summaryrefslogtreecommitdiffstats
path: root/src/spdk/dpdk/app/test/test_flow_classify.c
blob: ef0b6fdd5ca55f901a0fc4a33a84a6bb098504e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2017 Intel Corporation
 */

#include <string.h>
#include <errno.h>

#include "test.h"

#include <rte_string_fns.h>
#include <rte_mbuf.h>
#include <rte_byteorder.h>
#include <rte_ip.h>
#include <rte_acl.h>
#include <rte_common.h>
#include <rte_table_acl.h>
#include <rte_flow.h>
#include <rte_flow_classify.h>

#include "packet_burst_generator.h"
#include "test_flow_classify.h"


#define FLOW_CLASSIFY_MAX_RULE_NUM 100
#define MAX_PKT_BURST              32
#define NB_SOCKETS                 4
#define MEMPOOL_CACHE_SIZE         256
#define MBUF_SIZE                  512
#define NB_MBUF                    512

/* test UDP, TCP and SCTP packets */
static struct rte_mempool *mbufpool[NB_SOCKETS];
static struct rte_mbuf *bufs[MAX_PKT_BURST];

static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = {
	/* first input field - always one byte long. */
	{
		.type = RTE_ACL_FIELD_TYPE_BITMASK,
		.size = sizeof(uint8_t),
		.field_index = PROTO_FIELD_IPV4,
		.input_index = PROTO_INPUT_IPV4,
		.offset = sizeof(struct rte_ether_hdr) +
			offsetof(struct rte_ipv4_hdr, next_proto_id),
	},
	/* next input field (IPv4 source address) - 4 consecutive bytes. */
	{
		/* rte_flow uses a bit mask for IPv4 addresses */
		.type = RTE_ACL_FIELD_TYPE_BITMASK,
		.size = sizeof(uint32_t),
		.field_index = SRC_FIELD_IPV4,
		.input_index = SRC_INPUT_IPV4,
		.offset = sizeof(struct rte_ether_hdr) +
			offsetof(struct rte_ipv4_hdr, src_addr),
	},
	/* next input field (IPv4 destination address) - 4 consecutive bytes. */
	{
		/* rte_flow uses a bit mask for IPv4 addresses */
		.type = RTE_ACL_FIELD_TYPE_BITMASK,
		.size = sizeof(uint32_t),
		.field_index = DST_FIELD_IPV4,
		.input_index = DST_INPUT_IPV4,
		.offset = sizeof(struct rte_ether_hdr) +
			offsetof(struct rte_ipv4_hdr, dst_addr),
	},
	/*
	 * Next 2 fields (src & dst ports) form 4 consecutive bytes.
	 * They share the same input index.
	 */
	{
		/* rte_flow uses a bit mask for protocol ports */
		.type = RTE_ACL_FIELD_TYPE_BITMASK,
		.size = sizeof(uint16_t),
		.field_index = SRCP_FIELD_IPV4,
		.input_index = SRCP_DESTP_INPUT_IPV4,
		.offset = sizeof(struct rte_ether_hdr) +
			sizeof(struct rte_ipv4_hdr) +
			offsetof(struct rte_tcp_hdr, src_port),
	},
	{
		/* rte_flow uses a bit mask for protocol ports */
		.type = RTE_ACL_FIELD_TYPE_BITMASK,
		.size = sizeof(uint16_t),
		.field_index = DSTP_FIELD_IPV4,
		.input_index = SRCP_DESTP_INPUT_IPV4,
		.offset = sizeof(struct rte_ether_hdr) +
			sizeof(struct rte_ipv4_hdr) +
			offsetof(struct rte_tcp_hdr, dst_port),
	},
};

/* parameters for rte_flow_classify_validate and rte_flow_classify_create */

/* test UDP pattern:
 * "eth / ipv4 src spec 2.2.2.3 src mask 255.255.255.00 dst spec 2.2.2.7
 *  dst mask 255.255.255.00 / udp src is 32 dst is 33 / end"
 */
static struct rte_flow_item_ipv4 ipv4_udp_spec_1 = {
	{ 0, 0, 0, 0, 0, 0, IPPROTO_UDP, 0,
	  RTE_IPV4(2, 2, 2, 3), RTE_IPV4(2, 2, 2, 7)}
};
static const struct rte_flow_item_ipv4 ipv4_mask_24 = {
	.hdr = {
		.next_proto_id = 0xff,
		.src_addr = 0xffffff00,
		.dst_addr = 0xffffff00,
	},
};
static struct rte_flow_item_udp udp_spec_1 = {
	{ 32, 33, 0, 0 }
};

static struct rte_flow_item  eth_item = { RTE_FLOW_ITEM_TYPE_ETH,
	0, 0, 0 };
static struct rte_flow_item  eth_item_bad = { -1, 0, 0, 0 };

static struct rte_flow_item  ipv4_udp_item_1 = { RTE_FLOW_ITEM_TYPE_IPV4,
	&ipv4_udp_spec_1, 0, &ipv4_mask_24};
static struct rte_flow_item  ipv4_udp_item_bad = { RTE_FLOW_ITEM_TYPE_IPV4,
	NULL, 0, NULL};

static struct rte_flow_item  udp_item_1 = { RTE_FLOW_ITEM_TYPE_UDP,
	&udp_spec_1, 0, &rte_flow_item_udp_mask};
static struct rte_flow_item  udp_item_bad = { RTE_FLOW_ITEM_TYPE_UDP,
	NULL, 0, NULL};

static struct rte_flow_item  end_item = { RTE_FLOW_ITEM_TYPE_END,
	0, 0, 0 };

/* test TCP pattern:
 * "eth / ipv4 src spec 1.2.3.4 src mask 255.255.255.00 dst spec 5.6.7.8
 *  dst mask 255.255.255.00 / tcp src is 16 dst is 17 / end"
 */
static struct rte_flow_item_ipv4 ipv4_tcp_spec_1 = {
	{ 0, 0, 0, 0, 0, 0, IPPROTO_TCP, 0,
	  RTE_IPV4(1, 2, 3, 4), RTE_IPV4(5, 6, 7, 8)}
};

static struct rte_flow_item_tcp tcp_spec_1 = {
	{ 16, 17, 0, 0, 0, 0, 0, 0, 0}
};

static struct rte_flow_item  ipv4_tcp_item_1 = { RTE_FLOW_ITEM_TYPE_IPV4,
	&ipv4_tcp_spec_1, 0, &ipv4_mask_24};

static struct rte_flow_item  tcp_item_1 = { RTE_FLOW_ITEM_TYPE_TCP,
	&tcp_spec_1, 0, &rte_flow_item_tcp_mask};

/* test SCTP pattern:
 * "eth / ipv4 src spec 1.2.3.4 src mask 255.255.255.00 dst spec 5.6.7.8
 *  dst mask 255.255.255.00 / sctp src is 16 dst is 17/ end"
 */
static struct rte_flow_item_ipv4 ipv4_sctp_spec_1 = {
	{ 0, 0, 0, 0, 0, 0, IPPROTO_SCTP, 0, RTE_IPV4(11, 12, 13, 14),
	RTE_IPV4(15, 16, 17, 18)}
};

static struct rte_flow_item_sctp sctp_spec_1 = {
	{ 10, 11, 0, 0}
};

static struct rte_flow_item  ipv4_sctp_item_1 = { RTE_FLOW_ITEM_TYPE_IPV4,
	&ipv4_sctp_spec_1, 0, &ipv4_mask_24};

static struct rte_flow_item  sctp_item_1 = { RTE_FLOW_ITEM_TYPE_SCTP,
	&sctp_spec_1, 0, &rte_flow_item_sctp_mask};


/* test actions:
 * "actions count / end"
 */
static struct rte_flow_query_count count = {
	.reset = 1,
	.hits_set = 1,
	.bytes_set = 1,
	.hits = 0,
	.bytes = 0,
};
static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT,
	&count};
static struct rte_flow_action count_action_bad = { -1, 0};

static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0};

static struct rte_flow_action actions[2];

/* test attributes */
static struct rte_flow_attr attr;

/* test error */
static struct rte_flow_error error;

/* test pattern */
static struct rte_flow_item  pattern[4];

/* flow classify data for UDP burst */
static struct rte_flow_classify_ipv4_5tuple_stats udp_ntuple_stats;
static struct rte_flow_classify_stats udp_classify_stats = {
		.stats = (void *)&udp_ntuple_stats
};

/* flow classify data for TCP burst */
static struct rte_flow_classify_ipv4_5tuple_stats tcp_ntuple_stats;
static struct rte_flow_classify_stats tcp_classify_stats = {
		.stats = (void *)&tcp_ntuple_stats
};

/* flow classify data for SCTP burst */
static struct rte_flow_classify_ipv4_5tuple_stats sctp_ntuple_stats;
static struct rte_flow_classify_stats sctp_classify_stats = {
		.stats = (void *)&sctp_ntuple_stats
};

struct flow_classifier_acl *cls;

struct flow_classifier_acl {
	struct rte_flow_classifier *cls;
} __rte_cache_aligned;

/*
 * test functions by passing invalid or
 * non-workable parameters.
 */
static int
test_invalid_parameters(void)
{
	struct rte_flow_classify_rule *rule;
	int ret;

	ret = rte_flow_classify_validate(NULL, NULL, NULL, NULL, NULL);
	if (!ret) {
		printf("Line %i: rte_flow_classify_validate",
			__LINE__);
		printf(" with NULL param should have failed!\n");
		return -1;
	}

	rule = rte_flow_classify_table_entry_add(NULL, NULL, NULL, NULL,
			NULL, NULL);
	if (rule) {
		printf("Line %i: flow_classifier_table_entry_add", __LINE__);
		printf(" with NULL param should have failed!\n");
		return -1;
	}

	ret = rte_flow_classify_table_entry_delete(NULL, NULL);
	if (!ret) {
		printf("Line %i: rte_flow_classify_table_entry_delete",
			__LINE__);
		printf(" with NULL param should have failed!\n");
		return -1;
	}

	ret = rte_flow_classifier_query(NULL, NULL, 0, NULL, NULL);
	if (!ret) {
		printf("Line %i: flow_classifier_query", __LINE__);
		printf(" with NULL param should have failed!\n");
		return -1;
	}

	rule = rte_flow_classify_table_entry_add(NULL, NULL, NULL, NULL,
		NULL, &error);
	if (rule) {
		printf("Line %i: flow_classify_table_entry_add ", __LINE__);
		printf("with NULL param should have failed!\n");
		return -1;
	}

	ret = rte_flow_classify_table_entry_delete(NULL, NULL);
	if (!ret) {
		printf("Line %i: rte_flow_classify_table_entry_delete",
			__LINE__);
		printf("with NULL param should have failed!\n");
		return -1;
	}

	ret = rte_flow_classifier_query(NULL, NULL, 0, NULL, NULL);
	if (!ret) {
		printf("Line %i: flow_classifier_query", __LINE__);
		printf(" with NULL param should have failed!\n");
		return -1;
	}
	return 0;
}

static int
test_valid_parameters(void)
{
	struct rte_flow_classify_rule *rule;
	int ret;
	int key_found;

	/*
	 * set up parameters for rte_flow_classify_validate,
	 * rte_flow_classify_table_entry_add and
	 * rte_flow_classify_table_entry_delete
	 */

	attr.ingress = 1;
	attr.priority = 1;
	pattern[0] = eth_item;
	pattern[1] = ipv4_udp_item_1;
	pattern[2] = udp_item_1;
	pattern[3] = end_item;
	actions[0] = count_action;
	actions[1] = end_action;

	ret = rte_flow_classify_validate(cls->cls, &attr, pattern,
			actions, &error);
	if (ret) {
		printf("Line %i: rte_flow_classify_validate",
			__LINE__);
		printf(" should not have failed!\n");
		return -1;
	}
	rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern,
			actions, &key_found, &error);

	if (!rule) {
		printf("Line %i: flow_classify_table_entry_add", __LINE__);
		printf(" should not have failed!\n");
		return -1;
	}

	ret = rte_flow_classify_table_entry_delete(cls->cls, rule);
	if (ret) {
		printf("Line %i: rte_flow_classify_table_entry_delete",
			__LINE__);
		printf(" should not have failed!\n");
		return -1;
	}
	return 0;
}

static int
test_invalid_patterns(void)
{
	struct rte_flow_classify_rule *rule;
	int ret;
	int key_found;

	/*
	 * set up parameters for rte_flow_classify_validate,
	 * rte_flow_classify_table_entry_add and
	 * rte_flow_classify_table_entry_delete
	 */

	attr.ingress = 1;
	attr.priority = 1;
	pattern[0] = eth_item_bad;
	pattern[1] = ipv4_udp_item_1;
	pattern[2] = udp_item_1;
	pattern[3] = end_item;
	actions[0] = count_action;
	actions[1] = end_action;

	pattern[0] = eth_item;
	pattern[1] = ipv4_udp_item_bad;

	ret = rte_flow_classify_validate(cls->cls, &attr, pattern,
			actions, &error);
	if (!ret) {
		printf("Line %i: rte_flow_classify_validate", __LINE__);
		printf(" should have failed!\n");
		return -1;
	}

	rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern,
			actions, &key_found, &error);
	if (rule) {
		printf("Line %i: flow_classify_table_entry_add", __LINE__);
		printf(" should have failed!\n");
		return -1;
	}

	ret = rte_flow_classify_table_entry_delete(cls->cls, rule);
	if (!ret) {
		printf("Line %i: rte_flow_classify_table_entry_delete",
			__LINE__);
		printf(" should have failed!\n");
		return -1;
	}

	pattern[1] = ipv4_udp_item_1;
	pattern[2] = udp_item_bad;
	pattern[3] = end_item;

	ret = rte_flow_classify_validate(cls->cls, &attr, pattern,
			actions, &error);
	if (!ret) {
		printf("Line %i: rte_flow_classify_validate", __LINE__);
		printf(" should have failed!\n");
		return -1;
	}

	rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern,
			actions, &key_found, &error);
	if (rule) {
		printf("Line %i: flow_classify_table_entry_add", __LINE__);
		printf(" should have failed!\n");
		return -1;
	}

	ret = rte_flow_classify_table_entry_delete(cls->cls, rule);
	if (!ret) {
		printf("Line %i: rte_flow_classify_table_entry_delete",
			__LINE__);
		printf(" should have failed!\n");
		return -1;
	}
	return 0;
}

static int
test_invalid_actions(void)
{
	struct rte_flow_classify_rule *rule;
	int ret;
	int key_found;

	/*
	 * set up parameters for rte_flow_classify_validate,
	 * rte_flow_classify_table_entry_add and
	 * rte_flow_classify_table_entry_delete
	 */

	attr.ingress = 1;
	attr.priority = 1;
	pattern[0] = eth_item;
	pattern[1] = ipv4_udp_item_1;
	pattern[2] = udp_item_1;
	pattern[3] = end_item;
	actions[0] = count_action_bad;
	actions[1] = end_action;

	ret = rte_flow_classify_validate(cls->cls, &attr, pattern,
			actions, &error);
	if (!ret) {
		printf("Line %i: rte_flow_classify_validate", __LINE__);
		printf(" should have failed!\n");
		return -1;
	}

	rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern,
			actions, &key_found, &error);
	if (rule) {
		printf("Line %i: flow_classify_table_entry_add", __LINE__);
		printf(" should have failed!\n");
		return -1;
	}

	ret = rte_flow_classify_table_entry_delete(cls->cls, rule);
	if (!ret) {
		printf("Line %i: rte_flow_classify_table_entry_delete",
			__LINE__);
		printf(" should have failed!\n");
		return -1;
	}

	return 0;
}

static int
init_ipv4_udp_traffic(struct rte_mempool *mp,
	     struct rte_mbuf **pkts_burst, uint32_t burst_size)
{
	struct rte_ether_hdr pkt_eth_hdr;
	struct rte_ipv4_hdr pkt_ipv4_hdr;
	struct rte_udp_hdr pkt_udp_hdr;
	uint32_t src_addr = IPV4_ADDR(2, 2, 2, 3);
	uint32_t dst_addr = IPV4_ADDR(2, 2, 2, 7);
	uint16_t src_port = 32;
	uint16_t dst_port = 33;
	uint16_t pktlen;

	static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF };
	static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA };

	printf("Set up IPv4 UDP traffic\n");
	initialize_eth_header(&pkt_eth_hdr,
		(struct rte_ether_addr *)src_mac,
		(struct rte_ether_addr *)dst_mac, RTE_ETHER_TYPE_IPV4, 0, 0);
	pktlen = (uint16_t)(sizeof(struct rte_ether_hdr));
	printf("ETH  pktlen %u\n", pktlen);

	pktlen = initialize_ipv4_header(&pkt_ipv4_hdr, src_addr, dst_addr,
					pktlen);
	printf("ETH + IPv4 pktlen %u\n", pktlen);

	pktlen = initialize_udp_header(&pkt_udp_hdr, src_port, dst_port,
					pktlen);
	printf("ETH + IPv4 + UDP pktlen %u\n\n", pktlen);

	return generate_packet_burst(mp, pkts_burst, &pkt_eth_hdr,
				     0, &pkt_ipv4_hdr, 1,
				     &pkt_udp_hdr, burst_size,
				     PACKET_BURST_GEN_PKT_LEN, 1);
}

static int
init_ipv4_tcp_traffic(struct rte_mempool *mp,
	     struct rte_mbuf **pkts_burst, uint32_t burst_size)
{
	struct rte_ether_hdr pkt_eth_hdr;
	struct rte_ipv4_hdr pkt_ipv4_hdr;
	struct rte_tcp_hdr pkt_tcp_hdr;
	uint32_t src_addr = IPV4_ADDR(1, 2, 3, 4);
	uint32_t dst_addr = IPV4_ADDR(5, 6, 7, 8);
	uint16_t src_port = 16;
	uint16_t dst_port = 17;
	uint16_t pktlen;

	static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF };
	static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA };

	printf("Set up IPv4 TCP traffic\n");
	initialize_eth_header(&pkt_eth_hdr,
		(struct rte_ether_addr *)src_mac,
		(struct rte_ether_addr *)dst_mac, RTE_ETHER_TYPE_IPV4, 0, 0);
	pktlen = (uint16_t)(sizeof(struct rte_ether_hdr));
	printf("ETH  pktlen %u\n", pktlen);

	pktlen = initialize_ipv4_header_proto(&pkt_ipv4_hdr, src_addr,
					dst_addr, pktlen, IPPROTO_TCP);
	printf("ETH + IPv4 pktlen %u\n", pktlen);

	pktlen = initialize_tcp_header(&pkt_tcp_hdr, src_port, dst_port,
					pktlen);
	printf("ETH + IPv4 + TCP pktlen %u\n\n", pktlen);

	return generate_packet_burst_proto(mp, pkts_burst, &pkt_eth_hdr,
					0, &pkt_ipv4_hdr, 1, IPPROTO_TCP,
					&pkt_tcp_hdr, burst_size,
					PACKET_BURST_GEN_PKT_LEN, 1);
}

static int
init_ipv4_sctp_traffic(struct rte_mempool *mp,
	     struct rte_mbuf **pkts_burst, uint32_t burst_size)
{
	struct rte_ether_hdr pkt_eth_hdr;
	struct rte_ipv4_hdr pkt_ipv4_hdr;
	struct rte_sctp_hdr pkt_sctp_hdr;
	uint32_t src_addr = IPV4_ADDR(11, 12, 13, 14);
	uint32_t dst_addr = IPV4_ADDR(15, 16, 17, 18);
	uint16_t src_port = 10;
	uint16_t dst_port = 11;
	uint16_t pktlen;

	static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF };
	static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA };

	printf("Set up IPv4 SCTP traffic\n");
	initialize_eth_header(&pkt_eth_hdr,
		(struct rte_ether_addr *)src_mac,
		(struct rte_ether_addr *)dst_mac, RTE_ETHER_TYPE_IPV4, 0, 0);
	pktlen = (uint16_t)(sizeof(struct rte_ether_hdr));
	printf("ETH  pktlen %u\n", pktlen);

	pktlen = initialize_ipv4_header_proto(&pkt_ipv4_hdr, src_addr,
					dst_addr, pktlen, IPPROTO_SCTP);
	printf("ETH + IPv4 pktlen %u\n", pktlen);

	pktlen = initialize_sctp_header(&pkt_sctp_hdr, src_port, dst_port,
					pktlen);
	printf("ETH + IPv4 + SCTP pktlen %u\n\n", pktlen);

	return generate_packet_burst_proto(mp, pkts_burst, &pkt_eth_hdr,
					0, &pkt_ipv4_hdr, 1, IPPROTO_SCTP,
					&pkt_sctp_hdr, burst_size,
					PACKET_BURST_GEN_PKT_LEN, 1);
}

static int
init_mbufpool(void)
{
	int socketid;
	int ret = 0;
	unsigned int lcore_id;
	char s[64];

	for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
		if (rte_lcore_is_enabled(lcore_id) == 0)
			continue;

		socketid = rte_lcore_to_socket_id(lcore_id);
		if (socketid >= NB_SOCKETS) {
			printf(
				"Socket %d of lcore %u is out of range %d\n",
				socketid, lcore_id, NB_SOCKETS);
			ret = -1;
			break;
		}
		if (mbufpool[socketid] == NULL) {
			snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
			mbufpool[socketid] =
				rte_pktmbuf_pool_create(s, NB_MBUF,
					MEMPOOL_CACHE_SIZE, 0, MBUF_SIZE,
					socketid);
			if (mbufpool[socketid]) {
				printf("Allocated mbuf pool on socket %d\n",
					socketid);
			} else {
				printf("Cannot init mbuf pool on socket %d\n",
					socketid);
				ret = -ENOMEM;
				break;
			}
		}
	}
	return ret;
}

static int
test_query_udp(void)
{
	struct rte_flow_error error;
	struct rte_flow_classify_rule *rule;
	int ret;
	int i;
	int key_found;

	ret = init_ipv4_udp_traffic(mbufpool[0], bufs, MAX_PKT_BURST);
	if (ret != MAX_PKT_BURST) {
		printf("Line %i: init_udp_ipv4_traffic has failed!\n",
				__LINE__);
		return -1;
	}

	for (i = 0; i < MAX_PKT_BURST; i++)
		bufs[i]->packet_type = RTE_PTYPE_L3_IPV4;

	/*
	 * set up parameters for rte_flow_classify_validate,
	 * rte_flow_classify_table_entry_add and
	 * rte_flow_classify_table_entry_delete
	 */

	attr.ingress = 1;
	attr.priority = 1;
	pattern[0] = eth_item;
	pattern[1] = ipv4_udp_item_1;
	pattern[2] = udp_item_1;
	pattern[3] = end_item;
	actions[0] = count_action;
	actions[1] = end_action;

	ret = rte_flow_classify_validate(cls->cls, &attr, pattern,
			actions, &error);
	if (ret) {
		printf("Line %i: rte_flow_classify_validate", __LINE__);
		printf(" should not have failed!\n");
		return -1;
	}

	rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern,
			actions, &key_found, &error);
	if (!rule) {
		printf("Line %i: flow_classify_table_entry_add", __LINE__);
		printf(" should not have failed!\n");
		return -1;
	}

	ret = rte_flow_classifier_query(cls->cls, bufs, MAX_PKT_BURST,
			rule, &udp_classify_stats);
	if (ret) {
		printf("Line %i: flow_classifier_query", __LINE__);
		printf(" should not have failed!\n");
		return -1;
	}

	ret = rte_flow_classify_table_entry_delete(cls->cls, rule);
	if (ret) {
		printf("Line %i: rte_flow_classify_table_entry_delete",
			__LINE__);
		printf(" should not have failed!\n");
		return -1;
	}
	return 0;
}

static int
test_query_tcp(void)
{
	struct rte_flow_classify_rule *rule;
	int ret;
	int i;
	int key_found;

	ret = init_ipv4_tcp_traffic(mbufpool[0], bufs, MAX_PKT_BURST);
	if (ret != MAX_PKT_BURST) {
		printf("Line %i: init_ipv4_tcp_traffic has failed!\n",
				__LINE__);
		return -1;
	}

	for (i = 0; i < MAX_PKT_BURST; i++)
		bufs[i]->packet_type = RTE_PTYPE_L3_IPV4;

	/*
	 * set up parameters for rte_flow_classify_validate,
	 * rte_flow_classify_table_entry_add and
	 * rte_flow_classify_table_entry_delete
	 */

	attr.ingress = 1;
	attr.priority = 1;
	pattern[0] = eth_item;
	pattern[1] = ipv4_tcp_item_1;
	pattern[2] = tcp_item_1;
	pattern[3] = end_item;
	actions[0] = count_action;
	actions[1] = end_action;

	ret = rte_flow_classify_validate(cls->cls, &attr, pattern,
			actions, &error);
	if (ret) {
		printf("Line %i: flow_classifier_query", __LINE__);
		printf(" should not have failed!\n");
		return -1;
	}

	rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern,
			actions, &key_found, &error);
	if (!rule) {
		printf("Line %i: flow_classify_table_entry_add", __LINE__);
		printf(" should not have failed!\n");
		return -1;
	}

	ret = rte_flow_classifier_query(cls->cls, bufs, MAX_PKT_BURST,
			rule, &tcp_classify_stats);
	if (ret) {
		printf("Line %i: flow_classifier_query", __LINE__);
		printf(" should not have failed!\n");
		return -1;
	}

	ret = rte_flow_classify_table_entry_delete(cls->cls, rule);
	if (ret) {
		printf("Line %i: rte_flow_classify_table_entry_delete",
			__LINE__);
		printf(" should not have failed!\n");
		return -1;
	}
	return 0;
}

static int
test_query_sctp(void)
{
	struct rte_flow_classify_rule *rule;
	int ret;
	int i;
	int key_found;

	ret = init_ipv4_sctp_traffic(mbufpool[0], bufs, MAX_PKT_BURST);
	if (ret != MAX_PKT_BURST) {
		printf("Line %i: init_ipv4_tcp_traffic has failed!\n",
			__LINE__);
		return -1;
	}

	for (i = 0; i < MAX_PKT_BURST; i++)
		bufs[i]->packet_type = RTE_PTYPE_L3_IPV4;

	/*
	 * set up parameters rte_flow_classify_validate,
	 * rte_flow_classify_table_entry_add and
	 * rte_flow_classify_table_entry_delete
	 */

	attr.ingress = 1;
	attr.priority = 1;
	pattern[0] = eth_item;
	pattern[1] = ipv4_sctp_item_1;
	pattern[2] = sctp_item_1;
	pattern[3] = end_item;
	actions[0] = count_action;
	actions[1] = end_action;

	ret = rte_flow_classify_validate(cls->cls, &attr, pattern,
			actions, &error);
	if (ret) {
		printf("Line %i: flow_classifier_query", __LINE__);
		printf(" should not have failed!\n");
		return -1;
	}

	rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern,
			actions, &key_found, &error);
	if (!rule) {
		printf("Line %i: flow_classify_table_entry_add", __LINE__);
		printf(" should not have failed!\n");
		return -1;
	}

	ret = rte_flow_classifier_query(cls->cls, bufs, MAX_PKT_BURST,
			rule, &sctp_classify_stats);
	if (ret) {
		printf("Line %i: flow_classifier_query", __LINE__);
		printf(" should not have failed!\n");
		return -1;
	}

	ret = rte_flow_classify_table_entry_delete(cls->cls, rule);
	if (ret) {
		printf("Line %i: rte_flow_classify_table_entry_delete",
			__LINE__);
		printf(" should not have failed!\n");
		return -1;
	}
	return 0;
}

static int
test_flow_classify(void)
{
	struct rte_table_acl_params table_acl_params;
	struct rte_flow_classify_table_params cls_table_params;
	struct rte_flow_classifier_params cls_params;
	int ret;
	uint32_t size;

	/* Memory allocation */
	size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl));
	cls = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE);

	cls_params.name = "flow_classifier";
	cls_params.socket_id = 0;
	cls->cls = rte_flow_classifier_create(&cls_params);

	/* initialise ACL table params */
	table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs);
	table_acl_params.name = "table_acl_ipv4_5tuple";
	table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM;
	memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs));

	/* initialise table create params */
	cls_table_params.ops = &rte_table_acl_ops;
	cls_table_params.arg_create = &table_acl_params;
	cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;

	ret = rte_flow_classify_table_create(cls->cls, &cls_table_params);
	if (ret) {
		printf("Line %i: f_create has failed!\n", __LINE__);
		rte_flow_classifier_free(cls->cls);
		rte_free(cls);
		return TEST_FAILED;
	}
	printf("Created table_acl for for IPv4 five tuple packets\n");

	ret = init_mbufpool();
	if (ret) {
		printf("Line %i: init_mbufpool has failed!\n", __LINE__);
		return TEST_FAILED;
	}

	if (test_invalid_parameters() < 0)
		return TEST_FAILED;
	if (test_valid_parameters() < 0)
		return TEST_FAILED;
	if (test_invalid_patterns() < 0)
		return TEST_FAILED;
	if (test_invalid_actions() < 0)
		return TEST_FAILED;
	if (test_query_udp() < 0)
		return TEST_FAILED;
	if (test_query_tcp() < 0)
		return TEST_FAILED;
	if (test_query_sctp() < 0)
		return TEST_FAILED;

	return TEST_SUCCESS;
}

REGISTER_TEST_COMMAND(flow_classify_autotest, test_flow_classify);