summaryrefslogtreecommitdiffstats
path: root/src/rocksdb/util/rate_limiter.cc
blob: 6bbcabfaeef5d251656c6395f3955e4d6930f4d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

#include "util/rate_limiter.h"

#include <algorithm>

#include "monitoring/statistics.h"
#include "port/port.h"
#include "rocksdb/system_clock.h"
#include "test_util/sync_point.h"
#include "util/aligned_buffer.h"

namespace ROCKSDB_NAMESPACE {
size_t RateLimiter::RequestToken(size_t bytes, size_t alignment,
                                 Env::IOPriority io_priority, Statistics* stats,
                                 RateLimiter::OpType op_type) {
  if (io_priority < Env::IO_TOTAL && IsRateLimited(op_type)) {
    bytes = std::min(bytes, static_cast<size_t>(GetSingleBurstBytes()));

    if (alignment > 0) {
      // Here we may actually require more than burst and block
      // as we can not write/read less than one page at a time on direct I/O
      // thus we do not want to be strictly constrained by burst
      bytes = std::max(alignment, TruncateToPageBoundary(alignment, bytes));
    }
    Request(bytes, io_priority, stats, op_type);
  }
  return bytes;
}

// Pending request
struct GenericRateLimiter::Req {
  explicit Req(int64_t _bytes, port::Mutex* _mu)
      : request_bytes(_bytes), bytes(_bytes), cv(_mu), granted(false) {}
  int64_t request_bytes;
  int64_t bytes;
  port::CondVar cv;
  bool granted;
};

GenericRateLimiter::GenericRateLimiter(
    int64_t rate_bytes_per_sec, int64_t refill_period_us, int32_t fairness,
    RateLimiter::Mode mode, const std::shared_ptr<SystemClock>& clock,
    bool auto_tuned)
    : RateLimiter(mode),
      refill_period_us_(refill_period_us),
      rate_bytes_per_sec_(auto_tuned ? rate_bytes_per_sec / 2
                                     : rate_bytes_per_sec),
      refill_bytes_per_period_(
          CalculateRefillBytesPerPeriodLocked(rate_bytes_per_sec_)),
      clock_(clock),
      stop_(false),
      exit_cv_(&request_mutex_),
      requests_to_wait_(0),
      available_bytes_(0),
      next_refill_us_(NowMicrosMonotonicLocked()),
      fairness_(fairness > 100 ? 100 : fairness),
      rnd_((uint32_t)time(nullptr)),
      wait_until_refill_pending_(false),
      auto_tuned_(auto_tuned),
      num_drains_(0),
      max_bytes_per_sec_(rate_bytes_per_sec),
      tuned_time_(NowMicrosMonotonicLocked()) {
  for (int i = Env::IO_LOW; i < Env::IO_TOTAL; ++i) {
    total_requests_[i] = 0;
    total_bytes_through_[i] = 0;
  }
}

GenericRateLimiter::~GenericRateLimiter() {
  MutexLock g(&request_mutex_);
  stop_ = true;
  std::deque<Req*>::size_type queues_size_sum = 0;
  for (int i = Env::IO_LOW; i < Env::IO_TOTAL; ++i) {
    queues_size_sum += queue_[i].size();
  }
  requests_to_wait_ = static_cast<int32_t>(queues_size_sum);

  for (int i = Env::IO_TOTAL - 1; i >= Env::IO_LOW; --i) {
    std::deque<Req*> queue = queue_[i];
    for (auto& r : queue) {
      r->cv.Signal();
    }
  }

  while (requests_to_wait_ > 0) {
    exit_cv_.Wait();
  }
}

// This API allows user to dynamically change rate limiter's bytes per second.
void GenericRateLimiter::SetBytesPerSecond(int64_t bytes_per_second) {
  MutexLock g(&request_mutex_);
  SetBytesPerSecondLocked(bytes_per_second);
}

void GenericRateLimiter::SetBytesPerSecondLocked(int64_t bytes_per_second) {
  assert(bytes_per_second > 0);
  rate_bytes_per_sec_.store(bytes_per_second, std::memory_order_relaxed);
  refill_bytes_per_period_.store(
      CalculateRefillBytesPerPeriodLocked(bytes_per_second),
      std::memory_order_relaxed);
}

void GenericRateLimiter::Request(int64_t bytes, const Env::IOPriority pri,
                                 Statistics* stats) {
  assert(bytes <= refill_bytes_per_period_.load(std::memory_order_relaxed));
  bytes = std::max(static_cast<int64_t>(0), bytes);
  TEST_SYNC_POINT("GenericRateLimiter::Request");
  TEST_SYNC_POINT_CALLBACK("GenericRateLimiter::Request:1",
                           &rate_bytes_per_sec_);
  MutexLock g(&request_mutex_);

  if (auto_tuned_) {
    static const int kRefillsPerTune = 100;
    std::chrono::microseconds now(NowMicrosMonotonicLocked());
    if (now - tuned_time_ >=
        kRefillsPerTune * std::chrono::microseconds(refill_period_us_)) {
      Status s = TuneLocked();
      s.PermitUncheckedError();  //**TODO: What to do on error?
    }
  }

  if (stop_) {
    // It is now in the clean-up of ~GenericRateLimiter().
    // Therefore any new incoming request will exit from here
    // and not get satiesfied.
    return;
  }

  ++total_requests_[pri];

  if (available_bytes_ >= bytes) {
    // Refill thread assigns quota and notifies requests waiting on
    // the queue under mutex. So if we get here, that means nobody
    // is waiting?
    available_bytes_ -= bytes;
    total_bytes_through_[pri] += bytes;
    return;
  }

  // Request cannot be satisfied at this moment, enqueue
  Req r(bytes, &request_mutex_);
  queue_[pri].push_back(&r);
  TEST_SYNC_POINT_CALLBACK("GenericRateLimiter::Request:PostEnqueueRequest",
                           &request_mutex_);
  // A thread representing a queued request coordinates with other such threads.
  // There are two main duties.
  //
  // (1) Waiting for the next refill time.
  // (2) Refilling the bytes and granting requests.
  do {
    int64_t time_until_refill_us = next_refill_us_ - NowMicrosMonotonicLocked();
    if (time_until_refill_us > 0) {
      if (wait_until_refill_pending_) {
        // Somebody is performing (1). Trust we'll be woken up when our request
        // is granted or we are needed for future duties.
        r.cv.Wait();
      } else {
        // Whichever thread reaches here first performs duty (1) as described
        // above.
        int64_t wait_until = clock_->NowMicros() + time_until_refill_us;
        RecordTick(stats, NUMBER_RATE_LIMITER_DRAINS);
        ++num_drains_;
        wait_until_refill_pending_ = true;
        r.cv.TimedWait(wait_until);
        TEST_SYNC_POINT_CALLBACK("GenericRateLimiter::Request:PostTimedWait",
                                 &time_until_refill_us);
        wait_until_refill_pending_ = false;
      }
    } else {
      // Whichever thread reaches here first performs duty (2) as described
      // above.
      RefillBytesAndGrantRequestsLocked();
      if (r.granted) {
        // If there is any remaining requests, make sure there exists at least
        // one candidate is awake for future duties by signaling a front request
        // of a queue.
        for (int i = Env::IO_TOTAL - 1; i >= Env::IO_LOW; --i) {
          std::deque<Req*> queue = queue_[i];
          if (!queue.empty()) {
            queue.front()->cv.Signal();
            break;
          }
        }
      }
    }
    // Invariant: non-granted request is always in one queue, and granted
    // request is always in zero queues.
#ifndef NDEBUG
    int num_found = 0;
    for (int i = Env::IO_LOW; i < Env::IO_TOTAL; ++i) {
      if (std::find(queue_[i].begin(), queue_[i].end(), &r) !=
          queue_[i].end()) {
        ++num_found;
      }
    }
    if (r.granted) {
      assert(num_found == 0);
    } else {
      assert(num_found == 1);
    }
#endif  // NDEBUG
  } while (!stop_ && !r.granted);

  if (stop_) {
    // It is now in the clean-up of ~GenericRateLimiter().
    // Therefore any woken-up request will have come out of the loop and then
    // exit here. It might or might not have been satisfied.
    --requests_to_wait_;
    exit_cv_.Signal();
  }
}

std::vector<Env::IOPriority>
GenericRateLimiter::GeneratePriorityIterationOrderLocked() {
  std::vector<Env::IOPriority> pri_iteration_order(Env::IO_TOTAL /* 4 */);
  // We make Env::IO_USER a superior priority by always iterating its queue
  // first
  pri_iteration_order[0] = Env::IO_USER;

  bool high_pri_iterated_after_mid_low_pri = rnd_.OneIn(fairness_);
  TEST_SYNC_POINT_CALLBACK(
      "GenericRateLimiter::GeneratePriorityIterationOrderLocked::"
      "PostRandomOneInFairnessForHighPri",
      &high_pri_iterated_after_mid_low_pri);
  bool mid_pri_itereated_after_low_pri = rnd_.OneIn(fairness_);
  TEST_SYNC_POINT_CALLBACK(
      "GenericRateLimiter::GeneratePriorityIterationOrderLocked::"
      "PostRandomOneInFairnessForMidPri",
      &mid_pri_itereated_after_low_pri);

  if (high_pri_iterated_after_mid_low_pri) {
    pri_iteration_order[3] = Env::IO_HIGH;
    pri_iteration_order[2] =
        mid_pri_itereated_after_low_pri ? Env::IO_MID : Env::IO_LOW;
    pri_iteration_order[1] =
        (pri_iteration_order[2] == Env::IO_MID) ? Env::IO_LOW : Env::IO_MID;
  } else {
    pri_iteration_order[1] = Env::IO_HIGH;
    pri_iteration_order[3] =
        mid_pri_itereated_after_low_pri ? Env::IO_MID : Env::IO_LOW;
    pri_iteration_order[2] =
        (pri_iteration_order[3] == Env::IO_MID) ? Env::IO_LOW : Env::IO_MID;
  }

  TEST_SYNC_POINT_CALLBACK(
      "GenericRateLimiter::GeneratePriorityIterationOrderLocked::"
      "PreReturnPriIterationOrder",
      &pri_iteration_order);
  return pri_iteration_order;
}

void GenericRateLimiter::RefillBytesAndGrantRequestsLocked() {
  TEST_SYNC_POINT_CALLBACK(
      "GenericRateLimiter::RefillBytesAndGrantRequestsLocked", &request_mutex_);
  next_refill_us_ = NowMicrosMonotonicLocked() + refill_period_us_;
  // Carry over the left over quota from the last period
  auto refill_bytes_per_period =
      refill_bytes_per_period_.load(std::memory_order_relaxed);
  if (available_bytes_ < refill_bytes_per_period) {
    available_bytes_ += refill_bytes_per_period;
  }

  std::vector<Env::IOPriority> pri_iteration_order =
      GeneratePriorityIterationOrderLocked();

  for (int i = Env::IO_LOW; i < Env::IO_TOTAL; ++i) {
    assert(!pri_iteration_order.empty());
    Env::IOPriority current_pri = pri_iteration_order[i];
    auto* queue = &queue_[current_pri];
    while (!queue->empty()) {
      auto* next_req = queue->front();
      if (available_bytes_ < next_req->request_bytes) {
        // Grant partial request_bytes to avoid starvation of requests
        // that become asking for more bytes than available_bytes_
        // due to dynamically reduced rate limiter's bytes_per_second that
        // leads to reduced refill_bytes_per_period hence available_bytes_
        next_req->request_bytes -= available_bytes_;
        available_bytes_ = 0;
        break;
      }
      available_bytes_ -= next_req->request_bytes;
      next_req->request_bytes = 0;
      total_bytes_through_[current_pri] += next_req->bytes;
      queue->pop_front();

      next_req->granted = true;
      // Quota granted, signal the thread to exit
      next_req->cv.Signal();
    }
  }
}

int64_t GenericRateLimiter::CalculateRefillBytesPerPeriodLocked(
    int64_t rate_bytes_per_sec) {
  if (std::numeric_limits<int64_t>::max() / rate_bytes_per_sec <
      refill_period_us_) {
    // Avoid unexpected result in the overflow case. The result now is still
    // inaccurate but is a number that is large enough.
    return std::numeric_limits<int64_t>::max() / 1000000;
  } else {
    return rate_bytes_per_sec * refill_period_us_ / 1000000;
  }
}

Status GenericRateLimiter::TuneLocked() {
  const int kLowWatermarkPct = 50;
  const int kHighWatermarkPct = 90;
  const int kAdjustFactorPct = 5;
  // computed rate limit will be in
  // `[max_bytes_per_sec_ / kAllowedRangeFactor, max_bytes_per_sec_]`.
  const int kAllowedRangeFactor = 20;

  std::chrono::microseconds prev_tuned_time = tuned_time_;
  tuned_time_ = std::chrono::microseconds(NowMicrosMonotonicLocked());

  int64_t elapsed_intervals = (tuned_time_ - prev_tuned_time +
                               std::chrono::microseconds(refill_period_us_) -
                               std::chrono::microseconds(1)) /
                              std::chrono::microseconds(refill_period_us_);
  // We tune every kRefillsPerTune intervals, so the overflow and division-by-
  // zero conditions should never happen.
  assert(num_drains_ <= std::numeric_limits<int64_t>::max() / 100);
  assert(elapsed_intervals > 0);
  int64_t drained_pct = num_drains_ * 100 / elapsed_intervals;

  int64_t prev_bytes_per_sec = GetBytesPerSecond();
  int64_t new_bytes_per_sec;
  if (drained_pct == 0) {
    new_bytes_per_sec = max_bytes_per_sec_ / kAllowedRangeFactor;
  } else if (drained_pct < kLowWatermarkPct) {
    // sanitize to prevent overflow
    int64_t sanitized_prev_bytes_per_sec =
        std::min(prev_bytes_per_sec, std::numeric_limits<int64_t>::max() / 100);
    new_bytes_per_sec =
        std::max(max_bytes_per_sec_ / kAllowedRangeFactor,
                 sanitized_prev_bytes_per_sec * 100 / (100 + kAdjustFactorPct));
  } else if (drained_pct > kHighWatermarkPct) {
    // sanitize to prevent overflow
    int64_t sanitized_prev_bytes_per_sec =
        std::min(prev_bytes_per_sec, std::numeric_limits<int64_t>::max() /
                                         (100 + kAdjustFactorPct));
    new_bytes_per_sec =
        std::min(max_bytes_per_sec_,
                 sanitized_prev_bytes_per_sec * (100 + kAdjustFactorPct) / 100);
  } else {
    new_bytes_per_sec = prev_bytes_per_sec;
  }
  if (new_bytes_per_sec != prev_bytes_per_sec) {
    SetBytesPerSecondLocked(new_bytes_per_sec);
  }
  num_drains_ = 0;
  return Status::OK();
}

RateLimiter* NewGenericRateLimiter(
    int64_t rate_bytes_per_sec, int64_t refill_period_us /* = 100 * 1000 */,
    int32_t fairness /* = 10 */,
    RateLimiter::Mode mode /* = RateLimiter::Mode::kWritesOnly */,
    bool auto_tuned /* = false */) {
  assert(rate_bytes_per_sec > 0);
  assert(refill_period_us > 0);
  assert(fairness > 0);
  std::unique_ptr<RateLimiter> limiter(
      new GenericRateLimiter(rate_bytes_per_sec, refill_period_us, fairness,
                             mode, SystemClock::Default(), auto_tuned));
  return limiter.release();
}

}  // namespace ROCKSDB_NAMESPACE