summaryrefslogtreecommitdiffstats
path: root/src/seastar/apps/io_tester/io_tester.cc
blob: 040589201e441c9d32bd8e05a8a55dbdd0f6ddb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
/*
 * This file is open source software, licensed to you under the terms
 * of the Apache License, Version 2.0 (the "License").  See the NOTICE file
 * distributed with this work for additional information regarding copyright
 * ownership.  You may not use this file except in compliance with the License.
 *
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
/*
 * Copyright (C) 2017 ScyllaDB
 */
#include <seastar/core/app-template.hh>
#include <seastar/core/distributed.hh>
#include <seastar/core/reactor.hh>
#include <seastar/core/future.hh>
#include <seastar/core/shared_ptr.hh>
#include <seastar/core/file.hh>
#include <seastar/core/sleep.hh>
#include <seastar/core/align.hh>
#include <seastar/core/timer.hh>
#include <seastar/core/thread.hh>
#include <seastar/core/print.hh>
#include <seastar/core/loop.hh>
#include <seastar/core/with_scheduling_group.hh>
#include <seastar/core/metrics_api.hh>
#include <seastar/core/io_intent.hh>
#include <seastar/util/later.hh>
#include <chrono>
#include <vector>
#include <boost/range/irange.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics/stats.hpp>
#include <boost/accumulators/statistics/max.hpp>
#include <boost/accumulators/statistics/mean.hpp>
#include <boost/accumulators/statistics/p_square_quantile.hpp>
#include <boost/accumulators/statistics/extended_p_square.hpp>
#include <boost/accumulators/statistics/extended_p_square_quantile.hpp>
#include <boost/range/adaptor/filtered.hpp>
#include <boost/range/adaptor/map.hpp>
#include <boost/array.hpp>
#include <iomanip>
#include <random>
#include <yaml-cpp/yaml.h>

using namespace seastar;
using namespace std::chrono_literals;
using namespace boost::accumulators;

static auto random_seed = std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
static std::default_random_engine random_generator(random_seed);

class context;
enum class request_type { seqread, seqwrite, randread, randwrite, append, cpu };

namespace std {

template <>
struct hash<request_type> {
    size_t operator() (const request_type& type) const {
        return static_cast<size_t>(type);
    }
};

}

future<> busyloop_sleep(std::chrono::steady_clock::time_point until, std::chrono::steady_clock::time_point now) {
    return do_until([until] {
        return std::chrono::steady_clock::now() >= until;
    }, [] {
        return yield();
    });
}

template <typename Clock>
future<> timer_sleep(std::chrono::steady_clock::time_point until, std::chrono::steady_clock::time_point now) {
    return seastar::sleep<Clock>(std::chrono::duration_cast<std::chrono::microseconds>(until - now));
}

using sleep_fn = std::function<future<>(std::chrono::steady_clock::time_point until, std::chrono::steady_clock::time_point now)>;

class pause_distribution {
public:

    virtual std::chrono::duration<double> get() = 0;

    template <typename Dur>
    Dur get_as() {
        return std::chrono::duration_cast<Dur>(get());
    }

    virtual ~pause_distribution() {}
};

using pause_fn = std::function<std::unique_ptr<pause_distribution>(std::chrono::duration<double>)>;

class uniform_process : public pause_distribution {
    std::chrono::duration<double> _pause;

public:
    uniform_process(std::chrono::duration<double> period)
            : _pause(period)
    {
    }

    std::chrono::duration<double> get() override {
        return _pause;
    }
};

std::unique_ptr<pause_distribution> make_uniform_pause(std::chrono::duration<double> d) {
    return std::make_unique<uniform_process>(d);
}

class poisson_process : public pause_distribution {
    std::random_device _rd;
    std::mt19937 _rng;
    std::exponential_distribution<double> _exp;

public:
    poisson_process(std::chrono::duration<double> period)
            : _rng(_rd())
            , _exp(1.0 / period.count())
    {
    }

    std::chrono::duration<double> get() override {
        return std::chrono::duration<double>(_exp(_rng));
    }
};

std::unique_ptr<pause_distribution> make_poisson_pause(std::chrono::duration<double> d) {
    return std::make_unique<poisson_process>(d);
}

struct byte_size {
    uint64_t size;
};

struct duration_time {
    std::chrono::duration<float> time;
};

class shard_config {
    std::unordered_set<unsigned> _shards;
public:
    shard_config()
        : _shards(boost::copy_range<std::unordered_set<unsigned>>(boost::irange(0u, smp::count))) {}
    shard_config(std::unordered_set<unsigned> s) : _shards(std::move(s)) {}

    bool is_set(unsigned cpu) const {
        return _shards.count(cpu);
    }
};

struct shard_info {
    unsigned parallelism = 0;
    unsigned rps = 0;
    unsigned shares = 10;
    uint64_t request_size = 4 << 10;
    uint64_t bandwidth = 0;
    std::chrono::duration<float> think_time = 0ms;
    std::chrono::duration<float> think_after = 0ms;
    std::chrono::duration<float> execution_time = 1ms;
    seastar::scheduling_group scheduling_group = seastar::default_scheduling_group();
};

struct options {
    bool dsync = false;
    ::sleep_fn sleep_fn = timer_sleep<lowres_clock>;
    ::pause_fn pause_fn = make_uniform_pause;
};

class class_data;

struct job_config {
    std::string name;
    request_type type;
    shard_config shard_placement;
    ::shard_info shard_info;
    ::options options;
    // size of each individual file. Every class and every shard have its file, so in a normal
    // system with many shards we'll naturally have many files and that will push the data out
    // of the disk's cache
    uint64_t file_size;
    uint64_t offset_in_bdev;
    std::unique_ptr<class_data> gen_class_data();
};

std::array<double, 4> quantiles = { 0.5, 0.95, 0.99, 0.999};
static bool keep_files = false;

class class_data {
protected:
    using accumulator_type = accumulator_set<double, stats<tag::extended_p_square_quantile(quadratic), tag::mean, tag::max>>;

    job_config _config;
    uint64_t _alignment;
    uint64_t _last_pos = 0;
    uint64_t _offset = 0;

    io_priority_class _iop;
    seastar::scheduling_group _sg;

    size_t _data = 0;
    std::chrono::duration<float> _total_duration;

    std::chrono::steady_clock::time_point _start = {};
    accumulator_type _latencies;
    uint64_t _requests = 0;
    std::uniform_int_distribution<uint32_t> _pos_distribution;
    file _file;
    bool _think = false;
    ::sleep_fn _sleep_fn = timer_sleep<lowres_clock>;
    timer<> _thinker;

    virtual future<> do_start(sstring dir, directory_entry_type type) = 0;
    virtual future<size_t> issue_request(char *buf, io_intent* intent) = 0;
public:
    class_data(job_config cfg)
        : _config(std::move(cfg))
        , _alignment(_config.shard_info.request_size >= 4096 ? 4096 : 512)
        , _iop(io_priority_class::register_one(name(), _config.shard_info.shares))
        , _sg(cfg.shard_info.scheduling_group)
        , _latencies(extended_p_square_probabilities = quantiles)
        , _pos_distribution(0,  _config.file_size / _config.shard_info.request_size)
        , _sleep_fn(_config.options.sleep_fn)
        , _thinker([this] { think_tick(); })
    {
        if (_config.shard_info.think_after > 0us) {
            _thinker.arm(std::chrono::duration_cast<std::chrono::microseconds>(_config.shard_info.think_after));
        } else if (_config.shard_info.think_time > 0us) {
            _think = true;
        }
    }

    virtual ~class_data() = default;

private:

    void think_tick() {
        if (_think) {
            _think = false;
            _thinker.arm(std::chrono::duration_cast<std::chrono::microseconds>(_config.shard_info.think_after));
        } else {
            _think = true;
            _thinker.arm(std::chrono::duration_cast<std::chrono::microseconds>(_config.shard_info.think_time));
        }
    }

    future<> issue_requests_in_parallel(std::chrono::steady_clock::time_point stop, unsigned parallelism) {
        return parallel_for_each(boost::irange(0u, parallelism), [this, stop] (auto dummy) mutable {
            auto bufptr = allocate_aligned_buffer<char>(this->req_size(), _alignment);
            auto buf = bufptr.get();
            return do_until([stop] { return std::chrono::steady_clock::now() > stop; }, [this, buf, stop] () mutable {
                auto start = std::chrono::steady_clock::now();
                return issue_request(buf, nullptr).then([this, start, stop] (auto size) {
                    auto now = std::chrono::steady_clock::now();
                    if (now < stop) {
                        this->add_result(size, std::chrono::duration_cast<std::chrono::microseconds>(now - start));
                    }
                    return think();
                });
            }).finally([bufptr = std::move(bufptr)] {});
        });
    }

    future<> issue_requests_at_rate(std::chrono::steady_clock::time_point stop, unsigned rps, unsigned parallelism) {
        return do_with(io_intent{}, 0u, [this, stop, rps, parallelism] (io_intent& intent, unsigned& in_flight) {
            return parallel_for_each(boost::irange(0u, parallelism), [this, stop, rps, &intent, &in_flight, parallelism] (auto dummy) mutable {
                auto bufptr = allocate_aligned_buffer<char>(this->req_size(), _alignment);
                auto buf = bufptr.get();
                auto pause = std::chrono::duration_cast<std::chrono::microseconds>(1s) / rps;
                auto pause_dist = _config.options.pause_fn(pause);
                return seastar::sleep((pause / parallelism) * dummy).then([this, buf, stop, pause = pause_dist.get(), &intent, &in_flight] () mutable {
                    return do_until([stop] { return std::chrono::steady_clock::now() > stop; }, [this, buf, stop, pause, &intent, &in_flight] () mutable {
                        auto start = std::chrono::steady_clock::now();
                        in_flight++;
                        return issue_request(buf, &intent).then_wrapped([this, start, pause, stop, &in_flight] (auto size_f) {
                            size_t size;
                            try {
                                size = size_f.get0();
                            } catch (...) {
                                // cancelled
                                in_flight--;
                                return make_ready_future<>();
                            }

                            auto now = std::chrono::steady_clock::now();
                            if (now < stop) {
                                this->add_result(size, std::chrono::duration_cast<std::chrono::microseconds>(now - start));
                            }
                            in_flight--;
                            auto p = pause->template get_as<std::chrono::microseconds>();
                            auto next = start + p;

                            if (next > now) {
                                return this->_sleep_fn(next, now);
                            } else {
                                // probably the system cannot keep-up with this rate
                                return make_ready_future<>();
                            }
                        });
                    });
                }).then([&intent, &in_flight] {
                    intent.cancel();
                    return do_until([&in_flight] { return in_flight == 0; }, [] { return seastar::sleep(100ms /* ¯\_(ツ)_/¯ */); });
                }).finally([bufptr = std::move(bufptr), pause = std::move(pause_dist)] {});
            });
        });
    }

public:
    future<> issue_requests(std::chrono::steady_clock::time_point stop) {
        _start = std::chrono::steady_clock::now();
        return with_scheduling_group(_sg, [this, stop] {
            if (rps() == 0) {
                return issue_requests_in_parallel(stop, parallelism());
            } else {
                return issue_requests_at_rate(stop, rps(), parallelism());
            }
        }).then([this] {
            _total_duration = std::chrono::steady_clock::now() - _start;
        });
    }

    future<> think() {
        if (_think) {
            return seastar::sleep(std::chrono::duration_cast<std::chrono::microseconds>(_config.shard_info.think_time));
        } else {
            return make_ready_future<>();
        }
    }
    // Generate the test file for reads and writes alike. It is much simpler to just generate one file per job instead of expecting
    // job dependencies between creators and consumers. So every job (a class in a shard) will have its own file and will operate
    // this file differently depending on the type:
    //
    // sequential reads  : will read the file from pos = 0 onwards, back to 0 on EOF
    // sequential writes : will write the file from pos = 0 onwards, back to 0 on EOF
    // random reads      : will read the file at random positions, between 0 and EOF
    // random writes     : will overwrite the file at a random position, between 0 and EOF
    // append            : will write to the file from pos = EOF onwards, always appending to the end.
    // cpu               : CPU-only load, file is not created.
    future<> start(sstring dir, directory_entry_type type) {
        return do_start(dir, type).then([this] {
            if (this_shard_id() == 0 && _config.shard_info.bandwidth != 0) {
                return _iop.update_bandwidth(_config.shard_info.bandwidth);
            } else {
                return make_ready_future<>();
            }
        });
    }

    future<> stop() {
        if (_file) {
            return _file.close();
        }
        return make_ready_future<>();
    }

    const sstring name() const {
        return _config.name;
    }

protected:
    sstring type_str() const {
        return std::unordered_map<request_type, sstring>{
            { request_type::seqread, "SEQ READ" },
            { request_type::seqwrite, "SEQ WRITE" },
            { request_type::randread, "RAND READ" },
            { request_type::randwrite, "RAND WRITE" },
            { request_type::append , "APPEND" },
            { request_type::cpu , "CPU" },
        }[_config.type];;
    }

    request_type req_type() const {
        return _config.type;
    }

    sstring think_time() const {
        if (_config.shard_info.think_time == std::chrono::duration<float>(0)) {
            return "NO think time";
        } else {
            return format("{:d} us think time", std::chrono::duration_cast<std::chrono::microseconds>(_config.shard_info.think_time).count());
        }
    }

    size_t req_size() const {
        return _config.shard_info.request_size;
    }

    unsigned parallelism() const {
        return _config.shard_info.parallelism;
    }

    unsigned rps() const {
        return _config.shard_info.rps;
    }

    unsigned shares() const {
        return _config.shard_info.shares;
    }

    std::chrono::duration<float> total_duration() const {
        return _total_duration;
    }

    uint64_t file_size_mb() const {
        return _config.file_size >> 20;
    }

    uint64_t total_data() const {
        return _data;
    }

    uint64_t max_latency() const {
        return max(_latencies);
    }

    uint64_t average_latency() const {
        return mean(_latencies);
    }

    uint64_t quantile_latency(double q) const {
        return quantile(_latencies, quantile_probability = q);
    }

    uint64_t requests() const noexcept {
        return _requests;
    }

    bool is_sequential() const {
        return (req_type() == request_type::seqread) || (req_type() == request_type::seqwrite);
    }
    bool is_random() const {
        return (req_type() == request_type::randread) || (req_type() == request_type::randwrite);
    }

    uint64_t get_pos() {
        uint64_t pos;
        if (is_random()) {
            pos = _pos_distribution(random_generator) * req_size();
        } else {
            pos = _last_pos + req_size();
            if (is_sequential() && (pos >= _config.file_size)) {
                pos = 0;
            }
        }
        _last_pos = pos;
        return pos + _offset;
    }

    void add_result(size_t data, std::chrono::microseconds latency) {
        _data += data;
        _latencies(latency.count());
        _requests++;
    }

public:
    virtual void emit_results(YAML::Emitter& out) = 0;
};

class io_class_data : public class_data {
protected:
    bool _is_dev_null = false;

    future<size_t> on_io_completed(future<size_t> f) {
        if (!_is_dev_null) {
            return f;
        }

        return f.then([this] (auto size_f) {
            return make_ready_future<size_t>(this->req_size());
        });
    }

public:
    io_class_data(job_config cfg) : class_data(std::move(cfg)) {}

    future<> do_start(sstring path, directory_entry_type type) override {
        if (type == directory_entry_type::directory) {
            return do_start_on_directory(path);
        }

        if (type == directory_entry_type::block_device) {
            return do_start_on_bdev(path);
        }

        if (type == directory_entry_type::char_device && path == "/dev/null") {
            return do_start_on_dev_null();
        }

        throw std::runtime_error(format("Unsupported storage. {} should be directory or block device", path));
    }

private:
    future<> do_start_on_directory(sstring dir) {
        auto fname = format("{}/test-{}-{:d}", dir, name(), this_shard_id());
        auto flags = open_flags::rw | open_flags::create;
        if (_config.options.dsync) {
            flags |= open_flags::dsync;
        }
        file_open_options options;
        options.extent_allocation_size_hint = _config.file_size;
        options.append_is_unlikely = true;
        return open_file_dma(fname, flags, options).then([this, fname] (auto f) {
            _file = f;
            auto maybe_remove_file = [] (sstring fname) {
                return keep_files ? make_ready_future<>() : remove_file(fname);
            };
            return maybe_remove_file(fname).then([this] {
                return _file.size().then([this] (uint64_t size) {
                    return _file.truncate(_config.file_size).then([this, size] {
                        if (size >= _config.file_size) {
                            return make_ready_future<>();
                        }

                        auto bufsize = 256ul << 10;
                        return do_with(boost::irange(0ul, (_config.file_size / bufsize) + 1), [this, bufsize] (auto& pos) mutable {
                            return max_concurrent_for_each(pos.begin(), pos.end(), 64, [this, bufsize] (auto pos) mutable {
                                auto bufptr = allocate_aligned_buffer<char>(bufsize, 4096);
                                auto buf = bufptr.get();
                                std::uniform_int_distribution<int> fill('@', '~');
                                memset(buf, fill(random_generator), bufsize);
                                pos = pos * bufsize;
                                return _file.dma_write(pos, buf, bufsize).finally([this, bufptr = std::move(bufptr), pos] {
                                    if ((this->req_type() == request_type::append) && (pos > _last_pos)) {
                                        _last_pos = pos;
                                    }
                                }).discard_result();
                            });
                        }).then([this] {
                            return _file.flush();
                        });
                    });
                });
            });
        });
    }

    future<> do_start_on_bdev(sstring name) {
        auto flags = open_flags::rw;
        if (_config.options.dsync) {
            flags |= open_flags::dsync;
        }

        return open_file_dma(name, flags).then([this] (auto f) {
            _file = std::move(f);
            return _file.size().then([this] (uint64_t size) {
                auto shard_area_size = align_down<uint64_t>(size / smp::count, 1 << 20);
                if (_config.offset_in_bdev + _config.file_size > shard_area_size) {
                    throw std::runtime_error("Data doesn't fit the blockdevice");
                }
                _offset = shard_area_size * this_shard_id() + _config.offset_in_bdev;
                return make_ready_future<>();
            });
        });
    }

    future<> do_start_on_dev_null() {
        file_open_options options;
        options.append_is_unlikely = true;
        return open_file_dma("/dev/null", open_flags::rw, std::move(options)).then([this] (auto f) {
            _file = std::move(f);
            _is_dev_null = true;
            return make_ready_future<>();
        });
    }

    void emit_one_metrics(YAML::Emitter& out, sstring m_name) {
        const auto& values = seastar::metrics::impl::get_value_map();
        const auto& mf = values.find(m_name);
        assert(mf != values.end());
        for (auto&& mi : mf->second) {
            auto&& cname = mi.first.find("class");
            if (cname != mi.first.end() && cname->second == name()) {
                out << YAML::Key << m_name << YAML::Value << mi.second->get_function()().d();
            }
        }
    }

    void emit_metrics(YAML::Emitter& out) {
        emit_one_metrics(out, "io_queue_total_exec_sec");
        emit_one_metrics(out, "io_queue_total_delay_sec");
        emit_one_metrics(out, "io_queue_total_operations");
        emit_one_metrics(out, "io_queue_starvation_time_sec");
        emit_one_metrics(out, "io_queue_consumption");
        emit_one_metrics(out, "io_queue_adjusted_consumption");
    }

public:
    virtual void emit_results(YAML::Emitter& out) override {
        auto throughput_kbs = (total_data() >> 10) / total_duration().count();
        auto iops = requests() / total_duration().count();
        out << YAML::Key << "throughput" << YAML::Value << throughput_kbs << YAML::Comment("kB/s");
        out << YAML::Key << "IOPS" << YAML::Value << iops;
        out << YAML::Key << "latencies" << YAML::Comment("usec");
        out << YAML::BeginMap;
        out << YAML::Key << "average" << YAML::Value << average_latency();
        for (auto& q: quantiles) {
            out << YAML::Key << fmt::format("p{}", q) << YAML::Value << quantile_latency(q);
        }
        out << YAML::Key << "max" << YAML::Value << max_latency();
        out << YAML::EndMap;
        out << YAML::Key << "stats" << YAML::BeginMap;
        out << YAML::Key << "total_requests" << YAML::Value << requests();
        emit_metrics(out);
        out << YAML::EndMap;
    }
};

class read_io_class_data : public io_class_data {
public:
    read_io_class_data(job_config cfg) : io_class_data(std::move(cfg)) {}

    future<size_t> issue_request(char *buf, io_intent* intent) override {
        auto f = _file.dma_read(this->get_pos(), buf, this->req_size(), _iop, intent);
        return on_io_completed(std::move(f));
    }
};

class write_io_class_data : public io_class_data {
public:
    write_io_class_data(job_config cfg) : io_class_data(std::move(cfg)) {}

    future<size_t> issue_request(char *buf, io_intent* intent) override {
        auto f = _file.dma_write(this->get_pos(), buf, this->req_size(), _iop, intent);
        return on_io_completed(std::move(f));
    }
};

class cpu_class_data : public class_data {
public:
    cpu_class_data(job_config cfg) : class_data(std::move(cfg)) {}

    future<> do_start(sstring dir, directory_entry_type type) override {
        return make_ready_future<>();
    }

    future<size_t> issue_request(char *buf, io_intent* intent) override {
        // We do want the execution time to be a busy loop, and not just a bunch of
        // continuations until our time is up: by doing this we can also simulate the behavior
        // of I/O continuations in the face of reactor stalls.
        auto start  = std::chrono::steady_clock::now();
        do {
        } while ((std::chrono::steady_clock::now() - start) < _config.shard_info.execution_time);
        return make_ready_future<size_t>(1);
    }

    virtual void emit_results(YAML::Emitter& out) override {
        auto throughput = total_data() / total_duration().count();
        out << YAML::Key << "throughput" << YAML::Value << throughput;
    }
};

std::unique_ptr<class_data> job_config::gen_class_data() {
    if (type == request_type::cpu) {
        return std::make_unique<cpu_class_data>(*this);
    } else if ((type == request_type::seqread) || (type == request_type::randread)) {
        return std::make_unique<read_io_class_data>(*this);
    } else {
        return std::make_unique<write_io_class_data>(*this);
    }
}

/// YAML parsing functions
namespace YAML {
template<>
struct convert<byte_size> {
    static bool decode(const Node& node, byte_size& bs) {
        auto str = node.as<std::string>();
        unsigned shift = 0;
        if (str.back() == 'B') {
            str.pop_back();
            shift = std::unordered_map<char, unsigned>{
                { 'k', 10 },
                { 'M', 20 },
                { 'G', 30 },
            }[str.back()];
            str.pop_back();
        }
        bs.size = (boost::lexical_cast<size_t>(str) << shift);
        return bs.size >= 512;
    }
};

template<>
struct convert<duration_time> {
    static bool decode(const Node& node, duration_time& dt) {
        auto str = node.as<std::string>();
        if (str == "0") {
            dt.time = 0ns;
            return true;
        }
        if (str.back() != 's') {
            return false;
        }
        str.pop_back();
        std::unordered_map<char, std::chrono::duration<float>> unit = {
            { 'n', 1ns },
            { 'u', 1us },
            { 'm', 1ms },
        };

        if (unit.count(str.back())) {
            auto u = str.back();
            str.pop_back();
            dt.time = (boost::lexical_cast<size_t>(str) * unit[u]);
        } else {
            dt.time = (boost::lexical_cast<size_t>(str) * 1s);
        }
        return true;
    }
};

template<>
struct convert<shard_config> {
    static bool decode(const Node& node, shard_config& shards) {
        try {
            auto str = node.as<std::string>();
            return (str == "all");
        } catch (YAML::TypedBadConversion<std::string>& e) {
            shards = shard_config(boost::copy_range<std::unordered_set<unsigned>>(node.as<std::vector<unsigned>>()));
            return true;
        }
        return false;
    }
};

template<>
struct convert<request_type> {
    static bool decode(const Node& node, request_type& rt) {
        static std::unordered_map<std::string, request_type> mappings = {
            { "seqread", request_type::seqread },
            { "seqwrite", request_type::seqwrite},
            { "randread", request_type::randread },
            { "randwrite", request_type::randwrite },
            { "append", request_type::append},
            { "cpu", request_type::cpu},
        };
        auto reqstr = node.as<std::string>();
        if (!mappings.count(reqstr)) {
            return false;
        }
        rt = mappings[reqstr];
        return true;
    }
};

template<>
struct convert<shard_info> {
    static bool decode(const Node& node, shard_info& sl) {
        if (node["parallelism"]) {
            sl.parallelism = node["parallelism"].as<unsigned>();
        }
        if (node["rps"]) {
            sl.rps = node["rps"].as<unsigned>();
        }

        if (node["shares"]) {
            sl.shares = node["shares"].as<unsigned>();
        }
        if (node["bandwidth"]) {
            sl.bandwidth = node["bandwidth"].as<byte_size>().size;
        }
        if (node["reqsize"]) {
            sl.request_size = node["reqsize"].as<byte_size>().size;
        }
        if (node["think_time"]) {
            sl.think_time = node["think_time"].as<duration_time>().time;
        }
        if (node["think_after"]) {
            sl.think_after = node["think_after"].as<duration_time>().time;
        }
        if (node["execution_time"]) {
            sl.execution_time = node["execution_time"].as<duration_time>().time;
        }
        return true;
    }
};

template<>
struct convert<options> {
    static bool decode(const Node& node, options& op) {
        if (node["dsync"]) {
            op.dsync = node["dsync"].as<bool>();
        }
        if (node["sleep_type"]) {
            auto st = node["sleep_type"].as<std::string>();
            if (st == "busyloop") {
                op.sleep_fn = busyloop_sleep;
            } else if (st == "lowres") {
                op.sleep_fn = timer_sleep<lowres_clock>;
            } else if (st == "steady") {
                op.sleep_fn = timer_sleep<std::chrono::steady_clock>;
            } else {
                throw std::runtime_error(format("Unknown sleep_type {}", st));
            }
        }
        if (node["pause_distribution"]) {
            auto pd = node["pause_distribution"].as<std::string>();
            if (pd == "uniform") {
                op.pause_fn = make_uniform_pause;
            } else if (pd == "poisson") {
                op.pause_fn = make_poisson_pause;
            } else {
                throw std::runtime_error(format("Unknown pause_distribution {}", pd));
            }
        }
        return true;
    }
};

template<>
struct convert<job_config> {
    static bool decode(const Node& node, job_config& cl) {
        cl.name = node["name"].as<std::string>();
        cl.type = node["type"].as<request_type>();
        cl.shard_placement = node["shards"].as<shard_config>();
        // The data_size is used to divide the available (and effectively
        // constant) disk space between workloads. Each shard inside the
        // workload thus uses its portion of the assigned space.
        if (node["data_size"]) {
            cl.file_size = node["data_size"].as<byte_size>().size / smp::count;
        } else {
            cl.file_size = 1ull << 30; // 1G by default
        }
        if (node["shard_info"]) {
            cl.shard_info = node["shard_info"].as<shard_info>();
        }
        if (node["options"]) {
            cl.options = node["options"].as<options>();
        }
        return true;
    }
};
}

/// Each shard has one context, and the context is responsible for creating the classes that should
/// run in this shard.
class context {
    std::vector<std::unique_ptr<class_data>> _cl;

    sstring _dir;
    directory_entry_type _type;
    std::chrono::seconds _duration;

    semaphore _finished;
public:
    context(sstring dir, directory_entry_type dtype, std::vector<job_config> req_config, unsigned duration)
            : _cl(boost::copy_range<std::vector<std::unique_ptr<class_data>>>(req_config
                | boost::adaptors::filtered([] (auto& cfg) { return cfg.shard_placement.is_set(this_shard_id()); })
                | boost::adaptors::transformed([] (auto& cfg) { return cfg.gen_class_data(); })
            ))
            , _dir(dir)
            , _type(dtype)
            , _duration(duration)
            , _finished(0)
    {}

    future<> stop() {
        return parallel_for_each(_cl, [] (std::unique_ptr<class_data>& cl) {
            return cl->stop();
        });
    }

    future<> start() {
        return parallel_for_each(_cl, [this] (std::unique_ptr<class_data>& cl) {
            return cl->start(_dir, _type);
        });
    }

    future<> issue_requests() {
        return parallel_for_each(_cl.begin(), _cl.end(), [this] (std::unique_ptr<class_data>& cl) {
            return cl->issue_requests(std::chrono::steady_clock::now() + _duration).finally([this] {
                _finished.signal(1);
            });
        });
    }

    future<> emit_results(YAML::Emitter& out) {
        return _finished.wait(_cl.size()).then([this, &out] {
            for (auto& cl: _cl) {
                out << YAML::Key << cl->name();
                out << YAML::BeginMap;
                cl->emit_results(out);
                out << YAML::EndMap;
            }
            return make_ready_future<>();
        });
    }
};

static void show_results(distributed<context>& ctx) {
    YAML::Emitter out;
    out << YAML::BeginDoc;
    out << YAML::BeginSeq;
    for (unsigned i = 0; i < smp::count; ++i) {
        out << YAML::BeginMap;
        out << YAML::Key << "shard" << YAML::Value << i;
        ctx.invoke_on(i, [&out] (auto& c) {
            return c.emit_results(out);
        }).get();
        out << YAML::EndMap;
    }
    out << YAML::EndSeq;
    out << YAML::EndDoc;
    std::cout << out.c_str();
}

int main(int ac, char** av) {
    namespace bpo = boost::program_options;

    app_template app;
    auto opt_add = app.add_options();
    opt_add
        ("storage", bpo::value<sstring>()->default_value("."), "directory or block device where to execute the test")
        ("duration", bpo::value<unsigned>()->default_value(10), "for how long (in seconds) to run the test")
        ("conf", bpo::value<sstring>()->default_value("./conf.yaml"), "YAML file containing benchmark specification")
        ("keep-files", bpo::value<bool>()->default_value(false), "keep test files, next run may re-use them")
    ;

    distributed<context> ctx;
    return app.run(ac, av, [&] {
        return seastar::async([&] {
            auto& opts = app.configuration();
            auto& storage = opts["storage"].as<sstring>();

            auto st_type = engine().file_type(storage).get0();

            if (!st_type) {
                throw std::runtime_error(format("Unknown storage {}", storage));
            }

            if (*st_type == directory_entry_type::directory) {
                auto fs = file_system_at(storage).get0();
                if (fs != fs_type::xfs) {
                    throw std::runtime_error(format("This is a performance test. {} is not on XFS", storage));
                }
            }

            keep_files = opts["keep-files"].as<bool>();
            auto& duration = opts["duration"].as<unsigned>();
            auto& yaml = opts["conf"].as<sstring>();
            YAML::Node doc = YAML::LoadFile(yaml);
            auto reqs = doc.as<std::vector<job_config>>();

            parallel_for_each(reqs, [] (auto& r) {
                return seastar::create_scheduling_group(r.name, r.shard_info.shares).then([&r] (seastar::scheduling_group sg) {
                    r.shard_info.scheduling_group = sg;
                });
            }).get();

            if (*st_type == directory_entry_type::block_device) {
                uint64_t off = 0;
                for (job_config& r : reqs) {
                    r.offset_in_bdev = off;
                    off += r.file_size;
                }
            }

            ctx.start(storage, *st_type, reqs, duration).get0();
            engine().at_exit([&ctx] {
                return ctx.stop();
            });
            std::cout << "Creating initial files..." << std::endl;
            ctx.invoke_on_all([] (auto& c) {
                return c.start();
            }).get();
            std::cout << "Starting evaluation..." << std::endl;
            ctx.invoke_on_all([] (auto& c) {
                return c.issue_requests();
            }).get();
            show_results(ctx);
            ctx.stop().get0();
        }).or_terminate();
    });
}