1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
/*
* This file is open source software, licensed to you under the terms
* of the Apache License, Version 2.0 (the "License"). See the NOTICE file
* distributed with this work for additional information regarding copyright
* ownership. You may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (C) 2016 ScyllaDB Ltd.
*/
#define BOOST_TEST_MODULE core
#include <boost/test/included/unit_test.hpp>
#include <seastar/core/chunked_fifo.hh>
#include <stdlib.h>
#include <chrono>
#include <deque>
#include <seastar/core/circular_buffer.hh>
using namespace seastar;
BOOST_AUTO_TEST_CASE(chunked_fifo_small) {
// Check all the methods of chunked_fifo but with a trivial type (int) and
// only a few elements - and in particular a single chunk is enough.
chunked_fifo<int> fifo;
BOOST_REQUIRE_EQUAL(fifo.size(), 0u);
BOOST_REQUIRE_EQUAL(fifo.empty(), true);
fifo.push_back(3);
BOOST_REQUIRE_EQUAL(fifo.size(), 1u);
BOOST_REQUIRE_EQUAL(fifo.empty(), false);
BOOST_REQUIRE_EQUAL(fifo.front(), 3);
fifo.push_back(17);
BOOST_REQUIRE_EQUAL(fifo.size(), 2u);
BOOST_REQUIRE_EQUAL(fifo.empty(), false);
BOOST_REQUIRE_EQUAL(fifo.front(), 3);
fifo.pop_front();
BOOST_REQUIRE_EQUAL(fifo.size(), 1u);
BOOST_REQUIRE_EQUAL(fifo.empty(), false);
BOOST_REQUIRE_EQUAL(fifo.front(), 17);
fifo.pop_front();
BOOST_REQUIRE_EQUAL(fifo.size(), 0u);
BOOST_REQUIRE_EQUAL(fifo.empty(), true);
// The previously allocated chunk should have been freed, and now
// a new one will need to be allocated:
fifo.push_back(57);
BOOST_REQUIRE_EQUAL(fifo.size(), 1u);
BOOST_REQUIRE_EQUAL(fifo.empty(), false);
BOOST_REQUIRE_EQUAL(fifo.front(), 57);
// check miscelleneous methods (at least they shouldn't crash)
fifo.clear();
fifo.shrink_to_fit();
fifo.reserve(1);
fifo.reserve(100);
fifo.reserve(1280);
fifo.shrink_to_fit();
fifo.reserve(1280);
}
BOOST_AUTO_TEST_CASE(chunked_fifo_fullchunk) {
// Grow a chunked_fifo to exactly fill a chunk, and see what happens when
// we cross that chunk.
constexpr size_t N = 128;
chunked_fifo<int, N> fifo;
for (int i = 0; i < static_cast<int>(N); i++) {
fifo.push_back(i);
}
BOOST_REQUIRE_EQUAL(fifo.size(), N);
fifo.push_back(N);
BOOST_REQUIRE_EQUAL(fifo.size(), N+1);
for (int i = 0 ; i < static_cast<int>(N+1); i++) {
BOOST_REQUIRE_EQUAL(fifo.front(), i);
BOOST_REQUIRE_EQUAL(fifo.size(), N+1-i);
fifo.pop_front();
}
BOOST_REQUIRE_EQUAL(fifo.size(), 0u);
BOOST_REQUIRE_EQUAL(fifo.empty(), true);
}
BOOST_AUTO_TEST_CASE(chunked_fifo_big) {
// Grow a chunked_fifo to many elements, and see things are working as
// expected
chunked_fifo<int> fifo;
constexpr size_t N = 100'000;
for (int i=0; i < static_cast<int>(N); i++) {
fifo.push_back(i);
}
BOOST_REQUIRE_EQUAL(fifo.size(), N);
BOOST_REQUIRE_EQUAL(fifo.empty(), false);
for (int i = 0 ; i < static_cast<int>(N); i++) {
BOOST_REQUIRE_EQUAL(fifo.front(), i);
BOOST_REQUIRE_EQUAL(fifo.size(), N-i);
fifo.pop_front();
}
BOOST_REQUIRE_EQUAL(fifo.size(), 0u);
BOOST_REQUIRE_EQUAL(fifo.empty(), true);
}
BOOST_AUTO_TEST_CASE(chunked_fifo_constructor) {
// Check that chunked_fifo appropriately calls the type's constructor
// and destructor, and doesn't need anything else.
struct typ {
int val;
unsigned* constructed;
unsigned* destructed;
typ(int val, unsigned* constructed, unsigned* destructed)
: val(val), constructed(constructed), destructed(destructed) {
++*constructed;
}
~typ() { ++*destructed; }
};
chunked_fifo<typ> fifo;
unsigned constructed = 0, destructed = 0;
constexpr unsigned N = 1000;
for (unsigned i = 0; i < N; i++) {
fifo.emplace_back(i, &constructed, &destructed);
}
BOOST_REQUIRE_EQUAL(fifo.size(), N);
BOOST_REQUIRE_EQUAL(constructed, N);
BOOST_REQUIRE_EQUAL(destructed, 0u);
for (unsigned i = 0 ; i < N; i++) {
BOOST_REQUIRE_EQUAL(fifo.front().val, static_cast<int>(i));
BOOST_REQUIRE_EQUAL(fifo.size(), N-i);
fifo.pop_front();
BOOST_REQUIRE_EQUAL(destructed, i+1);
}
BOOST_REQUIRE_EQUAL(fifo.size(), 0u);
BOOST_REQUIRE_EQUAL(fifo.empty(), true);
// Check that destructing a fifo also destructs the objects it still
// contains
constructed = destructed = 0;
{
chunked_fifo<typ> fifo;
for (unsigned i = 0; i < N; i++) {
fifo.emplace_back(i, &constructed, &destructed);
BOOST_REQUIRE_EQUAL(fifo.front().val, 0);
BOOST_REQUIRE_EQUAL(fifo.size(), i+1);
BOOST_REQUIRE_EQUAL(fifo.empty(), false);
BOOST_REQUIRE_EQUAL(constructed, i+1);
BOOST_REQUIRE_EQUAL(destructed, 0u);
}
}
BOOST_REQUIRE_EQUAL(constructed, N);
BOOST_REQUIRE_EQUAL(destructed, N);
}
BOOST_AUTO_TEST_CASE(chunked_fifo_construct_fail) {
// Check that if we fail to construct the item pushed, the queue remains
// empty.
class my_exception {};
struct typ {
typ() {
throw my_exception();
}
};
chunked_fifo<typ> fifo;
BOOST_REQUIRE_EQUAL(fifo.size(), 0u);
BOOST_REQUIRE_EQUAL(fifo.empty(), true);
try {
fifo.emplace_back();
} catch(my_exception) {
// expected, ignore
}
BOOST_REQUIRE_EQUAL(fifo.size(), 0u);
BOOST_REQUIRE_EQUAL(fifo.empty(), true);
}
BOOST_AUTO_TEST_CASE(chunked_fifo_construct_fail2) {
// A slightly more elaborate test, with a chunk size of 2
// items, and the third addition failing, so the question is
// not whether empty() is wrong immediately, but whether after
// we pop the two items, it will become true or we'll be left
// with an empty chunk.
class my_exception {};
struct typ {
typ(bool fail) {
if (fail) {
throw my_exception();
}
}
};
chunked_fifo<typ, 2> fifo;
BOOST_REQUIRE_EQUAL(fifo.size(), 0u);
BOOST_REQUIRE_EQUAL(fifo.empty(), true);
fifo.emplace_back(false);
fifo.emplace_back(false);
try {
fifo.emplace_back(true);
} catch(my_exception) {
// expected, ignore
}
BOOST_REQUIRE_EQUAL(fifo.size(), 2u);
BOOST_REQUIRE_EQUAL(fifo.empty(), false);
fifo.pop_front();
BOOST_REQUIRE_EQUAL(fifo.size(), 1u);
BOOST_REQUIRE_EQUAL(fifo.empty(), false);
fifo.pop_front();
BOOST_REQUIRE_EQUAL(fifo.size(), 0u);
BOOST_REQUIRE_EQUAL(fifo.empty(), true);
}
// Enable the following to run some benchmarks on different queue options
#if 0
// Unfortunately, C++ lacks the trivial feature of converting a type's name,
// in compile time, to a string (akin to the C preprocessor's "#" feature).
// Here is a neat trick to replace it - use typeinfo<T>::name() or
// type_name<T>() to get a constant string name of the type.
#include <cxxabi.h>
template <typename T>
class typeinfo {
private:
static const char *_name;
public:
static const char *name() {
int status;
if (!_name)
_name = abi::__cxa_demangle(typeid(T).name(), 0, 0, &status);
return _name;
}
};
template<typename T> const char *typeinfo<T>::_name = nullptr;
template<typename T> const char *type_name() {
return typeinfo<T>::name();
}
template<typename FIFO_TYPE> void
benchmark_random_push_pop() {
// A test involving a random sequence of pushes and pops. Because the
// random walk is bounded the 0 end (the queue cannot be popped after
// being empty), the queue's expected length at the end of the test is
// not zero.
// The test uses the same random sequence each time so can be used for
// benchmarking different queue implementations on the same sequence.
constexpr int N = 1'000'000'000;
FIFO_TYPE fifo;
unsigned int seed = 0;
int entropy = 0;
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; i++) {
if (!entropy) {
entropy = rand_r(&seed);
}
if (entropy & 1) {
fifo.push_back(i);
} else {
if (!fifo.empty()) {
fifo.pop_front();
}
}
entropy >>= 1;
}
auto end = std::chrono::high_resolution_clock::now();
auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
std::cerr << type_name<FIFO_TYPE>() << ", " << N << " random push-and-pop " << fifo.size() << " " << ms << "ms.\n";
}
template<typename FIFO_TYPE> void
benchmark_push_pop() {
// A benchmark involving repeated push and then pop to a queue, which
// will have 0 or 1 items at all times.
constexpr int N = 1'000'000'000;
FIFO_TYPE fifo;
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; i++) {
fifo.push_back(1);
fifo.pop_front();
}
auto end = std::chrono::high_resolution_clock::now();
auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
std::cerr << type_name<FIFO_TYPE>() << ", " << N << " push-and-pop " << ms << "ms.\n";
}
template<typename FIFO_TYPE> void
benchmark_push_pop_k() {
// A benchmark involving repeated pushes of a few items and then popping
// to a queue, which will have just one chunk (or 0) at all times.
constexpr int N = 1'000'000'000;
constexpr int K = 100;
FIFO_TYPE fifo;
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N/K; i++) {
for(int j = 0; j < K; j++) {
fifo.push_back(j);
}
for(int j = 0; j < K; j++) {
fifo.pop_front();
}
}
auto end = std::chrono::high_resolution_clock::now();
auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
std::cerr << type_name<FIFO_TYPE>() << ", " << N << " push-and-pop-" << K << " " << ms << "ms.\n";
}
template<typename FIFO_TYPE> void
benchmark_pushes_pops() {
// A benchmark of pushing a lot of items, and then popping all of them
constexpr int N = 100'000'000;
FIFO_TYPE fifo;
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < N; i++) {
fifo.push_back(1);
}
for (int i = 0; i < N; i++) {
fifo.pop_front();
}
auto end = std::chrono::high_resolution_clock::now();
auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
std::cerr << type_name<FIFO_TYPE>() << ", " << N << " push-all-then-pop-all " << ms << "ms.\n";
}
template<typename FIFO_TYPE> void
benchmark_all() {
std::cerr << "\n --- " << type_name<FIFO_TYPE>() << ": \n";
benchmark_random_push_pop<FIFO_TYPE>();
benchmark_push_pop<FIFO_TYPE>();
benchmark_push_pop_k<FIFO_TYPE>();
benchmark_pushes_pops<FIFO_TYPE>();
}
BOOST_AUTO_TEST_CASE(chunked_fifo_benchmark) {
benchmark_all<chunked_fifo<int>>();
benchmark_all<circular_buffer<int>>();
benchmark_all<std::deque<int>>();
benchmark_all<std::list<int>>();
}
#endif
BOOST_AUTO_TEST_CASE(chunked_fifo_iterator) {
constexpr auto items_per_chunk = 8;
auto fifo = chunked_fifo<int, items_per_chunk>{};
auto reference = std::deque<int>{};
BOOST_REQUIRE(fifo.begin() == fifo.end());
for (int i = 0; i < items_per_chunk * 4; ++i) {
fifo.push_back(i);
reference.push_back(i);
BOOST_REQUIRE(std::equal(fifo.begin(), fifo.end(), reference.begin(), reference.end()));
}
for (int i = 0; i < items_per_chunk * 2; ++i) {
fifo.pop_front();
reference.pop_front();
BOOST_REQUIRE(std::equal(fifo.begin(), fifo.end(), reference.begin(), reference.end()));
}
}
BOOST_AUTO_TEST_CASE(chunked_fifo_const_iterator) {
constexpr auto items_per_chunk = 8;
auto fifo = chunked_fifo<int, items_per_chunk>{};
auto reference = std::deque<int>{};
BOOST_REQUIRE(fifo.cbegin() == fifo.cend());
for (int i = 0; i < items_per_chunk * 4; ++i) {
fifo.push_back(i);
reference.push_back(i);
BOOST_REQUIRE(std::equal(fifo.cbegin(), fifo.cend(), reference.cbegin(), reference.cend()));
}
for (int i = 0; i < items_per_chunk * 2; ++i) {
fifo.pop_front();
reference.pop_front();
BOOST_REQUIRE(std::equal(fifo.cbegin(), fifo.cend(), reference.cbegin(), reference.cend()));
}
}
|