summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/util/hash.cc
blob: 0f7f2edc13066878cb80fe81599c7fc006c3455e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "util/hash.h"

#include <string>

#include "port/lang.h"
#include "util/coding.h"
#include "util/hash128.h"
#include "util/math128.h"
#include "util/xxhash.h"
#include "util/xxph3.h"

namespace ROCKSDB_NAMESPACE {

uint64_t (*kGetSliceNPHash64UnseededFnPtr)(const Slice&) = &GetSliceHash64;

uint32_t Hash(const char* data, size_t n, uint32_t seed) {
  // MurmurHash1 - fast but mediocre quality
  // https://github.com/aappleby/smhasher/wiki/MurmurHash1
  //
  const uint32_t m = 0xc6a4a793;
  const uint32_t r = 24;
  const char* limit = data + n;
  uint32_t h = static_cast<uint32_t>(seed ^ (n * m));

  // Pick up four bytes at a time
  while (data + 4 <= limit) {
    uint32_t w = DecodeFixed32(data);
    data += 4;
    h += w;
    h *= m;
    h ^= (h >> 16);
  }

  // Pick up remaining bytes
  switch (limit - data) {
    // Note: The original hash implementation used data[i] << shift, which
    // promotes the char to int and then performs the shift. If the char is
    // negative, the shift is undefined behavior in C++. The hash algorithm is
    // part of the format definition, so we cannot change it; to obtain the same
    // behavior in a legal way we just cast to uint32_t, which will do
    // sign-extension. To guarantee compatibility with architectures where chars
    // are unsigned we first cast the char to int8_t.
    case 3:
      h += static_cast<uint32_t>(static_cast<int8_t>(data[2])) << 16;
      FALLTHROUGH_INTENDED;
    case 2:
      h += static_cast<uint32_t>(static_cast<int8_t>(data[1])) << 8;
      FALLTHROUGH_INTENDED;
    case 1:
      h += static_cast<uint32_t>(static_cast<int8_t>(data[0]));
      h *= m;
      h ^= (h >> r);
      break;
  }
  return h;
}

// We are standardizing on a preview release of XXH3, because that's
// the best available at time of standardizing.
//
// In testing (mostly Intel Skylake), this hash function is much more
// thorough than Hash32 and is almost universally faster. Hash() only
// seems faster when passing runtime-sized keys of the same small size
// (less than about 24 bytes) thousands of times in a row; this seems
// to allow the branch predictor to work some magic. XXH3's speed is
// much less dependent on branch prediction.
//
// Hashing with a prefix extractor is potentially a common case of
// hashing objects of small, predictable size. We could consider
// bundling hash functions specialized for particular lengths with
// the prefix extractors.
uint64_t Hash64(const char* data, size_t n, uint64_t seed) {
  return XXPH3_64bits_withSeed(data, n, seed);
}

uint64_t Hash64(const char* data, size_t n) {
  // Same as seed = 0
  return XXPH3_64bits(data, n);
}

uint64_t GetSlicePartsNPHash64(const SliceParts& data, uint64_t seed) {
  // TODO(ajkr): use XXH3 streaming APIs to avoid the copy/allocation.
  size_t concat_len = 0;
  for (int i = 0; i < data.num_parts; ++i) {
    concat_len += data.parts[i].size();
  }
  std::string concat_data;
  concat_data.reserve(concat_len);
  for (int i = 0; i < data.num_parts; ++i) {
    concat_data.append(data.parts[i].data(), data.parts[i].size());
  }
  assert(concat_data.size() == concat_len);
  return NPHash64(concat_data.data(), concat_len, seed);
}

Unsigned128 Hash128(const char* data, size_t n, uint64_t seed) {
  auto h = XXH3_128bits_withSeed(data, n, seed);
  return (Unsigned128{h.high64} << 64) | (h.low64);
}

Unsigned128 Hash128(const char* data, size_t n) {
  // Same as seed = 0
  auto h = XXH3_128bits(data, n);
  return (Unsigned128{h.high64} << 64) | (h.low64);
}

void Hash2x64(const char* data, size_t n, uint64_t* high64, uint64_t* low64) {
  // Same as seed = 0
  auto h = XXH3_128bits(data, n);
  *high64 = h.high64;
  *low64 = h.low64;
}

void Hash2x64(const char* data, size_t n, uint64_t seed, uint64_t* high64,
              uint64_t* low64) {
  auto h = XXH3_128bits_withSeed(data, n, seed);
  *high64 = h.high64;
  *low64 = h.low64;
}

namespace {

inline uint64_t XXH3_avalanche(uint64_t h64) {
  h64 ^= h64 >> 37;
  h64 *= 0x165667919E3779F9U;
  h64 ^= h64 >> 32;
  return h64;
}

inline uint64_t XXH3_unavalanche(uint64_t h64) {
  h64 ^= h64 >> 32;
  h64 *= 0x8da8ee41d6df849U;  // inverse of 0x165667919E3779F9U
  h64 ^= h64 >> 37;
  return h64;
}

}  // namespace

void BijectiveHash2x64(uint64_t in_high64, uint64_t in_low64, uint64_t seed,
                       uint64_t* out_high64, uint64_t* out_low64) {
  // Adapted from XXH3_len_9to16_128b
  const uint64_t bitflipl = /*secret part*/ 0x59973f0033362349U - seed;
  const uint64_t bitfliph = /*secret part*/ 0xc202797692d63d58U + seed;
  Unsigned128 tmp128 =
      Multiply64to128(in_low64 ^ in_high64 ^ bitflipl, 0x9E3779B185EBCA87U);
  uint64_t lo = Lower64of128(tmp128);
  uint64_t hi = Upper64of128(tmp128);
  lo += 0x3c0000000000000U;  // (len - 1) << 54
  in_high64 ^= bitfliph;
  hi += in_high64 + (Lower32of64(in_high64) * uint64_t{0x85EBCA76});
  lo ^= EndianSwapValue(hi);
  tmp128 = Multiply64to128(lo, 0xC2B2AE3D27D4EB4FU);
  lo = Lower64of128(tmp128);
  hi = Upper64of128(tmp128) + (hi * 0xC2B2AE3D27D4EB4FU);
  *out_low64 = XXH3_avalanche(lo);
  *out_high64 = XXH3_avalanche(hi);
}

void BijectiveUnhash2x64(uint64_t in_high64, uint64_t in_low64, uint64_t seed,
                         uint64_t* out_high64, uint64_t* out_low64) {
  // Inverted above (also consulting XXH3_len_9to16_128b)
  const uint64_t bitflipl = /*secret part*/ 0x59973f0033362349U - seed;
  const uint64_t bitfliph = /*secret part*/ 0xc202797692d63d58U + seed;
  uint64_t lo = XXH3_unavalanche(in_low64);
  uint64_t hi = XXH3_unavalanche(in_high64);
  lo *= 0xba79078168d4baf;  // inverse of 0xC2B2AE3D27D4EB4FU
  hi -= Upper64of128(Multiply64to128(lo, 0xC2B2AE3D27D4EB4FU));
  hi *= 0xba79078168d4baf;  // inverse of 0xC2B2AE3D27D4EB4FU
  lo ^= EndianSwapValue(hi);
  lo -= 0x3c0000000000000U;
  lo *= 0x887493432badb37U;  // inverse of 0x9E3779B185EBCA87U
  hi -= Upper64of128(Multiply64to128(lo, 0x9E3779B185EBCA87U));
  uint32_t tmp32 = Lower32of64(hi) * 0xb6c92f47;  // inverse of 0x85EBCA77
  hi -= tmp32;
  hi = (hi & 0xFFFFFFFF00000000U) -
       ((tmp32 * uint64_t{0x85EBCA76}) & 0xFFFFFFFF00000000U) + tmp32;
  hi ^= bitfliph;
  lo ^= hi ^ bitflipl;
  *out_high64 = hi;
  *out_low64 = lo;
}

void BijectiveHash2x64(uint64_t in_high64, uint64_t in_low64,
                       uint64_t* out_high64, uint64_t* out_low64) {
  BijectiveHash2x64(in_high64, in_low64, /*seed*/ 0, out_high64, out_low64);
}

void BijectiveUnhash2x64(uint64_t in_high64, uint64_t in_low64,
                         uint64_t* out_high64, uint64_t* out_low64) {
  BijectiveUnhash2x64(in_high64, in_low64, /*seed*/ 0, out_high64, out_low64);
}
}  // namespace ROCKSDB_NAMESPACE