multipliers, 1,
             "In simulate_hybrid_fs_file or simulate_hdd mode, how many HDDs "
             "are simulated.");
DEFINE_bool(simulate_hdd, false, "Simulate read/write latency on HDD.");

DEFINE_int64(
    preclude_last_level_data_seconds, 0,
    "Preclude the latest data from the last level. (Used for tiered storage)");

DEFINE_int64(preserve_internal_time_seconds, 0,
             "Preserve the internal time information which stores with SST.");

static std::shared_ptr<ROCKSDB_NAMESPACE::Env> env_guard;

static ROCKSDB_NAMESPACE::Env* FLAGS_env = ROCKSDB_NAMESPACE::Env::Default();

DEFINE_int64(stats_interval, 0,
             "Stats are reported every N operations when this is greater than "
             "zero. When 0 the interval grows over time.");

DEFINE_int64(stats_interval_seconds, 0,
             "Report stats every N seconds. This overrides stats_interval when"
             " both are > 0.");

DEFINE_int32(stats_per_interval, 0,
             "Reports additional stats per interval when this is greater than "
             "0.");

DEFINE_uint64(slow_usecs, 1000000,
              "A message is printed for operations that take at least this "
              "many microseconds.");

DEFINE_int64(report_interval_seconds, 0,
             "If greater than zero, it will write simple stats in CSV format "
             "to --report_file every N seconds");

DEFINE_string(report_file, "report.csv",
              "Filename where some simple stats are reported to (if "
              "--report_interval_seconds is bigger than 0)");

DEFINE_int32(thread_status_per_interval, 0,
             "Takes and report a snapshot of the current status of each thread"
             " when this is greater than 0.");

DEFINE_int32(perf_level, ROCKSDB_NAMESPACE::PerfLevel::kDisable,
             "Level of perf collection");

DEFINE_uint64(soft_pending_compaction_bytes_limit, 64ull * 1024 * 1024 * 1024,
              "Slowdown writes if pending compaction bytes exceed this number");

DEFINE_uint64(hard_pending_compaction_bytes_limit, 128ull * 1024 * 1024 * 1024,
              "Stop writes if pending compaction bytes exceed this number");

DEFINE_uint64(delayed_write_rate, 8388608u,
              "Limited bytes allowed to DB when soft_rate_limit or "
              "level0_slowdown_writes_trigger triggers");

DEFINE_bool(enable_pipelined_write, true,
            "Allow WAL and memtable writes to be pipelined");

DEFINE_bool(
    unordered_write, false,
    "Enable the unordered write feature, which provides higher throughput but "
    "relaxes the guarantees around atomic reads and immutable snapshots");

DEFINE_bool(allow_concurrent_memtable_write, true,
            "Allow multi-writers to update mem tables in parallel.");

DEFINE_double(experimental_mempurge_threshold, 0.0,
              "Maximum useful payload ratio estimate that triggers a mempurge "
              "(memtable garbage collection).");

DEFINE_bool(inplace_update_support,
            ROCKSDB_NAMESPACE::Options().inplace_update_support,
            "Support in-place memtable update for smaller or same-size values");

DEFINE_uint64(inplace_update_num_locks,
              ROCKSDB_NAMESPACE::Options().inplace_update_num_locks,
              "Number of RW locks to protect in-place memtable updates");

DEFINE_bool(enable_write_thread_adaptive_yield, true,
            "Use a yielding spin loop for brief writer thread waits.");

DEFINE_uint64(
    write_thread_max_yield_usec, 100,
    "Maximum microseconds for enable_write_thread_adaptive_yield operation.");

DEFINE_uint64(write_thread_slow_yield_usec, 3,
              "The threshold at which a slow yield is considered a signal that "
              "other processes or threads want the core.");

DEFINE_uint64(rate_limiter_bytes_per_sec, 0, "Set options.rate_limiter value.");

DEFINE_int64(rate_limiter_refill_period_us, 100 * 1000,
             "Set refill period on rate limiter.");

DEFINE_bool(rate_limiter_auto_tuned, false,
            "Enable dynamic adjustment of rate limit according to demand for "
            "background I/O");

DEFINE_bool(sine_write_rate, false, "Use a sine wave write_rate_limit");

DEFINE_uint64(
    sine_write_rate_interval_milliseconds, 10000,
    "Interval of which the sine wave write_rate_limit is recalculated");

DEFINE_double(sine_a, 1, "A in f(x) = A sin(bx + c) + d");

DEFINE_double(sine_b, 1, "B in f(x) = A sin(bx + c) + d");

DEFINE_double(sine_c, 0, "C in f(x) = A sin(bx + c) + d");

DEFINE_double(sine_d, 1, "D in f(x) = A sin(bx + c) + d");

DEFINE_bool(rate_limit_bg_reads, false,
            "Use options.rate_limiter on compaction reads");

DEFINE_uint64(
    benchmark_write_rate_limit, 0,
    "If non-zero, db_bench will rate-limit the writes going into RocksDB. This "
    "is the global rate in bytes/second.");

// the parameters of mix_graph
DEFINE_double(keyrange_dist_a, 0.0,
              "The parameter 'a' of prefix average access distribution "
              "f(x)=a*exp(b*x)+c*exp(d*x)");
DEFINE_double(keyrange_dist_b, 0.0,
              "The parameter 'b' of prefix average access distribution "
              "f(x)=a*exp(b*x)+c*exp(d*x)");
DEFINE_double(keyrange_dist_c, 0.0,
              "The parameter 'c' of prefix average access distribution"
              "f(x)=a*exp(b*x)+c*exp(d*x)");
DEFINE_double(keyrange_dist_d, 0.0,
              "The parameter 'd' of prefix average access distribution"
              "f(x)=a*exp(b*x)+c*exp(d*x)");
DEFINE_int64(keyrange_num, 1,
             "The number of key ranges that are in the same prefix "
             "group, each prefix range will have its key access distribution");
DEFINE_double(key_dist_a, 0.0,
              "The parameter 'a' of key access distribution model f(x)=a*x^b");
DEFINE_double(key_dist_b, 0.0,
              "The parameter 'b' of key access distribution model f(x)=a*x^b");
DEFINE_double(value_theta, 0.0,
              "The parameter 'theta' of Generized Pareto Distribution "
              "f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
// Use reasonable defaults based on the mixgraph paper
DEFINE_double(value_k, 0.2615,
              "The parameter 'k' of Generized Pareto Distribution "
              "f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
// Use reasonable defaults based on the mixgraph paper
DEFINE_double(value_sigma, 25.45,
              "The parameter 'theta' of Generized Pareto Distribution "
              "f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
DEFINE_double(iter_theta, 0.0,
              "The parameter 'theta' of Generized Pareto Distribution "
              "f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
// Use reasonable defaults based on the mixgraph paper
DEFINE_double(iter_k, 2.517,
              "The parameter 'k' of Generized Pareto Distribution "
              "f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
// Use reasonable defaults based on the mixgraph paper
DEFINE_double(iter_sigma, 14.236,
              "The parameter 'sigma' of Generized Pareto Distribution "
              "f(x)=(1/sigma)*(1+k*(x-theta)/sigma)^-(1/k+1)");
DEFINE_double(mix_get_ratio, 1.0,
              "The ratio of Get queries of mix_graph workload");
DEFINE_double(mix_put_ratio, 0.0,
              "The ratio of Put queries of mix_graph workload");
DEFINE_double(mix_seek_ratio, 0.0,
              "The ratio of Seek queries of mix_graph workload");
DEFINE_int64(mix_max_scan_len, 10000, "The max scan length of Iterator");
DEFINE_int64(mix_max_value_size, 1024, "The max value size of this workload");
DEFINE_double(
    sine_mix_rate_noise, 0.0,
    "Add the noise ratio to the sine rate, it is between 0.0 and 1.0");
DEFINE_bool(sine_mix_rate, false,
            "Enable the sine QPS control on the mix workload");
DEFINE_uint64(
    sine_mix_rate_interval_milliseconds, 10000,
    "Interval of which the sine wave read_rate_limit is recalculated");
DEFINE_int64(mix_accesses, -1,
             "The total query accesses of mix_graph workload");

DEFINE_uint64(
    benchmark_read_rate_limit, 0,
    "If non-zero, db_bench will rate-limit the reads from RocksDB. This "
    "is the global rate in ops/second.");

DEFINE_uint64(max_compaction_bytes,
              ROCKSDB_NAMESPACE::Options().max_compaction_bytes,
              "Max bytes allowed in one compaction");

#ifndef ROCKSDB_LITE
DEFINE_bool(readonly, false, "Run read only benchmarks.");

DEFINE_bool(print_malloc_stats, false,
            "Print malloc stats to stdout after benchmarks finish.");
#endif  // ROCKSDB_LITE

DEFINE_bool(disable_auto_compactions, false, "Do not auto trigger compactions");

DEFINE_uint64(wal_ttl_seconds, 0, "Set the TTL for the WAL Files in seconds.");
DEFINE_uint64(wal_size_limit_MB, 0,
              "Set the size limit for the WAL Files in MB.");
DEFINE_uint64(max_total_wal_size, 0, "Set total max WAL size");

DEFINE_bool(mmap_read, ROCKSDB_NAMESPACE::Options().allow_mmap_reads,
            "Allow reads to occur via mmap-ing files");

DEFINE_bool(mmap_write, ROCKSDB_NAMESPACE::Options().allow_mmap_writes,
            "Allow writes to occur via mmap-ing files");

DEFINE_bool(use_direct_reads, ROCKSDB_NAMESPACE::Options().use_direct_reads,
            "Use O_DIRECT for reading data");

DEFINE_bool(use_direct_io_for_flush_and_compaction,
            ROCKSDB_NAMESPACE::Options().use_direct_io_for_flush_and_compaction,
            "Use O_DIRECT for background flush and compaction writes");

DEFINE_bool(advise_random_on_open,
            ROCKSDB_NAMESPACE::Options().advise_random_on_open,
            "Advise random access on table file open");

DEFINE_string(compaction_fadvice, "NORMAL",
              "Access pattern advice when a file is compacted");
static auto FLAGS_compaction_fadvice_e =
    ROCKSDB_NAMESPACE::Options().access_hint_on_compaction_start;

DEFINE_bool(use_tailing_iterator, false,
            "Use tailing iterator to access a series of keys instead of get");

DEFINE_bool(use_adaptive_mutex, ROCKSDB_NAMESPACE::Options().use_adaptive_mutex,
            "Use adaptive mutex");

DEFINE_uint64(bytes_per_sync, ROCKSDB_NAMESPACE::Options().bytes_per_sync,
              "Allows OS to incrementally sync SST files to disk while they are"
              " being written, in the background. Issue one request for every"
              " bytes_per_sync written. 0 turns it off.");

DEFINE_uint64(wal_bytes_per_sync,
              ROCKSDB_NAMESPACE::Options().wal_bytes_per_sync,
              "Allows OS to incrementally sync WAL files to disk while they are"
              " being written, in the background. Issue one request for every"
              " wal_bytes_per_sync written. 0 turns it off.");

DEFINE_bool(use_single_deletes, true,
            "Use single deletes (used in RandomReplaceKeys only).");

DEFINE_double(stddev, 2000.0,
              "Standard deviation of normal distribution used for picking keys"
              " (used in RandomReplaceKeys only).");

DEFINE_int32(key_id_range, 100000,
             "Range of possible value of key id (used in TimeSeries only).");

DEFINE_string(expire_style, "none",
              "Style to remove expired time entries. Can be one of the options "
              "below: none (do not expired data), compaction_filter (use a "
              "compaction filter to remove expired data), delete (seek IDs and "
              "remove expired data) (used in TimeSeries only).");

DEFINE_uint64(
    time_range, 100000,
    "Range of timestamp that store in the database (used in TimeSeries"
    " only).");

DEFINE_int32(num_deletion_threads, 1,
             "Number of threads to do deletion (used in TimeSeries and delete "
             "expire_style only).");

DEFINE_int32(max_successive_merges, 0,
             "Maximum number of successive merge operations on a key in the "
             "memtable");

static bool ValidatePrefixSize(const char* flagname, int32_t value) {
  if (value < 0 || value >= 2000000000) {
    fprintf(stderr, "Invalid value for --%s: %d. 0<= PrefixSize <=2000000000\n",
            flagname, value);
    return false;
  }
  return true;
}

DEFINE_int32(prefix_size, 0,
             "control the prefix size for HashSkipList and plain table");
DEFINE_int64(keys_per_prefix, 0,
             "control average number of keys generated per prefix, 0 means no "
             "special handling of the prefix, i.e. use the prefix comes with "
             "the generated random number.");
DEFINE_bool(total_order_seek, false,
            "Enable total order seek regardless of index format.");
DEFINE_bool(prefix_same_as_start, false,
            "Enforce iterator to return keys with prefix same as seek key.");
DEFINE_bool(
    seek_missing_prefix, false,
    "Iterator seek to keys with non-exist prefixes. Require prefix_size > 8");

DEFINE_int32(memtable_insert_with_hint_prefix_size, 0,
             "If non-zero, enable "
             "memtable insert with hint with the given prefix size.");
DEFINE_bool(enable_io_prio, false,
            "Lower the background flush/compaction threads' IO priority");
DEFINE_bool(enable_cpu_prio, false,
            "Lower the background flush/compaction threads' CPU priority");
DEFINE_bool(identity_as_first_hash, false,
            "the first hash function of cuckoo table becomes an identity "
            "function. This is only valid when key is 8 bytes");
DEFINE_bool(dump_malloc_stats, true, "Dump malloc stats in LOG ");
DEFINE_uint64(stats_dump_period_sec,
              ROCKSDB_NAMESPACE::Options().stats_dump_period_sec,
              "Gap between printing stats to log in seconds");
DEFINE_uint64(stats_persist_period_sec,
              ROCKSDB_NAMESPACE::Options().stats_persist_period_sec,
              "Gap between persisting stats in seconds");
DEFINE_bool(persist_stats_to_disk,
            ROCKSDB_NAMESPACE::Options().persist_stats_to_disk,
            "whether to persist stats to disk");
DEFINE_uint64(stats_history_buffer_size,
              ROCKSDB_NAMESPACE::Options().stats_history_buffer_size,
              "Max number of stats snapshots to keep in memory");
DEFINE_bool(avoid_flush_during_recovery,
            ROCKSDB_NAMESPACE::Options().avoid_flush_during_recovery,
            "If true, avoids flushing the recovered WAL data where possible.");
DEFINE_int64(multiread_stride, 0,
             "Stride length for the keys in a MultiGet batch");
DEFINE_bool(multiread_batched, false, "Use the new MultiGet API");

DEFINE_string(memtablerep, "skip_list", "");
DEFINE_int64(hash_bucket_count, 1024 * 1024, "hash bucket count");
DEFINE_bool(use_plain_table, false,
            "if use plain table instead of block-based table format");
DEFINE_bool(use_cuckoo_table, false, "if use cuckoo table format");
DEFINE_double(cuckoo_hash_ratio, 0.9, "Hash ratio for Cuckoo SST table.");
DEFINE_bool(use_hash_search, false,
            "if use kHashSearch instead of kBinarySearch. "
            "This is valid if only we use BlockTable");
DEFINE_string(merge_operator, "",
              "The merge operator to use with the database."
              "If a new merge operator is specified, be sure to use fresh"
              " database The possible merge operators are defined in"
              " utilities/merge_operators.h");
DEFINE_int32(skip_list_lookahead, 0,
             "Used with skip_list memtablerep; try linear search first for "
             "this many steps from the previous position");
DEFINE_bool(report_file_operations, false,
            "if report number of file operations");
DEFINE_bool(report_open_timing, false, "if report open timing");
DEFINE_int32(readahead_size, 0, "Iterator readahead size");

DEFINE_bool(read_with_latest_user_timestamp, true,
            "If true, always use the current latest timestamp for read. If "
            "false, choose a random timestamp from the past.");

#ifndef ROCKSDB_LITE
DEFINE_string(secondary_cache_uri, "",
              "Full URI for creating a custom secondary cache object");
static class std::shared_ptr<ROCKSDB_NAMESPACE::SecondaryCache> secondary_cache;
#endif  // ROCKSDB_LITE

static const bool FLAGS_prefix_size_dummy __attribute__((__unused__)) =
    RegisterFlagValidator(&FLAGS_prefix_size, &ValidatePrefixSize);

static const bool FLAGS_key_size_dummy __attribute__((__unused__)) =
    RegisterFlagValidator(&FLAGS_key_size, &ValidateKeySize);

static const bool FLAGS_cache_numshardbits_dummy __attribute__((__unused__)) =
    RegisterFlagValidator(&FLAGS_cache_numshardbits,
                          &ValidateCacheNumshardbits);

static const bool FLAGS_readwritepercent_dummy __attribute__((__unused__)) =
    RegisterFlagValidator(&FLAGS_readwritepercent, &ValidateInt32Percent);

DEFINE_int32(disable_seek_compaction, false,
             "Not used, left here for backwards compatibility");

DEFINE_bool(allow_data_in_errors,
            ROCKSDB_NAMESPACE::Options().allow_data_in_errors,
            "If true, allow logging data, e.g. key, value in LOG files.");

static const bool FLAGS_deletepercent_dummy __attribute__((__unused__)) =
    RegisterFlagValidator(&FLAGS_deletepercent, &ValidateInt32Percent);
static const bool FLAGS_table_cache_numshardbits_dummy
    __attribute__((__unused__)) = RegisterFlagValidator(
        &FLAGS_table_cache_numshardbits, &ValidateTableCacheNumshardbits);

DEFINE_uint32(write_batch_protection_bytes_per_key, 0,
              "Size of per-key-value checksum in each write batch. Currently "
              "only value 0 and 8 are supported.");

DEFINE_uint32(
    memtable_protection_bytes_per_key, 0,
    "Enable memtable per key-value checksum protection. "
    "Each entry in memtable will be suffixed by a per key-value checksum. "
    "This options determines the size of such checksums. "
    "Supported values: 0, 1, 2, 4, 8.");

DEFINE_bool(build_info, false,
            "Print the build info via GetRocksBuildInfoAsString");

DEFINE_bool(track_and_verify_wals_in_manifest, false,
            "If true, enable WAL tracking in the MANIFEST");

namespace ROCKSDB_NAMESPACE {
namespace {
static Status CreateMemTableRepFactory(
    const ConfigOptions& config_options,
    std::shared_ptr<MemTableRepFactory>* factory) {
  Status s;
  if (!strcasecmp(FLAGS_memtablerep.c_str(), SkipListFactory::kNickName())) {
    factory->reset(new SkipListFactory(FLAGS_skip_list_lookahead));
#ifndef ROCKSDB_LITE
  } else if (!strcasecmp(FLAGS_memtablerep.c_str(), "prefix_hash")) {
    factory->reset(NewHashSkipListRepFactory(FLAGS_hash_bucket_count));
  } else if (!strcasecmp(FLAGS_memtablerep.c_str(),
                         VectorRepFactory::kNickName())) {
    factory->reset(new VectorRepFactory());
  } else if (!strcasecmp(FLAGS_memtablerep.c_str(), "hash_linkedlist")) {
    factory->reset(NewHashLinkListRepFactory(FLAGS_hash_bucket_count));
#endif  // ROCKSDB_LITE
  } else {
    std::unique_ptr<MemTableRepFactory> unique;
    s = MemTableRepFactory::CreateFromString(config_options, FLAGS_memtablerep,
                                             &unique);
    if (s.ok()) {
      factory->reset(unique.release());
    }
  }
  return s;
}

}  // namespace

enum DistributionType : unsigned char { kFixed = 0, kUniform, kNormal };

static enum DistributionType FLAGS_value_size_distribution_type_e = kFixed;

static enum DistributionType StringToDistributionType(const char* ctype) {
  assert(ctype);

  if (!strcasecmp(ctype, "fixed"))
    return kFixed;
  else if (!strcasecmp(ctype, "uniform"))
    return kUniform;
  else if (!strcasecmp(ctype, "normal"))
    return kNormal;

  fprintf(stdout, "Cannot parse distribution type '%s'\n", ctype);
  exit(1);
}

class BaseDistribution {
 public:
  BaseDistribution(unsigned int _min, unsigned int _max)
      : min_value_size_(_min), max_value_size_(_max) {}
  virtual ~BaseDistribution() {}

  unsigned int Generate() {
    auto val = Get();
    if (NeedTruncate()) {
      val = std::max(min_value_size_, val);
      val = std::min(max_value_size_, val);
    }
    return val;
  }

 private:
  virtual unsigned int Get() = 0;
  virtual bool NeedTruncate() { return true; }
  unsigned int min_value_size_;
  unsigned int max_value_size_;
};

class FixedDistribution : public BaseDistribution {
 public:
  FixedDistribution(unsigned int size)
      : BaseDistribution(size, size), size_(size) {}

 private:
  virtual unsigned int Get() override { return size_; }
  virtual bool NeedTruncate() override { return false; }
  unsigned int size_;
};

class NormalDistribution : public BaseDistribution,
                           public std::normal_distribution<double> {
 public:
  NormalDistribution(unsigned int _min, unsigned int _max)
      : BaseDistribution(_min, _max),
        // 99.7% values within the range [min, max].
        std::normal_distribution<double>(
            (double)(_min + _max) / 2.0 /*mean*/,
            (double)(_max - _min) / 6.0 /*stddev*/),
        gen_(rd_()) {}

 private:
  virtual unsigned int Get() override {
    return static_cast<unsigned int>((*this)(gen_));
  }
  std::random_device rd_;
  std::mt19937 gen_;
};

class UniformDistribution : public BaseDistribution,
                            public std::uniform_int_distribution<unsigned int> {
 public:
  UniformDistribution(unsigned int _min, unsigned int _max)
      : BaseDistribution(_min, _max),
        std::uniform_int_distribution<unsigned int>(_min, _max),
        gen_(rd_()) {}

 private:
  virtual unsigned int Get() override { return (*this)(gen_); }
  virtual bool NeedTruncate() override { return false; }
  std::random_device rd_;
  std::mt19937 gen_;
};

// Helper for quickly generating random data.
class RandomGenerator {
 private:
  std::string data_;
  unsigned int pos_;
  std::unique_ptr<BaseDistribution> dist_;

 public:
  RandomGenerator() {
    auto max_value_size = FLAGS_value_size_max;
    switch (FLAGS_value_size_distribution_type_e) {
      case kUniform:
        dist_.reset(new UniformDistribution(FLAGS_value_size_min,
                                            FLAGS_value_size_max));
        break;
      case kNormal:
        dist_.reset(
            new NormalDistribution(FLAGS_value_size_min, FLAGS_value_size_max));
        break;
      case kFixed:
      default:
        dist_.reset(new FixedDistribution(value_size));
        max_value_size = value_size;
    }
    // We use a limited amount of data over and over again and ensure
    // that it is larger than the compression window (32KB), and also
    // large enough to serve all typical value sizes we want to write.
    Random rnd(301);
    std::string piece;
    while (data_.size() < (unsigned)std::max(1048576, max_value_size)) {
      // Add a short fragment that is as compressible as specified
      // by FLAGS_compression_ratio.
      test::CompressibleString(&rnd, FLAGS_compression_ratio, 100, &piece);
      data_.append(piece);
    }
    pos_ = 0;
  }

  Slice Generate(unsigned int len) {
    assert(len <= data_.size());
    if (pos_ + len > data_.size()) {
      pos_ = 0;
    }
    pos_ += len;
    return Slice(data_.data() + pos_ - len, len);
  }

  Slice Generate() {
    auto len = dist_->Generate();
    return Generate(len);
  }
};

static void AppendWithSpace(std::string* str, Slice msg) {
  if (msg.empty()) return;
  if (!str->empty()) {
    str->push_back(' ');
  }
  str->append(msg.data(), msg.size());
}

struct DBWithColumnFamilies {
  std::vector<ColumnFamilyHandle*> cfh;
  DB* db;
#ifndef ROCKSDB_LITE
  OptimisticTransactionDB* opt_txn_db;
#endif                              // ROCKSDB_LITE
  std::atomic<size_t> num_created;  // Need to be updated after all the
                                    // new entries in cfh are set.
  size_t num_hot;  // Number of column families to be queried at each moment.
                   // After each CreateNewCf(), another num_hot number of new
                   // Column families will be created and used to be queried.
  port::Mutex create_cf_mutex;  // Only one thread can execute CreateNewCf()
  std::vector<int> cfh_idx_to_prob;  // ith index holds probability of operating
                                     // on cfh[i].

  DBWithColumnFamilies()
      : db(nullptr)
#ifndef ROCKSDB_LITE
        ,
        opt_txn_db(nullptr)
#endif  // ROCKSDB_LITE
  {
    cfh.clear();
    num_created = 0;
    num_hot = 0;
  }

  DBWithColumnFamilies(const DBWithColumnFamilies& other)
      : cfh(other.cfh),
        db(other.db),
#ifndef ROCKSDB_LITE
        opt_txn_db(other.opt_txn_db),
#endif  // ROCKSDB_LITE
        num_created(other.num_created.load()),
        num_hot(other.num_hot),
        cfh_idx_to_prob(other.cfh_idx_to_prob) {
  }

  void DeleteDBs() {
    std::for_each(cfh.begin(), cfh.end(),
                  [](ColumnFamilyHandle* cfhi) { delete cfhi; });
    cfh.clear();
#ifndef ROCKSDB_LITE
    if (opt_txn_db) {
      delete opt_txn_db;
      opt_txn_db = nullptr;
    } else {
      delete db;
      db = nullptr;
    }
#else
    delete db;
    db = nullptr;
#endif  // ROCKSDB_LITE
  }

  ColumnFamilyHandle* GetCfh(int64_t rand_num) {
    assert(num_hot > 0);
    size_t rand_offset = 0;
    if (!cfh_idx_to_prob.empty()) {
      assert(cfh_idx_to_prob.size() == num_hot);
      int sum = 0;
      while (sum + cfh_idx_to_prob[rand_offset] < rand_num % 100) {
        sum += cfh_idx_to_prob[rand_offset];
        ++rand_offset;
      }
      assert(rand_offset < cfh_idx_to_prob.size());
    } else {
      rand_offset = rand_num % num_hot;
    }
    return cfh[num_created.load(std::memory_order_acquire) - num_hot +
               rand_offset];
  }

  // stage: assume CF from 0 to stage * num_hot has be created. Need to create
  //        stage * num_hot + 1 to stage * (num_hot + 1).
  void CreateNewCf(ColumnFamilyOptions options, int64_t stage) {
    MutexLock l(&create_cf_mutex);
    if ((stage + 1) * num_hot <= num_created) {
      // Already created.
      return;
    }
    auto new_num_created = num_created + num_hot;
    assert(new_num_created <= cfh.size());
    for (size_t i = num_created; i < new_num_created; i++) {
      Status s =
          db->CreateColumnFamily(options, ColumnFamilyName(i), &(cfh[i]));
      if (!s.ok()) {
        fprintf(stderr, "create column family error: %s\n",
                s.ToString().c_str());
        abort();
      }
    }
    num_created.store(new_num_created, std::memory_order_release);
  }
};

// A class that reports stats to CSV file.
class ReporterAgent {
 public:
  ReporterAgent(Env* env, const std::string& fname,
                uint64_t report_interval_secs)
      : env_(env),
        total_ops_done_(0),
        last_report_(0),
        report_interval_secs_(report_interval_secs),
        stop_(false) {
    auto s = env_->NewWritableFile(fname, &report_file_, EnvOptions());
    if (s.ok()) {
      s = report_file_->Append(Header() + "\n");
    }
    if (s.ok()) {
      s = report_file_->Flush();
    }
    if (!s.ok()) {
      fprintf(stderr, "Can't open %s: %s\n", fname.c_str(),
              s.ToString().c_str());
      abort();
    }

    reporting_thread_ = port::Thread([&]() { SleepAndReport(); });
  }

  ~ReporterAgent() {
    {
      std::unique_lock<std::mutex> lk(mutex_);
      stop_ = true;
      stop_cv_.notify_all();
    }
    reporting_thread_.join();
  }

  // thread safe
  void ReportFinishedOps(int64_t num_ops) {
    total_ops_done_.fetch_add(num_ops);
  }

 private:
  std::string Header() const { return "secs_elapsed,interval_qps"; }
  void SleepAndReport() {
    auto* clock = env_->GetSystemClock().get();
    auto time_started = clock->NowMicros();
    while (true) {
      {
        std::unique_lock<std::mutex> lk(mutex_);
        if (stop_ ||
            stop_cv_.wait_for(lk, std::chrono::seconds(report_interval_secs_),
                              [&]() { return stop_; })) {
          // stopping
          break;
        }
        // else -> timeout, which means time for a report!
      }
      auto total_ops_done_snapshot = total_ops_done_.load();
      // round the seconds elapsed
      auto secs_elapsed =
          (clock->NowMicros() - time_started + kMicrosInSecond / 2) /
          kMicrosInSecond;
      std::string report =
          std::to_string(secs_elapsed) + "," +
          std::to_string(total_ops_done_snapshot - last_report_) + "\n";
      auto s = report_file_->Append(report);
      if (s.ok()) {
        s = report_file_->Flush();
      }
      if (!s.ok()) {
        fprintf(stderr,
                "Can't write to report file (%s), stopping the reporting\n",
                s.ToString().c_str());
        break;
      }
      last_report_ = total_ops_done_snapshot;
    }
  }

  Env* env_;
  std::unique_ptr<WritableFile> report_file_;
  std::atomic<int64_t> total_ops_done_;
  int64_t last_report_;
  const uint64_t report_interval_secs_;
  ROCKSDB_NAMESPACE::port::Thread reporting_thread_;
  std::mutex mutex_;
  // will notify on stop
  std::condition_variable stop_cv_;
  bool stop_;
};

enum OperationType : unsigned char {
  kRead = 0,
  kWrite,
  kDelete,
  kSeek,
  kMerge,
  kUpdate,
  kCompress,
  kUncompress,
  kCrc,
  kHash,
  kOthers
};

static std::unordered_map<OperationType, std::string, std::hash<unsigned char>>
    OperationTypeString = {{kRead, "read"},         {kWrite, "write"},
                           {kDelete, "delete"},     {kSeek, "seek"},
                           {kMerge, "merge"},       {kUpdate, "update"},
                           {kCompress, "compress"}, {kCompress, "uncompress"},
                           {kCrc, "crc"},           {kHash, "hash"},
                           {kOthers, "op"}};

class CombinedStats;
class Stats {
 private:
  SystemClock* clock_;
  int id_;
  uint64_t start_ = 0;
  uint64_t sine_interval_;
  uint64_t finish_;
  double seconds_;
  uint64_t done_;
  uint64_t last_report_done_;
  uint64_t next_report_;
  uint64_t bytes_;
  uint64_t last_op_finish_;
  uint64_t last_report_finish_;
  std::unordered_map<OperationType, std::shared_ptr<HistogramImpl>,
                     std::hash<unsigned char>>
      hist_;
  std::string message_;
  bool exclude_from_merge_;
  ReporterAgent* reporter_agent_;  // does not own
  friend class CombinedStats;

 public:
  Stats() : clock_(FLAGS_env->GetSystemClock().get()) { Start(-1); }

  void SetReporterAgent(ReporterAgent* reporter_agent) {
    reporter_agent_ = reporter_agent;
  }

  void Start(int id) {
    id_ = id;
    next_report_ = FLAGS_stats_interval ? FLAGS_stats_interval : 100;
    last_op_finish_ = start_;
    hist_.clear();
    done_ = 0;
    last_report_done_ = 0;
    bytes_ = 0;
    seconds_ = 0;
    start_ = clock_->NowMicros();
    sine_interval_ = clock_->NowMicros();
    finish_ = start_;
    last_report_finish_ = start_;
    message_.clear();
    // When set, stats from this thread won't be merged with others.
    exclude_from_merge_ = false;
  }

  void Merge(const Stats& other) {
    if (other.exclude_from_merge_) return;

    for (auto it = other.hist_.begin(); it != other.hist_.end(); ++it) {
      auto this_it = hist_.find(it->first);
      if (this_it != hist_.end()) {
        this_it->second->Merge(*(other.hist_.at(it->first)));
      } else {
        hist_.insert({it->first, it->second});
      }
    }

    done_ += other.done_;
    bytes_ += other.bytes_;
    seconds_ += other.seconds_;
    if (other.start_ < start_) start_ = other.start_;
    if (other.finish_ > finish_) finish_ = other.finish_;

    // Just keep the messages from one thread.
    if (message_.empty()) message_ = other.message_;
  }

  void Stop() {
    finish_ = clock_->NowMicros();
    seconds_ = (finish_ - start_) * 1e-6;
  }

  void AddMessage(Slice msg) { AppendWithSpace(&message_, msg); }

  void SetId(int id) { id_ = id; }
  void SetExcludeFromMerge() { exclude_from_merge_ = true; }

  void PrintThreadStatus() {
    std::vector<ThreadStatus> thread_list;
    FLAGS_env->GetThreadList(&thread_list);

    fprintf(stderr, "\n%18s %10s %12s %20s %13s %45s %12s %s\n", "ThreadID",
            "ThreadType", "cfName", "Operation", "ElapsedTime", "Stage",
            "State", "OperationProperties");

    int64_t current_time = 0;
    clock_->GetCurrentTime(&current_time).PermitUncheckedError();
    for (auto ts : thread_list) {
      fprintf(stderr, "%18" PRIu64 " %10s %12s %20s %13s %45s %12s",
              ts.thread_id,
              ThreadStatus::GetThreadTypeName(ts.thread_type).c_str(),
              ts.cf_name.c_str(),
              ThreadStatus::GetOperationName(ts.operation_type).c_str(),
              ThreadStatus::MicrosToString(ts.op_elapsed_micros).c_str(),
              ThreadStatus::GetOperationStageName(ts.operation_stage).c_str(),
              ThreadStatus::GetStateName(ts.state_type).c_str());

      auto op_properties = ThreadStatus::InterpretOperationProperties(
          ts.operation_type, ts.op_properties);
      for (const auto& op_prop : op_properties) {
        fprintf(stderr, " %s %" PRIu64 " |", op_prop.first.c_str(),
                op_prop.second);
      }
      fprintf(stderr, "\n");
    }
  }

  void ResetSineInterval() { sine_interval_ = clock_->NowMicros(); }

  uint64_t GetSineInterval() { return sine_interval_; }

  uint64_t GetStart() { return start_; }

  void ResetLastOpTime() {
    // Set to now to avoid latency from calls to SleepForMicroseconds.
    last_op_finish_ = clock_->NowMicros();
  }

  void FinishedOps(DBWithColumnFamilies* db_with_cfh, DB* db, int64_t num_ops,
                   enum OperationType op_type = kOthers) {
    if (reporter_agent_) {
      reporter_agent_->ReportFinishedOps(num_ops);
    }
    if (FLAGS_histogram) {
      uint64_t now = clock_->NowMicros();
      uint64_t micros = now - last_op_finish_;

      if (hist_.find(op_type) == hist_.end()) {
        auto hist_temp = std::make_shared<HistogramImpl>();
        hist_.insert({op_type, std::move(hist_temp)});
      }
      hist_[op_type]->Add(micros);

      if (micros >= FLAGS_slow_usecs && !FLAGS_stats_interval) {
        fprintf(stderr, "long op: %" PRIu64 " micros%30s\r", micros, "");
        fflush(stderr);
      }
      last_op_finish_ = now;
    }

    done_ += num_ops;
    if (done_ >= next_report_ && FLAGS_progress_reports) {
      if (!FLAGS_stats_interval) {
        if (next_report_ < 1000)
          next_report_ += 100;
        else if (next_report_ < 5000)
          next_report_ += 500;
        else if (next_report_ < 10000)
          next_report_ += 1000;
        else if (next_report_ < 50000)
          next_report_ += 5000;
        else if (next_report_ < 100000)
          next_report_ += 10000;
        else if (next_report_ < 500000)
          next_report_ += 50000;
        else
          next_report_ += 100000;
        fprintf(stderr, "... finished %" PRIu64 " ops%30s\r", done_, "");
      } else {
        uint64_t now = clock_->NowMicros();
        int64_t usecs_since_last = now - last_report_finish_;

        // Determine whether to print status where interval is either
        // each N operations or each N seconds.

        if (FLAGS_stats_interval_seconds &&
            usecs_since_last < (FLAGS_stats_interval_seconds * 1000000)) {
          // Don't check again for this many operations.
          next_report_ += FLAGS_stats_interval;

        } else {
          fprintf(stderr,
                  "%s ... thread %d: (%" PRIu64 ",%" PRIu64
                  ") ops and "
                  "(%.1f,%.1f) ops/second in (%.6f,%.6f) seconds\n",
                  clock_->TimeToString(now / 1000000).c_str(), id_,
                  done_ - last_report_done_, done_,
                  (done_ - last_report_done_) / (usecs_since_last / 1000000.0),
                  done_ / ((now - start_) / 1000000.0),
                  (now - last_report_finish_) / 1000000.0,
                  (now - start_) / 1000000.0);

          if (id_ == 0 && FLAGS_stats_per_interval) {
            std::string stats;

            if (db_with_cfh && db_with_cfh->num_created.load()) {
              for (size_t i = 0; i < db_with_cfh->num_created.load(); ++i) {
                if (db->GetProperty(db_with_cfh->cfh[i], "rocksdb.cfstats",
                                    &stats))
                  fprintf(stderr, "%s\n", stats.c_str());
                if (FLAGS_show_table_properties) {
                  for (int level = 0; level < FLAGS_num_levels; ++level) {
                    if (db->GetProperty(
                            db_with_cfh->cfh[i],
                            "rocksdb.aggregated-table-properties-at-level" +
                                std::to_string(level),
                            &stats)) {
                      if (stats.find("# entries=0") == std::string::npos) {
                        fprintf(stderr, "Level[%d]: %s\n", level,
                                stats.c_str());
                      }
                    }
                  }
                }
              }
            } else if (db) {
              if (db->GetProperty("rocksdb.stats", &stats)) {
                fprintf(stderr, "%s", stats.c_str());
              }
              if (db->GetProperty("rocksdb.num-running-compactions", &stats)) {
                fprintf(stderr, "num-running-compactions: %s\n", stats.c_str());
              }
              if (db->GetProperty("rocksdb.num-running-flushes", &stats)) {
                fprintf(stderr, "num-running-flushes: %s\n\n", stats.c_str());
              }
              if (FLAGS_show_table_properties) {
                for (int level = 0; level < FLAGS_num_levels; ++level) {
                  if (db->GetProperty(
                          "rocksdb.aggregated-table-properties-at-level" +
                              std::to_string(level),
                          &stats)) {
                    if (stats.find("# entries=0") == std::string::npos) {
                      fprintf(stderr, "Level[%d]: %s\n", level, stats.c_str());
                    }
                  }
                }
              }
            }
          }

          next_report_ += FLAGS_stats_interval;
          last_report_finish_ = now;
          last_report_done_ = done_;
        }
      }
      if (id_ == 0 && FLAGS_thread_status_per_interval) {
        PrintThreadStatus();
      }
      fflush(stderr);
    }
  }

  void AddBytes(int64_t n) { bytes_ += n; }

  void Report(const Slice& name) {
    // Pretend at least one op was done in case we are running a benchmark
    // that does not call FinishedOps().
    if (done_ < 1) done_ = 1;

    std::string extra;
    double elapsed = (finish_ - start_) * 1e-6;
    if (bytes_ > 0) {
      // Rate is computed on actual elapsed time, not the sum of per-thread
      // elapsed times.
      char rate[100];
      snprintf(rate, sizeof(rate), "%6.1f MB/s",
               (bytes_ / 1048576.0) / elapsed);
      extra = rate;
    }
    AppendWithSpace(&extra, message_);
    double throughput = (double)done_ / elapsed;

    fprintf(stdout,
            "%-12s : %11.3f micros/op %ld ops/sec %.3f seconds %" PRIu64
            " operations;%s%s\n",
            name.ToString().c_str(), seconds_ * 1e6 / done_, (long)throughput,
            elapsed, done_, (extra.empty() ? "" : " "), extra.c_str());
    if (FLAGS_histogram) {
      for (auto it = hist_.begin(); it != hist_.end(); ++it) {
        fprintf(stdout, "Microseconds per %s:\n%s\n",
                OperationTypeString[it->first].c_str(),
                it->second->ToString().c_str());
      }
    }
    if (FLAGS_report_file_operations) {
      auto* counted_fs =
          FLAGS_env->GetFileSystem()->CheckedCast<CountedFileSystem>();
      assert(counted_fs);
      fprintf(stdout, "%s", counted_fs->PrintCounters().c_str());
      counted_fs->ResetCounters();
    }
    fflush(stdout);
  }
};

class CombinedStats {
 public:
  void AddStats(const Stats& stat) {
    uint64_t total_ops = stat.done_;
    uint64_t total_bytes_ = stat.bytes_;
    double elapsed;

    if (total_ops < 1) {
      total_ops = 1;
    }

    elapsed = (stat.finish_ - stat.start_) * 1e-6;
    throughput_ops_.emplace_back(total_ops / elapsed);

    if (total_bytes_ > 0) {
      double mbs = (total_bytes_ / 1048576.0);
      throughput_mbs_.emplace_back(mbs / elapsed);
    }
  }

  void Report(const std::string& bench_name) {
    if (throughput_ops_.size() < 2) {
      // skip if there are not enough samples
      return;
    }

    const char* name = bench_name.c_str();
    int num_runs = static_cast<int>(throughput_ops_.size());

    if (throughput_mbs_.size() == throughput_ops_.size()) {
      fprintf(stdout,
              "%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec; %6.1f (\xC2\xB1 "
              "%.1f) MB/sec\n",
              name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
              static_cast<int>(CalcConfidence95(throughput_ops_)),
              CalcAvg(throughput_mbs_), CalcConfidence95(throughput_mbs_));
    } else {
      fprintf(stdout, "%s [AVG %d runs] : %d (\xC2\xB1 %d) ops/sec\n", name,
              num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
              static_cast<int>(CalcConfidence95(throughput_ops_)));
    }
  }

  void ReportWithConfidenceIntervals(const std::string& bench_name) {
    if (throughput_ops_.size() < 2) {
      // skip if there are not enough samples
      return;
    }

    const char* name = bench_name.c_str();
    int num_runs = static_cast<int>(throughput_ops_.size());

    int ops_avg = static_cast<int>(CalcAvg(throughput_ops_));
    int ops_confidence_95 = static_cast<int>(CalcConfidence95(throughput_ops_));

    if (throughput_mbs_.size() == throughput_ops_.size()) {
      double mbs_avg = CalcAvg(throughput_mbs_);
      double mbs_confidence_95 = CalcConfidence95(throughput_mbs_);
      fprintf(stdout,
              "%s [CI95 %d runs] : (%d, %d) ops/sec; (%.1f, %.1f) MB/sec\n",
              name, num_runs, ops_avg - ops_confidence_95,
              ops_avg + ops_confidence_95, mbs_avg - mbs_confidence_95,
              mbs_avg + mbs_confidence_95);
    } else {
      fprintf(stdout, "%s [CI95 %d runs] : (%d, %d) ops/sec\n", name, num_runs,
              ops_avg - ops_confidence_95, ops_avg + ops_confidence_95);
    }
  }

  void ReportFinal(const std::string& bench_name) {
    if (throughput_ops_.size() < 2) {
      // skip if there are not enough samples
      return;
    }

    const char* name = bench_name.c_str();
    int num_runs = static_cast<int>(throughput_ops_.size());

    if (throughput_mbs_.size() == throughput_ops_.size()) {
      // \xC2\xB1 is +/- character in UTF-8
      fprintf(stdout,
              "%s [AVG    %d runs] : %d (\xC2\xB1 %d) ops/sec; %6.1f (\xC2\xB1 "
              "%.1f) MB/sec\n"
              "%s [MEDIAN %d runs] : %d ops/sec; %6.1f MB/sec\n",
              name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
              static_cast<int>(CalcConfidence95(throughput_ops_)),
              CalcAvg(throughput_mbs_), CalcConfidence95(throughput_mbs_), name,
              num_runs, static_cast<int>(CalcMedian(throughput_ops_)),
              CalcMedian(throughput_mbs_));
    } else {
      fprintf(stdout,
              "%s [AVG    %d runs] : %d (\xC2\xB1 %d) ops/sec\n"
              "%s [MEDIAN %d runs] : %d ops/sec\n",
              name, num_runs, static_cast<int>(CalcAvg(throughput_ops_)),
              static_cast<int>(CalcConfidence95(throughput_ops_)), name,
              num_runs, static_cast<int>(CalcMedian(throughput_ops_)));
    }
  }

 private:
  double CalcAvg(std::vector<double>& data) {
    double avg = 0;
    for (double x : data) {
      avg += x;
    }
    avg = avg / data.size();
    return avg;
  }

  // Calculates 95% CI assuming a normal distribution of samples.
  // Samples are not from a normal distribution, but it still
  // provides useful approximation.
  double CalcConfidence95(std::vector<double>& data) {
    assert(data.size() > 1);
    double avg = CalcAvg(data);
    double std_error = CalcStdDev(data, avg) / std::sqrt(data.size());

    // Z score for the 97.5 percentile
    // see https://en.wikipedia.org/wiki/1.96
    return 1.959964 * std_error;
  }

  double CalcMedian(std::vector<double>& data) {
    assert(data.size() > 0);
    std::sort(data.begin(), data.end());

    size_t mid = data.size() / 2;
    if (data.size() % 2 == 1) {
      // Odd number of entries
      return data[mid];
    } else {
      // Even number of entries
      return (data[mid] + data[mid - 1]) / 2;
    }
  }

  double CalcStdDev(std::vector<double>& data, double average) {
    assert(data.size() > 1);
    double squared_sum = 0.0;
    for (double x : data) {
      squared_sum += std::pow(x - average, 2);
    }

    // using samples count - 1 following Bessel's correction
    // see https://en.wikipedia.org/wiki/Bessel%27s_correction
    return std::sqrt(squared_sum / (data.size() - 1));
  }

  std::vector<double> throughput_ops_;
  std::vector<double> throughput_mbs_;
};

class TimestampEmulator {
 private:
  std::atomic<uint64_t> timestamp_;

 public:
  TimestampEmulator() : timestamp_(0) {}
  uint64_t Get() const { return timestamp_.load(); }
  void Inc() { timestamp_++; }
  Slice Allocate(char* scratch) {
    // TODO: support larger timestamp sizes
    assert(FLAGS_user_timestamp_size == 8);
    assert(scratch);
    uint64_t ts = timestamp_.fetch_add(1);
    EncodeFixed64(scratch, ts);
    return Slice(scratch, FLAGS_user_timestamp_size);
  }
  Slice GetTimestampForRead(Random64& rand, char* scratch) {
    assert(FLAGS_user_timestamp_size == 8);
    assert(scratch);
    if (FLAGS_read_with_latest_user_timestamp) {
      return Allocate(scratch);
    }
    // Choose a random timestamp from the past.
    uint64_t ts = rand.Next() % Get();
    EncodeFixed64(scratch, ts);
    return Slice(scratch, FLAGS_user_timestamp_size);
  }
};

// State shared by all concurrent executions of the same benchmark.
struct SharedState {
  port::Mutex mu;
  port::CondVar cv;
  int total;
  int perf_level;
  std::shared_ptr<RateLimiter> write_rate_limiter;
  std::shared_ptr<RateLimiter> read_rate_limiter;

  // Each thread goes through the following states:
  //    (1) initializing
  //    (2) waiting for others to be initialized
  //    (3) running
  //    (4) done

  long num_initialized;
  long num_done;
  bool start;

  SharedState() : cv(&mu), perf_level(FLAGS_perf_level) {}
};

// Per-thread state for concurrent executions of the same benchmark.
struct ThreadState {
  int tid;        // 0..n-1 when running in n threads
  Random64 rand;  // Has different seeds for different threads
  Stats stats;
  SharedState* shared;

  explicit ThreadState(int index, int my_seed)
      : tid(index), rand(seed_base + my_seed) {}
};

class Duration {
 public:
  Duration(uint64_t max_seconds, int64_t max_ops, int64_t ops_per_stage = 0) {
    max_seconds_ = max_seconds;
    max_ops_ = max_ops;
    ops_per_stage_ = (ops_per_stage > 0) ? ops_per_stage : max_ops;
    ops_ = 0;
    start_at_ = FLAGS_env->NowMicros();
  }

  int64_t GetStage() { return std::min(ops_, max_ops_ - 1) / ops_per_stage_; }

  bool Done(int64_t increment) {
    if (increment <= 0) increment = 1;  // avoid Done(0) and infinite loops
    ops_ += increment;

    if (max_seconds_) {
      // Recheck every appx 1000 ops (exact iff increment is factor of 1000)
      auto granularity = FLAGS_ops_between_duration_checks;
      if ((ops_ / granularity) != ((ops_ - increment) / granularity)) {
        uint64_t now = FLAGS_env->NowMicros();
        return ((now - start_at_) / 1000000) >= max_seconds_;
      } else {
        return false;
      }
    } else {
      return ops_ > max_ops_;
    }
  }

 private:
  uint64_t max_seconds_;
  int64_t max_ops_;
  int64_t ops_per_stage_;
  int64_t ops_;
  uint64_t start_at_;
};

class Benchmark {
 private:
  std::shared_ptr<Cache> cache_;
  std::shared_ptr<Cache> compressed_cache_;
  std::shared_ptr<const SliceTransform> prefix_extractor_;
  DBWithColumnFamilies db_;
  std::vector<DBWithColumnFamilies> multi_dbs_;
  int64_t num_;
  int key_size_;
  int user_timestamp_size_;
  int prefix_size_;
  int total_thread_count_;
  int64_t keys_per_prefix_;
  int64_t entries_per_batch_;
  int64_t writes_before_delete_range_;
  int64_t writes_per_range_tombstone_;
  int64_t range_tombstone_width_;
  int64_t max_num_range_tombstones_;
  ReadOptions read_options_;
  WriteOptions write_options_;
  Options open_options_;  // keep options around to properly destroy db later
#ifndef ROCKSDB_LITE
  TraceOptions trace_options_;
  TraceOptions block_cache_trace_options_;
#endif
  int64_t reads_;
  int64_t deletes_;
  double read_random_exp_range_;
  int64_t writes_;
  int64_t readwrites_;
  int64_t merge_keys_;
  bool report_file_operations_;
  bool use_blob_db_;    // Stacked BlobDB
  bool read_operands_;  // read via GetMergeOperands()
  std::vector<std::string> keys_;

  class ErrorHandlerListener : public EventListener {
   public:
#ifndef ROCKSDB_LITE
    ErrorHandlerListener()
        : mutex_(),
          cv_(&mutex_),
          no_auto_recovery_(false),
          recovery_complete_(false) {}

    ~ErrorHandlerListener() override {}

    const char* Name() const override { return kClassName(); }
    static const char* kClassName() { return "ErrorHandlerListener"; }

    void OnErrorRecoveryBegin(BackgroundErrorReason /*reason*/,
                              Status /*bg_error*/,
                              bool* auto_recovery) override {
      if (*auto_recovery && no_auto_recovery_) {
        *auto_recovery = false;
      }
    }

    void OnErrorRecoveryCompleted(Status /*old_bg_error*/) override {
      InstrumentedMutexLock l(&mutex_);
      recovery_complete_ = true;
      cv_.SignalAll();
    }

    bool WaitForRecovery(uint64_t abs_time_us) {
      InstrumentedMutexLock l(&mutex_);
      if (!recovery_complete_) {
        cv_.TimedWait(abs_time_us);
      }
      if (recovery_complete_) {
        recovery_complete_ = false;
        return true;
      }
      return false;
    }

    void EnableAutoRecovery(bool enable = true) { no_auto_recovery_ = !enable; }

   private:
    InstrumentedMutex mutex_;
    InstrumentedCondVar cv_;
    bool no_auto_recovery_;
    bool recovery_complete_;
#else   // ROCKSDB_LITE
    bool WaitForRecovery(uint64_t /*abs_time_us*/) { return true; }
    void EnableAutoRecovery(bool /*enable*/) {}
#endif  // ROCKSDB_LITE
  };

  std::shared_ptr<ErrorHandlerListener> listener_;

  std::unique_ptr<TimestampEmulator> mock_app_clock_;

  bool SanityCheck() {
    if (FLAGS_compression_ratio > 1) {
      fprintf(stderr, "compression_ratio should be between 0 and 1\n");
      return false;
    }
    return true;
  }

  inline bool CompressSlice(const CompressionInfo& compression_info,
                            const Slice& input, std::string* compressed) {
    constexpr uint32_t compress_format_version = 2;

    return CompressData(input, compression_info, compress_format_version,
                        compressed);
  }

  void PrintHeader(const Options& options) {
    PrintEnvironment();
    fprintf(stdout,
            "Keys:       %d bytes each (+ %d bytes user-defined timestamp)\n",
            FLAGS_key_size, FLAGS_user_timestamp_size);
    auto avg_value_size = FLAGS_value_size;
    if (FLAGS_value_size_distribution_type_e == kFixed) {
      fprintf(stdout,
              "Values:     %d bytes each (%d bytes after compression)\n",
              avg_value_size,
              static_cast<int>(avg_value_size * FLAGS_compression_ratio + 0.5));
    } else {
      avg_value_size = (FLAGS_value_size_min + FLAGS_value_size_max) / 2;
      fprintf(stdout,
              "Values:     %d avg bytes each (%d bytes after compression)\n",
              avg_value_size,
              static_cast<int>(avg_value_size * FLAGS_compression_ratio + 0.5));
      fprintf(stdout, "Values Distribution: %s (min: %d, max: %d)\n",
              FLAGS_value_size_distribution_type.c_str(), FLAGS_value_size_min,
              FLAGS_value_size_max);
    }
    fprintf(stdout, "Entries:    %" PRIu64 "\n", num_);
    fprintf(stdout, "Prefix:    %d bytes\n", FLAGS_prefix_size);
    fprintf(stdout, "Keys per prefix:    %" PRIu64 "\n", keys_per_prefix_);
    fprintf(stdout, "RawSize:    %.1f MB (estimated)\n",
            ((static_cast<int64_t>(FLAGS_key_size + avg_value_size) * num_) /
             1048576.0));
    fprintf(
        stdout, "FileSize:   %.1f MB (estimated)\n",
        (((FLAGS_key_size + avg_value_size * FLAGS_compression_ratio) * num_) /
         1048576.0));
    fprintf(stdout, "Write rate: %" PRIu64 " bytes/second\n",
            FLAGS_benchmark_write_rate_limit);
    fprintf(stdout, "Read rate: %" PRIu64 " ops/second\n",
            FLAGS_benchmark_read_rate_limit);
    if (FLAGS_enable_numa) {
      fprintf(stderr, "Running in NUMA enabled mode.\n");
#ifndef NUMA
      fprintf(stderr, "NUMA is not defined in the system.\n");
      exit(1);
#else
      if (numa_available() == -1) {
        fprintf(stderr, "NUMA is not supported by the system.\n");
        exit(1);
      }
#endif
    }

    auto compression = CompressionTypeToString(FLAGS_compression_type_e);
    fprintf(stdout, "Compression: %s\n", compression.c_str());
    fprintf(stdout, "Compression sampling rate: %" PRId64 "\n",
            FLAGS_sample_for_compression);
    if (options.memtable_factory != nullptr) {
      fprintf(stdout, "Memtablerep: %s\n",
              options.memtable_factory->GetId().c_str());
    }
    fprintf(stdout, "Perf Level: %d\n", FLAGS_perf_level);

    PrintWarnings(compression.c_str());
    fprintf(stdout, "------------------------------------------------\n");
  }

  void PrintWarnings(const char* compression) {
#if defined(__GNUC__) && !defined(__OPTIMIZE__)
    fprintf(
        stdout,
        "WARNING: Optimization is disabled: benchmarks unnecessarily slow\n");
#endif
#ifndef NDEBUG
    fprintf(stdout,
            "WARNING: Assertions are enabled; benchmarks unnecessarily slow\n");
#endif
    if (FLAGS_compression_type_e != ROCKSDB_NAMESPACE::kNoCompression) {
      // The test string should not be too small.
      const int len = FLAGS_block_size;
      std::string input_str(len, 'y');
      std::string compressed;
      CompressionOptions opts;
      CompressionContext context(FLAGS_compression_type_e);
      CompressionInfo info(opts, context, CompressionDict::GetEmptyDict(),
                           FLAGS_compression_type_e,
                           FLAGS_sample_for_compression);
      bool result = CompressSlice(info, Slice(input_str), &compressed);

      if (!result) {
        fprintf(stdout, "WARNING: %s compression is not enabled\n",
                compression);
      } else if (compressed.size() >= input_str.size()) {
        fprintf(stdout, "WARNING: %s compression is not effective\n",
                compression);
      }
    }
  }

// Current the following isn't equivalent to OS_LINUX.
#if defined(__linux)
  static Slice TrimSpace(Slice s) {
    unsigned int start = 0;
    while (start < s.size() && isspace(s[start])) {
      start++;
    }
    unsigned int limit = static_cast<unsigned int>(s.size());
    while (limit > start && isspace(s[limit - 1])) {
      limit--;
    }
    return Slice(s.data() + start, limit - start);
  }
#endif

  void PrintEnvironment() {
    fprintf(stderr, "RocksDB:    version %s\n",
            GetRocksVersionAsString(true).c_str());

#if defined(__linux) || defined(__APPLE__) || defined(__FreeBSD__)
    time_t now = time(nullptr);
    char buf[52];
    // Lint complains about ctime() usage, so replace it with ctime_r(). The
    // requirement is to provide a buffer which is at least 26 bytes.
    fprintf(stderr, "Date:       %s",
            ctime_r(&now, buf));  // ctime_r() adds newline

#if defined(__linux)
    FILE* cpuinfo = fopen("/proc/cpuinfo", "r");
    if (cpuinfo != nullptr) {
      char line[1000];
      int num_cpus = 0;
      std::string cpu_type;
      std::string cache_size;
      while (fgets(line, sizeof(line), cpuinfo) != nullptr) {
        const char* sep = strchr(line, ':');
        if (sep == nullptr) {
          continue;
        }
        Slice key = TrimSpace(Slice(line, sep - 1 - line));
        Slice val = TrimSpace(Slice(sep + 1));
        if (key == "model name") {
          ++num_cpus;
          cpu_type = val.ToString();
        } else if (key == "cache size") {
          cache_size = val.ToString();
        }
      }
      fclose(cpuinfo);
      fprintf(stderr, "CPU:        %d * %s\n", num_cpus, cpu_type.c_str());
      fprintf(stderr, "CPUCache:   %s\n", cache_size.c_str());
    }
#elif defined(__APPLE__)
    struct host_basic_info h;
    size_t hlen = HOST_BASIC_INFO_COUNT;
    if (host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&h,
                  (uint32_t*)&hlen) == KERN_SUCCESS) {
      std::string cpu_type;
      std::string cache_size;
      size_t hcache_size;
      hlen = sizeof(hcache_size);
      if (sysctlbyname("hw.cachelinesize", &hcache_size, &hlen, NULL, 0) == 0) {
        cache_size = std::to_string(hcache_size);
      }
      switch (h.cpu_type) {
        case CPU_TYPE_X86_64:
          cpu_type = "x86_64";
          break;
        case CPU_TYPE_ARM64:
          cpu_type = "arm64";
          break;
        default:
          break;
      }
      fprintf(stderr, "CPU:        %d * %s\n", h.max_cpus, cpu_type.c_str());
      fprintf(stderr, "CPUCache:   %s\n", cache_size.c_str());
    }
#elif defined(__FreeBSD__)
    int ncpus;
    size_t len = sizeof(ncpus);
    int mib[2] = {CTL_HW, HW_NCPU};
    if (sysctl(mib, 2, &ncpus, &len, nullptr, 0) == 0) {
      char cpu_type[16];
      len = sizeof(cpu_type) - 1;
      mib[1] = HW_MACHINE;
      if (sysctl(mib, 2, cpu_type, &len, nullptr, 0) == 0) cpu_type[len] = 0;

      fprintf(stderr, "CPU:        %d * %s\n", ncpus, cpu_type);
      // no programmatic way to get the cache line size except on PPC
    }
#endif
#endif
  }

  static bool KeyExpired(const TimestampEmulator* timestamp_emulator,
                         const Slice& key) {
    const char* pos = key.data();
    pos += 8;
    uint64_t timestamp = 0;
    if (port::kLittleEndian) {
      int bytes_to_fill = 8;
      for (int i = 0; i < bytes_to_fill; ++i) {
        timestamp |= (static_cast<uint64_t>(static_cast<unsigned char>(pos[i]))
                      << ((bytes_to_fill - i - 1) << 3));
      }
    } else {
      memcpy(&timestamp, pos, sizeof(timestamp));
    }
    return timestamp_emulator->Get() - timestamp > FLAGS_time_range;
  }

  class ExpiredTimeFilter : public CompactionFilter {
   public:
    explicit ExpiredTimeFilter(
        const std::shared_ptr<TimestampEmulator>& timestamp_emulator)
        : timestamp_emulator_(timestamp_emulator) {}
    bool Filter(int /*level*/, const Slice& key,
                const Slice& /*existing_value*/, std::string* /*new_value*/,
                bool* /*value_changed*/) const override {
      return KeyExpired(timestamp_emulator_.get(), key);
    }
    const char* Name() const override { return "ExpiredTimeFilter"; }

   private:
    std::shared_ptr<TimestampEmulator> timestamp_emulator_;
  };

  class KeepFilter : public CompactionFilter {
   public:
    bool Filter(int /*level*/, const Slice& /*key*/, const Slice& /*value*/,
                std::string* /*new_value*/,
                bool* /*value_changed*/) const override {
      return false;
    }

    const char* Name() const override { return "KeepFilter"; }
  };

  static std::shared_ptr<MemoryAllocator> GetCacheAllocator() {
    std::shared_ptr<MemoryAllocator> allocator;

    if (FLAGS_use_cache_jemalloc_no_dump_allocator) {
      JemallocAllocatorOptions jemalloc_options;
      if (!NewJemallocNodumpAllocator(jemalloc_options, &allocator).ok()) {
        fprintf(stderr, "JemallocNodumpAllocator not supported.\n");
        exit(1);
      }
    } else if (FLAGS_use_cache_memkind_kmem_allocator) {
#ifdef MEMKIND
      allocator = std::make_shared<MemkindKmemAllocator>();
#else
      fprintf(stderr, "Memkind library is not linked with the binary.\n");
      exit(1);
#endif
    }

    return allocator;
  }

  static std::shared_ptr<Cache> NewCache(int64_t capacity) {
    if (capacity <= 0) {
      return nullptr;
    }
    if (FLAGS_cache_type == "clock_cache") {
      fprintf(stderr, "Old clock cache implementation has been removed.\n");
      exit(1);
    } else if (FLAGS_cache_type == "hyper_clock_cache") {
      return HyperClockCacheOptions(static_cast<size_t>(capacity),
                                    FLAGS_block_size /*estimated_entry_charge*/,
                                    FLAGS_cache_numshardbits)
          .MakeSharedCache();
    } else if (FLAGS_cache_type == "lru_cache") {
      LRUCacheOptions opts(
          static_cast<size_t>(capacity), FLAGS_cache_numshardbits,
          false /*strict_capacity_limit*/, FLAGS_cache_high_pri_pool_ratio,
          GetCacheAllocator(), kDefaultToAdaptiveMutex,
          kDefaultCacheMetadataChargePolicy, FLAGS_cache_low_pri_pool_ratio);

#ifndef ROCKSDB_LITE
      if (!FLAGS_secondary_cache_uri.empty()) {
        Status s = SecondaryCache::CreateFromString(
            ConfigOptions(), FLAGS_secondary_cache_uri, &secondary_cache);
        if (secondary_cache == nullptr) {
          fprintf(
              stderr,
              "No secondary cache registered matching string: %s status=%s\n",
              FLAGS_secondary_cache_uri.c_str(), s.ToString().c_str());
          exit(1);
        }
        opts.secondary_cache = secondary_cache;
      }
#endif  // ROCKSDB_LITE

      if (FLAGS_use_compressed_secondary_cache) {
        CompressedSecondaryCacheOptions secondary_cache_opts;
        secondary_cache_opts.capacity = FLAGS_compressed_secondary_cache_size;
        secondary_cache_opts.num_shard_bits =
            FLAGS_compressed_secondary_cache_numshardbits;
        secondary_cache_opts.high_pri_pool_ratio =
            FLAGS_compressed_secondary_cache_high_pri_pool_ratio;
        secondary_cache_opts.low_pri_pool_ratio =
            FLAGS_compressed_secondary_cache_low_pri_pool_ratio;
        secondary_cache_opts.compression_type =
            FLAGS_compressed_secondary_cache_compression_type_e;
        secondary_cache_opts.compress_format_version =
            FLAGS_compressed_secondary_cache_compress_format_version;
        opts.secondary_cache =
            NewCompressedSecondaryCache(secondary_cache_opts);
      }

      return NewLRUCache(opts);
    } else {
      fprintf(stderr, "Cache type not supported.");
      exit(1);
    }
  }

 public:
  Benchmark()
      : cache_(NewCache(FLAGS_cache_size)),
        compressed_cache_(NewCache(FLAGS_compressed_cache_size)),
        prefix_extractor_(FLAGS_prefix_size != 0
                              ? NewFixedPrefixTransform(FLAGS_prefix_size)
                              : nullptr),
        num_(FLAGS_num),
        key_size_(FLAGS_key_size),
        user_timestamp_size_(FLAGS_user_timestamp_size),
        prefix_size_(FLAGS_prefix_size),
        total_thread_count_(0),
        keys_per_prefix_(FLAGS_keys_per_prefix),
        entries_per_batch_(1),
        reads_(FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads),
        read_random_exp_range_(0.0),
        writes_(FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes),
        readwrites_(
            (FLAGS_writes < 0 && FLAGS_reads < 0)
                ? FLAGS_num
                : ((FLAGS_writes > FLAGS_reads) ? FLAGS_writes : FLAGS_reads)),
        merge_keys_(FLAGS_merge_keys < 0 ? FLAGS_num : FLAGS_merge_keys),
        report_file_operations_(FLAGS_report_file_operations),
#ifndef ROCKSDB_LITE
        use_blob_db_(FLAGS_use_blob_db),  // Stacked BlobDB
#else
        use_blob_db_(false),  // Stacked BlobDB
#endif  // !ROCKSDB_LITE
        read_operands_(false) {
    // use simcache instead of cache
    if (FLAGS_simcache_size >= 0) {
      if (FLAGS_cache_numshardbits >= 1) {
        cache_ =
            NewSimCache(cache_, FLAGS_simcache_size, FLAGS_cache_numshardbits);
      } else {
        cache_ = NewSimCache(cache_, FLAGS_simcache_size, 0);
      }
    }

    if (report_file_operations_) {
      FLAGS_env = new CompositeEnvWrapper(
          FLAGS_env,
          std::make_shared<CountedFileSystem>(FLAGS_env->GetFileSystem()));
    }

    if (FLAGS_prefix_size > FLAGS_key_size) {
      fprintf(stderr, "prefix size is larger than key size");
      exit(1);
    }

    std::vector<std::string> files;
    FLAGS_env->GetChildren(FLAGS_db, &files);
    for (size_t i = 0; i < files.size(); i++) {
      if (Slice(files[i]).starts_with("heap-")) {
        FLAGS_env->DeleteFile(FLAGS_db + "/" + files[i]);
      }
    }
    if (!FLAGS_use_existing_db) {
      Options options;
      options.env = FLAGS_env;
      if (!FLAGS_wal_dir.empty()) {
        options.wal_dir = FLAGS_wal_dir;
      }
#ifndef ROCKSDB_LITE
      if (use_blob_db_) {
        // Stacked BlobDB
        blob_db::DestroyBlobDB(FLAGS_db, options, blob_db::BlobDBOptions());
      }
#endif  // !ROCKSDB_LITE
      DestroyDB(FLAGS_db, options);
      if (!FLAGS_wal_dir.empty()) {
        FLAGS_env->DeleteDir(FLAGS_wal_dir);
      }

      if (FLAGS_num_multi_db > 1) {
        FLAGS_env->CreateDir(FLAGS_db);
        if (!FLAGS_wal_dir.empty()) {
          FLAGS_env->CreateDir(FLAGS_wal_dir);
        }
      }
    }

    listener_.reset(new ErrorHandlerListener());
    if (user_timestamp_size_ > 0) {
      mock_app_clock_.reset(new TimestampEmulator());
    }
  }

  void DeleteDBs() {
    db_.DeleteDBs();
    for (const DBWithColumnFamilies& dbwcf : multi_dbs_) {
      delete dbwcf.db;
    }
  }

  ~Benchmark() {
    DeleteDBs();
    if (cache_.get() != nullptr) {
      // Clear cache reference first
      open_options_.write_buffer_manager.reset();
      // this will leak, but we're shutting down so nobody cares
      cache_->DisownData();
    }
  }

  Slice AllocateKey(std::unique_ptr<const char[]>* key_guard) {
    char* data = new char[key_size_];
    const char* const_data = data;
    key_guard->reset(const_data);
    return Slice(key_guard->get(), key_size_);
  }

  // Generate key according to the given specification and random number.
  // The resulting key will have the following format:
  //   - If keys_per_prefix_ is positive, extra trailing bytes are either cut
  //     off or padded with '0'.
  //     The prefix value is derived from key value.
  //     ----------------------------
  //     | prefix 00000 | key 00000 |
  //     ----------------------------
  //
  //   - If keys_per_prefix_ is 0, the key is simply a binary representation of
  //     random number followed by trailing '0's
  //     ----------------------------
  //     |        key 00000         |
  //     ----------------------------
  void GenerateKeyFromInt(uint64_t v, int64_t num_keys, Slice* key) {
    if (!keys_.empty()) {
      assert(FLAGS_use_existing_keys);
      assert(keys_.size() == static_cast<size_t>(num_keys));
      assert(v < static_cast<uint64_t>(num_keys));
      *key = keys_[v];
      return;
    }
    char* start = const_cast<char*>(key->data());
    char* pos = start;
    if (keys_per_prefix_ > 0) {
      int64_t num_prefix = num_keys / keys_per_prefix_;
      int64_t prefix = v % num_prefix;
      int bytes_to_fill = std::min(prefix_size_, 8);
      if (port::kLittleEndian) {
        for (int i = 0; i < bytes_to_fill; ++i) {
          pos[i] = (prefix >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
        }
      } else {
        memcpy(pos, static_cast<void*>(&prefix), bytes_to_fill);
      }
      if (prefix_size_ > 8) {
        // fill the rest with 0s
        memset(pos + 8, '0', prefix_size_ - 8);
      }
      pos += prefix_size_;
    }

    int bytes_to_fill = std::min(key_size_ - static_cast<int>(pos - start), 8);
    if (port::kLittleEndian) {
      for (int i = 0; i < bytes_to_fill; ++i) {
        pos[i] = (v >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
      }
    } else {
      memcpy(pos, static_cast<void*>(&v), bytes_to_fill);
    }
    pos += bytes_to_fill;
    if (key_size_ > pos - start) {
      memset(pos, '0', key_size_ - (pos - start));
    }
  }

  void GenerateKeyFromIntForSeek(uint64_t v, int64_t num_keys, Slice* key) {
    GenerateKeyFromInt(v, num_keys, key);
    if (FLAGS_seek_missing_prefix) {
      assert(prefix_size_ > 8);
      char* key_ptr = const_cast<char*>(key->data());
      // This rely on GenerateKeyFromInt filling paddings with '0's.
      // Putting a '1' will create a non-existing prefix.
      key_ptr[8] = '1';
    }
  }

  std::string GetPathForMultiple(std::string base_name, size_t id) {
    if (!base_name.empty()) {
#ifndef OS_WIN
      if (base_name.back() != '/') {
        base_name += '/';
      }
#else
      if (base_name.back() != '\\') {
        base_name += '\\';
      }
#endif
    }
    return base_name + std::to_string(id);
  }

  void VerifyDBFromDB(std::string& truth_db_name) {
    DBWithColumnFamilies truth_db;
    auto s = DB::OpenForReadOnly(open_options_, truth_db_name, &truth_db.db);
    if (!s.ok()) {
      fprintf(stderr, "open error: %s\n", s.ToString().c_str());
      exit(1);
    }
    ReadOptions ro;
    ro.total_order_seek = true;
    std::unique_ptr<Iterator> truth_iter(truth_db.db->NewIterator(ro));
    std::unique_ptr<Iterator> db_iter(db_.db->NewIterator(ro));
    // Verify that all the key/values in truth_db are retrivable in db with
    // ::Get
    fprintf(stderr, "Verifying db >= truth_db with ::Get...\n");
    for (truth_iter->SeekToFirst(); truth_iter->Valid(); truth_iter->Next()) {
      std::string value;
      s = db_.db->Get(ro, truth_iter->key(), &value);
      assert(s.ok());
      // TODO(myabandeh): provide debugging hints
      assert(Slice(value) == truth_iter->value());
    }
    // Verify that the db iterator does not give any extra key/value
    fprintf(stderr, "Verifying db == truth_db...\n");
    for (db_iter->SeekToFirst(), truth_iter->SeekToFirst(); db_iter->Valid();
         db_iter->Next(), truth_iter->Next()) {
      assert(truth_iter->Valid());
      assert(truth_iter->value() == db_iter->value());
    }
    // No more key should be left unchecked in truth_db
    assert(!truth_iter->Valid());
    fprintf(stderr, "...Verified\n");
  }

  void ErrorExit() {
    DeleteDBs();
    exit(1);
  }

  void Run() {
    if (!SanityCheck()) {
      ErrorExit();
    }
    Open(&open_options_);
    PrintHeader(open_options_);
    std::stringstream benchmark_stream(FLAGS_benchmarks);
    std::string name;
    std::unique_ptr<ExpiredTimeFilter> filter;
    while (std::getline(benchmark_stream, name, ',')) {
      // Sanitize parameters
      num_ = FLAGS_num;
      reads_ = (FLAGS_reads < 0 ? FLAGS_num : FLAGS_reads);
      writes_ = (FLAGS_writes < 0 ? FLAGS_num : FLAGS_writes);
      deletes_ = (FLAGS_deletes < 0 ? FLAGS_num : FLAGS_deletes);
      value_size = FLAGS_value_size;
      key_size_ = FLAGS_key_size;
      entries_per_batch_ = FLAGS_batch_size;
      writes_before_delete_range_ = FLAGS_writes_before_delete_range;
      writes_per_range_tombstone_ = FLAGS_writes_per_range_tombstone;
      range_tombstone_width_ = FLAGS_range_tombstone_width;
      max_num_range_tombstones_ = FLAGS_max_num_range_tombstones;
      write_options_ = WriteOptions();
      read_random_exp_range_ = FLAGS_read_random_exp_range;
      if (FLAGS_sync) {
        write_options_.sync = true;
      }
      write_options_.disableWAL = FLAGS_disable_wal;
      write_options_.rate_limiter_priority =
          FLAGS_rate_limit_auto_wal_flush ? Env::IO_USER : Env::IO_TOTAL;
      read_options_ = ReadOptions(FLAGS_verify_checksum, true);
      read_options_.total_order_seek = FLAGS_total_order_seek;
      read_options_.prefix_same_as_start = FLAGS_prefix_same_as_start;
      read_options_.rate_limiter_priority =
          FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
      read_options_.tailing = FLAGS_use_tailing_iterator;
      read_options_.readahead_size = FLAGS_readahead_size;
      read_options_.adaptive_readahead = FLAGS_adaptive_readahead;
      read_options_.async_io = FLAGS_async_io;
      read_options_.optimize_multiget_for_io = FLAGS_optimize_multiget_for_io;

      void (Benchmark::*method)(ThreadState*) = nullptr;
      void (Benchmark::*post_process_method)() = nullptr;

      bool fresh_db = false;
      int num_threads = FLAGS_threads;

      int num_repeat = 1;
      int num_warmup = 0;
      if (!name.empty() && *name.rbegin() == ']') {
        auto it = name.find('[');
        if (it == std::string::npos) {
          fprintf(stderr, "unknown benchmark arguments '%s'\n", name.c_str());
          ErrorExit();
        }
        std::string args = name.substr(it + 1);
        args.resize(args.size() - 1);
        name.resize(it);

        std::string bench_arg;
        std::stringstream args_stream(args);
        while (std::getline(args_stream, bench_arg, '-')) {
          if (bench_arg.empty()) {
            continue;
          }
          if (bench_arg[0] == 'X') {
            // Repeat the benchmark n times
            std::string num_str = bench_arg.substr(1);
            num_repeat = std::stoi(num_str);
          } else if (bench_arg[0] == 'W') {
            // Warm up the benchmark for n times
            std::string num_str = bench_arg.substr(1);
            num_warmup = std::stoi(num_str);
          }
        }
      }

      // Both fillseqdeterministic and filluniquerandomdeterministic
      // fill the levels except the max level with UNIQUE_RANDOM
      // and fill the max level with fillseq and filluniquerandom, respectively
      if (name == "fillseqdeterministic" ||
          name == "filluniquerandomdeterministic") {
        if (!FLAGS_disable_auto_compactions) {
          fprintf(stderr,
                  "Please disable_auto_compactions in FillDeterministic "
                  "benchmark\n");
          ErrorExit();
        }
        if (num_threads > 1) {
          fprintf(stderr,
                  "filldeterministic multithreaded not supported"
                  ", use 1 thread\n");
          num_threads = 1;
        }
        fresh_db = true;
        if (name == "fillseqdeterministic") {
          method = &Benchmark::WriteSeqDeterministic;
        } else {
          method = &Benchmark::WriteUniqueRandomDeterministic;
        }
      } else if (name == "fillseq") {
        fresh_db = true;
        method = &Benchmark::WriteSeq;
      } else if (name == "fillbatch") {
        fresh_db = true;
        entries_per_batch_ = 1000;
        method = &Benchmark::WriteSeq;
      } else if (name == "fillrandom") {
        fresh_db = true;
        method = &Benchmark::WriteRandom;
      } else if (name == "filluniquerandom" ||
                 name == "fillanddeleteuniquerandom") {
        fresh_db = true;
        if (num_threads > 1) {
          fprintf(stderr,
                  "filluniquerandom and fillanddeleteuniquerandom "
                  "multithreaded not supported, use 1 thread");
          num_threads = 1;
        }
        method = &Benchmark::WriteUniqueRandom;
      } else if (name == "overwrite") {
        method = &Benchmark::WriteRandom;
      } else if (name == "fillsync") {
        fresh_db = true;
        num_ /= 1000;
        write_options_.sync = true;
        method = &Benchmark::WriteRandom;
      } else if (name == "fill100K") {
        fresh_db = true;
        num_ /= 1000;
        value_size = 100 * 1000;
        method = &Benchmark::WriteRandom;
      } else if (name == "readseq") {
        method = &Benchmark::ReadSequential;
      } else if (name == "readtorowcache") {
        if (!FLAGS_use_existing_keys || !FLAGS_row_cache_size) {
          fprintf(stderr,
                  "Please set use_existing_keys to true and specify a "
                  "row cache size in readtorowcache benchmark\n");
          ErrorExit();
        }
        method = &Benchmark::ReadToRowCache;
      } else if (name == "readtocache") {
        method = &Benchmark::ReadSequential;
        num_threads = 1;
        reads_ = num_;
      } else if (name == "readreverse") {
        method = &Benchmark::ReadReverse;
      } else if (name == "readrandom") {
        if (FLAGS_multiread_stride) {
          fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
                  entries_per_batch_);
        }
        method = &Benchmark::ReadRandom;
      } else if (name == "readrandomfast") {
        method = &Benchmark::ReadRandomFast;
      } else if (name == "multireadrandom") {
        fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
                entries_per_batch_);
        method = &Benchmark::MultiReadRandom;
      } else if (name == "multireadwhilewriting") {
        fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
                entries_per_batch_);
        num_threads++;
        method = &Benchmark::MultiReadWhileWriting;
      } else if (name == "approximatesizerandom") {
        fprintf(stderr, "entries_per_batch = %" PRIi64 "\n",
                entries_per_batch_);
        method = &Benchmark::ApproximateSizeRandom;
      } else if (name == "mixgraph") {
        method = &Benchmark::MixGraph;
      } else if (name == "readmissing") {
        ++key_size_;
        method = &Benchmark::ReadRandom;
      } else if (name == "newiterator") {
        method = &Benchmark::IteratorCreation;
      } else if (name == "newiteratorwhilewriting") {
        num_threads++;  // Add extra thread for writing
        method = &Benchmark::IteratorCreationWhileWriting;
      } else if (name == "seekrandom") {
        method = &Benchmark::SeekRandom;
      } else if (name == "seekrandomwhilewriting") {
        num_threads++;  // Add extra thread for writing
        method = &Benchmark::SeekRandomWhileWriting;
      } else if (name == "seekrandomwhilemerging") {
        num_threads++;  // Add extra thread for merging
        method = &Benchmark::SeekRandomWhileMerging;
      } else if (name == "readrandomsmall") {
        reads_ /= 1000;
        method = &Benchmark::ReadRandom;
      } else if (name == "deleteseq") {
        method = &Benchmark::DeleteSeq;
      } else if (name == "deleterandom") {
        method = &Benchmark::DeleteRandom;
      } else if (name == "readwhilewriting") {
        num_threads++;  // Add extra thread for writing
        method = &Benchmark::ReadWhileWriting;
      } else if (name == "readwhilemerging") {
        num_threads++;  // Add extra thread for writing
        method = &Benchmark::ReadWhileMerging;
      } else if (name == "readwhilescanning") {
        num_threads++;  // Add extra thread for scaning
        method = &Benchmark::ReadWhileScanning;
      } else if (name == "readrandomwriterandom") {
        method = &Benchmark::ReadRandomWriteRandom;
      } else if (name == "readrandommergerandom") {
        if (FLAGS_merge_operator.empty()) {
          fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n",
                  name.c_str());
          ErrorExit();
        }
        method = &Benchmark::ReadRandomMergeRandom;
      } else if (name == "updaterandom") {
        method = &Benchmark::UpdateRandom;
      } else if (name == "xorupdaterandom") {
        method = &Benchmark::XORUpdateRandom;
      } else if (name == "appendrandom") {
        method = &Benchmark::AppendRandom;
      } else if (name == "mergerandom") {
        if (FLAGS_merge_operator.empty()) {
          fprintf(stdout, "%-12s : skipped (--merge_operator is unknown)\n",
                  name.c_str());
          exit(1);
        }
        method = &Benchmark::MergeRandom;
      } else if (name == "randomwithverify") {
        method = &Benchmark::RandomWithVerify;
      } else if (name == "fillseekseq") {
        method = &Benchmark::WriteSeqSeekSeq;
      } else if (name == "compact") {
        method = &Benchmark::Compact;
      } else if (name == "compactall") {
        CompactAll();
#ifndef ROCKSDB_LITE
      } else if (name == "compact0") {
        CompactLevel(0);
      } else if (name == "compact1") {
        CompactLevel(1);
      } else if (name == "waitforcompaction") {
        WaitForCompaction();
#endif
      } else if (name == "flush") {
        Flush();
      } else if (name == "crc32c") {
        method = &Benchmark::Crc32c;
      } else if (name == "xxhash") {
        method = &Benchmark::xxHash;
      } else if (name == "xxhash64") {
        method = &Benchmark::xxHash64;
      } else if (name == "xxh3") {
        method = &Benchmark::xxh3;
      } else if (name == "acquireload") {
        method = &Benchmark::AcquireLoad;
      } else if (name == "compress") {
        method = &Benchmark::Compress;
      } else if (name == "uncompress") {
        method = &Benchmark::Uncompress;
#ifndef ROCKSDB_LITE
      } else if (name == "randomtransaction") {
        method = &Benchmark::RandomTransaction;
        post_process_method = &Benchmark::RandomTransactionVerify;
#endif  // ROCKSDB_LITE
      } else if (name == "randomreplacekeys") {
        fresh_db = true;
        method = &Benchmark::RandomReplaceKeys;
      } else if (name == "timeseries") {
        timestamp_emulator_.reset(new TimestampEmulator());
        if (FLAGS_expire_style == "compaction_filter") {
          filter.reset(new ExpiredTimeFilter(timestamp_emulator_));
          fprintf(stdout, "Compaction filter is used to remove expired data");
          open_options_.compaction_filter = filter.get();
        }
        fresh_db = true;
        method = &Benchmark::TimeSeries;
      } else if (name == "block_cache_entry_stats") {
        // DB::Properties::kBlockCacheEntryStats
        PrintStats("rocksdb.block-cache-entry-stats");
      } else if (name == "stats") {
        PrintStats("rocksdb.stats");
      } else if (name == "resetstats") {
        ResetStats();
      } else if (name == "verify") {
        VerifyDBFromDB(FLAGS_truth_db);
      } else if (name == "levelstats") {
        PrintStats("rocksdb.levelstats");
      } else if (name == "memstats") {
        std::vector<std::string> keys{"rocksdb.num-immutable-mem-table",
                                      "rocksdb.cur-size-active-mem-table",
                                      "rocksdb.cur-size-all-mem-tables",
                                      "rocksdb.size-all-mem-tables",
                                      "rocksdb.num-entries-active-mem-table",
                                      "rocksdb.num-entries-imm-mem-tables"};
        PrintStats(keys);
      } else if (name == "sstables") {
        PrintStats("rocksdb.sstables");
      } else if (name == "stats_history") {
        PrintStatsHistory();
#ifndef ROCKSDB_LITE
      } else if (name == "replay") {
        if (num_threads > 1) {
          fprintf(stderr, "Multi-threaded replay is not yet supported\n");
          ErrorExit();
        }
        if (FLAGS_trace_file == "") {
          fprintf(stderr, "Please set --trace_file to be replayed from\n");
          ErrorExit();
        }
        method = &Benchmark::Replay;
#endif  // ROCKSDB_LITE
      } else if (name == "getmergeoperands") {
        method = &Benchmark::GetMergeOperands;
#ifndef ROCKSDB_LITE
      } else if (name == "verifychecksum") {
        method = &Benchmark::VerifyChecksum;
      } else if (name == "verifyfilechecksums") {
        method = &Benchmark::VerifyFileChecksums;
#endif  // ROCKSDB_LITE
      } else if (name == "readrandomoperands") {
        read_operands_ = true;
        method = &Benchmark::ReadRandom;
#ifndef ROCKSDB_LITE
      } else if (name == "backup") {
        method = &Benchmark::Backup;
      } else if (name == "restore") {
        method = &Benchmark::Restore;
#endif
      } else if (!name.empty()) {  // No error message for empty name
        fprintf(stderr, "unknown benchmark '%s'\n", name.c_str());
        ErrorExit();
      }

      if (fresh_db) {
        if (FLAGS_use_existing_db) {
          fprintf(stdout, "%-12s : skipped (--use_existing_db is true)\n",
                  name.c_str());
          method = nullptr;
        } else {
          if (db_.db != nullptr) {
            db_.DeleteDBs();
            DestroyDB(FLAGS_db, open_options_);
          }
          Options options = open_options_;
          for (size_t i = 0; i < multi_dbs_.size(); i++) {
            delete multi_dbs_[i].db;
            if (!open_options_.wal_dir.empty()) {
              options.wal_dir = GetPathForMultiple(open_options_.wal_dir, i);
            }
            DestroyDB(GetPathForMultiple(FLAGS_db, i), options);
          }
          multi_dbs_.clear();
        }
        Open(&open_options_);  // use open_options for the last accessed
      }

      if (method != nullptr) {
        fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str());

#ifndef ROCKSDB_LITE
        if (name == "backup") {
          std::cout << "Backup path: [" << FLAGS_backup_dir << "]" << std::endl;
        } else if (name == "restore") {
          std::cout << "Backup path: [" << FLAGS_backup_dir << "]" << std::endl;
          std::cout << "Restore path: [" << FLAGS_restore_dir << "]"
                    << std::endl;
        }
        // A trace_file option can be provided both for trace and replay
        // operations. But db_bench does not support tracing and replaying at
        // the same time, for now. So, start tracing only when it is not a
        // replay.
        if (FLAGS_trace_file != "" && name != "replay") {
          std::unique_ptr<TraceWriter> trace_writer;
          Status s = NewFileTraceWriter(FLAGS_env, EnvOptions(),
                                        FLAGS_trace_file, &trace_writer);
          if (!s.ok()) {
            fprintf(stderr, "Encountered an error starting a trace, %s\n",
                    s.ToString().c_str());
            ErrorExit();
          }
          s = db_.db->StartTrace(trace_options_, std::move(trace_writer));
          if (!s.ok()) {
            fprintf(stderr, "Encountered an error starting a trace, %s\n",
                    s.ToString().c_str());
            ErrorExit();
          }
          fprintf(stdout, "Tracing the workload to: [%s]\n",
                  FLAGS_trace_file.c_str());
        }
        // Start block cache tracing.
        if (!FLAGS_block_cache_trace_file.empty()) {
          // Sanity checks.
          if (FLAGS_block_cache_trace_sampling_frequency <= 0) {
            fprintf(stderr,
                    "Block cache trace sampling frequency must be higher than "
                    "0.\n");
            ErrorExit();
          }
          if (FLAGS_block_cache_trace_max_trace_file_size_in_bytes <= 0) {
            fprintf(stderr,
                    "The maximum file size for block cache tracing must be "
                    "higher than 0.\n");
            ErrorExit();
          }
          block_cache_trace_options_.max_trace_file_size =
              FLAGS_block_cache_trace_max_trace_file_size_in_bytes;
          block_cache_trace_options_.sampling_frequency =
              FLAGS_block_cache_trace_sampling_frequency;
          std::unique_ptr<TraceWriter> block_cache_trace_writer;
          Status s = NewFileTraceWriter(FLAGS_env, EnvOptions(),
                                        FLAGS_block_cache_trace_file,
                                        &block_cache_trace_writer);
          if (!s.ok()) {
            fprintf(stderr,
                    "Encountered an error when creating trace writer, %s\n",
                    s.ToString().c_str());
            ErrorExit();
          }
          s = db_.db->StartBlockCacheTrace(block_cache_trace_options_,
                                           std::move(block_cache_trace_writer));
          if (!s.ok()) {
            fprintf(
                stderr,
                "Encountered an error when starting block cache tracing, %s\n",
                s.ToString().c_str());
            ErrorExit();
          }
          fprintf(stdout, "Tracing block cache accesses to: [%s]\n",
                  FLAGS_block_cache_trace_file.c_str());
        }
#endif  // ROCKSDB_LITE

        if (num_warmup > 0) {
          printf("Warming up benchmark by running %d times\n", num_warmup);
        }

        for (int i = 0; i < num_warmup; i++) {
          RunBenchmark(num_threads, name, method);
        }

        if (num_repeat > 1) {
          printf("Running benchmark for %d times\n", num_repeat);
        }

        CombinedStats combined_stats;
        for (int i = 0; i < num_repeat; i++) {
          Stats stats = RunBenchmark(num_threads, name, method);
          combined_stats.AddStats(stats);
          if (FLAGS_confidence_interval_only) {
            combined_stats.ReportWithConfidenceIntervals(name);
          } else {
            combined_stats.Report(name);
          }
        }
        if (num_repeat > 1) {
          combined_stats.ReportFinal(name);
        }
      }
      if (post_process_method != nullptr) {
        (this->*post_process_method)();
      }
    }

    if (secondary_update_thread_) {
      secondary_update_stopped_.store(1, std::memory_order_relaxed);
      secondary_update_thread_->join();
      secondary_update_thread_.reset();
    }

#ifndef ROCKSDB_LITE
    if (name != "replay" && FLAGS_trace_file != "") {
      Status s = db_.db->EndTrace();
      if (!s.ok()) {
        fprintf(stderr, "Encountered an error ending the trace, %s\n",
                s.ToString().c_str());
      }
    }
    if (!FLAGS_block_cache_trace_file.empty()) {
      Status s = db_.db->EndBlockCacheTrace();
      if (!s.ok()) {
        fprintf(stderr,
                "Encountered an error ending the block cache tracing, %s\n",
                s.ToString().c_str());
      }
    }
#endif  // ROCKSDB_LITE

    if (FLAGS_statistics) {
      fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str());
    }
    if (FLAGS_simcache_size >= 0) {
      fprintf(
          stdout, "SIMULATOR CACHE STATISTICS:\n%s\n",
          static_cast_with_check<SimCache>(cache_.get())->ToString().c_str());
    }

#ifndef ROCKSDB_LITE
    if (FLAGS_use_secondary_db) {
      fprintf(stdout, "Secondary instance updated  %" PRIu64 " times.\n",
              secondary_db_updates_);
    }
#endif  // ROCKSDB_LITE
  }

 private:
  std::shared_ptr<TimestampEmulator> timestamp_emulator_;
  std::unique_ptr<port::Thread> secondary_update_thread_;
  std::atomic<int> secondary_update_stopped_{0};
#ifndef ROCKSDB_LITE
  uint64_t secondary_db_updates_ = 0;
#endif  // ROCKSDB_LITE
  struct ThreadArg {
    Benchmark* bm;
    SharedState* shared;
    ThreadState* thread;
    void (Benchmark::*method)(ThreadState*);
  };

  static void ThreadBody(void* v) {
    ThreadArg* arg = reinterpret_cast<ThreadArg*>(v);
    SharedState* shared = arg->shared;
    ThreadState* thread = arg->thread;
    {
      MutexLock l(&shared->mu);
      shared->num_initialized++;
      if (shared->num_initialized >= shared->total) {
        shared->cv.SignalAll();
      }
      while (!shared->start) {
        shared->cv.Wait();
      }
    }

    SetPerfLevel(static_cast<PerfLevel>(shared->perf_level));
    perf_context.EnablePerLevelPerfContext();
    thread->stats.Start(thread->tid);
    (arg->bm->*(arg->method))(thread);
    if (FLAGS_perf_level > ROCKSDB_NAMESPACE::PerfLevel::kDisable) {
      thread->stats.AddMessage(std::string("PERF_CONTEXT:\n") +
                               get_perf_context()->ToString());
    }
    thread->stats.Stop();

    {
      MutexLock l(&shared->mu);
      shared->num_done++;
      if (shared->num_done >= shared->total) {
        shared->cv.SignalAll();
      }
    }
  }

  Stats RunBenchmark(int n, Slice name,
                     void (Benchmark::*method)(ThreadState*)) {
    SharedState shared;
    shared.total = n;
    shared.num_initialized = 0;
    shared.num_done = 0;
    shared.start = false;
    if (FLAGS_benchmark_write_rate_limit > 0) {
      shared.write_rate_limiter.reset(
          NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
    }
    if (FLAGS_benchmark_read_rate_limit > 0) {
      shared.read_rate_limiter.reset(NewGenericRateLimiter(
          FLAGS_benchmark_read_rate_limit, 100000 /* refill_period_us */,
          10 /* fairness */, RateLimiter::Mode::kReadsOnly));
    }

    std::unique_ptr<ReporterAgent> reporter_agent;
    if (FLAGS_report_interval_seconds > 0) {
      reporter_agent.reset(new ReporterAgent(FLAGS_env, FLAGS_report_file,
                                             FLAGS_report_interval_seconds));
    }

    ThreadArg* arg = new ThreadArg[n];

    for (int i = 0; i < n; i++) {
#ifdef NUMA
      if (FLAGS_enable_numa) {
        // Performs a local allocation of memory to threads in numa node.
        int n_nodes = numa_num_task_nodes();  // Number of nodes in NUMA.
        numa_exit_on_error = 1;
        int numa_node = i % n_nodes;
        bitmask* nodes = numa_allocate_nodemask();
        numa_bitmask_clearall(nodes);
        numa_bitmask_setbit(nodes, numa_node);
        // numa_bind() call binds the process to the node and these
        // properties are passed on to the thread that is created in
        // StartThread method called later in the loop.
        numa_bind(nodes);
        numa_set_strict(1);
        numa_free_nodemask(nodes);
      }
#endif
      arg[i].bm = this;
      arg[i].method = method;
      arg[i].shared = &shared;
      total_thread_count_++;
      arg[i].thread = new ThreadState(i, total_thread_count_);
      arg[i].thread->stats.SetReporterAgent(reporter_agent.get());
      arg[i].thread->shared = &shared;
      FLAGS_env->StartThread(ThreadBody, &arg[i]);
    }

    shared.mu.Lock();
    while (shared.num_initialized < n) {
      shared.cv.Wait();
    }

    shared.start = true;
    shared.cv.SignalAll();
    while (shared.num_done < n) {
      shared.cv.Wait();
    }
    shared.mu.Unlock();

    // Stats for some threads can be excluded.
    Stats merge_stats;
    for (int i = 0; i < n; i++) {
      merge_stats.Merge(arg[i].thread->stats);
    }
    merge_stats.Report(name);

    for (int i = 0; i < n; i++) {
      delete arg[i].thread;
    }
    delete[] arg;

    return merge_stats;
  }

  template <OperationType kOpType, typename FnType, typename... Args>
  static inline void ChecksumBenchmark(FnType fn, ThreadState* thread,
                                       Args... args) {
    const int size = FLAGS_block_size;  // use --block_size option for db_bench
    std::string labels = "(" + std::to_string(FLAGS_block_size) + " per op)";
    const char* label = labels.c_str();

    std::string data(size, 'x');
    uint64_t bytes = 0;
    uint32_t val = 0;
    while (bytes < 5000U * uint64_t{1048576}) {  // ~5GB
      val += static_cast<uint32_t>(fn(data.data(), size, args...));
      thread->stats.FinishedOps(nullptr, nullptr, 1, kOpType);
      bytes += size;
    }
    // Print so result is not dead
    fprintf(stderr, "... val=0x%x\r", static_cast<unsigned int>(val));

    thread->stats.AddBytes(bytes);
    thread->stats.AddMessage(label);
  }

  void Crc32c(ThreadState* thread) {
    ChecksumBenchmark<kCrc>(crc32c::Value, thread);
  }

  void xxHash(ThreadState* thread) {
    ChecksumBenchmark<kHash>(XXH32, thread, /*seed*/ 0);
  }

  void xxHash64(ThreadState* thread) {
    ChecksumBenchmark<kHash>(XXH64, thread, /*seed*/ 0);
  }

  void xxh3(ThreadState* thread) {
    ChecksumBenchmark<kHash>(XXH3_64bits, thread);
  }

  void AcquireLoad(ThreadState* thread) {
    int dummy;
    std::atomic<void*> ap(&dummy);
    int count = 0;
    void* ptr = nullptr;
    thread->stats.AddMessage("(each op is 1000 loads)");
    while (count < 100000) {
      for (int i = 0; i < 1000; i++) {
        ptr = ap.load(std::memory_order_acquire);
      }
      count++;
      thread->stats.FinishedOps(nullptr, nullptr, 1, kOthers);
    }
    if (ptr == nullptr) exit(1);  // Disable unused variable warning.
  }

  void Compress(ThreadState* thread) {
    RandomGenerator gen;
    Slice input = gen.Generate(FLAGS_block_size);
    int64_t bytes = 0;
    int64_t produced = 0;
    bool ok = true;
    std::string compressed;
    CompressionOptions opts;
    CompressionContext context(FLAGS_compression_type_e);
    CompressionInfo info(opts, context, CompressionDict::GetEmptyDict(),
                         FLAGS_compression_type_e,
                         FLAGS_sample_for_compression);
    // Compress 1G
    while (ok && bytes < int64_t(1) << 30) {
      compressed.clear();
      ok = CompressSlice(info, input, &compressed);
      produced += compressed.size();
      bytes += input.size();
      thread->stats.FinishedOps(nullptr, nullptr, 1, kCompress);
    }

    if (!ok) {
      thread->stats.AddMessage("(compression failure)");
    } else {
      char buf[340];
      snprintf(buf, sizeof(buf), "(output: %.1f%%)",
               (produced * 100.0) / bytes);
      thread->stats.AddMessage(buf);
      thread->stats.AddBytes(bytes);
    }
  }

  void Uncompress(ThreadState* thread) {
    RandomGenerator gen;
    Slice input = gen.Generate(FLAGS_block_size);
    std::string compressed;

    CompressionContext compression_ctx(FLAGS_compression_type_e);
    CompressionOptions compression_opts;
    CompressionInfo compression_info(
        compression_opts, compression_ctx, CompressionDict::GetEmptyDict(),
        FLAGS_compression_type_e, FLAGS_sample_for_compression);
    UncompressionContext uncompression_ctx(FLAGS_compression_type_e);
    UncompressionInfo uncompression_info(uncompression_ctx,
                                         UncompressionDict::GetEmptyDict(),
                                         FLAGS_compression_type_e);

    bool ok = CompressSlice(compression_info, input, &compressed);
    int64_t bytes = 0;
    size_t uncompressed_size = 0;
    while (ok && bytes < 1024 * 1048576) {
      constexpr uint32_t compress_format_version = 2;

      CacheAllocationPtr uncompressed = UncompressData(
          uncompression_info, compressed.data(), compressed.size(),
          &uncompressed_size, compress_format_version);

      ok = uncompressed.get() != nullptr;
      bytes += input.size();
      thread->stats.FinishedOps(nullptr, nullptr, 1, kUncompress);
    }

    if (!ok) {
      thread->stats.AddMessage("(compression failure)");
    } else {
      thread->stats.AddBytes(bytes);
    }
  }

  // Returns true if the options is initialized from the specified
  // options file.
  bool InitializeOptionsFromFile(Options* opts) {
#ifndef ROCKSDB_LITE
    printf("Initializing RocksDB Options from the specified file\n");
    DBOptions db_opts;
    std::vector<ColumnFamilyDescriptor> cf_descs;
    if (FLAGS_options_file != "") {
      auto s = LoadOptionsFromFile(FLAGS_options_file, FLAGS_env, &db_opts,
                                   &cf_descs);
      db_opts.env = FLAGS_env;
      if (s.ok()) {
        *opts = Options(db_opts, cf_descs[0].options);
        return true;
      }
      fprintf(stderr, "Unable to load options file %s --- %s\n",
              FLAGS_options_file.c_str(), s.ToString().c_str());
      exit(1);
    }
#else
    (void)opts;
#endif
    return false;
  }

  void InitializeOptionsFromFlags(Options* opts) {
    printf("Initializing RocksDB Options from command-line flags\n");
    Options& options = *opts;
    ConfigOptions config_options(options);
    config_options.ignore_unsupported_options = false;

    assert(db_.db == nullptr);

    options.env = FLAGS_env;
    options.wal_dir = FLAGS_wal_dir;
    options.dump_malloc_stats = FLAGS_dump_malloc_stats;
    options.stats_dump_period_sec =
        static_cast<unsigned int>(FLAGS_stats_dump_period_sec);
    options.stats_persist_period_sec =
        static_cast<unsigned int>(FLAGS_stats_persist_period_sec);
    options.persist_stats_to_disk = FLAGS_persist_stats_to_disk;
    options.stats_history_buffer_size =
        static_cast<size_t>(FLAGS_stats_history_buffer_size);
    options.avoid_flush_during_recovery = FLAGS_avoid_flush_during_recovery;

    options.compression_opts.level = FLAGS_compression_level;
    options.compression_opts.max_dict_bytes = FLAGS_compression_max_dict_bytes;
    options.compression_opts.zstd_max_train_bytes =
        FLAGS_compression_zstd_max_train_bytes;
    options.compression_opts.parallel_threads =
        FLAGS_compression_parallel_threads;
    options.compression_opts.max_dict_buffer_bytes =
        FLAGS_compression_max_dict_buffer_bytes;
    options.compression_opts.use_zstd_dict_trainer =
        FLAGS_compression_use_zstd_dict_trainer;

    options.max_open_files = FLAGS_open_files;
    if (FLAGS_cost_write_buffer_to_cache || FLAGS_db_write_buffer_size != 0) {
      options.write_buffer_manager.reset(
          new WriteBufferManager(FLAGS_db_write_buffer_size, cache_));
    }
    options.arena_block_size = FLAGS_arena_block_size;
    options.write_buffer_size = FLAGS_write_buffer_size;
    options.max_write_buffer_number = FLAGS_max_write_buffer_number;
    options.min_write_buffer_number_to_merge =
        FLAGS_min_write_buffer_number_to_merge;
    options.max_write_buffer_number_to_maintain =
        FLAGS_max_write_buffer_number_to_maintain;
    options.max_write_buffer_size_to_maintain =
        FLAGS_max_write_buffer_size_to_maintain;
    options.max_background_jobs = FLAGS_max_background_jobs;
    options.max_background_compactions = FLAGS_max_background_compactions;
    options.max_subcompactions = static_cast<uint32_t>(FLAGS_subcompactions);
    options.max_background_flushes = FLAGS_max_background_flushes;
    options.compaction_style = FLAGS_compaction_style_e;
    options.compaction_pri = FLAGS_compaction_pri_e;
    options.allow_mmap_reads = FLAGS_mmap_read;
    options.allow_mmap_writes = FLAGS_mmap_write;
    options.use_direct_reads = FLAGS_use_direct_reads;
    options.use_direct_io_for_flush_and_compaction =
        FLAGS_use_direct_io_for_flush_and_compaction;
    options.manual_wal_flush = FLAGS_manual_wal_flush;
    options.wal_compression = FLAGS_wal_compression_e;
#ifndef ROCKSDB_LITE
    options.ttl = FLAGS_fifo_compaction_ttl;
    options.compaction_options_fifo = CompactionOptionsFIFO(
        FLAGS_fifo_compaction_max_table_files_size_mb * 1024 * 1024,
        FLAGS_fifo_compaction_allow_compaction);
    options.compaction_options_fifo.age_for_warm = FLAGS_fifo_age_for_warm;
#endif  // ROCKSDB_LITE
    options.prefix_extractor = prefix_extractor_;
    if (FLAGS_use_uint64_comparator) {
      options.comparator = test::Uint64Comparator();
      if (FLAGS_key_size != 8) {
        fprintf(stderr, "Using Uint64 comparator but key size is not 8.\n");
        exit(1);
      }
    }
    if (FLAGS_use_stderr_info_logger) {
      options.info_log.reset(new StderrLogger());
    }
    options.memtable_huge_page_size = FLAGS_memtable_use_huge_page ? 2048 : 0;
    options.memtable_prefix_bloom_size_ratio = FLAGS_memtable_bloom_size_ratio;
    options.memtable_whole_key_filtering = FLAGS_memtable_whole_key_filtering;
    if (FLAGS_memtable_insert_with_hint_prefix_size > 0) {
      options.memtable_insert_with_hint_prefix_extractor.reset(
          NewCappedPrefixTransform(
              FLAGS_memtable_insert_with_hint_prefix_size));
    }
    options.bloom_locality = FLAGS_bloom_locality;
    options.max_file_opening_threads = FLAGS_file_opening_threads;
    options.compaction_readahead_size = FLAGS_compaction_readahead_size;
    options.log_readahead_size = FLAGS_log_readahead_size;
    options.random_access_max_buffer_size = FLAGS_random_access_max_buffer_size;
    options.writable_file_max_buffer_size = FLAGS_writable_file_max_buffer_size;
    options.use_fsync = FLAGS_use_fsync;
    options.num_levels = FLAGS_num_levels;
    options.target_file_size_base = FLAGS_target_file_size_base;
    options.target_file_size_multiplier = FLAGS_target_file_size_multiplier;
    options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base;
    options.level_compaction_dynamic_level_bytes =
        FLAGS_level_compaction_dynamic_level_bytes;
    options.max_bytes_for_level_multiplier =
        FLAGS_max_bytes_for_level_multiplier;
    Status s =
        CreateMemTableRepFactory(config_options, &options.memtable_factory);
    if (!s.ok()) {
      fprintf(stderr, "Could not create memtable factory: %s\n",
              s.ToString().c_str());
      exit(1);
    } else if ((FLAGS_prefix_size == 0) &&
               (options.memtable_factory->IsInstanceOf("prefix_hash") ||
                options.memtable_factory->IsInstanceOf("hash_linkedlist"))) {
      fprintf(stderr,
              "prefix_size should be non-zero if PrefixHash or "
              "HashLinkedList memtablerep is used\n");
      exit(1);
    }
    if (FLAGS_use_plain_table) {
#ifndef ROCKSDB_LITE
      if (!options.memtable_factory->IsInstanceOf("prefix_hash") &&
          !options.memtable_factory->IsInstanceOf("hash_linkedlist")) {
        fprintf(stderr, "Warning: plain table is used with %s\n",
                options.memtable_factory->Name());
      }

      int bloom_bits_per_key = FLAGS_bloom_bits;
      if (bloom_bits_per_key < 0) {
        bloom_bits_per_key = PlainTableOptions().bloom_bits_per_key;
      }

      PlainTableOptions plain_table_options;
      plain_table_options.user_key_len = FLAGS_key_size;
      plain_table_options.bloom_bits_per_key = bloom_bits_per_key;
      plain_table_options.hash_table_ratio = 0.75;
      options.table_factory = std::shared_ptr<TableFactory>(
          NewPlainTableFactory(plain_table_options));
#else
      fprintf(stderr, "Plain table is not supported in lite mode\n");
      exit(1);
#endif  // ROCKSDB_LITE
    } else if (FLAGS_use_cuckoo_table) {
#ifndef ROCKSDB_LITE
      if (FLAGS_cuckoo_hash_ratio > 1 || FLAGS_cuckoo_hash_ratio < 0) {
        fprintf(stderr, "Invalid cuckoo_hash_ratio\n");
        exit(1);
      }

      if (!FLAGS_mmap_read) {
        fprintf(stderr, "cuckoo table format requires mmap read to operate\n");
        exit(1);
      }

      ROCKSDB_NAMESPACE::CuckooTableOptions table_options;
      table_options.hash_table_ratio = FLAGS_cuckoo_hash_ratio;
      table_options.identity_as_first_hash = FLAGS_identity_as_first_hash;
      options.table_factory =
          std::shared_ptr<TableFactory>(NewCuckooTableFactory(table_options));
#else
      fprintf(stderr, "Cuckoo table is not supported in lite mode\n");
      exit(1);
#endif  // ROCKSDB_LITE
    } else {
      BlockBasedTableOptions block_based_options;
      block_based_options.checksum =
          static_cast<ChecksumType>(FLAGS_checksum_type);
      if (FLAGS_use_hash_search) {
        if (FLAGS_prefix_size == 0) {
          fprintf(stderr,
                  "prefix_size not assigned when enable use_hash_search \n");
          exit(1);
        }
        block_based_options.index_type = BlockBasedTableOptions::kHashSearch;
      } else {
        block_based_options.index_type = BlockBasedTableOptions::kBinarySearch;
      }
      if (FLAGS_partition_index_and_filters || FLAGS_partition_index) {
        if (FLAGS_index_with_first_key) {
          fprintf(stderr,
                  "--index_with_first_key is not compatible with"
                  " partition index.");
        }
        if (FLAGS_use_hash_search) {
          fprintf(stderr,
                  "use_hash_search is incompatible with "
                  "partition index and is ignored");
        }
        block_based_options.index_type =
            BlockBasedTableOptions::kTwoLevelIndexSearch;
        block_based_options.metadata_block_size = FLAGS_metadata_block_size;
        if (FLAGS_partition_index_and_filters) {
          block_based_options.partition_filters = true;
        }
      } else if (FLAGS_index_with_first_key) {
        block_based_options.index_type =
            BlockBasedTableOptions::kBinarySearchWithFirstKey;
      }
      BlockBasedTableOptions::IndexShorteningMode index_shortening =
          block_based_options.index_shortening;
      switch (FLAGS_index_shortening_mode) {
        case 0:
          index_shortening =
              BlockBasedTableOptions::IndexShorteningMode::kNoShortening;
          break;
        case 1:
          index_shortening =
              BlockBasedTableOptions::IndexShorteningMode::kShortenSeparators;
          break;
        case 2:
          index_shortening = BlockBasedTableOptions::IndexShorteningMode::
              kShortenSeparatorsAndSuccessor;
          break;
        default:
          fprintf(stderr, "Unknown key shortening mode\n");
      }
      block_based_options.optimize_filters_for_memory =
          FLAGS_optimize_filters_for_memory;
      block_based_options.index_shortening = index_shortening;
      if (cache_ == nullptr) {
        block_based_options.no_block_cache = true;
      }
      block_based_options.cache_index_and_filter_blocks =
          FLAGS_cache_index_and_filter_blocks;
      block_based_options.pin_l0_filter_and_index_blocks_in_cache =
          FLAGS_pin_l0_filter_and_index_blocks_in_cache;
      block_based_options.pin_top_level_index_and_filter =
          FLAGS_pin_top_level_index_and_filter;
      if (FLAGS_cache_high_pri_pool_ratio > 1e-6) {  // > 0.0 + eps
        block_based_options.cache_index_and_filter_blocks_with_high_priority =
            true;
      }
      if (FLAGS_cache_high_pri_pool_ratio + FLAGS_cache_low_pri_pool_ratio >
          1.0) {
        fprintf(stderr,
                "Sum of high_pri_pool_ratio and low_pri_pool_ratio "
                "cannot exceed 1.0.\n");
      }
      block_based_options.block_cache = cache_;
      block_based_options.cache_usage_options.options_overrides.insert(
          {CacheEntryRole::kCompressionDictionaryBuildingBuffer,
           {/*.charged = */ FLAGS_charge_compression_dictionary_building_buffer
                ? CacheEntryRoleOptions::Decision::kEnabled
                : CacheEntryRoleOptions::Decision::kDisabled}});
      block_based_options.cache_usage_options.options_overrides.insert(
          {CacheEntryRole::kFilterConstruction,
           {/*.charged = */ FLAGS_charge_filter_construction
                ? CacheEntryRoleOptions::Decision::kEnabled
                : CacheEntryRoleOptions::Decision::kDisabled}});
      block_based_options.cache_usage_options.options_overrides.insert(
          {CacheEntryRole::kBlockBasedTableReader,
           {/*.charged = */ FLAGS_charge_table_reader
                ? CacheEntryRoleOptions::Decision::kEnabled
                : CacheEntryRoleOptions::Decision::kDisabled}});
      block_based_options.cache_usage_options.options_overrides.insert(
          {CacheEntryRole::kFileMetadata,
           {/*.charged = */ FLAGS_charge_file_metadata
                ? CacheEntryRoleOptions::Decision::kEnabled
                : CacheEntryRoleOptions::Decision::kDisabled}});
      block_based_options.cache_usage_options.options_overrides.insert(
          {CacheEntryRole::kBlobCache,
           {/*.charged = */ FLAGS_charge_blob_cache
                ? CacheEntryRoleOptions::Decision::kEnabled
                : CacheEntryRoleOptions::Decision::kDisabled}});
      block_based_options.block_cache_compressed = compressed_cache_;
      block_based_options.block_size = FLAGS_block_size;
      block_based_options.block_restart_interval = FLAGS_block_restart_interval;
      block_based_options.index_block_restart_interval =
          FLAGS_index_block_restart_interval;
      block_based_options.format_version =
          static_cast<uint32_t>(FLAGS_format_version);
      block_based_options.read_amp_bytes_per_bit = FLAGS_read_amp_bytes_per_bit;
      block_based_options.enable_index_compression =
          FLAGS_enable_index_compression;
      block_based_options.block_align = FLAGS_block_align;
      block_based_options.whole_key_filtering = FLAGS_whole_key_filtering;
      block_based_options.max_auto_readahead_size =
          FLAGS_max_auto_readahead_size;
      block_based_options.initial_auto_readahead_size =
          FLAGS_initial_auto_readahead_size;
      block_based_options.num_file_reads_for_auto_readahead =
          FLAGS_num_file_reads_for_auto_readahead;
      BlockBasedTableOptions::PrepopulateBlockCache prepopulate_block_cache =
          block_based_options.prepopulate_block_cache;
      switch (FLAGS_prepopulate_block_cache) {
        case 0:
          prepopulate_block_cache =
              BlockBasedTableOptions::PrepopulateBlockCache::kDisable;
          break;
        case 1:
          prepopulate_block_cache =
              BlockBasedTableOptions::PrepopulateBlockCache::kFlushOnly;
          break;
        default:
          fprintf(stderr, "Unknown prepopulate block cache mode\n");
      }
      block_based_options.prepopulate_block_cache = prepopulate_block_cache;
      if (FLAGS_use_data_block_hash_index) {
        block_based_options.data_block_index_type =
            ROCKSDB_NAMESPACE::BlockBasedTableOptions::kDataBlockBinaryAndHash;
      } else {
        block_based_options.data_block_index_type =
            ROCKSDB_NAMESPACE::BlockBasedTableOptions::kDataBlockBinarySearch;
      }
      block_based_options.data_block_hash_table_util_ratio =
          FLAGS_data_block_hash_table_util_ratio;
      if (FLAGS_read_cache_path != "") {
#ifndef ROCKSDB_LITE
        Status rc_status;

        // Read cache need to be provided with a the Logger, we will put all
        // reac cache logs in the read cache path in a file named rc_LOG
        rc_status = FLAGS_env->CreateDirIfMissing(FLAGS_read_cache_path);
        std::shared_ptr<Logger> read_cache_logger;
        if (rc_status.ok()) {
          rc_status = FLAGS_env->NewLogger(FLAGS_read_cache_path + "/rc_LOG",
                                           &read_cache_logger);
        }

        if (rc_status.ok()) {
          PersistentCacheConfig rc_cfg(FLAGS_env, FLAGS_read_cache_path,
                                       FLAGS_read_cache_size,
                                       read_cache_logger);

          rc_cfg.enable_direct_reads = FLAGS_read_cache_direct_read;
          rc_cfg.enable_direct_writes = FLAGS_read_cache_direct_write;
          rc_cfg.writer_qdepth = 4;
          rc_cfg.writer_dispatch_size = 4 * 1024;

          auto pcache = std::make_shared<BlockCacheTier>(rc_cfg);
          block_based_options.persistent_cache = pcache;
          rc_status = pcache->Open();
        }

        if (!rc_status.ok()) {
          fprintf(stderr, "Error initializing read cache, %s\n",
                  rc_status.ToString().c_str());
          exit(1);
        }
#else
        fprintf(stderr, "Read cache is not supported in LITE\n");
        exit(1);

#endif
      }

      if (FLAGS_use_blob_cache) {
        if (FLAGS_use_shared_block_and_blob_cache) {
          options.blob_cache = cache_;
        } else {
          if (FLAGS_blob_cache_size > 0) {
            LRUCacheOptions co;
            co.capacity = FLAGS_blob_cache_size;
            co.num_shard_bits = FLAGS_blob_cache_numshardbits;
            co.memory_allocator = GetCacheAllocator();

            options.blob_cache = NewLRUCache(co);
          } else {
            fprintf(
                stderr,
                "Unable to create a standalone blob cache if blob_cache_size "
                "<= 0.\n");
            exit(1);
          }
        }
        switch (FLAGS_prepopulate_blob_cache) {
          case 0:
            options.prepopulate_blob_cache = PrepopulateBlobCache::kDisable;
            break;
          case 1:
            options.prepopulate_blob_cache = PrepopulateBlobCache::kFlushOnly;
            break;
          default:
            fprintf(stderr, "Unknown prepopulate blob cache mode\n");
            exit(1);
        }

        fprintf(stdout,
                "Integrated BlobDB: blob cache enabled"
                ", block and blob caches shared: %d",
                FLAGS_use_shared_block_and_blob_cache);
        if (!FLAGS_use_shared_block_and_blob_cache) {
          fprintf(stdout,
                  ", blob cache size %" PRIu64
                  ", blob cache num shard bits: %d",
                  FLAGS_blob_cache_size, FLAGS_blob_cache_numshardbits);
        }
        fprintf(stdout, ", blob cache prepopulated: %d\n",
                FLAGS_prepopulate_blob_cache);
      } else {
        fprintf(stdout, "Integrated BlobDB: blob cache disabled\n");
      }

      options.table_factory.reset(
          NewBlockBasedTableFactory(block_based_options));
    }
    if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() > 0) {
      if (FLAGS_max_bytes_for_level_multiplier_additional_v.size() !=
          static_cast<unsigned int>(FLAGS_num_levels)) {
        fprintf(stderr, "Insufficient number of fanouts specified %d\n",
                static_cast<int>(
                    FLAGS_max_bytes_for_level_multiplier_additional_v.size()));
        exit(1);
      }
      options.max_bytes_for_level_multiplier_additional =
          FLAGS_max_bytes_for_level_multiplier_additional_v;
    }
    options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger;
    options.level0_file_num_compaction_trigger =
        FLAGS_level0_file_num_compaction_trigger;
    options.level0_slowdown_writes_trigger =
        FLAGS_level0_slowdown_writes_trigger;
    options.compression = FLAGS_compression_type_e;
    if (FLAGS_simulate_hybrid_fs_file != "") {
      options.bottommost_temperature = Temperature::kWarm;
    }
    options.preclude_last_level_data_seconds =
        FLAGS_preclude_last_level_data_seconds;
    options.preserve_internal_time_seconds =
        FLAGS_preserve_internal_time_seconds;
    options.sample_for_compression = FLAGS_sample_for_compression;
    options.WAL_ttl_seconds = FLAGS_wal_ttl_seconds;
    options.WAL_size_limit_MB = FLAGS_wal_size_limit_MB;
    options.max_total_wal_size = FLAGS_max_total_wal_size;

    if (FLAGS_min_level_to_compress >= 0) {
      assert(FLAGS_min_level_to_compress <= FLAGS_num_levels);
      options.compression_per_level.resize(FLAGS_num_levels);
      for (int i = 0; i < FLAGS_min_level_to_compress; i++) {
        options.compression_per_level[i] = kNoCompression;
      }
      for (int i = FLAGS_min_level_to_compress; i < FLAGS_num_levels; i++) {
        options.compression_per_level[i] = FLAGS_compression_type_e;
      }
    }
    options.soft_pending_compaction_bytes_limit =
        FLAGS_soft_pending_compaction_bytes_limit;
    options.hard_pending_compaction_bytes_limit =
        FLAGS_hard_pending_compaction_bytes_limit;
    options.delayed_write_rate = FLAGS_delayed_write_rate;
    options.allow_concurrent_memtable_write =
        FLAGS_allow_concurrent_memtable_write;
    options.experimental_mempurge_threshold =
        FLAGS_experimental_mempurge_threshold;
    options.inplace_update_support = FLAGS_inplace_update_support;
    options.inplace_update_num_locks = FLAGS_inplace_update_num_locks;
    options.enable_write_thread_adaptive_yield =
        FLAGS_enable_write_thread_adaptive_yield;
    options.enable_pipelined_write = FLAGS_enable_pipelined_write;
    options.unordered_write = FLAGS_unordered_write;
    options.write_thread_max_yield_usec = FLAGS_write_thread_max_yield_usec;
    options.write_thread_slow_yield_usec = FLAGS_write_thread_slow_yield_usec;
    options.table_cache_numshardbits = FLAGS_table_cache_numshardbits;
    options.max_compaction_bytes = FLAGS_max_compaction_bytes;
    options.disable_auto_compactions = FLAGS_disable_auto_compactions;
    options.optimize_filters_for_hits = FLAGS_optimize_filters_for_hits;
    options.paranoid_checks = FLAGS_paranoid_checks;
    options.force_consistency_checks = FLAGS_force_consistency_checks;
    options.check_flush_compaction_key_order =
        FLAGS_check_flush_compaction_key_order;
    options.periodic_compaction_seconds = FLAGS_periodic_compaction_seconds;
    options.ttl = FLAGS_ttl_seconds;
    // fill storage options
    options.advise_random_on_open = FLAGS_advise_random_on_open;
    options.access_hint_on_compaction_start = FLAGS_compaction_fadvice_e;
    options.use_adaptive_mutex = FLAGS_use_adaptive_mutex;
    options.bytes_per_sync = FLAGS_bytes_per_sync;
    options.wal_bytes_per_sync = FLAGS_wal_bytes_per_sync;

    // merge operator options
    if (!FLAGS_merge_operator.empty()) {
      s = MergeOperator::CreateFromString(config_options, FLAGS_merge_operator,
                                          &options.merge_operator);
      if (!s.ok()) {
        fprintf(stderr, "invalid merge operator[%s]: %s\n",
                FLAGS_merge_operator.c_str(), s.ToString().c_str());
        exit(1);
      }
    }
    options.max_successive_merges = FLAGS_max_successive_merges;
    options.report_bg_io_stats = FLAGS_report_bg_io_stats;

    // set universal style compaction configurations, if applicable
    if (FLAGS_universal_size_ratio != 0) {
      options.compaction_options_universal.size_ratio =
          FLAGS_universal_size_ratio;
    }
    if (FLAGS_universal_min_merge_width != 0) {
      options.compaction_options_universal.min_merge_width =
          FLAGS_universal_min_merge_width;
    }
    if (FLAGS_universal_max_merge_width != 0) {
      options.compaction_options_universal.max_merge_width =
          FLAGS_universal_max_merge_width;
    }
    if (FLAGS_universal_max_size_amplification_percent != 0) {
      options.compaction_options_universal.max_size_amplification_percent =
          FLAGS_universal_max_size_amplification_percent;
    }
    if (FLAGS_universal_compression_size_percent != -1) {
      options.compaction_options_universal.compression_size_percent =
          FLAGS_universal_compression_size_percent;
    }
    options.compaction_options_universal.allow_trivial_move =
        FLAGS_universal_allow_trivial_move;
    options.compaction_options_universal.incremental =
        FLAGS_universal_incremental;
    if (FLAGS_thread_status_per_interval > 0) {
      options.enable_thread_tracking = true;
    }

    if (FLAGS_user_timestamp_size > 0) {
      if (FLAGS_user_timestamp_size != 8) {
        fprintf(stderr, "Only 64 bits timestamps are supported.\n");
        exit(1);
      }
      options.comparator = test::BytewiseComparatorWithU64TsWrapper();
    }

    options.allow_data_in_errors = FLAGS_allow_data_in_errors;
    options.track_and_verify_wals_in_manifest =
        FLAGS_track_and_verify_wals_in_manifest;

    // Integrated BlobDB
    options.enable_blob_files = FLAGS_enable_blob_files;
    options.min_blob_size = FLAGS_min_blob_size;
    options.blob_file_size = FLAGS_blob_file_size;
    options.blob_compression_type =
        StringToCompressionType(FLAGS_blob_compression_type.c_str());
    options.enable_blob_garbage_collection =
        FLAGS_enable_blob_garbage_collection;
    options.blob_garbage_collection_age_cutoff =
        FLAGS_blob_garbage_collection_age_cutoff;
    options.blob_garbage_collection_force_threshold =
        FLAGS_blob_garbage_collection_force_threshold;
    options.blob_compaction_readahead_size =
        FLAGS_blob_compaction_readahead_size;
    options.blob_file_starting_level = FLAGS_blob_file_starting_level;

#ifndef ROCKSDB_LITE
    if (FLAGS_readonly && FLAGS_transaction_db) {
      fprintf(stderr, "Cannot use readonly flag with transaction_db\n");
      exit(1);
    }
    if (FLAGS_use_secondary_db &&
        (FLAGS_transaction_db || FLAGS_optimistic_transaction_db)) {
      fprintf(stderr, "Cannot use use_secondary_db flag with transaction_db\n");
      exit(1);
    }
#endif  // ROCKSDB_LITE
    options.memtable_protection_bytes_per_key =
        FLAGS_memtable_protection_bytes_per_key;
  }

  void InitializeOptionsGeneral(Options* opts) {
    // Be careful about what is set here to avoid accidentally overwriting
    // settings already configured by OPTIONS file. Only configure settings that
    // are needed for the benchmark to run, settings for shared objects that
    // were not configured already, settings that require dynamically invoking
    // APIs, and settings for the benchmark itself.
    Options& options = *opts;

    // Always set these since they are harmless when not needed and prevent
    // a guaranteed failure when they are needed.
    options.create_missing_column_families = true;
    options.create_if_missing = true;

    if (options.statistics == nullptr) {
      options.statistics = dbstats;
    }

    auto table_options =
        options.table_factory->GetOptions<BlockBasedTableOptions>();
    if (table_options != nullptr) {
      if (FLAGS_cache_size > 0) {
        // This violates this function's rules on when to set options. But we
        // have to do it because the case of unconfigured block cache in OPTIONS
        // file is indistinguishable (it is sanitized to 8MB by this point, not
        // nullptr), and our regression tests assume this will be the shared
        // block cache, even with OPTIONS file provided.
        table_options->block_cache = cache_;
      }
      if (table_options->filter_policy == nullptr) {
        if (FLAGS_bloom_bits < 0) {
          table_options->filter_policy = BlockBasedTableOptions().filter_policy;
        } else if (FLAGS_bloom_bits == 0) {
          table_options->filter_policy.reset();
        } else {
          table_options->filter_policy.reset(
              FLAGS_use_ribbon_filter ? NewRibbonFilterPolicy(FLAGS_bloom_bits)
                                      : NewBloomFilterPolicy(FLAGS_bloom_bits));
        }
      }
    }

    if (options.row_cache == nullptr) {
      if (FLAGS_row_cache_size) {
        if (FLAGS_cache_numshardbits >= 1) {
          options.row_cache =
              NewLRUCache(FLAGS_row_cache_size, FLAGS_cache_numshardbits);
        } else {
          options.row_cache = NewLRUCache(FLAGS_row_cache_size);
        }
      }
    }

    if (options.env == Env::Default()) {
      options.env = FLAGS_env;
    }
    if (FLAGS_enable_io_prio) {
      options.env->LowerThreadPoolIOPriority(Env::LOW);
      options.env->LowerThreadPoolIOPriority(Env::HIGH);
    }
    if (FLAGS_enable_cpu_prio) {
      options.env->LowerThreadPoolCPUPriority(Env::LOW);
      options.env->LowerThreadPoolCPUPriority(Env::HIGH);
    }

    if (FLAGS_sine_write_rate) {
      FLAGS_benchmark_write_rate_limit = static_cast<uint64_t>(SineRate(0));
    }

    if (options.rate_limiter == nullptr) {
      if (FLAGS_rate_limiter_bytes_per_sec > 0) {
        options.rate_limiter.reset(NewGenericRateLimiter(
            FLAGS_rate_limiter_bytes_per_sec,
            FLAGS_rate_limiter_refill_period_us, 10 /* fairness */,
            // TODO: replace this with a more general FLAG for deciding
            // RateLimiter::Mode as now we also rate-limit foreground reads e.g,
            // Get()/MultiGet()
            FLAGS_rate_limit_bg_reads ? RateLimiter::Mode::kReadsOnly
                                      : RateLimiter::Mode::kWritesOnly,
            FLAGS_rate_limiter_auto_tuned));
      }
    }

    options.listeners.emplace_back(listener_);

    if (options.file_checksum_gen_factory == nullptr) {
      if (FLAGS_file_checksum) {
        options.file_checksum_gen_factory.reset(
            new FileChecksumGenCrc32cFactory());
      }
    }

    if (FLAGS_num_multi_db <= 1) {
      OpenDb(options, FLAGS_db, &db_);
    } else {
      multi_dbs_.clear();
      multi_dbs_.resize(FLAGS_num_multi_db);
      auto wal_dir = options.wal_dir;
      for (int i = 0; i < FLAGS_num_multi_db; i++) {
        if (!wal_dir.empty()) {
          options.wal_dir = GetPathForMultiple(wal_dir, i);
        }
        OpenDb(options, GetPathForMultiple(FLAGS_db, i), &multi_dbs_[i]);
      }
      options.wal_dir = wal_dir;
    }

    // KeepFilter is a noop filter, this can be used to test compaction filter
    if (options.compaction_filter == nullptr) {
      if (FLAGS_use_keep_filter) {
        options.compaction_filter = new KeepFilter();
        fprintf(stdout, "A noop compaction filter is used\n");
      }
    }

    if (FLAGS_use_existing_keys) {
      // Only work on single database
      assert(db_.db != nullptr);
      ReadOptions read_opts;  // before read_options_ initialized
      read_opts.total_order_seek = true;
      Iterator* iter = db_.db->NewIterator(read_opts);
      for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
        keys_.emplace_back(iter->key().ToString());
      }
      delete iter;
      FLAGS_num = keys_.size();
    }
  }

  void Open(Options* opts) {
    if (!InitializeOptionsFromFile(opts)) {
      InitializeOptionsFromFlags(opts);
    }

    InitializeOptionsGeneral(opts);
  }

  void OpenDb(Options options, const std::string& db_name,
              DBWithColumnFamilies* db) {
    uint64_t open_start = FLAGS_report_open_timing ? FLAGS_env->NowNanos() : 0;
    Status s;
    // Open with column families if necessary.
    if (FLAGS_num_column_families > 1) {
      size_t num_hot = FLAGS_num_column_families;
      if (FLAGS_num_hot_column_families > 0 &&
          FLAGS_num_hot_column_families < FLAGS_num_column_families) {
        num_hot = FLAGS_num_hot_column_families;
      } else {
        FLAGS_num_hot_column_families = FLAGS_num_column_families;
      }
      std::vector<ColumnFamilyDescriptor> column_families;
      for (size_t i = 0; i < num_hot; i++) {
        column_families.push_back(ColumnFamilyDescriptor(
            ColumnFamilyName(i), ColumnFamilyOptions(options)));
      }
      std::vector<int> cfh_idx_to_prob;
      if (!FLAGS_column_family_distribution.empty()) {
        std::stringstream cf_prob_stream(FLAGS_column_family_distribution);
        std::string cf_prob;
        int sum = 0;
        while (std::getline(cf_prob_stream, cf_prob, ',')) {
          cfh_idx_to_prob.push_back(std::stoi(cf_prob));
          sum += cfh_idx_to_prob.back();
        }
        if (sum != 100) {
          fprintf(stderr, "column_family_distribution items must sum to 100\n");
          exit(1);
        }
        if (cfh_idx_to_prob.size() != num_hot) {
          fprintf(stderr,
                  "got %" ROCKSDB_PRIszt
                  " column_family_distribution items; expected "
                  "%" ROCKSDB_PRIszt "\n",
                  cfh_idx_to_prob.size(), num_hot);
          exit(1);
        }
      }
#ifndef ROCKSDB_LITE
      if (FLAGS_readonly) {
        s = DB::OpenForReadOnly(options, db_name, column_families, &db->cfh,
                                &db->db);
      } else if (FLAGS_optimistic_transaction_db) {
        s = OptimisticTransactionDB::Open(options, db_name, column_families,
                                          &db->cfh, &db->opt_txn_db);
        if (s.ok()) {
          db->db = db->opt_txn_db->GetBaseDB();
        }
      } else if (FLAGS_transaction_db) {
        TransactionDB* ptr;
        TransactionDBOptions txn_db_options;
        if (options.unordered_write) {
          options.two_write_queues = true;
          txn_db_options.skip_concurrency_control = true;
          txn_db_options.write_policy = WRITE_PREPARED;
        }
        s = TransactionDB::Open(options, txn_db_options, db_name,
                                column_families, &db->cfh, &ptr);
        if (s.ok()) {
          db->db = ptr;
        }
      } else {
        s = DB::Open(options, db_name, column_families, &db->cfh, &db->db);
      }
#else
      s = DB::Open(options, db_name, column_families, &db->cfh, &db->db);
#endif  // ROCKSDB_LITE
      db->cfh.resize(FLAGS_num_column_families);
      db->num_created = num_hot;
      db->num_hot = num_hot;
      db->cfh_idx_to_prob = std::move(cfh_idx_to_prob);
#ifndef ROCKSDB_LITE
    } else if (FLAGS_readonly) {
      s = DB::OpenForReadOnly(options, db_name, &db->db);
    } else if (FLAGS_optimistic_transaction_db) {
      s = OptimisticTransactionDB::Open(options, db_name, &db->opt_txn_db);
      if (s.ok()) {
        db->db = db->opt_txn_db->GetBaseDB();
      }
    } else if (FLAGS_transaction_db) {
      TransactionDB* ptr = nullptr;
      TransactionDBOptions txn_db_options;
      if (options.unordered_write) {
        options.two_write_queues = true;
        txn_db_options.skip_concurrency_control = true;
        txn_db_options.write_policy = WRITE_PREPARED;
      }
      s = CreateLoggerFromOptions(db_name, options, &options.info_log);
      if (s.ok()) {
        s = TransactionDB::Open(options, txn_db_options, db_name, &ptr);
      }
      if (s.ok()) {
        db->db = ptr;
      }
    } else if (FLAGS_use_blob_db) {
      // Stacked BlobDB
      blob_db::BlobDBOptions blob_db_options;
      blob_db_options.enable_garbage_collection = FLAGS_blob_db_enable_gc;
      blob_db_options.garbage_collection_cutoff = FLAGS_blob_db_gc_cutoff;
      blob_db_options.is_fifo = FLAGS_blob_db_is_fifo;
      blob_db_options.max_db_size = FLAGS_blob_db_max_db_size;
      blob_db_options.ttl_range_secs = FLAGS_blob_db_ttl_range_secs;
      blob_db_options.min_blob_size = FLAGS_blob_db_min_blob_size;
      blob_db_options.bytes_per_sync = FLAGS_blob_db_bytes_per_sync;
      blob_db_options.blob_file_size = FLAGS_blob_db_file_size;
      blob_db_options.compression = FLAGS_blob_db_compression_type_e;
      blob_db::BlobDB* ptr = nullptr;
      s = blob_db::BlobDB::Open(options, blob_db_options, db_name, &ptr);
      if (s.ok()) {
        db->db = ptr;
      }
    } else if (FLAGS_use_secondary_db) {
      if (FLAGS_secondary_path.empty()) {
        std::string default_secondary_path;
        FLAGS_env->GetTestDirectory(&default_secondary_path);
        default_secondary_path += "/dbbench_secondary";
        FLAGS_secondary_path = default_secondary_path;
      }
      s = DB::OpenAsSecondary(options, db_name, FLAGS_secondary_path, &db->db);
      if (s.ok() && FLAGS_secondary_update_interval > 0) {
        secondary_update_thread_.reset(new port::Thread(
            [this](int interval, DBWithColumnFamilies* _db) {
              while (0 == secondary_update_stopped_.load(
                              std::memory_order_relaxed)) {
                Status secondary_update_status =
                    _db->db->TryCatchUpWithPrimary();
                if (!secondary_update_status.ok()) {
                  fprintf(stderr, "Failed to catch up with primary: %s\n",
                          secondary_update_status.ToString().c_str());
                  break;
                }
                ++secondary_db_updates_;
                FLAGS_env->SleepForMicroseconds(interval * 1000000);
              }
            },
            FLAGS_secondary_update_interval, db));
      }
#endif  // ROCKSDB_LITE
    } else {
      s = DB::Open(options, db_name, &db->db);
    }
    if (FLAGS_report_open_timing) {
      std::cout << "OpenDb:     "
                << (FLAGS_env->NowNanos() - open_start) / 1000000.0
                << " milliseconds\n";
    }
    if (!s.ok()) {
      fprintf(stderr, "open error: %s\n", s.ToString().c_str());
      exit(1);
    }
  }

  enum WriteMode { RANDOM, SEQUENTIAL, UNIQUE_RANDOM };

  void WriteSeqDeterministic(ThreadState* thread) {
    DoDeterministicCompact(thread, open_options_.compaction_style, SEQUENTIAL);
  }

  void WriteUniqueRandomDeterministic(ThreadState* thread) {
    DoDeterministicCompact(thread, open_options_.compaction_style,
                           UNIQUE_RANDOM);
  }

  void WriteSeq(ThreadState* thread) { DoWrite(thread, SEQUENTIAL); }

  void WriteRandom(ThreadState* thread) { DoWrite(thread, RANDOM); }

  void WriteUniqueRandom(ThreadState* thread) {
    DoWrite(thread, UNIQUE_RANDOM);
  }

  class KeyGenerator {
   public:
    KeyGenerator(Random64* rand, WriteMode mode, uint64_t num,
                 uint64_t /*num_per_set*/ = 64 * 1024)
        : rand_(rand), mode_(mode), num_(num), next_(0) {
      if (mode_ == UNIQUE_RANDOM) {
        // NOTE: if memory consumption of this approach becomes a concern,
        // we can either break it into pieces and only random shuffle a section
        // each time. Alternatively, use a bit map implementation
        // (https://reviews.facebook.net/differential/diff/54627/)
        values_.resize(num_);
        for (uint64_t i = 0; i < num_; ++i) {
          values_[i] = i;
        }
        RandomShuffle(values_.begin(), values_.end(),
                      static_cast<uint32_t>(seed_base));
      }
    }

    uint64_t Next() {
      switch (mode_) {
        case SEQUENTIAL:
          return next_++;
        case RANDOM:
          return rand_->Next() % num_;
        case UNIQUE_RANDOM:
          assert(next_ < num_);
          return values_[next_++];
      }
      assert(false);
      return std::numeric_limits<uint64_t>::max();
    }

    // Only available for UNIQUE_RANDOM mode.
    uint64_t Fetch(uint64_t index) {
      assert(mode_ == UNIQUE_RANDOM);
      assert(index < values_.size());
      return values_[index];
    }

   private:
    Random64* rand_;
    WriteMode mode_;
    const uint64_t num_;
    uint64_t next_;
    std::vector<uint64_t> values_;
  };

  DB* SelectDB(ThreadState* thread) { return SelectDBWithCfh(thread)->db; }

  DBWithColumnFamilies* SelectDBWithCfh(ThreadState* thread) {
    return SelectDBWithCfh(thread->rand.Next());
  }

  DBWithColumnFamilies* SelectDBWithCfh(uint64_t rand_int) {
    if (db_.db != nullptr) {
      return &db_;
    } else {
      return &multi_dbs_[rand_int % multi_dbs_.size()];
    }
  }

  double SineRate(double x) {
    return FLAGS_sine_a * sin((FLAGS_sine_b * x) + FLAGS_sine_c) + FLAGS_sine_d;
  }

  void DoWrite(ThreadState* thread, WriteMode write_mode) {
    const int test_duration = write_mode == RANDOM ? FLAGS_duration : 0;
    const int64_t num_ops = writes_ == 0 ? num_ : writes_;

    size_t num_key_gens = 1;
    if (db_.db == nullptr) {
      num_key_gens = multi_dbs_.size();
    }
    std::vector<std::unique_ptr<KeyGenerator>> key_gens(num_key_gens);
    int64_t max_ops = num_ops * num_key_gens;
    int64_t ops_per_stage = max_ops;
    if (FLAGS_num_column_families > 1 && FLAGS_num_hot_column_families > 0) {
      ops_per_stage = (max_ops - 1) / (FLAGS_num_column_families /
                                       FLAGS_num_hot_column_families) +
                      1;
    }

    Duration duration(test_duration, max_ops, ops_per_stage);
    const uint64_t num_per_key_gen = num_ + max_num_range_tombstones_;
    for (size_t i = 0; i < num_key_gens; i++) {
      key_gens[i].reset(new KeyGenerator(&(thread->rand), write_mode,
                                         num_per_key_gen, ops_per_stage));
    }

    if (num_ != FLAGS_num) {
      char msg[100];
      snprintf(msg, sizeof(msg), "(%" PRIu64 " ops)", num_);
      thread->stats.AddMessage(msg);
    }

    RandomGenerator gen;
    WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0,
                     FLAGS_write_batch_protection_bytes_per_key,
                     user_timestamp_size_);
    Status s;
    int64_t bytes = 0;

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    std::unique_ptr<const char[]> begin_key_guard;
    Slice begin_key = AllocateKey(&begin_key_guard);
    std::unique_ptr<const char[]> end_key_guard;
    Slice end_key = AllocateKey(&end_key_guard);
    double p = 0.0;
    uint64_t num_overwrites = 0, num_unique_keys = 0, num_selective_deletes = 0;
    // If user set overwrite_probability flag,
    // check if value is in [0.0,1.0].
    if (FLAGS_overwrite_probability > 0.0) {
      p = FLAGS_overwrite_probability > 1.0 ? 1.0 : FLAGS_overwrite_probability;
      // If overwrite set by user, and UNIQUE_RANDOM mode on,
      // the overwrite_window_size must be > 0.
      if (write_mode == UNIQUE_RANDOM && FLAGS_overwrite_window_size == 0) {
        fprintf(stderr,
                "Overwrite_window_size must be  strictly greater than 0.\n");
        ErrorExit();
      }
    }

    // Default_random_engine provides slightly
    // improved throughput over mt19937.
    std::default_random_engine overwrite_gen{
        static_cast<unsigned int>(seed_base)};
    std::bernoulli_distribution overwrite_decider(p);

    // Inserted key window is filled with the last N
    // keys previously inserted into the DB (with
    // N=FLAGS_overwrite_window_size).
    // We use a deque struct because:
    // - random access is O(1)
    // - insertion/removal at beginning/end is also O(1).
    std::deque<int64_t> inserted_key_window;
    Random64 reservoir_id_gen(seed_base);

    // --- Variables used in disposable/persistent keys simulation:
    // The following variables are used when
    // disposable_entries_batch_size is >0. We simualte a workload
    // where the following sequence is repeated multiple times:
    // "A set of keys S1 is inserted ('disposable entries'), then after
    // some delay another set of keys S2 is inserted ('persistent entries')
    // and the first set of keys S1 is deleted. S2 artificially represents
    // the insertion of hypothetical results from some undefined computation
    // done on the first set of keys S1. The next sequence can start as soon
    // as the last disposable entry in the set S1 of this sequence is
    // inserted, if the delay is non negligible"
    bool skip_for_loop = false, is_disposable_entry = true;
    std::vector<uint64_t> disposable_entries_index(num_key_gens, 0);
    std::vector<uint64_t> persistent_ent_and_del_index(num_key_gens, 0);
    const uint64_t kNumDispAndPersEntries =
        FLAGS_disposable_entries_batch_size +
        FLAGS_persistent_entries_batch_size;
    if (kNumDispAndPersEntries > 0) {
      if ((write_mode != UNIQUE_RANDOM) || (writes_per_range_tombstone_ > 0) ||
          (p > 0.0)) {
        fprintf(
            stderr,
            "Disposable/persistent deletes are not compatible with overwrites "
            "and DeleteRanges; and are only supported in filluniquerandom.\n");
        ErrorExit();
      }
      if (FLAGS_disposable_entries_value_size < 0 ||
          FLAGS_persistent_entries_value_size < 0) {
        fprintf(
            stderr,
            "disposable_entries_value_size and persistent_entries_value_size"
            "have to be positive.\n");
        ErrorExit();
      }
    }
    Random rnd_disposable_entry(static_cast<uint32_t>(seed_base));
    std::string random_value;
    // Queue that stores scheduled timestamp of disposable entries deletes,
    // along with starting index of disposable entry keys to delete.
    std::vector<std::queue<std::pair<uint64_t, uint64_t>>> disposable_entries_q(
        num_key_gens);
    // --- End of variables used in disposable/persistent keys simulation.

    std::vector<std::unique_ptr<const char[]>> expanded_key_guards;
    std::vector<Slice> expanded_keys;
    if (FLAGS_expand_range_tombstones) {
      expanded_key_guards.resize(range_tombstone_width_);
      for (auto& expanded_key_guard : expanded_key_guards) {
        expanded_keys.emplace_back(AllocateKey(&expanded_key_guard));
      }
    }

    std::unique_ptr<char[]> ts_guard;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
    }

    int64_t stage = 0;
    int64_t num_written = 0;
    int64_t next_seq_db_at = num_ops;
    size_t id = 0;
    int64_t num_range_deletions = 0;

    while ((num_per_key_gen != 0) && !duration.Done(entries_per_batch_)) {
      if (duration.GetStage() != stage) {
        stage = duration.GetStage();
        if (db_.db != nullptr) {
          db_.CreateNewCf(open_options_, stage);
        } else {
          for (auto& db : multi_dbs_) {
            db.CreateNewCf(open_options_, stage);
          }
        }
      }

      if (write_mode != SEQUENTIAL) {
        id = thread->rand.Next() % num_key_gens;
      } else {
        // When doing a sequential load with multiple databases, load them in
        // order rather than all at the same time to avoid:
        // 1) long delays between flushing memtables
        // 2) flushing memtables for all of them at the same point in time
        // 3) not putting the same number of keys in each database
        if (num_written >= next_seq_db_at) {
          next_seq_db_at += num_ops;
          id++;
          if (id >= num_key_gens) {
            fprintf(stderr, "Logic error. Filled all databases\n");
            ErrorExit();
          }
        }
      }
      DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(id);

      batch.Clear();
      int64_t batch_bytes = 0;

      for (int64_t j = 0; j < entries_per_batch_; j++) {
        int64_t rand_num = 0;
        if ((write_mode == UNIQUE_RANDOM) && (p > 0.0)) {
          if ((inserted_key_window.size() > 0) &&
              overwrite_decider(overwrite_gen)) {
            num_overwrites++;
            rand_num = inserted_key_window[reservoir_id_gen.Next() %
                                           inserted_key_window.size()];
          } else {
            num_unique_keys++;
            rand_num = key_gens[id]->Next();
            if (inserted_key_window.size() < FLAGS_overwrite_window_size) {
              inserted_key_window.push_back(rand_num);
            } else {
              inserted_key_window.pop_front();
              inserted_key_window.push_back(rand_num);
            }
          }
        } else if (kNumDispAndPersEntries > 0) {
          // Check if queue is non-empty and if we need to insert
          // 'persistent' KV entries (KV entries that are never deleted)
          // and delete disposable entries previously inserted.
          if (!disposable_entries_q[id].empty() &&
              (disposable_entries_q[id].front().first <
               FLAGS_env->NowMicros())) {
            // If we need to perform a "merge op" pattern,
            // we first write all the persistent KV entries not targeted
            // by deletes, and then we write the disposable entries deletes.
            if (persistent_ent_and_del_index[id] <
                FLAGS_persistent_entries_batch_size) {
              // Generate key to insert.
              rand_num =
                  key_gens[id]->Fetch(disposable_entries_q[id].front().second +
                                      FLAGS_disposable_entries_batch_size +
                                      persistent_ent_and_del_index[id]);
              persistent_ent_and_del_index[id]++;
              is_disposable_entry = false;
              skip_for_loop = false;
            } else if (persistent_ent_and_del_index[id] <
                       kNumDispAndPersEntries) {
              // Find key of the entry to delete.
              rand_num =
                  key_gens[id]->Fetch(disposable_entries_q[id].front().second +
                                      (persistent_ent_and_del_index[id] -
                                       FLAGS_persistent_entries_batch_size));
              persistent_ent_and_del_index[id]++;
              GenerateKeyFromInt(rand_num, FLAGS_num, &key);
              // For the delete operation, everything happens here and we
              // skip the rest of the for-loop, which is designed for
              // inserts.
              if (FLAGS_num_column_families <= 1) {
                batch.Delete(key);
              } else {
                // We use same rand_num as seed for key and column family so
                // that we can deterministically find the cfh corresponding to a
                // particular key while reading the key.
                batch.Delete(db_with_cfh->GetCfh(rand_num), key);
              }
              // A delete only includes Key+Timestamp (no value).
              batch_bytes += key_size_ + user_timestamp_size_;
              bytes += key_size_ + user_timestamp_size_;
              num_selective_deletes++;
              // Skip rest of the for-loop (j=0, j<entries_per_batch_,j++).
              skip_for_loop = true;
            } else {
              assert(false);  // should never reach this point.
            }
            // If disposable_entries_q needs to be updated (ie: when a selective
            // insert+delete was successfully completed, pop the job out of the
            // queue).
            if (!disposable_entries_q[id].empty() &&
                (disposable_entries_q[id].front().first <
                 FLAGS_env->NowMicros()) &&
                persistent_ent_and_del_index[id] == kNumDispAndPersEntries) {
              disposable_entries_q[id].pop();
              persistent_ent_and_del_index[id] = 0;
            }

            // If we are deleting disposable entries, skip the rest of the
            // for-loop since there is no key-value inserts at this moment in
            // time.
            if (skip_for_loop) {
              continue;
            }

          }
          // If no job is in the queue, then we keep inserting disposable KV
          // entries that will be deleted later by a series of deletes.
          else {
            rand_num = key_gens[id]->Fetch(disposable_entries_index[id]);
            disposable_entries_index[id]++;
            is_disposable_entry = true;
            if ((disposable_entries_index[id] %
                 FLAGS_disposable_entries_batch_size) == 0) {
              // Skip the persistent KV entries inserts for now
              disposable_entries_index[id] +=
                  FLAGS_persistent_entries_batch_size;
            }
          }
        } else {
          rand_num = key_gens[id]->Next();
        }
        GenerateKeyFromInt(rand_num, FLAGS_num, &key);
        Slice val;
        if (kNumDispAndPersEntries > 0) {
          random_value = rnd_disposable_entry.RandomString(
              is_disposable_entry ? FLAGS_disposable_entries_value_size
                                  : FLAGS_persistent_entries_value_size);
          val = Slice(random_value);
          num_unique_keys++;
        } else {
          val = gen.Generate();
        }
        if (use_blob_db_) {
#ifndef ROCKSDB_LITE
          // Stacked BlobDB
          blob_db::BlobDB* blobdb =
              static_cast<blob_db::BlobDB*>(db_with_cfh->db);
          if (FLAGS_blob_db_max_ttl_range > 0) {
            int ttl = rand() % FLAGS_blob_db_max_ttl_range;
            s = blobdb->PutWithTTL(write_options_, key, val, ttl);
          } else {
            s = blobdb->Put(write_options_, key, val);
          }
#endif  //  ROCKSDB_LITE
        } else if (FLAGS_num_column_families <= 1) {
          batch.Put(key, val);
        } else {
          // We use same rand_num as seed for key and column family so that we
          // can deterministically find the cfh corresponding to a particular
          // key while reading the key.
          batch.Put(db_with_cfh->GetCfh(rand_num), key, val);
        }
        batch_bytes += val.size() + key_size_ + user_timestamp_size_;
        bytes += val.size() + key_size_ + user_timestamp_size_;
        ++num_written;

        // If all disposable entries have been inserted, then we need to
        // add in the job queue a call for 'persistent entry insertions +
        // disposable entry deletions'.
        if (kNumDispAndPersEntries > 0 && is_disposable_entry &&
            ((disposable_entries_index[id] % kNumDispAndPersEntries) == 0)) {
          // Queue contains [timestamp, starting_idx],
          // timestamp = current_time + delay (minimum aboslute time when to
          // start inserting the selective deletes) starting_idx = index in the
          // keygen of the rand_num to generate the key of the first KV entry to
          // delete (= key of the first selective delete).
          disposable_entries_q[id].push(std::make_pair(
              FLAGS_env->NowMicros() +
                  FLAGS_disposable_entries_delete_delay /* timestamp */,
              disposable_entries_index[id] - kNumDispAndPersEntries
              /*starting idx*/));
        }
        if (writes_per_range_tombstone_ > 0 &&
            num_written > writes_before_delete_range_ &&
            (num_written - writes_before_delete_range_) /
                    writes_per_range_tombstone_ <=
                max_num_range_tombstones_ &&
            (num_written - writes_before_delete_range_) %
                    writes_per_range_tombstone_ ==
                0) {
          num_range_deletions++;
          int64_t begin_num = key_gens[id]->Next();
          if (FLAGS_expand_range_tombstones) {
            for (int64_t offset = 0; offset < range_tombstone_width_;
                 ++offset) {
              GenerateKeyFromInt(begin_num + offset, FLAGS_num,
                                 &expanded_keys[offset]);
              if (use_blob_db_) {
#ifndef ROCKSDB_LITE
                // Stacked BlobDB
                s = db_with_cfh->db->Delete(write_options_,
                                            expanded_keys[offset]);
#endif  //  ROCKSDB_LITE
              } else if (FLAGS_num_column_families <= 1) {
                batch.Delete(expanded_keys[offset]);
              } else {
                batch.Delete(db_with_cfh->GetCfh(rand_num),
                             expanded_keys[offset]);
              }
            }
          } else {
            GenerateKeyFromInt(begin_num, FLAGS_num, &begin_key);
            GenerateKeyFromInt(begin_num + range_tombstone_width_, FLAGS_num,
                               &end_key);
            if (use_blob_db_) {
#ifndef ROCKSDB_LITE
              // Stacked BlobDB
              s = db_with_cfh->db->DeleteRange(
                  write_options_, db_with_cfh->db->DefaultColumnFamily(),
                  begin_key, end_key);
#endif  //  ROCKSDB_LITE
            } else if (FLAGS_num_column_families <= 1) {
              batch.DeleteRange(begin_key, end_key);
            } else {
              batch.DeleteRange(db_with_cfh->GetCfh(rand_num), begin_key,
                                end_key);
            }
          }
        }
      }
      if (thread->shared->write_rate_limiter.get() != nullptr) {
        thread->shared->write_rate_limiter->Request(
            batch_bytes, Env::IO_HIGH, nullptr /* stats */,
            RateLimiter::OpType::kWrite);
        // Set time at which last op finished to Now() to hide latency and
        // sleep from rate limiter. Also, do the check once per batch, not
        // once per write.
        thread->stats.ResetLastOpTime();
      }
      if (user_timestamp_size_ > 0) {
        Slice user_ts = mock_app_clock_->Allocate(ts_guard.get());
        s = batch.UpdateTimestamps(
            user_ts, [this](uint32_t) { return user_timestamp_size_; });
        if (!s.ok()) {
          fprintf(stderr, "assign timestamp to write batch: %s\n",
                  s.ToString().c_str());
          ErrorExit();
        }
      }
      if (!use_blob_db_) {
        // Not stacked BlobDB
        s = db_with_cfh->db->Write(write_options_, &batch);
      }
      thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db,
                                entries_per_batch_, kWrite);
      if (FLAGS_sine_write_rate) {
        uint64_t now = FLAGS_env->NowMicros();

        uint64_t usecs_since_last;
        if (now > thread->stats.GetSineInterval()) {
          usecs_since_last = now - thread->stats.GetSineInterval();
        } else {
          usecs_since_last = 0;
        }

        if (usecs_since_last >
            (FLAGS_sine_write_rate_interval_milliseconds * uint64_t{1000})) {
          double usecs_since_start =
              static_cast<double>(now - thread->stats.GetStart());
          thread->stats.ResetSineInterval();
          uint64_t write_rate =
              static_cast<uint64_t>(SineRate(usecs_since_start / 1000000.0));
          thread->shared->write_rate_limiter.reset(
              NewGenericRateLimiter(write_rate));
        }
      }
      if (!s.ok()) {
        s = listener_->WaitForRecovery(600000000) ? Status::OK() : s;
      }

      if (!s.ok()) {
        fprintf(stderr, "put error: %s\n", s.ToString().c_str());
        ErrorExit();
      }
    }
    if ((write_mode == UNIQUE_RANDOM) && (p > 0.0)) {
      fprintf(stdout,
              "Number of unique keys inserted: %" PRIu64
              ".\nNumber of overwrites: %" PRIu64 "\n",
              num_unique_keys, num_overwrites);
    } else if (kNumDispAndPersEntries > 0) {
      fprintf(stdout,
              "Number of unique keys inserted (disposable+persistent): %" PRIu64
              ".\nNumber of 'disposable entry delete': %" PRIu64 "\n",
              num_written, num_selective_deletes);
    }
    if (num_range_deletions > 0) {
      std::cout << "Number of range deletions: " << num_range_deletions
                << std::endl;
    }
    thread->stats.AddBytes(bytes);
  }

  Status DoDeterministicCompact(ThreadState* thread,
                                CompactionStyle compaction_style,
                                WriteMode write_mode) {
#ifndef ROCKSDB_LITE
    ColumnFamilyMetaData meta;
    std::vector<DB*> db_list;
    if (db_.db != nullptr) {
      db_list.push_back(db_.db);
    } else {
      for (auto& db : multi_dbs_) {
        db_list.push_back(db.db);
      }
    }
    std::vector<Options> options_list;
    for (auto db : db_list) {
      options_list.push_back(db->GetOptions());
      if (compaction_style != kCompactionStyleFIFO) {
        db->SetOptions({{"disable_auto_compactions", "1"},
                        {"level0_slowdown_writes_trigger", "400000000"},
                        {"level0_stop_writes_trigger", "400000000"}});
      } else {
        db->SetOptions({{"disable_auto_compactions", "1"}});
      }
    }

    assert(!db_list.empty());
    auto num_db = db_list.size();
    size_t num_levels = static_cast<size_t>(open_options_.num_levels);
    size_t output_level = open_options_.num_levels - 1;
    std::vector<std::vector<std::vector<SstFileMetaData>>> sorted_runs(num_db);
    std::vector<size_t> num_files_at_level0(num_db, 0);
    if (compaction_style == kCompactionStyleLevel) {
      if (num_levels == 0) {
        return Status::InvalidArgument("num_levels should be larger than 1");
      }
      bool should_stop = false;
      while (!should_stop) {
        if (sorted_runs[0].empty()) {
          DoWrite(thread, write_mode);
        } else {
          DoWrite(thread, UNIQUE_RANDOM);
        }
        for (size_t i = 0; i < num_db; i++) {
          auto db = db_list[i];
          db->Flush(FlushOptions());
          db->GetColumnFamilyMetaData(&meta);
          if (num_files_at_level0[i] == meta.levels[0].files.size() ||
              writes_ == 0) {
            should_stop = true;
            continue;
          }
          sorted_runs[i].emplace_back(
              meta.levels[0].files.begin(),
              meta.levels[0].files.end() - num_files_at_level0[i]);
          num_files_at_level0[i] = meta.levels[0].files.size();
          if (sorted_runs[i].back().size() == 1) {
            should_stop = true;
            continue;
          }
          if (sorted_runs[i].size() == output_level) {
            auto& L1 = sorted_runs[i].back();
            L1.erase(L1.begin(), L1.begin() + L1.size() / 3);
            should_stop = true;
            continue;
          }
        }
        writes_ /=
            static_cast<int64_t>(open_options_.max_bytes_for_level_multiplier);
      }
      for (size_t i = 0; i < num_db; i++) {
        if (sorted_runs[i].size() < num_levels - 1) {
          fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n",
                  num_levels);
          exit(1);
        }
      }
      for (size_t i = 0; i < num_db; i++) {
        auto db = db_list[i];
        auto compactionOptions = CompactionOptions();
        compactionOptions.compression = FLAGS_compression_type_e;
        auto options = db->GetOptions();
        MutableCFOptions mutable_cf_options(options);
        for (size_t j = 0; j < sorted_runs[i].size(); j++) {
          compactionOptions.output_file_size_limit = MaxFileSizeForLevel(
              mutable_cf_options, static_cast<int>(output_level),
              compaction_style);
          std::cout << sorted_runs[i][j].size() << std::endl;
          db->CompactFiles(
              compactionOptions,
              {sorted_runs[i][j].back().name, sorted_runs[i][j].front().name},
              static_cast<int>(output_level - j) /*level*/);
        }
      }
    } else if (compaction_style == kCompactionStyleUniversal) {
      auto ratio = open_options_.compaction_options_universal.size_ratio;
      bool should_stop = false;
      while (!should_stop) {
        if (sorted_runs[0].empty()) {
          DoWrite(thread, write_mode);
        } else {
          DoWrite(thread, UNIQUE_RANDOM);
        }
        for (size_t i = 0; i < num_db; i++) {
          auto db = db_list[i];
          db->Flush(FlushOptions());
          db->GetColumnFamilyMetaData(&meta);
          if (num_files_at_level0[i] == meta.levels[0].files.size() ||
              writes_ == 0) {
            should_stop = true;
            continue;
          }
          sorted_runs[i].emplace_back(
              meta.levels[0].files.begin(),
              meta.levels[0].files.end() - num_files_at_level0[i]);
          num_files_at_level0[i] = meta.levels[0].files.size();
          if (sorted_runs[i].back().size() == 1) {
            should_stop = true;
            continue;
          }
          num_files_at_level0[i] = meta.levels[0].files.size();
        }
        writes_ = static_cast<int64_t>(writes_ * static_cast<double>(100) /
                                       (ratio + 200));
      }
      for (size_t i = 0; i < num_db; i++) {
        if (sorted_runs[i].size() < num_levels) {
          fprintf(stderr, "n is too small to fill %" ROCKSDB_PRIszt " levels\n",
                  num_levels);
          exit(1);
        }
      }
      for (size_t i = 0; i < num_db; i++) {
        auto db = db_list[i];
        auto compactionOptions = CompactionOptions();
        compactionOptions.compression = FLAGS_compression_type_e;
        auto options = db->GetOptions();
        MutableCFOptions mutable_cf_options(options);
        for (size_t j = 0; j < sorted_runs[i].size(); j++) {
          compactionOptions.output_file_size_limit = MaxFileSizeForLevel(
              mutable_cf_options, static_cast<int>(output_level),
              compaction_style);
          db->CompactFiles(
              compactionOptions,
              {sorted_runs[i][j].back().name, sorted_runs[i][j].front().name},
              (output_level > j ? static_cast<int>(output_level - j)
                                : 0) /*level*/);
        }
      }
    } else if (compaction_style == kCompactionStyleFIFO) {
      if (num_levels != 1) {
        return Status::InvalidArgument(
            "num_levels should be 1 for FIFO compaction");
      }
      if (FLAGS_num_multi_db != 0) {
        return Status::InvalidArgument("Doesn't support multiDB");
      }
      auto db = db_list[0];
      std::vector<std::string> file_names;
      while (true) {
        if (sorted_runs[0].empty()) {
          DoWrite(thread, write_mode);
        } else {
          DoWrite(thread, UNIQUE_RANDOM);
        }
        db->Flush(FlushOptions());
        db->GetColumnFamilyMetaData(&meta);
        auto total_size = meta.levels[0].size;
        if (total_size >=
            db->GetOptions().compaction_options_fifo.max_table_files_size) {
          for (auto file_meta : meta.levels[0].files) {
            file_names.emplace_back(file_meta.name);
          }
          break;
        }
      }
      // TODO(shuzhang1989): Investigate why CompactFiles not working
      // auto compactionOptions = CompactionOptions();
      // db->CompactFiles(compactionOptions, file_names, 0);
      auto compactionOptions = CompactRangeOptions();
      db->CompactRange(compactionOptions, nullptr, nullptr);
    } else {
      fprintf(stdout,
              "%-12s : skipped (-compaction_stype=kCompactionStyleNone)\n",
              "filldeterministic");
      return Status::InvalidArgument("None compaction is not supported");
    }

// Verify seqno and key range
// Note: the seqno get changed at the max level by implementation
// optimization, so skip the check of the max level.
#ifndef NDEBUG
    for (size_t k = 0; k < num_db; k++) {
      auto db = db_list[k];
      db->GetColumnFamilyMetaData(&meta);
      // verify the number of sorted runs
      if (compaction_style == kCompactionStyleLevel) {
        assert(num_levels - 1 == sorted_runs[k].size());
      } else if (compaction_style == kCompactionStyleUniversal) {
        assert(meta.levels[0].files.size() + num_levels - 1 ==
               sorted_runs[k].size());
      } else if (compaction_style == kCompactionStyleFIFO) {
        // TODO(gzh): FIFO compaction
        db->GetColumnFamilyMetaData(&meta);
        auto total_size = meta.levels[0].size;
        assert(total_size <=
               db->GetOptions().compaction_options_fifo.max_table_files_size);
        break;
      }

      // verify smallest/largest seqno and key range of each sorted run
      auto max_level = num_levels - 1;
      int level;
      for (size_t i = 0; i < sorted_runs[k].size(); i++) {
        level = static_cast<int>(max_level - i);
        SequenceNumber sorted_run_smallest_seqno = kMaxSequenceNumber;
        SequenceNumber sorted_run_largest_seqno = 0;
        std::string sorted_run_smallest_key, sorted_run_largest_key;
        bool first_key = true;
        for (auto fileMeta : sorted_runs[k][i]) {
          sorted_run_smallest_seqno =
              std::min(sorted_run_smallest_seqno, fileMeta.smallest_seqno);
          sorted_run_largest_seqno =
              std::max(sorted_run_largest_seqno, fileMeta.largest_seqno);
          if (first_key ||
              db->DefaultColumnFamily()->GetComparator()->Compare(
                  fileMeta.smallestkey, sorted_run_smallest_key) < 0) {
            sorted_run_smallest_key = fileMeta.smallestkey;
          }
          if (first_key ||
              db->DefaultColumnFamily()->GetComparator()->Compare(
                  fileMeta.largestkey, sorted_run_largest_key) > 0) {
            sorted_run_largest_key = fileMeta.largestkey;
          }
          first_key = false;
        }
        if (compaction_style == kCompactionStyleLevel ||
            (compaction_style == kCompactionStyleUniversal && level > 0)) {
          SequenceNumber level_smallest_seqno = kMaxSequenceNumber;
          SequenceNumber level_largest_seqno = 0;
          for (auto fileMeta : meta.levels[level].files) {
            level_smallest_seqno =
                std::min(level_smallest_seqno, fileMeta.smallest_seqno);
            level_largest_seqno =
                std::max(level_largest_seqno, fileMeta.largest_seqno);
          }
          assert(sorted_run_smallest_key ==
                 meta.levels[level].files.front().smallestkey);
          assert(sorted_run_largest_key ==
                 meta.levels[level].files.back().largestkey);
          if (level != static_cast<int>(max_level)) {
            // compaction at max_level would change sequence number
            assert(sorted_run_smallest_seqno == level_smallest_seqno);
            assert(sorted_run_largest_seqno == level_largest_seqno);
          }
        } else if (compaction_style == kCompactionStyleUniversal) {
          // level <= 0 means sorted runs on level 0
          auto level0_file =
              meta.levels[0].files[sorted_runs[k].size() - 1 - i];
          assert(sorted_run_smallest_key == level0_file.smallestkey);
          assert(sorted_run_largest_key == level0_file.largestkey);
          if (level != static_cast<int>(max_level)) {
            assert(sorted_run_smallest_seqno == level0_file.smallest_seqno);
            assert(sorted_run_largest_seqno == level0_file.largest_seqno);
          }
        }
      }
    }
#endif
    // print the size of each sorted_run
    for (size_t k = 0; k < num_db; k++) {
      auto db = db_list[k];
      fprintf(stdout,
              "---------------------- DB %" ROCKSDB_PRIszt
              " LSM ---------------------\n",
              k);
      db->GetColumnFamilyMetaData(&meta);
      for (auto& levelMeta : meta.levels) {
        if (levelMeta.files.empty()) {
          continue;
        }
        if (levelMeta.level == 0) {
          for (auto& fileMeta : levelMeta.files) {
            fprintf(stdout, "Level[%d]: %s(size: %" PRIi64 " bytes)\n",
                    levelMeta.level, fileMeta.name.c_str(), fileMeta.size);
          }
        } else {
          fprintf(stdout, "Level[%d]: %s - %s(total size: %" PRIi64 " bytes)\n",
                  levelMeta.level, levelMeta.files.front().name.c_str(),
                  levelMeta.files.back().name.c_str(), levelMeta.size);
        }
      }
    }
    for (size_t i = 0; i < num_db; i++) {
      db_list[i]->SetOptions(
          {{"disable_auto_compactions",
            std::to_string(options_list[i].disable_auto_compactions)},
           {"level0_slowdown_writes_trigger",
            std::to_string(options_list[i].level0_slowdown_writes_trigger)},
           {"level0_stop_writes_trigger",
            std::to_string(options_list[i].level0_stop_writes_trigger)}});
    }
    return Status::OK();
#else
    (void)thread;
    (void)compaction_style;
    (void)write_mode;
    fprintf(stderr, "Rocksdb Lite doesn't support filldeterministic\n");
    return Status::NotSupported(
        "Rocksdb Lite doesn't support filldeterministic");
#endif  // ROCKSDB_LITE
  }

  void ReadSequential(ThreadState* thread) {
    if (db_.db != nullptr) {
      ReadSequential(thread, db_.db);
    } else {
      for (const auto& db_with_cfh : multi_dbs_) {
        ReadSequential(thread, db_with_cfh.db);
      }
    }
  }

  void ReadSequential(ThreadState* thread, DB* db) {
    ReadOptions options = read_options_;
    std::unique_ptr<char[]> ts_guard;
    Slice ts;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
      ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
      options.timestamp = &ts;
    }

    options.adaptive_readahead = FLAGS_adaptive_readahead;
    options.async_io = FLAGS_async_io;

    Iterator* iter = db->NewIterator(options);
    int64_t i = 0;
    int64_t bytes = 0;
    for (iter->SeekToFirst(); i < reads_ && iter->Valid(); iter->Next()) {
      bytes += iter->key().size() + iter->value().size();
      thread->stats.FinishedOps(nullptr, db, 1, kRead);
      ++i;

      if (thread->shared->read_rate_limiter.get() != nullptr &&
          i % 1024 == 1023) {
        thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH,
                                                   nullptr /* stats */,
                                                   RateLimiter::OpType::kRead);
      }
    }

    delete iter;
    thread->stats.AddBytes(bytes);
  }

  void ReadToRowCache(ThreadState* thread) {
    int64_t read = 0;
    int64_t found = 0;
    int64_t bytes = 0;
    int64_t key_rand = 0;
    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    PinnableSlice pinnable_val;

    while (key_rand < FLAGS_num) {
      DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
      // We use same key_rand as seed for key and column family so that we can
      // deterministically find the cfh corresponding to a particular key, as it
      // is done in DoWrite method.
      GenerateKeyFromInt(key_rand, FLAGS_num, &key);
      key_rand++;
      read++;
      Status s;
      if (FLAGS_num_column_families > 1) {
        s = db_with_cfh->db->Get(read_options_, db_with_cfh->GetCfh(key_rand),
                                 key, &pinnable_val);
      } else {
        pinnable_val.Reset();
        s = db_with_cfh->db->Get(read_options_,
                                 db_with_cfh->db->DefaultColumnFamily(), key,
                                 &pinnable_val);
      }

      if (s.ok()) {
        found++;
        bytes += key.size() + pinnable_val.size();
      } else if (!s.IsNotFound()) {
        fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
        abort();
      }

      if (thread->shared->read_rate_limiter.get() != nullptr &&
          read % 256 == 255) {
        thread->shared->read_rate_limiter->Request(
            256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
      }

      thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
    }

    char msg[100];
    snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found,
             read);

    thread->stats.AddBytes(bytes);
    thread->stats.AddMessage(msg);
  }

  void ReadReverse(ThreadState* thread) {
    if (db_.db != nullptr) {
      ReadReverse(thread, db_.db);
    } else {
      for (const auto& db_with_cfh : multi_dbs_) {
        ReadReverse(thread, db_with_cfh.db);
      }
    }
  }

  void ReadReverse(ThreadState* thread, DB* db) {
    Iterator* iter = db->NewIterator(read_options_);
    int64_t i = 0;
    int64_t bytes = 0;
    for (iter->SeekToLast(); i < reads_ && iter->Valid(); iter->Prev()) {
      bytes += iter->key().size() + iter->value().size();
      thread->stats.FinishedOps(nullptr, db, 1, kRead);
      ++i;
      if (thread->shared->read_rate_limiter.get() != nullptr &&
          i % 1024 == 1023) {
        thread->shared->read_rate_limiter->Request(1024, Env::IO_HIGH,
                                                   nullptr /* stats */,
                                                   RateLimiter::OpType::kRead);
      }
    }
    delete iter;
    thread->stats.AddBytes(bytes);
  }

  void ReadRandomFast(ThreadState* thread) {
    int64_t read = 0;
    int64_t found = 0;
    int64_t nonexist = 0;
    ReadOptions options = read_options_;
    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    std::string value;
    Slice ts;
    std::unique_ptr<char[]> ts_guard;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
    }
    DB* db = SelectDBWithCfh(thread)->db;

    int64_t pot = 1;
    while (pot < FLAGS_num) {
      pot <<= 1;
    }

    Duration duration(FLAGS_duration, reads_);
    do {
      for (int i = 0; i < 100; ++i) {
        int64_t key_rand = thread->rand.Next() & (pot - 1);
        GenerateKeyFromInt(key_rand, FLAGS_num, &key);
        ++read;
        std::string ts_ret;
        std::string* ts_ptr = nullptr;
        if (user_timestamp_size_ > 0) {
          ts = mock_app_clock_->GetTimestampForRead(thread->rand,
                                                    ts_guard.get());
          options.timestamp = &ts;
          ts_ptr = &ts_ret;
        }
        auto status = db->Get(options, key, &value, ts_ptr);
        if (status.ok()) {
          ++found;
        } else if (!status.IsNotFound()) {
          fprintf(stderr, "Get returned an error: %s\n",
                  status.ToString().c_str());
          abort();
        }
        if (key_rand >= FLAGS_num) {
          ++nonexist;
        }
      }
      if (thread->shared->read_rate_limiter.get() != nullptr) {
        thread->shared->read_rate_limiter->Request(
            100, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
      }

      thread->stats.FinishedOps(nullptr, db, 100, kRead);
    } while (!duration.Done(100));

    char msg[100];
    snprintf(msg, sizeof(msg),
             "(%" PRIu64 " of %" PRIu64
             " found, "
             "issued %" PRIu64 " non-exist keys)\n",
             found, read, nonexist);

    thread->stats.AddMessage(msg);
  }

  int64_t GetRandomKey(Random64* rand) {
    uint64_t rand_int = rand->Next();
    int64_t key_rand;
    if (read_random_exp_range_ == 0) {
      key_rand = rand_int % FLAGS_num;
    } else {
      const uint64_t kBigInt = static_cast<uint64_t>(1U) << 62;
      long double order = -static_cast<long double>(rand_int % kBigInt) /
                          static_cast<long double>(kBigInt) *
                          read_random_exp_range_;
      long double exp_ran = std::exp(order);
      uint64_t rand_num =
          static_cast<int64_t>(exp_ran * static_cast<long double>(FLAGS_num));
      // Map to a different number to avoid locality.
      const uint64_t kBigPrime = 0x5bd1e995;
      // Overflow is like %(2^64). Will have little impact of results.
      key_rand = static_cast<int64_t>((rand_num * kBigPrime) % FLAGS_num);
    }
    return key_rand;
  }

  void ReadRandom(ThreadState* thread) {
    int64_t read = 0;
    int64_t found = 0;
    int64_t bytes = 0;
    int num_keys = 0;
    int64_t key_rand = 0;
    ReadOptions options = read_options_;
    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    PinnableSlice pinnable_val;
    std::vector<PinnableSlice> pinnable_vals;
    if (read_operands_) {
      // Start off with a small-ish value that'll be increased later if
      // `GetMergeOperands()` tells us it is not large enough.
      pinnable_vals.resize(8);
    }
    std::unique_ptr<char[]> ts_guard;
    Slice ts;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
    }

    Duration duration(FLAGS_duration, reads_);
    while (!duration.Done(1)) {
      DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
      // We use same key_rand as seed for key and column family so that we can
      // deterministically find the cfh corresponding to a particular key, as it
      // is done in DoWrite method.
      if (entries_per_batch_ > 1 && FLAGS_multiread_stride) {
        if (++num_keys == entries_per_batch_) {
          num_keys = 0;
          key_rand = GetRandomKey(&thread->rand);
          if ((key_rand + (entries_per_batch_ - 1) * FLAGS_multiread_stride) >=
              FLAGS_num) {
            key_rand = FLAGS_num - entries_per_batch_ * FLAGS_multiread_stride;
          }
        } else {
          key_rand += FLAGS_multiread_stride;
        }
      } else {
        key_rand = GetRandomKey(&thread->rand);
      }
      GenerateKeyFromInt(key_rand, FLAGS_num, &key);
      read++;
      std::string ts_ret;
      std::string* ts_ptr = nullptr;
      if (user_timestamp_size_ > 0) {
        ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
        options.timestamp = &ts;
        ts_ptr = &ts_ret;
      }
      Status s;
      pinnable_val.Reset();
      for (size_t i = 0; i < pinnable_vals.size(); ++i) {
        pinnable_vals[i].Reset();
      }
      ColumnFamilyHandle* cfh;
      if (FLAGS_num_column_families > 1) {
        cfh = db_with_cfh->GetCfh(key_rand);
      } else {
        cfh = db_with_cfh->db->DefaultColumnFamily();
      }
      if (read_operands_) {
        GetMergeOperandsOptions get_merge_operands_options;
        get_merge_operands_options.expected_max_number_of_operands =
            static_cast<int>(pinnable_vals.size());
        int number_of_operands;
        s = db_with_cfh->db->GetMergeOperands(
            options, cfh, key, pinnable_vals.data(),
            &get_merge_operands_options, &number_of_operands);
        if (s.IsIncomplete()) {
          // Should only happen a few times when we encounter a key that had
          // more merge operands than any key seen so far. Production use case
          // would typically retry in such event to get all the operands so do
          // that here.
          pinnable_vals.resize(number_of_operands);
          get_merge_operands_options.expected_max_number_of_operands =
              static_cast<int>(pinnable_vals.size());
          s = db_with_cfh->db->GetMergeOperands(
              options, cfh, key, pinnable_vals.data(),
              &get_merge_operands_options, &number_of_operands);
        }
      } else {
        s = db_with_cfh->db->Get(options, cfh, key, &pinnable_val, ts_ptr);
      }

      if (s.ok()) {
        found++;
        bytes += key.size() + pinnable_val.size() + user_timestamp_size_;
        for (size_t i = 0; i < pinnable_vals.size(); ++i) {
          bytes += pinnable_vals[i].size();
          pinnable_vals[i].Reset();
        }
      } else if (!s.IsNotFound()) {
        fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
        abort();
      }

      if (thread->shared->read_rate_limiter.get() != nullptr &&
          read % 256 == 255) {
        thread->shared->read_rate_limiter->Request(
            256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
      }

      thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
    }

    char msg[100];
    snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found,
             read);

    thread->stats.AddBytes(bytes);
    thread->stats.AddMessage(msg);
  }

  // Calls MultiGet over a list of keys from a random distribution.
  // Returns the total number of keys found.
  void MultiReadRandom(ThreadState* thread) {
    int64_t read = 0;
    int64_t bytes = 0;
    int64_t num_multireads = 0;
    int64_t found = 0;
    ReadOptions options = read_options_;
    std::vector<Slice> keys;
    std::vector<std::unique_ptr<const char[]>> key_guards;
    std::vector<std::string> values(entries_per_batch_);
    PinnableSlice* pin_values = new PinnableSlice[entries_per_batch_];
    std::unique_ptr<PinnableSlice[]> pin_values_guard(pin_values);
    std::vector<Status> stat_list(entries_per_batch_);
    while (static_cast<int64_t>(keys.size()) < entries_per_batch_) {
      key_guards.push_back(std::unique_ptr<const char[]>());
      keys.push_back(AllocateKey(&key_guards.back()));
    }

    std::unique_ptr<char[]> ts_guard;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
    }

    Duration duration(FLAGS_duration, reads_);
    while (!duration.Done(entries_per_batch_)) {
      DB* db = SelectDB(thread);
      if (FLAGS_multiread_stride) {
        int64_t key = GetRandomKey(&thread->rand);
        if ((key + (entries_per_batch_ - 1) * FLAGS_multiread_stride) >=
            static_cast<int64_t>(FLAGS_num)) {
          key = FLAGS_num - entries_per_batch_ * FLAGS_multiread_stride;
        }
        for (int64_t i = 0; i < entries_per_batch_; ++i) {
          GenerateKeyFromInt(key, FLAGS_num, &keys[i]);
          key += FLAGS_multiread_stride;
        }
      } else {
        for (int64_t i = 0; i < entries_per_batch_; ++i) {
          GenerateKeyFromInt(GetRandomKey(&thread->rand), FLAGS_num, &keys[i]);
        }
      }
      Slice ts;
      if (user_timestamp_size_ > 0) {
        ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
        options.timestamp = &ts;
      }
      if (!FLAGS_multiread_batched) {
        std::vector<Status> statuses = db->MultiGet(options, keys, &values);
        assert(static_cast<int64_t>(statuses.size()) == entries_per_batch_);

        read += entries_per_batch_;
        num_multireads++;
        for (int64_t i = 0; i < entries_per_batch_; ++i) {
          if (statuses[i].ok()) {
            bytes += keys[i].size() + values[i].size() + user_timestamp_size_;
            ++found;
          } else if (!statuses[i].IsNotFound()) {
            fprintf(stderr, "MultiGet returned an error: %s\n",
                    statuses[i].ToString().c_str());
            abort();
          }
        }
      } else {
        db->MultiGet(options, db->DefaultColumnFamily(), keys.size(),
                     keys.data(), pin_values, stat_list.data());

        read += entries_per_batch_;
        num_multireads++;
        for (int64_t i = 0; i < entries_per_batch_; ++i) {
          if (stat_list[i].ok()) {
            bytes +=
                keys[i].size() + pin_values[i].size() + user_timestamp_size_;
            ++found;
          } else if (!stat_list[i].IsNotFound()) {
            fprintf(stderr, "MultiGet returned an error: %s\n",
                    stat_list[i].ToString().c_str());
            abort();
          }
          stat_list[i] = Status::OK();
          pin_values[i].Reset();
        }
      }
      if (thread->shared->read_rate_limiter.get() != nullptr &&
          num_multireads % 256 == 255) {
        thread->shared->read_rate_limiter->Request(
            256 * entries_per_batch_, Env::IO_HIGH, nullptr /* stats */,
            RateLimiter::OpType::kRead);
      }
      thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kRead);
    }

    char msg[100];
    snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found,
             read);
    thread->stats.AddBytes(bytes);
    thread->stats.AddMessage(msg);
  }

  // Calls ApproximateSize over random key ranges.
  void ApproximateSizeRandom(ThreadState* thread) {
    int64_t size_sum = 0;
    int64_t num_sizes = 0;
    const size_t batch_size = entries_per_batch_;
    std::vector<Range> ranges;
    std::vector<Slice> lkeys;
    std::vector<std::unique_ptr<const char[]>> lkey_guards;
    std::vector<Slice> rkeys;
    std::vector<std::unique_ptr<const char[]>> rkey_guards;
    std::vector<uint64_t> sizes;
    while (ranges.size() < batch_size) {
      // Ugly without C++17 return from emplace_back
      lkey_guards.emplace_back();
      rkey_guards.emplace_back();
      lkeys.emplace_back(AllocateKey(&lkey_guards.back()));
      rkeys.emplace_back(AllocateKey(&rkey_guards.back()));
      ranges.emplace_back(lkeys.back(), rkeys.back());
      sizes.push_back(0);
    }
    Duration duration(FLAGS_duration, reads_);
    while (!duration.Done(1)) {
      DB* db = SelectDB(thread);
      for (size_t i = 0; i < batch_size; ++i) {
        int64_t lkey = GetRandomKey(&thread->rand);
        int64_t rkey = GetRandomKey(&thread->rand);
        if (lkey > rkey) {
          std::swap(lkey, rkey);
        }
        GenerateKeyFromInt(lkey, FLAGS_num, &lkeys[i]);
        GenerateKeyFromInt(rkey, FLAGS_num, &rkeys[i]);
      }
      db->GetApproximateSizes(&ranges[0], static_cast<int>(entries_per_batch_),
                              &sizes[0]);
      num_sizes += entries_per_batch_;
      for (int64_t size : sizes) {
        size_sum += size;
      }
      thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kOthers);
    }

    char msg[100];
    snprintf(msg, sizeof(msg), "(Avg approx size=%g)",
             static_cast<double>(size_sum) / static_cast<double>(num_sizes));
    thread->stats.AddMessage(msg);
  }

  // The inverse function of Pareto distribution
  int64_t ParetoCdfInversion(double u, double theta, double k, double sigma) {
    double ret;
    if (k == 0.0) {
      ret = theta - sigma * std::log(u);
    } else {
      ret = theta + sigma * (std::pow(u, -1 * k) - 1) / k;
    }
    return static_cast<int64_t>(ceil(ret));
  }
  // The inverse function of power distribution (y=ax^b)
  int64_t PowerCdfInversion(double u, double a, double b) {
    double ret;
    ret = std::pow((u / a), (1 / b));
    return static_cast<int64_t>(ceil(ret));
  }

  // Add the noice to the QPS
  double AddNoise(double origin, double noise_ratio) {
    if (noise_ratio < 0.0 || noise_ratio > 1.0) {
      return origin;
    }
    int band_int = static_cast<int>(FLAGS_sine_a);
    double delta = (rand() % band_int - band_int / 2) * noise_ratio;
    if (origin + delta < 0) {
      return origin;
    } else {
      return (origin + delta);
    }
  }

  // Decide the ratio of different query types
  // 0 Get, 1 Put, 2 Seek, 3 SeekForPrev, 4 Delete, 5 SingleDelete, 6 merge
  class QueryDecider {
   public:
    std::vector<int> type_;
    std::vector<double> ratio_;
    int range_;

    QueryDecider() {}
    ~QueryDecider() {}

    Status Initiate(std::vector<double> ratio_input) {
      int range_max = 1000;
      double sum = 0.0;
      for (auto& ratio : ratio_input) {
        sum += ratio;
      }
      range_ = 0;
      for (auto& ratio : ratio_input) {
        range_ += static_cast<int>(ceil(range_max * (ratio / sum)));
        type_.push_back(range_);
        ratio_.push_back(ratio / sum);
      }
      return Status::OK();
    }

    int GetType(int64_t rand_num) {
      if (rand_num < 0) {
        rand_num = rand_num * (-1);
      }
      assert(range_ != 0);
      int pos = static_cast<int>(rand_num % range_);
      for (int i = 0; i < static_cast<int>(type_.size()); i++) {
        if (pos < type_[i]) {
          return i;
        }
      }
      return 0;
    }
  };

  // KeyrangeUnit is the struct of a keyrange. It is used in a keyrange vector
  // to transfer a random value to one keyrange based on the hotness.
  struct KeyrangeUnit {
    int64_t keyrange_start;
    int64_t keyrange_access;
    int64_t keyrange_keys;
  };

  // From our observations, the prefix hotness (key-range hotness) follows
  // the two-term-exponential distribution: f(x) = a*exp(b*x) + c*exp(d*x).
  // However, we cannot directly use the inverse function to decide a
  // key-range from a random distribution. To achieve it, we create a list of
  // KeyrangeUnit, each KeyrangeUnit occupies a range of integers whose size is
  // decided based on the hotness of the key-range. When a random value is
  // generated based on uniform distribution, we map it to the KeyrangeUnit Vec
  // and one KeyrangeUnit is selected. The probability of a  KeyrangeUnit being
  // selected is the same as the hotness of this KeyrangeUnit. After that, the
  // key can be randomly allocated to the key-range of this KeyrangeUnit, or we
  // can based on the power distribution (y=ax^b) to generate the offset of
  // the key in the selected key-range. In this way, we generate the keyID
  // based on the hotness of the prefix and also the key hotness distribution.
  class GenerateTwoTermExpKeys {
   public:
    // Avoid uninitialized warning-as-error in some compilers
    int64_t keyrange_rand_max_ = 0;
    int64_t keyrange_size_ = 0;
    int64_t keyrange_num_ = 0;
    std::vector<KeyrangeUnit> keyrange_set_;

    // Initiate the KeyrangeUnit vector and calculate the size of each
    // KeyrangeUnit.
    Status InitiateExpDistribution(int64_t total_keys, double prefix_a,
                                   double prefix_b, double prefix_c,
                                   double prefix_d) {
      int64_t amplify = 0;
      int64_t keyrange_start = 0;
      if (FLAGS_keyrange_num <= 0) {
        keyrange_num_ = 1;
      } else {
        keyrange_num_ = FLAGS_keyrange_num;
      }
      keyrange_size_ = total_keys / keyrange_num_;

      // Calculate the key-range shares size based on the input parameters
      for (int64_t pfx = keyrange_num_; pfx >= 1; pfx--) {
        // Step 1. Calculate the probability that this key range will be
        // accessed in a query. It is based on the two-term expoential
        // distribution
        double keyrange_p = prefix_a * std::exp(prefix_b * pfx) +
                            prefix_c * std::exp(prefix_d * pfx);
        if (keyrange_p < std::pow(10.0, -16.0)) {
          keyrange_p = 0.0;
        }
        // Step 2. Calculate the amplify
        // In order to allocate a query to a key-range based on the random
        // number generated for this query, we need to extend the probability
        // of each key range from [0,1] to [0, amplify]. Amplify is calculated
        // by 1/(smallest key-range probability). In this way, we ensure that
        // all key-ranges are assigned with an Integer that  >=0
        if (amplify == 0 && keyrange_p > 0) {
          amplify = static_cast<int64_t>(std::floor(1 / keyrange_p)) + 1;
        }

        // Step 3. For each key-range, we calculate its position in the
        // [0, amplify] range, including the start, the size (keyrange_access)
        KeyrangeUnit p_unit;
        p_unit.keyrange_start = keyrange_start;
        if (0.0 >= keyrange_p) {
          p_unit.keyrange_access = 0;
        } else {
          p_unit.keyrange_access =
              static_cast<int64_t>(std::floor(amplify * keyrange_p));
        }
        p_unit.keyrange_keys = keyrange_size_;
        keyrange_set_.push_back(p_unit);
        keyrange_start += p_unit.keyrange_access;
      }
      keyrange_rand_max_ = keyrange_start;

      // Step 4. Shuffle the key-ranges randomly
      // Since the access probability is calculated from small to large,
      // If we do not re-allocate them, hot key-ranges are always at the end
      // and cold key-ranges are at the begin of the key space. Therefore, the
      // key-ranges are shuffled and the rand seed is only decide by the
      // key-range hotness distribution. With the same distribution parameters
      // the shuffle results are the same.
      Random64 rand_loca(keyrange_rand_max_);
      for (int64_t i = 0; i < FLAGS_keyrange_num; i++) {
        int64_t pos = rand_loca.Next() % FLAGS_keyrange_num;
        assert(i >= 0 && i < static_cast<int64_t>(keyrange_set_.size()) &&
               pos >= 0 && pos < static_cast<int64_t>(keyrange_set_.size()));
        std::swap(keyrange_set_[i], keyrange_set_[pos]);
      }

      // Step 5. Recalculate the prefix start postion after shuffling
      int64_t offset = 0;
      for (auto& p_unit : keyrange_set_) {
        p_unit.keyrange_start = offset;
        offset += p_unit.keyrange_access;
      }

      return Status::OK();
    }

    // Generate the Key ID according to the input ini_rand and key distribution
    int64_t DistGetKeyID(int64_t ini_rand, double key_dist_a,
                         double key_dist_b) {
      int64_t keyrange_rand = ini_rand % keyrange_rand_max_;

      // Calculate and select one key-range that contains the new key
      int64_t start = 0, end = static_cast<int64_t>(keyrange_set_.size());
      while (start + 1 < end) {
        int64_t mid = start + (end - start) / 2;
        assert(mid >= 0 && mid < static_cast<int64_t>(keyrange_set_.size()));
        if (keyrange_rand < keyrange_set_[mid].keyrange_start) {
          end = mid;
        } else {
          start = mid;
        }
      }
      int64_t keyrange_id = start;

      // Select one key in the key-range and compose the keyID
      int64_t key_offset = 0, key_seed;
      if (key_dist_a == 0.0 || key_dist_b == 0.0) {
        key_offset = ini_rand % keyrange_size_;
      } else {
        double u =
            static_cast<double>(ini_rand % keyrange_size_) / keyrange_size_;
        key_seed = static_cast<int64_t>(
            ceil(std::pow((u / key_dist_a), (1 / key_dist_b))));
        Random64 rand_key(key_seed);
        key_offset = rand_key.Next() % keyrange_size_;
      }
      return keyrange_size_ * keyrange_id + key_offset;
    }
  };

  // The social graph workload mixed with Get, Put, Iterator queries.
  // The value size and iterator length follow Pareto distribution.
  // The overall key access follow power distribution. If user models the
  // workload based on different key-ranges (or different prefixes), user
  // can use two-term-exponential distribution to fit the workload. User
  // needs to decide the ratio between Get, Put, Iterator queries before
  // starting the benchmark.
  void MixGraph(ThreadState* thread) {
    int64_t gets = 0;
    int64_t puts = 0;
    int64_t get_found = 0;
    int64_t seek = 0;
    int64_t seek_found = 0;
    int64_t bytes = 0;
    double total_scan_length = 0;
    double total_val_size = 0;
    const int64_t default_value_max = 1 * 1024 * 1024;
    int64_t value_max = default_value_max;
    int64_t scan_len_max = FLAGS_mix_max_scan_len;
    double write_rate = 1000000.0;
    double read_rate = 1000000.0;
    bool use_prefix_modeling = false;
    bool use_random_modeling = false;
    GenerateTwoTermExpKeys gen_exp;
    std::vector<double> ratio{FLAGS_mix_get_ratio, FLAGS_mix_put_ratio,
                              FLAGS_mix_seek_ratio};
    char value_buffer[default_value_max];
    QueryDecider query;
    RandomGenerator gen;
    Status s;
    if (value_max > FLAGS_mix_max_value_size) {
      value_max = FLAGS_mix_max_value_size;
    }

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    PinnableSlice pinnable_val;
    query.Initiate(ratio);

    // the limit of qps initiation
    if (FLAGS_sine_mix_rate) {
      thread->shared->read_rate_limiter.reset(
          NewGenericRateLimiter(static_cast<int64_t>(read_rate)));
      thread->shared->write_rate_limiter.reset(
          NewGenericRateLimiter(static_cast<int64_t>(write_rate)));
    }

    // Decide if user wants to use prefix based key generation
    if (FLAGS_keyrange_dist_a != 0.0 || FLAGS_keyrange_dist_b != 0.0 ||
        FLAGS_keyrange_dist_c != 0.0 || FLAGS_keyrange_dist_d != 0.0) {
      use_prefix_modeling = true;
      gen_exp.InitiateExpDistribution(
          FLAGS_num, FLAGS_keyrange_dist_a, FLAGS_keyrange_dist_b,
          FLAGS_keyrange_dist_c, FLAGS_keyrange_dist_d);
    }
    if (FLAGS_key_dist_a == 0 || FLAGS_key_dist_b == 0) {
      use_random_modeling = true;
    }

    Duration duration(FLAGS_duration, reads_);
    while (!duration.Done(1)) {
      DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
      int64_t ini_rand, rand_v, key_rand, key_seed;
      ini_rand = GetRandomKey(&thread->rand);
      rand_v = ini_rand % FLAGS_num;
      double u = static_cast<double>(rand_v) / FLAGS_num;

      // Generate the keyID based on the key hotness and prefix hotness
      if (use_random_modeling) {
        key_rand = ini_rand;
      } else if (use_prefix_modeling) {
        key_rand =
            gen_exp.DistGetKeyID(ini_rand, FLAGS_key_dist_a, FLAGS_key_dist_b);
      } else {
        key_seed = PowerCdfInversion(u, FLAGS_key_dist_a, FLAGS_key_dist_b);
        Random64 rand(key_seed);
        key_rand = static_cast<int64_t>(rand.Next()) % FLAGS_num;
      }
      GenerateKeyFromInt(key_rand, FLAGS_num, &key);
      int query_type = query.GetType(rand_v);

      // change the qps
      uint64_t now = FLAGS_env->NowMicros();
      uint64_t usecs_since_last;
      if (now > thread->stats.GetSineInterval()) {
        usecs_since_last = now - thread->stats.GetSineInterval();
      } else {
        usecs_since_last = 0;
      }

      if (FLAGS_sine_mix_rate &&
          usecs_since_last >
              (FLAGS_sine_mix_rate_interval_milliseconds * uint64_t{1000})) {
        double usecs_since_start =
            static_cast<double>(now - thread->stats.GetStart());
        thread->stats.ResetSineInterval();
        double mix_rate_with_noise = AddNoise(
            SineRate(usecs_since_start / 1000000.0), FLAGS_sine_mix_rate_noise);
        read_rate = mix_rate_with_noise * (query.ratio_[0] + query.ratio_[2]);
        write_rate = mix_rate_with_noise * query.ratio_[1];

        if (read_rate > 0) {
          thread->shared->read_rate_limiter->SetBytesPerSecond(
              static_cast<int64_t>(read_rate));
        }
        if (write_rate > 0) {
          thread->shared->write_rate_limiter->SetBytesPerSecond(
              static_cast<int64_t>(write_rate));
        }
      }
      // Start the query
      if (query_type == 0) {
        // the Get query
        gets++;
        if (FLAGS_num_column_families > 1) {
          s = db_with_cfh->db->Get(read_options_, db_with_cfh->GetCfh(key_rand),
                                   key, &pinnable_val);
        } else {
          pinnable_val.Reset();
          s = db_with_cfh->db->Get(read_options_,
                                   db_with_cfh->db->DefaultColumnFamily(), key,
                                   &pinnable_val);
        }

        if (s.ok()) {
          get_found++;
          bytes += key.size() + pinnable_val.size();
        } else if (!s.IsNotFound()) {
          fprintf(stderr, "Get returned an error: %s\n", s.ToString().c_str());
          abort();
        }

        if (thread->shared->read_rate_limiter && (gets + seek) % 100 == 0) {
          thread->shared->read_rate_limiter->Request(100, Env::IO_HIGH,
                                                     nullptr /*stats*/);
        }
        thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kRead);
      } else if (query_type == 1) {
        // the Put query
        puts++;
        int64_t val_size = ParetoCdfInversion(u, FLAGS_value_theta,
                                              FLAGS_value_k, FLAGS_value_sigma);
        if (val_size < 10) {
          val_size = 10;
        } else if (val_size > value_max) {
          val_size = val_size % value_max;
        }
        total_val_size += val_size;

        s = db_with_cfh->db->Put(
            write_options_, key,
            gen.Generate(static_cast<unsigned int>(val_size)));
        if (!s.ok()) {
          fprintf(stderr, "put error: %s\n", s.ToString().c_str());
          ErrorExit();
        }

        if (thread->shared->write_rate_limiter && puts % 100 == 0) {
          thread->shared->write_rate_limiter->Request(100, Env::IO_HIGH,
                                                      nullptr /*stats*/);
        }
        thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kWrite);
      } else if (query_type == 2) {
        // Seek query
        if (db_with_cfh->db != nullptr) {
          Iterator* single_iter = nullptr;
          single_iter = db_with_cfh->db->NewIterator(read_options_);
          if (single_iter != nullptr) {
            single_iter->Seek(key);
            seek++;
            if (single_iter->Valid() && single_iter->key().compare(key) == 0) {
              seek_found++;
            }
            int64_t scan_length =
                ParetoCdfInversion(u, FLAGS_iter_theta, FLAGS_iter_k,
                                   FLAGS_iter_sigma) %
                scan_len_max;
            for (int64_t j = 0; j < scan_length && single_iter->Valid(); j++) {
              Slice value = single_iter->value();
              memcpy(value_buffer, value.data(),
                     std::min(value.size(), sizeof(value_buffer)));
              bytes += single_iter->key().size() + single_iter->value().size();
              single_iter->Next();
              assert(single_iter->status().ok());
              total_scan_length++;
            }
          }
          delete single_iter;
        }
        thread->stats.FinishedOps(db_with_cfh, db_with_cfh->db, 1, kSeek);
      }
    }
    char msg[256];
    snprintf(msg, sizeof(msg),
             "( Gets:%" PRIu64 " Puts:%" PRIu64 " Seek:%" PRIu64
             ", reads %" PRIu64 " in %" PRIu64
             " found, "
             "avg size: %.1f value, %.1f scan)\n",
             gets, puts, seek, get_found + seek_found, gets + seek,
             total_val_size / puts, total_scan_length / seek);

    thread->stats.AddBytes(bytes);
    thread->stats.AddMessage(msg);
  }

  void IteratorCreation(ThreadState* thread) {
    Duration duration(FLAGS_duration, reads_);
    ReadOptions options = read_options_;
    std::unique_ptr<char[]> ts_guard;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
    }
    while (!duration.Done(1)) {
      DB* db = SelectDB(thread);
      Slice ts;
      if (user_timestamp_size_ > 0) {
        ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
        options.timestamp = &ts;
      }
      Iterator* iter = db->NewIterator(options);
      delete iter;
      thread->stats.FinishedOps(nullptr, db, 1, kOthers);
    }
  }

  void IteratorCreationWhileWriting(ThreadState* thread) {
    if (thread->tid > 0) {
      IteratorCreation(thread);
    } else {
      BGWriter(thread, kWrite);
    }
  }

  void SeekRandom(ThreadState* thread) {
    int64_t read = 0;
    int64_t found = 0;
    int64_t bytes = 0;
    ReadOptions options = read_options_;
    std::unique_ptr<char[]> ts_guard;
    Slice ts;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
      ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
      options.timestamp = &ts;
    }

    std::vector<Iterator*> tailing_iters;
    if (FLAGS_use_tailing_iterator) {
      if (db_.db != nullptr) {
        tailing_iters.push_back(db_.db->NewIterator(options));
      } else {
        for (const auto& db_with_cfh : multi_dbs_) {
          tailing_iters.push_back(db_with_cfh.db->NewIterator(options));
        }
      }
    }
    options.auto_prefix_mode = FLAGS_auto_prefix_mode;

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);

    std::unique_ptr<const char[]> upper_bound_key_guard;
    Slice upper_bound = AllocateKey(&upper_bound_key_guard);
    std::unique_ptr<const char[]> lower_bound_key_guard;
    Slice lower_bound = AllocateKey(&lower_bound_key_guard);

    Duration duration(FLAGS_duration, reads_);
    char value_buffer[256];
    while (!duration.Done(1)) {
      int64_t seek_pos = thread->rand.Next() % FLAGS_num;
      GenerateKeyFromIntForSeek(static_cast<uint64_t>(seek_pos), FLAGS_num,
                                &key);
      if (FLAGS_max_scan_distance != 0) {
        if (FLAGS_reverse_iterator) {
          GenerateKeyFromInt(
              static_cast<uint64_t>(std::max(
                  static_cast<int64_t>(0), seek_pos - FLAGS_max_scan_distance)),
              FLAGS_num, &lower_bound);
          options.iterate_lower_bound = &lower_bound;
        } else {
          auto min_num =
              std::min(FLAGS_num, seek_pos + FLAGS_max_scan_distance);
          GenerateKeyFromInt(static_cast<uint64_t>(min_num), FLAGS_num,
                             &upper_bound);
          options.iterate_upper_bound = &upper_bound;
        }
      } else if (FLAGS_auto_prefix_mode && prefix_extractor_ &&
                 !FLAGS_reverse_iterator) {
        // Set upper bound to next prefix
        auto mutable_upper_bound = const_cast<char*>(upper_bound.data());
        std::memcpy(mutable_upper_bound, key.data(), prefix_size_);
        mutable_upper_bound[prefix_size_ - 1]++;
        upper_bound = Slice(upper_bound.data(), prefix_size_);
        options.iterate_upper_bound = &upper_bound;
      }

      // Pick a Iterator to use
      uint64_t db_idx_to_use =
          (db_.db == nullptr)
              ? (uint64_t{thread->rand.Next()} % multi_dbs_.size())
              : 0;
      std::unique_ptr<Iterator> single_iter;
      Iterator* iter_to_use;
      if (FLAGS_use_tailing_iterator) {
        iter_to_use = tailing_iters[db_idx_to_use];
      } else {
        if (db_.db != nullptr) {
          single_iter.reset(db_.db->NewIterator(options));
        } else {
          single_iter.reset(multi_dbs_[db_idx_to_use].db->NewIterator(options));
        }
        iter_to_use = single_iter.get();
      }

      iter_to_use->Seek(key);
      read++;
      if (iter_to_use->Valid() && iter_to_use->key().compare(key) == 0) {
        found++;
      }

      for (int j = 0; j < FLAGS_seek_nexts && iter_to_use->Valid(); ++j) {
        // Copy out iterator's value to make sure we read them.
        Slice value = iter_to_use->value();
        memcpy(value_buffer, value.data(),
               std::min(value.size(), sizeof(value_buffer)));
        bytes += iter_to_use->key().size() + iter_to_use->value().size();

        if (!FLAGS_reverse_iterator) {
          iter_to_use->Next();
        } else {
          iter_to_use->Prev();
        }
        assert(iter_to_use->status().ok());
      }

      if (thread->shared->read_rate_limiter.get() != nullptr &&
          read % 256 == 255) {
        thread->shared->read_rate_limiter->Request(
            256, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
      }

      thread->stats.FinishedOps(&db_, db_.db, 1, kSeek);
    }
    for (auto iter : tailing_iters) {
      delete iter;
    }

    char msg[100];
    snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)\n", found,
             read);
    thread->stats.AddBytes(bytes);
    thread->stats.AddMessage(msg);
  }

  void SeekRandomWhileWriting(ThreadState* thread) {
    if (thread->tid > 0) {
      SeekRandom(thread);
    } else {
      BGWriter(thread, kWrite);
    }
  }

  void SeekRandomWhileMerging(ThreadState* thread) {
    if (thread->tid > 0) {
      SeekRandom(thread);
    } else {
      BGWriter(thread, kMerge);
    }
  }

  void DoDelete(ThreadState* thread, bool seq) {
    WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0,
                     FLAGS_write_batch_protection_bytes_per_key,
                     user_timestamp_size_);
    Duration duration(seq ? 0 : FLAGS_duration, deletes_);
    int64_t i = 0;
    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    std::unique_ptr<char[]> ts_guard;
    Slice ts;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
    }

    while (!duration.Done(entries_per_batch_)) {
      DB* db = SelectDB(thread);
      batch.Clear();
      for (int64_t j = 0; j < entries_per_batch_; ++j) {
        const int64_t k = seq ? i + j : (thread->rand.Next() % FLAGS_num);
        GenerateKeyFromInt(k, FLAGS_num, &key);
        batch.Delete(key);
      }
      Status s;
      if (user_timestamp_size_ > 0) {
        ts = mock_app_clock_->Allocate(ts_guard.get());
        s = batch.UpdateTimestamps(
            ts, [this](uint32_t) { return user_timestamp_size_; });
        if (!s.ok()) {
          fprintf(stderr, "assign timestamp: %s\n", s.ToString().c_str());
          ErrorExit();
        }
      }
      s = db->Write(write_options_, &batch);
      thread->stats.FinishedOps(nullptr, db, entries_per_batch_, kDelete);
      if (!s.ok()) {
        fprintf(stderr, "del error: %s\n", s.ToString().c_str());
        exit(1);
      }
      i += entries_per_batch_;
    }
  }

  void DeleteSeq(ThreadState* thread) { DoDelete(thread, true); }

  void DeleteRandom(ThreadState* thread) { DoDelete(thread, false); }

  void ReadWhileWriting(ThreadState* thread) {
    if (thread->tid > 0) {
      ReadRandom(thread);
    } else {
      BGWriter(thread, kWrite);
    }
  }

  void MultiReadWhileWriting(ThreadState* thread) {
    if (thread->tid > 0) {
      MultiReadRandom(thread);
    } else {
      BGWriter(thread, kWrite);
    }
  }

  void ReadWhileMerging(ThreadState* thread) {
    if (thread->tid > 0) {
      ReadRandom(thread);
    } else {
      BGWriter(thread, kMerge);
    }
  }

  void BGWriter(ThreadState* thread, enum OperationType write_merge) {
    // Special thread that keeps writing until other threads are done.
    RandomGenerator gen;
    int64_t bytes = 0;

    std::unique_ptr<RateLimiter> write_rate_limiter;
    if (FLAGS_benchmark_write_rate_limit > 0) {
      write_rate_limiter.reset(
          NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
    }

    // Don't merge stats from this thread with the readers.
    thread->stats.SetExcludeFromMerge();

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    std::unique_ptr<char[]> ts_guard;
    std::unique_ptr<const char[]> begin_key_guard;
    Slice begin_key = AllocateKey(&begin_key_guard);
    std::unique_ptr<const char[]> end_key_guard;
    Slice end_key = AllocateKey(&end_key_guard);
    uint64_t num_range_deletions = 0;
    std::vector<std::unique_ptr<const char[]>> expanded_key_guards;
    std::vector<Slice> expanded_keys;
    if (FLAGS_expand_range_tombstones) {
      expanded_key_guards.resize(range_tombstone_width_);
      for (auto& expanded_key_guard : expanded_key_guards) {
        expanded_keys.emplace_back(AllocateKey(&expanded_key_guard));
      }
    }
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
    }
    uint32_t written = 0;
    bool hint_printed = false;

    while (true) {
      DB* db = SelectDB(thread);
      {
        MutexLock l(&thread->shared->mu);
        if (FLAGS_finish_after_writes && written == writes_) {
          fprintf(stderr, "Exiting the writer after %u writes...\n", written);
          break;
        }
        if (thread->shared->num_done + 1 >= thread->shared->num_initialized) {
          // Other threads have finished
          if (FLAGS_finish_after_writes) {
            // Wait for the writes to be finished
            if (!hint_printed) {
              fprintf(stderr, "Reads are finished. Have %d more writes to do\n",
                      static_cast<int>(writes_) - written);
              hint_printed = true;
            }
          } else {
            // Finish the write immediately
            break;
          }
        }
      }

      GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
      Status s;

      Slice val = gen.Generate();
      Slice ts;
      if (user_timestamp_size_ > 0) {
        ts = mock_app_clock_->Allocate(ts_guard.get());
      }
      if (write_merge == kWrite) {
        if (user_timestamp_size_ == 0) {
          s = db->Put(write_options_, key, val);
        } else {
          s = db->Put(write_options_, key, ts, val);
        }
      } else {
        s = db->Merge(write_options_, key, val);
      }
      // Restore write_options_
      written++;

      if (!s.ok()) {
        fprintf(stderr, "put or merge error: %s\n", s.ToString().c_str());
        exit(1);
      }
      bytes += key.size() + val.size() + user_timestamp_size_;
      thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);

      if (FLAGS_benchmark_write_rate_limit > 0) {
        write_rate_limiter->Request(key.size() + val.size(), Env::IO_HIGH,
                                    nullptr /* stats */,
                                    RateLimiter::OpType::kWrite);
      }

      if (writes_per_range_tombstone_ > 0 &&
          written > writes_before_delete_range_ &&
          (written - writes_before_delete_range_) /
                  writes_per_range_tombstone_ <=
              max_num_range_tombstones_ &&
          (written - writes_before_delete_range_) %
                  writes_per_range_tombstone_ ==
              0) {
        num_range_deletions++;
        int64_t begin_num = thread->rand.Next() % FLAGS_num;
        if (FLAGS_expand_range_tombstones) {
          for (int64_t offset = 0; offset < range_tombstone_width_; ++offset) {
            GenerateKeyFromInt(begin_num + offset, FLAGS_num,
                               &expanded_keys[offset]);
            if (!db->Delete(write_options_, expanded_keys[offset]).ok()) {
              fprintf(stderr, "delete error: %s\n", s.ToString().c_str());
              exit(1);
            }
          }
        } else {
          GenerateKeyFromInt(begin_num, FLAGS_num, &begin_key);
          GenerateKeyFromInt(begin_num + range_tombstone_width_, FLAGS_num,
                             &end_key);
          if (!db->DeleteRange(write_options_, db->DefaultColumnFamily(),
                               begin_key, end_key)
                   .ok()) {
            fprintf(stderr, "deleterange error: %s\n", s.ToString().c_str());
            exit(1);
          }
        }
        thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
        // TODO: DeleteRange is not included in calculcation of bytes/rate
        // limiter request
      }
    }
    if (num_range_deletions > 0) {
      std::cout << "Number of range deletions: " << num_range_deletions
                << std::endl;
    }
    thread->stats.AddBytes(bytes);
  }

  void ReadWhileScanning(ThreadState* thread) {
    if (thread->tid > 0) {
      ReadRandom(thread);
    } else {
      BGScan(thread);
    }
  }

  void BGScan(ThreadState* thread) {
    if (FLAGS_num_multi_db > 0) {
      fprintf(stderr, "Not supporting multiple DBs.\n");
      abort();
    }
    assert(db_.db != nullptr);
    ReadOptions read_options = read_options_;
    std::unique_ptr<char[]> ts_guard;
    Slice ts;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
      ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
      read_options.timestamp = &ts;
    }
    Iterator* iter = db_.db->NewIterator(read_options);

    fprintf(stderr, "num reads to do %" PRIu64 "\n", reads_);
    Duration duration(FLAGS_duration, reads_);
    uint64_t num_seek_to_first = 0;
    uint64_t num_next = 0;
    while (!duration.Done(1)) {
      if (!iter->Valid()) {
        iter->SeekToFirst();
        num_seek_to_first++;
      } else if (!iter->status().ok()) {
        fprintf(stderr, "Iterator error: %s\n",
                iter->status().ToString().c_str());
        abort();
      } else {
        iter->Next();
        num_next++;
      }

      thread->stats.FinishedOps(&db_, db_.db, 1, kSeek);
    }
    delete iter;
  }

  // Given a key K and value V, this puts (K+"0", V), (K+"1", V), (K+"2", V)
  // in DB atomically i.e in a single batch. Also refer GetMany.
  Status PutMany(DB* db, const WriteOptions& writeoptions, const Slice& key,
                 const Slice& value) {
    std::string suffixes[3] = {"2", "1", "0"};
    std::string keys[3];

    WriteBatch batch(/*reserved_bytes=*/0, /*max_bytes=*/0,
                     FLAGS_write_batch_protection_bytes_per_key,
                     user_timestamp_size_);
    Status s;
    for (int i = 0; i < 3; i++) {
      keys[i] = key.ToString() + suffixes[i];
      batch.Put(keys[i], value);
    }

    std::unique_ptr<char[]> ts_guard;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
      Slice ts = mock_app_clock_->Allocate(ts_guard.get());
      s = batch.UpdateTimestamps(
          ts, [this](uint32_t) { return user_timestamp_size_; });
      if (!s.ok()) {
        fprintf(stderr, "assign timestamp to batch: %s\n",
                s.ToString().c_str());
        ErrorExit();
      }
    }

    s = db->Write(writeoptions, &batch);
    return s;
  }

  // Given a key K, this deletes (K+"0", V), (K+"1", V), (K+"2", V)
  // in DB atomically i.e in a single batch. Also refer GetMany.
  Status DeleteMany(DB* db, const WriteOptions& writeoptions,
                    const Slice& key) {
    std::string suffixes[3] = {"1", "2", "0"};
    std::string keys[3];

    WriteBatch batch(0, 0, FLAGS_write_batch_protection_bytes_per_key,
                     user_timestamp_size_);
    Status s;
    for (int i = 0; i < 3; i++) {
      keys[i] = key.ToString() + suffixes[i];
      batch.Delete(keys[i]);
    }

    std::unique_ptr<char[]> ts_guard;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
      Slice ts = mock_app_clock_->Allocate(ts_guard.get());
      s = batch.UpdateTimestamps(
          ts, [this](uint32_t) { return user_timestamp_size_; });
      if (!s.ok()) {
        fprintf(stderr, "assign timestamp to batch: %s\n",
                s.ToString().c_str());
        ErrorExit();
      }
    }

    s = db->Write(writeoptions, &batch);
    return s;
  }

  // Given a key K and value V, this gets values for K+"0", K+"1" and K+"2"
  // in the same snapshot, and verifies that all the values are identical.
  // ASSUMES that PutMany was used to put (K, V) into the DB.
  Status GetMany(DB* db, const Slice& key, std::string* value) {
    std::string suffixes[3] = {"0", "1", "2"};
    std::string keys[3];
    Slice key_slices[3];
    std::string values[3];
    ReadOptions readoptionscopy = read_options_;

    std::unique_ptr<char[]> ts_guard;
    Slice ts;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
      ts = mock_app_clock_->Allocate(ts_guard.get());
      readoptionscopy.timestamp = &ts;
    }

    readoptionscopy.snapshot = db->GetSnapshot();
    Status s;
    for (int i = 0; i < 3; i++) {
      keys[i] = key.ToString() + suffixes[i];
      key_slices[i] = keys[i];
      s = db->Get(readoptionscopy, key_slices[i], value);
      if (!s.ok() && !s.IsNotFound()) {
        fprintf(stderr, "get error: %s\n", s.ToString().c_str());
        values[i] = "";
        // we continue after error rather than exiting so that we can
        // find more errors if any
      } else if (s.IsNotFound()) {
        values[i] = "";
      } else {
        values[i] = *value;
      }
    }
    db->ReleaseSnapshot(readoptionscopy.snapshot);

    if ((values[0] != values[1]) || (values[1] != values[2])) {
      fprintf(stderr, "inconsistent values for key %s: %s, %s, %s\n",
              key.ToString().c_str(), values[0].c_str(), values[1].c_str(),
              values[2].c_str());
      // we continue after error rather than exiting so that we can
      // find more errors if any
    }

    return s;
  }

  // Differs from readrandomwriterandom in the following ways:
  // (a) Uses GetMany/PutMany to read/write key values. Refer to those funcs.
  // (b) Does deletes as well (per FLAGS_deletepercent)
  // (c) In order to achieve high % of 'found' during lookups, and to do
  //     multiple writes (including puts and deletes) it uses upto
  //     FLAGS_numdistinct distinct keys instead of FLAGS_num distinct keys.
  // (d) Does not have a MultiGet option.
  void RandomWithVerify(ThreadState* thread) {
    RandomGenerator gen;
    std::string value;
    int64_t found = 0;
    int get_weight = 0;
    int put_weight = 0;
    int delete_weight = 0;
    int64_t gets_done = 0;
    int64_t puts_done = 0;
    int64_t deletes_done = 0;

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);

    // the number of iterations is the larger of read_ or write_
    for (int64_t i = 0; i < readwrites_; i++) {
      DB* db = SelectDB(thread);
      if (get_weight == 0 && put_weight == 0 && delete_weight == 0) {
        // one batch completed, reinitialize for next batch
        get_weight = FLAGS_readwritepercent;
        delete_weight = FLAGS_deletepercent;
        put_weight = 100 - get_weight - delete_weight;
      }
      GenerateKeyFromInt(thread->rand.Next() % FLAGS_numdistinct,
                         FLAGS_numdistinct, &key);
      if (get_weight > 0) {
        // do all the gets first
        Status s = GetMany(db, key, &value);
        if (!s.ok() && !s.IsNotFound()) {
          fprintf(stderr, "getmany error: %s\n", s.ToString().c_str());
          // we continue after error rather than exiting so that we can
          // find more errors if any
        } else if (!s.IsNotFound()) {
          found++;
        }
        get_weight--;
        gets_done++;
        thread->stats.FinishedOps(&db_, db_.db, 1, kRead);
      } else if (put_weight > 0) {
        // then do all the corresponding number of puts
        // for all the gets we have done earlier
        Status s = PutMany(db, write_options_, key, gen.Generate());
        if (!s.ok()) {
          fprintf(stderr, "putmany error: %s\n", s.ToString().c_str());
          exit(1);
        }
        put_weight--;
        puts_done++;
        thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
      } else if (delete_weight > 0) {
        Status s = DeleteMany(db, write_options_, key);
        if (!s.ok()) {
          fprintf(stderr, "deletemany error: %s\n", s.ToString().c_str());
          exit(1);
        }
        delete_weight--;
        deletes_done++;
        thread->stats.FinishedOps(&db_, db_.db, 1, kDelete);
      }
    }
    char msg[128];
    snprintf(msg, sizeof(msg),
             "( get:%" PRIu64 " put:%" PRIu64 " del:%" PRIu64 " total:%" PRIu64
             " found:%" PRIu64 ")",
             gets_done, puts_done, deletes_done, readwrites_, found);
    thread->stats.AddMessage(msg);
  }

  // This is different from ReadWhileWriting because it does not use
  // an extra thread.
  void ReadRandomWriteRandom(ThreadState* thread) {
    ReadOptions options = read_options_;
    RandomGenerator gen;
    std::string value;
    int64_t found = 0;
    int get_weight = 0;
    int put_weight = 0;
    int64_t reads_done = 0;
    int64_t writes_done = 0;
    Duration duration(FLAGS_duration, readwrites_);

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);

    std::unique_ptr<char[]> ts_guard;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
    }

    // the number of iterations is the larger of read_ or write_
    while (!duration.Done(1)) {
      DB* db = SelectDB(thread);
      GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
      if (get_weight == 0 && put_weight == 0) {
        // one batch completed, reinitialize for next batch
        get_weight = FLAGS_readwritepercent;
        put_weight = 100 - get_weight;
      }
      if (get_weight > 0) {
        // do all the gets first
        Slice ts;
        if (user_timestamp_size_ > 0) {
          ts = mock_app_clock_->GetTimestampForRead(thread->rand,
                                                    ts_guard.get());
          options.timestamp = &ts;
        }
        Status s = db->Get(options, key, &value);
        if (!s.ok() && !s.IsNotFound()) {
          fprintf(stderr, "get error: %s\n", s.ToString().c_str());
          // we continue after error rather than exiting so that we can
          // find more errors if any
        } else if (!s.IsNotFound()) {
          found++;
        }
        get_weight--;
        reads_done++;
        thread->stats.FinishedOps(nullptr, db, 1, kRead);
      } else if (put_weight > 0) {
        // then do all the corresponding number of puts
        // for all the gets we have done earlier
        Status s;
        if (user_timestamp_size_ > 0) {
          Slice ts = mock_app_clock_->Allocate(ts_guard.get());
          s = db->Put(write_options_, key, ts, gen.Generate());
        } else {
          s = db->Put(write_options_, key, gen.Generate());
        }
        if (!s.ok()) {
          fprintf(stderr, "put error: %s\n", s.ToString().c_str());
          ErrorExit();
        }
        put_weight--;
        writes_done++;
        thread->stats.FinishedOps(nullptr, db, 1, kWrite);
      }
    }
    char msg[100];
    snprintf(msg, sizeof(msg),
             "( reads:%" PRIu64 " writes:%" PRIu64 " total:%" PRIu64
             " found:%" PRIu64 ")",
             reads_done, writes_done, readwrites_, found);
    thread->stats.AddMessage(msg);
  }

  //
  // Read-modify-write for random keys
  void UpdateRandom(ThreadState* thread) {
    ReadOptions options = read_options_;
    RandomGenerator gen;
    std::string value;
    int64_t found = 0;
    int64_t bytes = 0;
    Duration duration(FLAGS_duration, readwrites_);

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    std::unique_ptr<char[]> ts_guard;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
    }
    // the number of iterations is the larger of read_ or write_
    while (!duration.Done(1)) {
      DB* db = SelectDB(thread);
      GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
      Slice ts;
      if (user_timestamp_size_ > 0) {
        // Read with newest timestamp because we are doing rmw.
        ts = mock_app_clock_->Allocate(ts_guard.get());
        options.timestamp = &ts;
      }

      auto status = db->Get(options, key, &value);
      if (status.ok()) {
        ++found;
        bytes += key.size() + value.size() + user_timestamp_size_;
      } else if (!status.IsNotFound()) {
        fprintf(stderr, "Get returned an error: %s\n",
                status.ToString().c_str());
        abort();
      }

      if (thread->shared->write_rate_limiter) {
        thread->shared->write_rate_limiter->Request(
            key.size() + value.size(), Env::IO_HIGH, nullptr /*stats*/,
            RateLimiter::OpType::kWrite);
      }

      Slice val = gen.Generate();
      Status s;
      if (user_timestamp_size_ > 0) {
        ts = mock_app_clock_->Allocate(ts_guard.get());
        s = db->Put(write_options_, key, ts, val);
      } else {
        s = db->Put(write_options_, key, val);
      }
      if (!s.ok()) {
        fprintf(stderr, "put error: %s\n", s.ToString().c_str());
        exit(1);
      }
      bytes += key.size() + val.size() + user_timestamp_size_;
      thread->stats.FinishedOps(nullptr, db, 1, kUpdate);
    }
    char msg[100];
    snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")",
             readwrites_, found);
    thread->stats.AddBytes(bytes);
    thread->stats.AddMessage(msg);
  }

  // Read-XOR-write for random keys. Xors the existing value with a randomly
  // generated value, and stores the result. Assuming A in the array of bytes
  // representing the existing value, we generate an array B of the same size,
  // then compute C = A^B as C[i]=A[i]^B[i], and store C
  void XORUpdateRandom(ThreadState* thread) {
    ReadOptions options = read_options_;
    RandomGenerator gen;
    std::string existing_value;
    int64_t found = 0;
    Duration duration(FLAGS_duration, readwrites_);

    BytesXOROperator xor_operator;

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    std::unique_ptr<char[]> ts_guard;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
    }
    // the number of iterations is the larger of read_ or write_
    while (!duration.Done(1)) {
      DB* db = SelectDB(thread);
      GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
      Slice ts;
      if (user_timestamp_size_ > 0) {
        ts = mock_app_clock_->Allocate(ts_guard.get());
        options.timestamp = &ts;
      }

      auto status = db->Get(options, key, &existing_value);
      if (status.ok()) {
        ++found;
      } else if (!status.IsNotFound()) {
        fprintf(stderr, "Get returned an error: %s\n",
                status.ToString().c_str());
        exit(1);
      }

      Slice value =
          gen.Generate(static_cast<unsigned int>(existing_value.size()));
      std::string new_value;

      if (status.ok()) {
        Slice existing_value_slice = Slice(existing_value);
        xor_operator.XOR(&existing_value_slice, value, &new_value);
      } else {
        xor_operator.XOR(nullptr, value, &new_value);
      }

      Status s;
      if (user_timestamp_size_ > 0) {
        ts = mock_app_clock_->Allocate(ts_guard.get());
        s = db->Put(write_options_, key, ts, Slice(new_value));
      } else {
        s = db->Put(write_options_, key, Slice(new_value));
      }
      if (!s.ok()) {
        fprintf(stderr, "put error: %s\n", s.ToString().c_str());
        ErrorExit();
      }
      thread->stats.FinishedOps(nullptr, db, 1);
    }
    char msg[100];
    snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")",
             readwrites_, found);
    thread->stats.AddMessage(msg);
  }

  // Read-modify-write for random keys.
  // Each operation causes the key grow by value_size (simulating an append).
  // Generally used for benchmarking against merges of similar type
  void AppendRandom(ThreadState* thread) {
    ReadOptions options = read_options_;
    RandomGenerator gen;
    std::string value;
    int64_t found = 0;
    int64_t bytes = 0;

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    std::unique_ptr<char[]> ts_guard;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
    }
    // The number of iterations is the larger of read_ or write_
    Duration duration(FLAGS_duration, readwrites_);
    while (!duration.Done(1)) {
      DB* db = SelectDB(thread);
      GenerateKeyFromInt(thread->rand.Next() % FLAGS_num, FLAGS_num, &key);
      Slice ts;
      if (user_timestamp_size_ > 0) {
        ts = mock_app_clock_->Allocate(ts_guard.get());
        options.timestamp = &ts;
      }

      auto status = db->Get(options, key, &value);
      if (status.ok()) {
        ++found;
        bytes += key.size() + value.size() + user_timestamp_size_;
      } else if (!status.IsNotFound()) {
        fprintf(stderr, "Get returned an error: %s\n",
                status.ToString().c_str());
        abort();
      } else {
        // If not existing, then just assume an empty string of data
        value.clear();
      }

      // Update the value (by appending data)
      Slice operand = gen.Generate();
      if (value.size() > 0) {
        // Use a delimiter to match the semantics for StringAppendOperator
        value.append(1, ',');
      }
      value.append(operand.data(), operand.size());

      Status s;
      if (user_timestamp_size_ > 0) {
        ts = mock_app_clock_->Allocate(ts_guard.get());
        s = db->Put(write_options_, key, ts, value);
      } else {
        // Write back to the database
        s = db->Put(write_options_, key, value);
      }
      if (!s.ok()) {
        fprintf(stderr, "put error: %s\n", s.ToString().c_str());
        ErrorExit();
      }
      bytes += key.size() + value.size() + user_timestamp_size_;
      thread->stats.FinishedOps(nullptr, db, 1, kUpdate);
    }

    char msg[100];
    snprintf(msg, sizeof(msg), "( updates:%" PRIu64 " found:%" PRIu64 ")",
             readwrites_, found);
    thread->stats.AddBytes(bytes);
    thread->stats.AddMessage(msg);
  }

  // Read-modify-write for random keys (using MergeOperator)
  // The merge operator to use should be defined by FLAGS_merge_operator
  // Adjust FLAGS_value_size so that the keys are reasonable for this operator
  // Assumes that the merge operator is non-null (i.e.: is well-defined)
  //
  // For example, use FLAGS_merge_operator="uint64add" and FLAGS_value_size=8
  // to simulate random additions over 64-bit integers using merge.
  //
  // The number of merges on the same key can be controlled by adjusting
  // FLAGS_merge_keys.
  void MergeRandom(ThreadState* thread) {
    RandomGenerator gen;
    int64_t bytes = 0;
    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    // The number of iterations is the larger of read_ or write_
    Duration duration(FLAGS_duration, readwrites_);
    while (!duration.Done(1)) {
      DBWithColumnFamilies* db_with_cfh = SelectDBWithCfh(thread);
      int64_t key_rand = thread->rand.Next() % merge_keys_;
      GenerateKeyFromInt(key_rand, merge_keys_, &key);

      Status s;
      Slice val = gen.Generate();
      if (FLAGS_num_column_families > 1) {
        s = db_with_cfh->db->Merge(write_options_,
                                   db_with_cfh->GetCfh(key_rand), key, val);
      } else {
        s = db_with_cfh->db->Merge(
            write_options_, db_with_cfh->db->DefaultColumnFamily(), key, val);
      }

      if (!s.ok()) {
        fprintf(stderr, "merge error: %s\n", s.ToString().c_str());
        exit(1);
      }
      bytes += key.size() + val.size();
      thread->stats.FinishedOps(nullptr, db_with_cfh->db, 1, kMerge);
    }

    // Print some statistics
    char msg[100];
    snprintf(msg, sizeof(msg), "( updates:%" PRIu64 ")", readwrites_);
    thread->stats.AddBytes(bytes);
    thread->stats.AddMessage(msg);
  }

  // Read and merge random keys. The amount of reads and merges are controlled
  // by adjusting FLAGS_num and FLAGS_mergereadpercent. The number of distinct
  // keys (and thus also the number of reads and merges on the same key) can be
  // adjusted with FLAGS_merge_keys.
  //
  // As with MergeRandom, the merge operator to use should be defined by
  // FLAGS_merge_operator.
  void ReadRandomMergeRandom(ThreadState* thread) {
    RandomGenerator gen;
    std::string value;
    int64_t num_hits = 0;
    int64_t num_gets = 0;
    int64_t num_merges = 0;
    size_t max_length = 0;

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    // the number of iterations is the larger of read_ or write_
    Duration duration(FLAGS_duration, readwrites_);
    while (!duration.Done(1)) {
      DB* db = SelectDB(thread);
      GenerateKeyFromInt(thread->rand.Next() % merge_keys_, merge_keys_, &key);

      bool do_merge = int(thread->rand.Next() % 100) < FLAGS_mergereadpercent;

      if (do_merge) {
        Status s = db->Merge(write_options_, key, gen.Generate());
        if (!s.ok()) {
          fprintf(stderr, "merge error: %s\n", s.ToString().c_str());
          exit(1);
        }
        num_merges++;
        thread->stats.FinishedOps(nullptr, db, 1, kMerge);
      } else {
        Status s = db->Get(read_options_, key, &value);
        if (value.length() > max_length) max_length = value.length();

        if (!s.ok() && !s.IsNotFound()) {
          fprintf(stderr, "get error: %s\n", s.ToString().c_str());
          // we continue after error rather than exiting so that we can
          // find more errors if any
        } else if (!s.IsNotFound()) {
          num_hits++;
        }
        num_gets++;
        thread->stats.FinishedOps(nullptr, db, 1, kRead);
      }
    }

    char msg[100];
    snprintf(msg, sizeof(msg),
             "(reads:%" PRIu64 " merges:%" PRIu64 " total:%" PRIu64
             " hits:%" PRIu64 " maxlength:%" ROCKSDB_PRIszt ")",
             num_gets, num_merges, readwrites_, num_hits, max_length);
    thread->stats.AddMessage(msg);
  }

  void WriteSeqSeekSeq(ThreadState* thread) {
    writes_ = FLAGS_num;
    DoWrite(thread, SEQUENTIAL);
    // exclude writes from the ops/sec calculation
    thread->stats.Start(thread->tid);

    DB* db = SelectDB(thread);
    ReadOptions read_opts = read_options_;
    std::unique_ptr<char[]> ts_guard;
    Slice ts;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
      ts = mock_app_clock_->GetTimestampForRead(thread->rand, ts_guard.get());
      read_opts.timestamp = &ts;
    }
    std::unique_ptr<Iterator> iter(db->NewIterator(read_opts));

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    for (int64_t i = 0; i < FLAGS_num; ++i) {
      GenerateKeyFromInt(i, FLAGS_num, &key);
      iter->Seek(key);
      assert(iter->Valid() && iter->key() == key);
      thread->stats.FinishedOps(nullptr, db, 1, kSeek);

      for (int j = 0; j < FLAGS_seek_nexts && i + 1 < FLAGS_num; ++j) {
        if (!FLAGS_reverse_iterator) {
          iter->Next();
        } else {
          iter->Prev();
        }
        GenerateKeyFromInt(++i, FLAGS_num, &key);
        assert(iter->Valid() && iter->key() == key);
        thread->stats.FinishedOps(nullptr, db, 1, kSeek);
      }

      iter->Seek(key);
      assert(iter->Valid() && iter->key() == key);
      thread->stats.FinishedOps(nullptr, db, 1, kSeek);
    }
  }

  bool binary_search(std::vector<int>& data, int start, int end, int key) {
    if (data.empty()) return false;
    if (start > end) return false;
    int mid = start + (end - start) / 2;
    if (mid > static_cast<int>(data.size()) - 1) return false;
    if (data[mid] == key) {
      return true;
    } else if (data[mid] > key) {
      return binary_search(data, start, mid - 1, key);
    } else {
      return binary_search(data, mid + 1, end, key);
    }
  }

  // Does a bunch of merge operations for a key(key1) where the merge operand
  // is a sorted list. Next performance comparison is done between doing a Get
  // for key1 followed by searching for another key(key2) in the large sorted
  // list vs calling GetMergeOperands for key1 and then searching for the key2
  // in all the sorted sub-lists. Later case is expected to be a lot faster.
  void GetMergeOperands(ThreadState* thread) {
    DB* db = SelectDB(thread);
    const int kTotalValues = 100000;
    const int kListSize = 100;
    std::string key = "my_key";
    std::string value;

    for (int i = 1; i < kTotalValues; i++) {
      if (i % kListSize == 0) {
        // Remove trailing ','
        value.pop_back();
        db->Merge(WriteOptions(), key, value);
        value.clear();
      } else {
        value.append(std::to_string(i)).append(",");
      }
    }

    SortList s;
    std::vector<int> data;
    // This value can be experimented with and it will demonstrate the
    // perf difference between doing a Get and searching for lookup_key in the
    // resultant large sorted list vs doing GetMergeOperands and searching
    // for lookup_key within this resultant sorted sub-lists.
    int lookup_key = 1;

    // Get API call
    std::cout << "--- Get API call --- \n";
    PinnableSlice p_slice;
    uint64_t st = FLAGS_env->NowNanos();
    db->Get(ReadOptions(), db->DefaultColumnFamily(), key, &p_slice);
    s.MakeVector(data, p_slice);
    bool found =
        binary_search(data, 0, static_cast<int>(data.size() - 1), lookup_key);
    std::cout << "Found key? " << std::to_string(found) << "\n";
    uint64_t sp = FLAGS_env->NowNanos();
    std::cout << "Get: " << (sp - st) / 1000000000.0 << " seconds\n";
    std::string* dat_ = p_slice.GetSelf();
    std::cout << "Sample data from Get API call: " << dat_->substr(0, 10)
              << "\n";
    data.clear();

    // GetMergeOperands API call
    std::cout << "--- GetMergeOperands API --- \n";
    std::vector<PinnableSlice> a_slice((kTotalValues / kListSize) + 1);
    st = FLAGS_env->NowNanos();
    int number_of_operands = 0;
    GetMergeOperandsOptions get_merge_operands_options;
    get_merge_operands_options.expected_max_number_of_operands =
        (kTotalValues / 100) + 1;
    db->GetMergeOperands(ReadOptions(), db->DefaultColumnFamily(), key,
                         a_slice.data(), &get_merge_operands_options,
                         &number_of_operands);
    for (PinnableSlice& psl : a_slice) {
      s.MakeVector(data, psl);
      found =
          binary_search(data, 0, static_cast<int>(data.size() - 1), lookup_key);
      data.clear();
      if (found) break;
    }
    std::cout << "Found key? " << std::to_string(found) << "\n";
    sp = FLAGS_env->NowNanos();
    std::cout << "Get Merge operands: " << (sp - st) / 1000000000.0
              << " seconds \n";
    int to_print = 0;
    std::cout << "Sample data from GetMergeOperands API call: ";
    for (PinnableSlice& psl : a_slice) {
      std::cout << "List: " << to_print << " : " << *psl.GetSelf() << "\n";
      if (to_print++ > 2) break;
    }
  }

#ifndef ROCKSDB_LITE
  void VerifyChecksum(ThreadState* thread) {
    DB* db = SelectDB(thread);
    ReadOptions ro;
    ro.adaptive_readahead = FLAGS_adaptive_readahead;
    ro.async_io = FLAGS_async_io;
    ro.rate_limiter_priority =
        FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
    ro.readahead_size = FLAGS_readahead_size;
    Status s = db->VerifyChecksum(ro);
    if (!s.ok()) {
      fprintf(stderr, "VerifyChecksum() failed: %s\n", s.ToString().c_str());
      exit(1);
    }
  }

  void VerifyFileChecksums(ThreadState* thread) {
    DB* db = SelectDB(thread);
    ReadOptions ro;
    ro.adaptive_readahead = FLAGS_adaptive_readahead;
    ro.async_io = FLAGS_async_io;
    ro.rate_limiter_priority =
        FLAGS_rate_limit_user_ops ? Env::IO_USER : Env::IO_TOTAL;
    ro.readahead_size = FLAGS_readahead_size;
    Status s = db->VerifyFileChecksums(ro);
    if (!s.ok()) {
      fprintf(stderr, "VerifyFileChecksums() failed: %s\n",
              s.ToString().c_str());
      exit(1);
    }
  }

  // This benchmark stress tests Transactions.  For a given --duration (or
  // total number of --writes, a Transaction will perform a read-modify-write
  // to increment the value of a key in each of N(--transaction-sets) sets of
  // keys (where each set has --num keys).  If --threads is set, this will be
  // done in parallel.
  //
  // To test transactions, use --transaction_db=true.  Not setting this
  // parameter
  // will run the same benchmark without transactions.
  //
  // RandomTransactionVerify() will then validate the correctness of the results
  // by checking if the sum of all keys in each set is the same.
  void RandomTransaction(ThreadState* thread) {
    Duration duration(FLAGS_duration, readwrites_);
    uint16_t num_prefix_ranges = static_cast<uint16_t>(FLAGS_transaction_sets);
    uint64_t transactions_done = 0;

    if (num_prefix_ranges == 0 || num_prefix_ranges > 9999) {
      fprintf(stderr, "invalid value for transaction_sets\n");
      abort();
    }

    TransactionOptions txn_options;
    txn_options.lock_timeout = FLAGS_transaction_lock_timeout;
    txn_options.set_snapshot = FLAGS_transaction_set_snapshot;

    RandomTransactionInserter inserter(&thread->rand, write_options_,
                                       read_options_, FLAGS_num,
                                       num_prefix_ranges);

    if (FLAGS_num_multi_db > 1) {
      fprintf(stderr,
              "Cannot run RandomTransaction benchmark with "
              "FLAGS_multi_db > 1.");
      abort();
    }

    while (!duration.Done(1)) {
      bool success;

      // RandomTransactionInserter will attempt to insert a key for each
      // # of FLAGS_transaction_sets
      if (FLAGS_optimistic_transaction_db) {
        success = inserter.OptimisticTransactionDBInsert(db_.opt_txn_db);
      } else if (FLAGS_transaction_db) {
        TransactionDB* txn_db = reinterpret_cast<TransactionDB*>(db_.db);
        success = inserter.TransactionDBInsert(txn_db, txn_options);
      } else {
        success = inserter.DBInsert(db_.db);
      }

      if (!success) {
        fprintf(stderr, "Unexpected error: %s\n",
                inserter.GetLastStatus().ToString().c_str());
        abort();
      }

      thread->stats.FinishedOps(nullptr, db_.db, 1, kOthers);
      transactions_done++;
    }

    char msg[100];
    if (FLAGS_optimistic_transaction_db || FLAGS_transaction_db) {
      snprintf(msg, sizeof(msg),
               "( transactions:%" PRIu64 " aborts:%" PRIu64 ")",
               transactions_done, inserter.GetFailureCount());
    } else {
      snprintf(msg, sizeof(msg), "( batches:%" PRIu64 " )", transactions_done);
    }
    thread->stats.AddMessage(msg);
    thread->stats.AddBytes(static_cast<int64_t>(inserter.GetBytesInserted()));
  }

  // Verifies consistency of data after RandomTransaction() has been run.
  // Since each iteration of RandomTransaction() incremented a key in each set
  // by the same value, the sum of the keys in each set should be the same.
  void RandomTransactionVerify() {
    if (!FLAGS_transaction_db && !FLAGS_optimistic_transaction_db) {
      // transactions not used, nothing to verify.
      return;
    }

    Status s = RandomTransactionInserter::Verify(
        db_.db, static_cast<uint16_t>(FLAGS_transaction_sets));

    if (s.ok()) {
      fprintf(stdout, "RandomTransactionVerify Success.\n");
    } else {
      fprintf(stdout, "RandomTransactionVerify FAILED!!\n");
    }
  }
#endif  // ROCKSDB_LITE

  // Writes and deletes random keys without overwriting keys.
  //
  // This benchmark is intended to partially replicate the behavior of MyRocks
  // secondary indices: All data is stored in keys and updates happen by
  // deleting the old version of the key and inserting the new version.
  void RandomReplaceKeys(ThreadState* thread) {
    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);
    std::unique_ptr<char[]> ts_guard;
    if (user_timestamp_size_ > 0) {
      ts_guard.reset(new char[user_timestamp_size_]);
    }
    std::vector<uint32_t> counters(FLAGS_numdistinct, 0);
    size_t max_counter = 50;
    RandomGenerator gen;

    Status s;
    DB* db = SelectDB(thread);
    for (int64_t i = 0; i < FLAGS_numdistinct; i++) {
      GenerateKeyFromInt(i * max_counter, FLAGS_num, &key);
      if (user_timestamp_size_ > 0) {
        Slice ts = mock_app_clock_->Allocate(ts_guard.get());
        s = db->Put(write_options_, key, ts, gen.Generate());
      } else {
        s = db->Put(write_options_, key, gen.Generate());
      }
      if (!s.ok()) {
        fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str());
        exit(1);
      }
    }

    db->GetSnapshot();

    std::default_random_engine generator;
    std::normal_distribution<double> distribution(FLAGS_numdistinct / 2.0,
                                                  FLAGS_stddev);
    Duration duration(FLAGS_duration, FLAGS_num);
    while (!duration.Done(1)) {
      int64_t rnd_id = static_cast<int64_t>(distribution(generator));
      int64_t key_id = std::max(std::min(FLAGS_numdistinct - 1, rnd_id),
                                static_cast<int64_t>(0));
      GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num,
                         &key);
      if (user_timestamp_size_ > 0) {
        Slice ts = mock_app_clock_->Allocate(ts_guard.get());
        s = FLAGS_use_single_deletes ? db->SingleDelete(write_options_, key, ts)
                                     : db->Delete(write_options_, key, ts);
      } else {
        s = FLAGS_use_single_deletes ? db->SingleDelete(write_options_, key)
                                     : db->Delete(write_options_, key);
      }
      if (s.ok()) {
        counters[key_id] = (counters[key_id] + 1) % max_counter;
        GenerateKeyFromInt(key_id * max_counter + counters[key_id], FLAGS_num,
                           &key);
        if (user_timestamp_size_ > 0) {
          Slice ts = mock_app_clock_->Allocate(ts_guard.get());
          s = db->Put(write_options_, key, ts, Slice());
        } else {
          s = db->Put(write_options_, key, Slice());
        }
      }

      if (!s.ok()) {
        fprintf(stderr, "Operation failed: %s\n", s.ToString().c_str());
        exit(1);
      }

      thread->stats.FinishedOps(nullptr, db, 1, kOthers);
    }

    char msg[200];
    snprintf(msg, sizeof(msg),
             "use single deletes: %d, "
             "standard deviation: %lf\n",
             FLAGS_use_single_deletes, FLAGS_stddev);
    thread->stats.AddMessage(msg);
  }

  void TimeSeriesReadOrDelete(ThreadState* thread, bool do_deletion) {
    int64_t read = 0;
    int64_t found = 0;
    int64_t bytes = 0;

    Iterator* iter = nullptr;
    // Only work on single database
    assert(db_.db != nullptr);
    iter = db_.db->NewIterator(read_options_);

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);

    char value_buffer[256];
    while (true) {
      {
        MutexLock l(&thread->shared->mu);
        if (thread->shared->num_done >= 1) {
          // Write thread have finished
          break;
        }
      }
      if (!FLAGS_use_tailing_iterator) {
        delete iter;
        iter = db_.db->NewIterator(read_options_);
      }
      // Pick a Iterator to use

      int64_t key_id = thread->rand.Next() % FLAGS_key_id_range;
      GenerateKeyFromInt(key_id, FLAGS_num, &key);
      // Reset last 8 bytes to 0
      char* start = const_cast<char*>(key.data());
      start += key.size() - 8;
      memset(start, 0, 8);
      ++read;

      bool key_found = false;
      // Seek the prefix
      for (iter->Seek(key); iter->Valid() && iter->key().starts_with(key);
           iter->Next()) {
        key_found = true;
        // Copy out iterator's value to make sure we read them.
        if (do_deletion) {
          bytes += iter->key().size();
          if (KeyExpired(timestamp_emulator_.get(), iter->key())) {
            thread->stats.FinishedOps(&db_, db_.db, 1, kDelete);
            db_.db->Delete(write_options_, iter->key());
          } else {
            break;
          }
        } else {
          bytes += iter->key().size() + iter->value().size();
          thread->stats.FinishedOps(&db_, db_.db, 1, kRead);
          Slice value = iter->value();
          memcpy(value_buffer, value.data(),
                 std::min(value.size(), sizeof(value_buffer)));

          assert(iter->status().ok());
        }
      }
      found += key_found;

      if (thread->shared->read_rate_limiter.get() != nullptr) {
        thread->shared->read_rate_limiter->Request(
            1, Env::IO_HIGH, nullptr /* stats */, RateLimiter::OpType::kRead);
      }
    }
    delete iter;

    char msg[100];
    snprintf(msg, sizeof(msg), "(%" PRIu64 " of %" PRIu64 " found)", found,
             read);
    thread->stats.AddBytes(bytes);
    thread->stats.AddMessage(msg);
  }

  void TimeSeriesWrite(ThreadState* thread) {
    // Special thread that keeps writing until other threads are done.
    RandomGenerator gen;
    int64_t bytes = 0;

    // Don't merge stats from this thread with the readers.
    thread->stats.SetExcludeFromMerge();

    std::unique_ptr<RateLimiter> write_rate_limiter;
    if (FLAGS_benchmark_write_rate_limit > 0) {
      write_rate_limiter.reset(
          NewGenericRateLimiter(FLAGS_benchmark_write_rate_limit));
    }

    std::unique_ptr<const char[]> key_guard;
    Slice key = AllocateKey(&key_guard);

    Duration duration(FLAGS_duration, writes_);
    while (!duration.Done(1)) {
      DB* db = SelectDB(thread);

      uint64_t key_id = thread->rand.Next() % FLAGS_key_id_range;
      // Write key id
      GenerateKeyFromInt(key_id, FLAGS_num, &key);
      // Write timestamp

      char* start = const_cast<char*>(key.data());
      char* pos = start + 8;
      int bytes_to_fill =
          std::min(key_size_ - static_cast<int>(pos - start), 8);
      uint64_t timestamp_value = timestamp_emulator_->Get();
      if (port::kLittleEndian) {
        for (int i = 0; i < bytes_to_fill; ++i) {
          pos[i] = (timestamp_value >> ((bytes_to_fill - i - 1) << 3)) & 0xFF;
        }
      } else {
        memcpy(pos, static_cast<void*>(&timestamp_value), bytes_to_fill);
      }

      timestamp_emulator_->Inc();

      Status s;
      Slice val = gen.Generate();
      s = db->Put(write_options_, key, val);

      if (!s.ok()) {
        fprintf(stderr, "put error: %s\n", s.ToString().c_str());
        ErrorExit();
      }
      bytes = key.size() + val.size();
      thread->stats.FinishedOps(&db_, db_.db, 1, kWrite);
      thread->stats.AddBytes(bytes);

      if (FLAGS_benchmark_write_rate_limit > 0) {
        write_rate_limiter->Request(key.size() + val.size(), Env::IO_HIGH,
                                    nullptr /* stats */,
                                    RateLimiter::OpType::kWrite);
      }
    }
  }

  void TimeSeries(ThreadState* thread) {
    if (thread->tid > 0) {
      bool do_deletion = FLAGS_expire_style == "delete" &&
                         thread->tid <= FLAGS_num_deletion_threads;
      TimeSeriesReadOrDelete(thread, do_deletion);
    } else {
      TimeSeriesWrite(thread);
      thread->stats.Stop();
      thread->stats.Report("timeseries write");
    }
  }

  void Compact(ThreadState* thread) {
    DB* db = SelectDB(thread);
    CompactRangeOptions cro;
    cro.bottommost_level_compaction =
        BottommostLevelCompaction::kForceOptimized;
    db->CompactRange(cro, nullptr, nullptr);
  }

  void CompactAll() {
    if (db_.db != nullptr) {
      db_.db->CompactRange(CompactRangeOptions(), nullptr, nullptr);
    }
    for (const auto& db_with_cfh : multi_dbs_) {
      db_with_cfh.db->CompactRange(CompactRangeOptions(), nullptr, nullptr);
    }
  }

#ifndef ROCKSDB_LITE
  void WaitForCompactionHelper(DBWithColumnFamilies& db) {
    // This is an imperfect way of waiting for compaction. The loop and sleep
    // is done because a thread that finishes a compaction job should get a
    // chance to pickup a new compaction job.

    std::vector<std::string> keys = {DB::Properties::kMemTableFlushPending,
                                     DB::Properties::kNumRunningFlushes,
                                     DB::Properties::kCompactionPending,
                                     DB::Properties::kNumRunningCompactions};

    fprintf(stdout, "waitforcompaction(%s): started\n",
            db.db->GetName().c_str());

    while (true) {
      bool retry = false;

      for (const auto& k : keys) {
        uint64_t v;
        if (!db.db->GetIntProperty(k, &v)) {
          fprintf(stderr, "waitforcompaction(%s): GetIntProperty(%s) failed\n",
                  db.db->GetName().c_str(), k.c_str());
          exit(1);
        } else if (v > 0) {
          fprintf(stdout,
                  "waitforcompaction(%s): active(%s). Sleep 10 seconds\n",
                  db.db->GetName().c_str(), k.c_str());
          FLAGS_env->SleepForMicroseconds(10 * 1000000);
          retry = true;
          break;
        }
      }

      if (!retry) {
        fprintf(stdout, "waitforcompaction(%s): finished\n",
                db.db->GetName().c_str());
        return;
      }
    }
  }

  void WaitForCompaction() {
    // Give background threads a chance to wake
    FLAGS_env->SleepForMicroseconds(5 * 1000000);

    // I am skeptical that this check race free. I hope that checking twice
    // reduces the chance.
    if (db_.db != nullptr) {
      WaitForCompactionHelper(db_);
      WaitForCompactionHelper(db_);
    } else {
      for (auto& db_with_cfh : multi_dbs_) {
        WaitForCompactionHelper(db_with_cfh);
        WaitForCompactionHelper(db_with_cfh);
      }
    }
  }

  bool CompactLevelHelper(DBWithColumnFamilies& db_with_cfh, int from_level) {
    std::vector<LiveFileMetaData> files;
    db_with_cfh.db->GetLiveFilesMetaData(&files);

    assert(from_level == 0 || from_level == 1);

    int real_from_level = from_level;
    if (real_from_level > 0) {
      // With dynamic leveled compaction the first level with data beyond L0
      // might not be L1.
      real_from_level = std::numeric_limits<int>::max();

      for (auto& f : files) {
        if (f.level > 0 && f.level < real_from_level) real_from_level = f.level;
      }

      if (real_from_level == std::numeric_limits<int>::max()) {
        fprintf(stdout, "compact%d found 0 files to compact\n", from_level);
        return true;
      }
    }

    // The goal is to compact from from_level to the level that follows it,
    // and with dynamic leveled compaction the next level might not be
    // real_from_level+1
    int next_level = std::numeric_limits<int>::max();

    std::vector<std::string> files_to_compact;
    for (auto& f : files) {
      if (f.level == real_from_level)
        files_to_compact.push_back(f.name);
      else if (f.level > real_from_level && f.level < next_level)
        next_level = f.level;
    }

    if (files_to_compact.empty()) {
      fprintf(stdout, "compact%d found 0 files to compact\n", from_level);
      return true;
    } else if (next_level == std::numeric_limits<int>::max()) {
      // There is no data beyond real_from_level. So we are done.
      fprintf(stdout, "compact%d found no data beyond L%d\n", from_level,
              real_from_level);
      return true;
    }

    fprintf(stdout, "compact%d found %d files to compact from L%d to L%d\n",
            from_level, static_cast<int>(files_to_compact.size()),
            real_from_level, next_level);

    ROCKSDB_NAMESPACE::CompactionOptions options;
    // Lets RocksDB use the configured compression for this level
    options.compression = ROCKSDB_NAMESPACE::kDisableCompressionOption;

    ROCKSDB_NAMESPACE::ColumnFamilyDescriptor cfDesc;
    db_with_cfh.db->DefaultColumnFamily()->GetDescriptor(&cfDesc);
    options.output_file_size_limit = cfDesc.options.target_file_size_base;

    Status status =
        db_with_cfh.db->CompactFiles(options, files_to_compact, next_level);
    if (!status.ok()) {
      // This can fail for valid reasons including the operation was aborted
      // or a filename is invalid because background compaction removed it.
      // Having read the current cases for which an error is raised I prefer
      // not to figure out whether an exception should be thrown here.
      fprintf(stderr, "compact%d CompactFiles failed: %s\n", from_level,
              status.ToString().c_str());
      return false;
    }
    return true;
  }

  void CompactLevel(int from_level) {
    if (db_.db != nullptr) {
      while (!CompactLevelHelper(db_, from_level)) WaitForCompaction();
    }
    for (auto& db_with_cfh : multi_dbs_) {
      while (!CompactLevelHelper(db_with_cfh, from_level)) WaitForCompaction();
    }
  }
#endif

  void Flush() {
    FlushOptions flush_opt;
    flush_opt.wait = true;

    if (db_.db != nullptr) {
      Status s;
      if (FLAGS_num_column_families > 1) {
        s = db_.db->Flush(flush_opt, db_.cfh);
      } else {
        s = db_.db->Flush(flush_opt, db_.db->DefaultColumnFamily());
      }

      if (!s.ok()) {
        fprintf(stderr, "Flush failed: %s\n", s.ToString().c_str());
        exit(1);
      }
    } else {
      for (const auto& db_with_cfh : multi_dbs_) {
        Status s;
        if (FLAGS_num_column_families > 1) {
          s = db_with_cfh.db->Flush(flush_opt, db_with_cfh.cfh);
        } else {
          s = db_with_cfh.db->Flush(flush_opt,
                                    db_with_cfh.db->DefaultColumnFamily());
        }

        if (!s.ok()) {
          fprintf(stderr, "Flush failed: %s\n", s.ToString().c_str());
          exit(1);
        }
      }
    }
    fprintf(stdout, "flush memtable\n");
  }

  void ResetStats() {
    if (db_.db != nullptr) {
      db_.db->ResetStats();
    }
    for (const auto& db_with_cfh : multi_dbs_) {
      db_with_cfh.db->ResetStats();
    }
  }

  void PrintStatsHistory() {
    if (db_.db != nullptr) {
      PrintStatsHistoryImpl(db_.db, false);
    }
    for (const auto& db_with_cfh : multi_dbs_) {
      PrintStatsHistoryImpl(db_with_cfh.db, true);
    }
  }

  void PrintStatsHistoryImpl(DB* db, bool print_header) {
    if (print_header) {
      fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
    }

    std::unique_ptr<StatsHistoryIterator> shi;
    Status s =
        db->GetStatsHistory(0, std::numeric_limits<uint64_t>::max(), &shi);
    if (!s.ok()) {
      fprintf(stdout, "%s\n", s.ToString().c_str());
      return;
    }
    assert(shi);
    while (shi->Valid()) {
      uint64_t stats_time = shi->GetStatsTime();
      fprintf(stdout, "------ %s ------\n",
              TimeToHumanString(static_cast<int>(stats_time)).c_str());
      for (auto& entry : shi->GetStatsMap()) {
        fprintf(stdout, " %" PRIu64 "   %s  %" PRIu64 "\n", stats_time,
                entry.first.c_str(), entry.second);
      }
      shi->Next();
    }
  }

  void PrintStats(const char* key) {
    if (db_.db != nullptr) {
      PrintStats(db_.db, key, false);
    }
    for (const auto& db_with_cfh : multi_dbs_) {
      PrintStats(db_with_cfh.db, key, true);
    }
  }

  void PrintStats(DB* db, const char* key, bool print_header = false) {
    if (print_header) {
      fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
    }
    std::string stats;
    if (!db->GetProperty(key, &stats)) {
      stats = "(failed)";
    }
    fprintf(stdout, "\n%s\n", stats.c_str());
  }

  void PrintStats(const std::vector<std::string>& keys) {
    if (db_.db != nullptr) {
      PrintStats(db_.db, keys);
    }
    for (const auto& db_with_cfh : multi_dbs_) {
      PrintStats(db_with_cfh.db, keys, true);
    }
  }

  void PrintStats(DB* db, const std::vector<std::string>& keys,
                  bool print_header = false) {
    if (print_header) {
      fprintf(stdout, "\n==== DB: %s ===\n", db->GetName().c_str());
    }

    for (const auto& key : keys) {
      std::string stats;
      if (!db->GetProperty(key, &stats)) {
        stats = "(failed)";
      }
      fprintf(stdout, "%s: %s\n", key.c_str(), stats.c_str());
    }
  }

#ifndef ROCKSDB_LITE

  void Replay(ThreadState* thread) {
    if (db_.db != nullptr) {
      Replay(thread, &db_);
    }
  }

  void Replay(ThreadState* /*thread*/, DBWithColumnFamilies* db_with_cfh) {
    Status s;
    std::unique_ptr<TraceReader> trace_reader;
    s = NewFileTraceReader(FLAGS_env, EnvOptions(), FLAGS_trace_file,
                           &trace_reader);
    if (!s.ok()) {
      fprintf(
          stderr,
          "Encountered an error creating a TraceReader from the trace file. "
          "Error: %s\n",
          s.ToString().c_str());
      exit(1);
    }
    std::unique_ptr<Replayer> replayer;
    s = db_with_cfh->db->NewDefaultReplayer(db_with_cfh->cfh,
                                            std::move(trace_reader), &replayer);
    if (!s.ok()) {
      fprintf(stderr,
              "Encountered an error creating a default Replayer. "
              "Error: %s\n",
              s.ToString().c_str());
      exit(1);
    }
    s = replayer->Prepare();
    if (!s.ok()) {
      fprintf(stderr, "Prepare for replay failed. Error: %s\n",
              s.ToString().c_str());
    }
    s = replayer->Replay(
        ReplayOptions(static_cast<uint32_t>(FLAGS_trace_replay_threads),
                      FLAGS_trace_replay_fast_forward),
        nullptr);
    replayer.reset();
    if (s.ok()) {
      fprintf(stdout, "Replay completed from trace_file: %s\n",
              FLAGS_trace_file.c_str());
    } else {
      fprintf(stderr, "Replay failed. Error: %s\n", s.ToString().c_str());
    }
  }

  void Backup(ThreadState* thread) {
    DB* db = SelectDB(thread);
    std::unique_ptr<BackupEngineOptions> engine_options(
        new BackupEngineOptions(FLAGS_backup_dir));
    Status s;
    BackupEngine* backup_engine;
    if (FLAGS_backup_rate_limit > 0) {
      engine_options->backup_rate_limiter.reset(NewGenericRateLimiter(
          FLAGS_backup_rate_limit, 100000 /* refill_period_us */,
          10 /* fairness */, RateLimiter::Mode::kAllIo));
    }
    // Build new backup of the entire DB
    engine_options->destroy_old_data = true;
    s = BackupEngine::Open(FLAGS_env, *engine_options, &backup_engine);
    assert(s.ok());
    s = backup_engine->CreateNewBackup(db);
    assert(s.ok());
    std::vector<BackupInfo> backup_info;
    backup_engine->GetBackupInfo(&backup_info);
    // Verify that a new backup is created
    assert(backup_info.size() == 1);
  }

  void Restore(ThreadState* /* thread */) {
    std::unique_ptr<BackupEngineOptions> engine_options(
        new BackupEngineOptions(FLAGS_backup_dir));
    if (FLAGS_restore_rate_limit > 0) {
      engine_options->restore_rate_limiter.reset(NewGenericRateLimiter(
          FLAGS_restore_rate_limit, 100000 /* refill_period_us */,
          10 /* fairness */, RateLimiter::Mode::kAllIo));
    }
    BackupEngineReadOnly* backup_engine;
    Status s =
        BackupEngineReadOnly::Open(FLAGS_env, *engine_options, &backup_engine);
    assert(s.ok());
    s = backup_engine->RestoreDBFromLatestBackup(FLAGS_restore_dir,
                                                 FLAGS_restore_dir);
    assert(s.ok());
    delete backup_engine;
  }

#endif  // ROCKSDB_LITE
};

int db_bench_tool(int argc, char** argv) {
  ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
  ConfigOptions config_options;
  static bool initialized = false;
  if (!initialized) {
    SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) +
                    " [OPTIONS]...");
    SetVersionString(GetRocksVersionAsString(true));
    initialized = true;
  }
  ParseCommandLineFlags(&argc, &argv, true);
  FLAGS_compaction_style_e =
      (ROCKSDB_NAMESPACE::CompactionStyle)FLAGS_compaction_style;
#ifndef ROCKSDB_LITE
  if (FLAGS_statistics && !FLAGS_statistics_string.empty()) {
    fprintf(stderr,
            "Cannot provide both --statistics and --statistics_string.\n");
    exit(1);
  }
  if (!FLAGS_statistics_string.empty()) {
    Status s = Statistics::CreateFromString(config_options,
                                            FLAGS_statistics_string, &dbstats);
    if (dbstats == nullptr) {
      fprintf(stderr,
              "No Statistics registered matching string: %s status=%s\n",
              FLAGS_statistics_string.c_str(), s.ToString().c_str());
      exit(1);
    }
  }
#endif  // ROCKSDB_LITE
  if (FLAGS_statistics) {
    dbstats = ROCKSDB_NAMESPACE::CreateDBStatistics();
  }
  if (dbstats) {
    dbstats->set_stats_level(static_cast<StatsLevel>(FLAGS_stats_level));
  }
  FLAGS_compaction_pri_e =
      (ROCKSDB_NAMESPACE::CompactionPri)FLAGS_compaction_pri;

  std::vector<std::string> fanout = ROCKSDB_NAMESPACE::StringSplit(
      FLAGS_max_bytes_for_level_multiplier_additional, ',');
  for (size_t j = 0; j < fanout.size(); j++) {
    FLAGS_max_bytes_for_level_multiplier_additional_v.push_back(
#ifndef CYGWIN
        std::stoi(fanout[j]));
#else
        stoi(fanout[j]));
#endif
  }

  FLAGS_compression_type_e =
      StringToCompressionType(FLAGS_compression_type.c_str());

  FLAGS_wal_compression_e =
      StringToCompressionType(FLAGS_wal_compression.c_str());

  FLAGS_compressed_secondary_cache_compression_type_e = StringToCompressionType(
      FLAGS_compressed_secondary_cache_compression_type.c_str());

#ifndef ROCKSDB_LITE
  // Stacked BlobDB
  FLAGS_blob_db_compression_type_e =
      StringToCompressionType(FLAGS_blob_db_compression_type.c_str());

  int env_opts = !FLAGS_env_uri.empty() + !FLAGS_fs_uri.empty();
  if (env_opts > 1) {
    fprintf(stderr, "Error: --env_uri and --fs_uri are mutually exclusive\n");
    exit(1);
  }

  if (env_opts == 1) {
    Status s = Env::CreateFromUri(config_options, FLAGS_env_uri, FLAGS_fs_uri,
                                  &FLAGS_env, &env_guard);
    if (!s.ok()) {
      fprintf(stderr, "Failed creating env: %s\n", s.ToString().c_str());
      exit(1);
    }
  } else if (FLAGS_simulate_hdd || FLAGS_simulate_hybrid_fs_file != "") {
    //**TODO: Make the simulate fs something that can be loaded
    // from the ObjectRegistry...
    static std::shared_ptr<ROCKSDB_NAMESPACE::Env> composite_env =
        NewCompositeEnv(std::make_shared<SimulatedHybridFileSystem>(
            FileSystem::Default(), FLAGS_simulate_hybrid_fs_file,
            /*throughput_multiplier=*/
            int{FLAGS_simulate_hybrid_hdd_multipliers},
            /*is_full_fs_warm=*/FLAGS_simulate_hdd));
    FLAGS_env = composite_env.get();
  }

  // Let -readonly imply -use_existing_db
  FLAGS_use_existing_db |= FLAGS_readonly;
#endif  // ROCKSDB_LITE

  if (FLAGS_build_info) {
    std::string build_info;
    std::cout << GetRocksBuildInfoAsString(build_info, true) << std::endl;
    // Similar to --version, nothing else will be done when this flag is set
    exit(0);
  }

  if (!FLAGS_seed) {
    uint64_t now = FLAGS_env->GetSystemClock()->NowMicros();
    seed_base = static_cast<int64_t>(now);
    fprintf(stdout, "Set seed to %" PRIu64 " because --seed was 0\n",
            seed_base);
  } else {
    seed_base = FLAGS_seed;
  }

  if (FLAGS_use_existing_keys && !FLAGS_use_existing_db) {
    fprintf(stderr,
            "`-use_existing_db` must be true for `-use_existing_keys` to be "
            "settable\n");
    exit(1);
  }

  if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NONE"))
    FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options::NONE;
  else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "NORMAL"))
    FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options::NORMAL;
  else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "SEQUENTIAL"))
    FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options::SEQUENTIAL;
  else if (!strcasecmp(FLAGS_compaction_fadvice.c_str(), "WILLNEED"))
    FLAGS_compaction_fadvice_e = ROCKSDB_NAMESPACE::Options::WILLNEED;
  else {
    fprintf(stdout, "Unknown compaction fadvice:%s\n",
            FLAGS_compaction_fadvice.c_str());
    exit(1);
  }

  FLAGS_value_size_distribution_type_e =
      StringToDistributionType(FLAGS_value_size_distribution_type.c_str());

  // Note options sanitization may increase thread pool sizes according to
  // max_background_flushes/max_background_compactions/max_background_jobs
  FLAGS_env->SetBackgroundThreads(FLAGS_num_high_pri_threads,
                                  ROCKSDB_NAMESPACE::Env::Priority::HIGH);
  FLAGS_env->SetBackgroundThreads(FLAGS_num_bottom_pri_threads,
                                  ROCKSDB_NAMESPACE::Env::Priority::BOTTOM);
  FLAGS_env->SetBackgroundThreads(FLAGS_num_low_pri_threads,
                                  ROCKSDB_NAMESPACE::Env::Priority::LOW);

  // Choose a location for the test database if none given with --db=<path>
  if (FLAGS_db.empty()) {
    std::string default_db_path;
    FLAGS_env->GetTestDirectory(&default_db_path);
    default_db_path += "/dbbench";
    FLAGS_db = default_db_path;
  }

  if (FLAGS_backup_dir.empty()) {
    FLAGS_backup_dir = FLAGS_db + "/backup";
  }

  if (FLAGS_restore_dir.empty()) {
    FLAGS_restore_dir = FLAGS_db + "/restore";
  }

  if (FLAGS_stats_interval_seconds > 0) {
    // When both are set then FLAGS_stats_interval determines the frequency
    // at which the timer is checked for FLAGS_stats_interval_seconds
    FLAGS_stats_interval = 1000;
  }

  if (FLAGS_seek_missing_prefix && FLAGS_prefix_size <= 8) {
    fprintf(stderr, "prefix_size > 8 required by --seek_missing_prefix\n");
    exit(1);
  }

  ROCKSDB_NAMESPACE::Benchmark benchmark;
  benchmark.Run();

#ifndef ROCKSDB_LITE
  if (FLAGS_print_malloc_stats) {
    std::string stats_string;
    ROCKSDB_NAMESPACE::DumpMallocStats(&stats_string);
    fprintf(stdout, "Malloc stats:\n%s\n", stats_string.c_str());
  }
#endif  // ROCKSDB_LITE

  return 0;
}
}  // namespace ROCKSDB_NAMESPACE
#endif