1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
|
/*
* This file is open source software, licensed to you under the terms
* of the Apache License, Version 2.0 (the "License"). See the NOTICE file
* distributed with this work for additional information regarding copyright
* ownership. You may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (C) 2018 ScyllaDB Ltd.
*/
#include <seastar/testing/perf_tests.hh>
#include <fstream>
#include <regex>
#include <boost/range.hpp>
#include <boost/range/adaptors.hpp>
#include <boost/range/algorithm.hpp>
#include <fmt/ostream.h>
#include <seastar/core/app-template.hh>
#include <seastar/core/thread.hh>
#include <seastar/core/sharded.hh>
#include <seastar/json/formatter.hh>
#include <seastar/util/later.hh>
#include <seastar/testing/random.hh>
#include <seastar/core/memory.hh>
#include <seastar/core/reactor.hh>
#include <signal.h>
#if FMT_VERSION >= 90000
namespace perf_tests::internal {
struct duration;
}
template <> struct fmt::formatter<perf_tests::internal::duration> : fmt::ostream_formatter {};
#endif
namespace perf_tests {
namespace internal {
namespace {
// We need to use signal-based timer instead of seastar ones so that
// tests that do not suspend can be interrupted.
// This causes no overhead though since the timer is used only in a dry run.
class signal_timer {
std::function<void()> _fn;
timer_t _timer;
public:
explicit signal_timer(std::function<void()> fn) : _fn(fn) {
sigevent se{};
se.sigev_notify = SIGEV_SIGNAL;
se.sigev_signo = SIGALRM;
se.sigev_value.sival_ptr = this;
auto ret = timer_create(CLOCK_MONOTONIC, &se, &_timer);
if (ret) {
throw std::system_error(ret, std::system_category());
}
}
~signal_timer() {
timer_delete(_timer);
}
void arm(std::chrono::steady_clock::duration dt) {
time_t sec = std::chrono::duration_cast<std::chrono::seconds>(dt).count();
auto nsec = std::chrono::duration_cast<std::chrono::nanoseconds>(dt).count();
nsec -= std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::seconds(sec)).count();
itimerspec ts{};
ts.it_value.tv_sec = sec;
ts.it_value.tv_nsec = nsec;
auto ret = timer_settime(_timer, 0, &ts, nullptr);
if (ret) {
throw std::system_error(ret, std::system_category());
}
}
void cancel() {
itimerspec ts{};
auto ret = timer_settime(_timer, 0, &ts, nullptr);
if (ret) {
throw std::system_error(ret, std::system_category());
}
}
public:
static void init() {
struct sigaction sa{};
sa.sa_sigaction = &signal_timer::signal_handler;
sa.sa_flags = SA_SIGINFO;
auto ret = sigaction(SIGALRM, &sa, nullptr);
if (ret) {
throw std::system_error(ret, std::system_category());
}
}
private:
static void signal_handler(int, siginfo_t* si, void*) {
auto t = static_cast<signal_timer*>(si->si_value.sival_ptr);
t->_fn();
}
};
}
uint64_t perf_stats::perf_mallocs() {
return memory::stats().mallocs();
}
uint64_t perf_stats::perf_tasks_processed() {
return engine().get_sched_stats().tasks_processed;
}
perf_stats perf_stats::snapshot(linux_perf_event* instructions_retired_counter) {
return perf_stats(
perf_mallocs(),
perf_tasks_processed(),
instructions_retired_counter ? instructions_retired_counter->read() : 0
);
}
time_measurement measure_time;
struct config;
struct result;
struct result_printer {
virtual ~result_printer() = default;
virtual void print_configuration(const config&) = 0;
virtual void print_result(const result&) = 0;
};
struct config {
uint64_t single_run_iterations;
std::chrono::nanoseconds single_run_duration;
unsigned number_of_runs;
std::vector<std::unique_ptr<result_printer>> printers;
unsigned random_seed = 0;
};
struct result {
sstring test_name = "";
uint64_t total_iterations = 0;
unsigned runs = 0;
double median = 0.;
double mad = 0.;
double min = 0.;
double max = 0.;
double allocs = 0.;
double tasks = 0.;
double inst = 0.;
};
struct duration {
double value;
};
static inline std::ostream& operator<<(std::ostream& os, duration d)
{
auto value = d.value;
if (value < 1'000) {
os << fmt::format("{:.3f}ns", value);
} else if (value < 1'000'000) {
// fmt hasn't discovered unicode yet so we are stuck with uicroseconds
// See: https://github.com/fmtlib/fmt/issues/628
os << fmt::format("{:.3f}us", value / 1'000);
} else if (value < 1'000'000'000) {
os << fmt::format("{:.3f}ms", value / 1'000'000);
} else {
os << fmt::format("{:.3f}s", value / 1'000'000'000);
}
return os;
}
static constexpr auto header_format_string = "{:<40} {:>11} {:>11} {:>11} {:>11} {:>11} {:>11} {:>11} {:>11}\n";
static constexpr auto format_string = "{:<40} {:>11} {:>11} {:>11} {:>11} {:>11} {:>11.3f} {:>11.3f} {:>11.1f}\n";
struct stdout_printer final : result_printer {
virtual void print_configuration(const config& c) override {
fmt::print("{:<25} {}\n{:<25} {}\n{:<25} {}\n{:<25} {}\n{:<25} {}\n\n",
"single run iterations:", c.single_run_iterations,
"single run duration:", duration { double(c.single_run_duration.count()) },
"number of runs:", c.number_of_runs,
"number of cores:", smp::count,
"random seed:", c.random_seed);
fmt::print(header_format_string, "test", "iterations", "median", "mad", "min", "max", "allocs", "tasks", "inst");
}
virtual void print_result(const result& r) override {
fmt::print(format_string, r.test_name, r.total_iterations / r.runs, duration { r.median },
duration { r.mad }, duration { r.min }, duration { r.max },
r.allocs, r.tasks, r.inst);
}
};
class json_printer final : public result_printer {
std::string _output_file;
std::unordered_map<std::string,
std::unordered_map<std::string,
std::unordered_map<std::string, double>>> _root;
public:
explicit json_printer(const std::string& file) : _output_file(file) { }
~json_printer() {
std::ofstream out(_output_file);
out << json::formatter::to_json(_root);
}
virtual void print_configuration(const config&) override { }
virtual void print_result(const result& r) override {
auto& result = _root["results"][r.test_name];
result["runs"] = r.runs;
result["total_iterations"] = r.total_iterations;
result["median"] = r.median;
result["mad"] = r.mad;
result["min"] = r.min;
result["max"] = r.max;
result["allocs"] = r.allocs;
result["tasks"] = r.tasks;
result["inst"] = r.inst;
}
};
void performance_test::do_run(const config& conf)
{
_max_single_run_iterations = conf.single_run_iterations;
if (!_max_single_run_iterations) {
_max_single_run_iterations = std::numeric_limits<uint64_t>::max();
}
signal_timer tmr([this] {
_max_single_run_iterations.store(0, std::memory_order_relaxed);
});
// dry run, estimate the number of iterations
if (conf.single_run_duration.count()) {
// switch out of seastar thread
yield().then([&] {
tmr.arm(conf.single_run_duration);
return do_single_run().finally([&] {
tmr.cancel();
_max_single_run_iterations = _single_run_iterations;
});
}).get();
}
result r{};
auto results = std::vector<double>(conf.number_of_runs);
uint64_t total_iterations = 0;
for (auto i = 0u; i < conf.number_of_runs; i++) {
// switch out of seastar thread
yield().then([&] {
_single_run_iterations = 0;
return do_single_run().then([&] (run_result rr) {
clock_type::duration dt = rr.duration;
double ns = std::chrono::duration_cast<std::chrono::nanoseconds>(dt).count();
results[i] = ns / _single_run_iterations;
total_iterations += _single_run_iterations;
r.allocs += double(rr.stats.allocations) / _single_run_iterations;
r.tasks += double(rr.stats.tasks_executed) / _single_run_iterations;
r.inst += double(rr.stats.instructions_retired) / _single_run_iterations;
});
}).get();
}
r.test_name = name();
r.total_iterations = total_iterations;
r.runs = conf.number_of_runs;
auto mid = conf.number_of_runs / 2;
boost::range::sort(results);
r.median = results[mid];
auto diffs = boost::copy_range<std::vector<double>>(
results | boost::adaptors::transformed([&] (double x) { return fabs(x - r.median); })
);
boost::range::sort(diffs);
r.mad = diffs[mid];
r.min = results[0];
r.max = results[results.size() - 1];
r.allocs /= conf.number_of_runs;
r.tasks /= conf.number_of_runs;
r.inst /= conf.number_of_runs;
for (auto& rp : conf.printers) {
rp->print_result(r);
}
}
void performance_test::run(const config& conf)
{
set_up();
try {
do_run(conf);
} catch (...) {
tear_down();
throw;
}
tear_down();
}
std::vector<std::unique_ptr<performance_test>>& all_tests()
{
static std::vector<std::unique_ptr<performance_test>> tests;
return tests;
}
void performance_test::register_test(std::unique_ptr<performance_test> test)
{
all_tests().emplace_back(std::move(test));
}
void run_all(const std::vector<std::string>& tests, const config& conf)
{
auto can_run = [tests = boost::copy_range<std::vector<std::regex>>(tests)] (auto&& test) {
auto it = boost::range::find_if(tests, [&test] (const std::regex& regex) {
return std::regex_match(test->name(), regex);
});
return tests.empty() || it != tests.end();
};
for (auto& rp : conf.printers) {
rp->print_configuration(conf);
}
for (auto&& test : all_tests() | boost::adaptors::filtered(std::move(can_run))) {
test->run(conf);
}
}
}
}
int main(int ac, char** av)
{
using namespace perf_tests::internal;
namespace bpo = boost::program_options;
app_template app;
app.add_options()
("iterations,i", bpo::value<size_t>()->default_value(0),
"number of iterations in a single run")
("duration,d", bpo::value<double>()->default_value(1),
"duration of a single run in seconds")
("runs,r", bpo::value<size_t>()->default_value(5), "number of runs")
("test,t", bpo::value<std::vector<std::string>>(), "tests to execute")
("random-seed,S", bpo::value<unsigned>()->default_value(0),
"random number generator seed")
("no-stdout", "do not print to stdout")
("json-output", bpo::value<std::string>(), "output json file")
("list", "list available tests")
;
return app.run(ac, av, [&] {
return async([&] {
signal_timer::init();
config conf;
conf.single_run_iterations = app.configuration()["iterations"].as<size_t>();
auto dur = std::chrono::duration<double>(app.configuration()["duration"].as<double>());
conf.single_run_duration = std::chrono::duration_cast<std::chrono::nanoseconds>(dur);
conf.number_of_runs = app.configuration()["runs"].as<size_t>();
conf.random_seed = app.configuration()["random-seed"].as<unsigned>();
std::vector<std::string> tests_to_run;
if (app.configuration().count("test")) {
tests_to_run = app.configuration()["test"].as<std::vector<std::string>>();
}
if (app.configuration().count("list")) {
fmt::print("available tests:\n");
for (auto&& t : all_tests()) {
fmt::print("\t{}\n", t->name());
}
return;
}
if (!app.configuration().count("no-stdout")) {
conf.printers.emplace_back(std::make_unique<stdout_printer>());
}
if (app.configuration().count("json-output")) {
conf.printers.emplace_back(std::make_unique<json_printer>(
app.configuration()["json-output"].as<std::string>()
));
}
if (!conf.random_seed) {
conf.random_seed = std::random_device()();
}
smp::invoke_on_all([seed = conf.random_seed] {
auto local_seed = seed + this_shard_id();
testing::local_random_engine.seed(local_seed);
}).get();
run_all(tests_to_run, conf);
});
});
}
|