1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
.. SPDX-License-Identifier: BSD-3-Clause
Copyright(c) 2018 Intel Corporation.
ICE Poll Mode Driver
======================
The ice PMD (librte_pmd_ice) provides poll mode driver support for
10/25/50/100 Gbps Intel® Ethernet 810 Series Network Adapters based on
the Intel Ethernet Controller E810.
Prerequisites
-------------
- The E810 is currently in sampling state only. To obtain early samples and/or get further information
about kernel drivers, firmware and DDP support, please speak to your Intel representative.
- Follow the DPDK :ref:`Getting Started Guide for Linux <linux_gsg>` to setup the basic DPDK environment.
- To get better performance on Intel platforms, please follow the "How to get best performance with NICs on Intel platforms"
section of the :ref:`Getting Started Guide for Linux <linux_gsg>`.
Pre-Installation Configuration
------------------------------
Config File Options
~~~~~~~~~~~~~~~~~~~
The following options can be modified in the ``config`` file.
Please note that enabling debugging options may affect system performance.
- ``CONFIG_RTE_LIBRTE_ICE_PMD`` (default ``y``)
Toggle compilation of the ``librte_pmd_ice`` driver.
- ``CONFIG_RTE_LIBRTE_ICE_DEBUG_*`` (default ``n``)
Toggle display of generic debugging messages.
- ``CONFIG_RTE_LIBRTE_ICE_16BYTE_RX_DESC`` (default ``n``)
Toggle to use a 16-byte RX descriptor, by default the RX descriptor is 32 byte.
Runtime Config Options
~~~~~~~~~~~~~~~~~~~~~~
- ``Safe Mode Support`` (default ``0``)
If driver failed to load OS package, by default driver's initialization failed.
But if user intend to use the device without OS package, user can take ``devargs``
parameter ``safe-mode-support``, for example::
-w 80:00.0,safe-mode-support=1
Then the driver will be initialized successfully and the device will enter Safe Mode.
NOTE: In Safe mode, only very limited features are available, features like RSS,
checksum, fdir, tunneling ... are all disabled.
- ``Generic Flow Pipeline Mode Support`` (default ``0``)
In pipeline mode, a flow can be set at one specific stage by setting parameter
``priority``. Currently, we support two stages: priority = 0 or !0. Flows with
priority 0 located at the first pipeline stage which typically be used as a firewall
to drop the packet on a blacklist(we called it permission stage). At this stage,
flow rules are created for the device's exact match engine: switch. Flows with priority
!0 located at the second stage, typically packets are classified here and be steered to
specific queue or queue group (we called it distribution stage), At this stage, flow
rules are created for device's flow director engine.
For none-pipeline mode, ``priority`` is ignored, a flow rule can be created as a flow director
rule or a switch rule depends on its pattern/action and the resource allocation situation,
all flows are virtually at the same pipeline stage.
By default, generic flow API is enabled in none-pipeline mode, user can choose to
use pipeline mode by setting ``devargs`` parameter ``pipeline-mode-support``,
for example::
-w 80:00.0,pipeline-mode-support=1
- ``Flow Mark Support`` (default ``0``)
This is a hint to the driver to select the data path that supports flow mark extraction
by default.
NOTE: This is an experimental devarg, it will be removed when any of below conditions
is ready.
1) all data paths support flow mark (currently vPMD does not)
2) a new offload like RTE_DEV_RX_OFFLOAD_FLOW_MARK be introduced as a standard way to hint.
Example::
-w 80:00.0,flow-mark-support=1
- ``Protocol extraction for per queue``
Configure the RX queues to do protocol extraction into mbuf for protocol
handling acceleration, like checking the TCP SYN packets quickly.
The argument format is::
-w 18:00.0,proto_xtr=<queues:protocol>[<queues:protocol>...]
-w 18:00.0,proto_xtr=<protocol>
Queues are grouped by ``(`` and ``)`` within the group. The ``-`` character
is used as a range separator and ``,`` is used as a single number separator.
The grouping ``()`` can be omitted for single element group. If no queues are
specified, PMD will use this protocol extraction type for all queues.
Protocol is : ``vlan, ipv4, ipv6, ipv6_flow, tcp``.
.. code-block:: console
testpmd -w 18:00.0,proto_xtr='[(1,2-3,8-9):tcp,10-13:vlan]'
This setting means queues 1, 2-3, 8-9 are TCP extraction, queues 10-13 are
VLAN extraction, other queues run with no protocol extraction.
.. code-block:: console
testpmd -w 18:00.0,proto_xtr=vlan,proto_xtr='[(1,2-3,8-9):tcp,10-23:ipv6]'
This setting means queues 1, 2-3, 8-9 are TCP extraction, queues 10-23 are
IPv6 extraction, other queues use the default VLAN extraction.
The extraction metadata is copied into the registered dynamic mbuf field, and
the related dynamic mbuf flags is set.
.. table:: Protocol extraction : ``vlan``
+----------------------------+----------------------------+
| VLAN2 | VLAN1 |
+======+===+=================+======+===+=================+
| PCP | D | VID | PCP | D | VID |
+------+---+-----------------+------+---+-----------------+
VLAN1 - single or EVLAN (first for QinQ).
VLAN2 - C-VLAN (second for QinQ).
.. table:: Protocol extraction : ``ipv4``
+----------------------------+----------------------------+
| IPHDR2 | IPHDR1 |
+======+=======+=============+==============+=============+
| Ver |Hdr Len| ToS | TTL | Protocol |
+------+-------+-------------+--------------+-------------+
IPHDR1 - IPv4 header word 4, "TTL" and "Protocol" fields.
IPHDR2 - IPv4 header word 0, "Ver", "Hdr Len" and "Type of Service" fields.
.. table:: Protocol extraction : ``ipv6``
+----------------------------+----------------------------+
| IPHDR2 | IPHDR1 |
+=====+=============+========+=============+==============+
| Ver |Traffic class| Flow | Next Header | Hop Limit |
+-----+-------------+--------+-------------+--------------+
IPHDR1 - IPv6 header word 3, "Next Header" and "Hop Limit" fields.
IPHDR2 - IPv6 header word 0, "Ver", "Traffic class" and high 4 bits of
"Flow Label" fields.
.. table:: Protocol extraction : ``ipv6_flow``
+----------------------------+----------------------------+
| IPHDR2 | IPHDR1 |
+=====+=============+========+============================+
| Ver |Traffic class| Flow Label |
+-----+-------------+-------------------------------------+
IPHDR1 - IPv6 header word 1, 16 low bits of the "Flow Label" field.
IPHDR2 - IPv6 header word 0, "Ver", "Traffic class" and high 4 bits of
"Flow Label" fields.
.. table:: Protocol extraction : ``tcp``
+----------------------------+----------------------------+
| TCPHDR2 | TCPHDR1 |
+============================+======+======+==============+
| Reserved |Offset| RSV | Flags |
+----------------------------+------+------+--------------+
TCPHDR1 - TCP header word 6, "Data Offset" and "Flags" fields.
TCPHDR2 - Reserved
Use ``rte_net_ice_dynf_proto_xtr_metadata_get`` to access the protocol
extraction metadata, and use ``RTE_PKT_RX_DYNF_PROTO_XTR_*`` to get the
metadata type of ``struct rte_mbuf::ol_flags``.
The ``rte_net_ice_dump_proto_xtr_metadata`` routine shows how to
access the protocol extraction result in ``struct rte_mbuf``.
Driver compilation and testing
------------------------------
Refer to the document :ref:`compiling and testing a PMD for a NIC <pmd_build_and_test>`
for details.
Features
--------
Vector PMD
~~~~~~~~~~
Vector PMD for RX and TX path are selected automatically. The paths
are chosen based on 2 conditions.
- ``CPU``
On the X86 platform, the driver checks if the CPU supports AVX2.
If it's supported, AVX2 paths will be chosen. If not, SSE is chosen.
- ``Offload features``
The supported HW offload features are described in the document ice_vec.ini.
If any not supported features are used, ICE vector PMD is disabled and the
normal paths are chosen.
Malicious driver detection (MDD)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's not appropriate to send a packet, if this packet's destination MAC address
is just this port's MAC address. If SW tries to send such packets, HW will
report a MDD event and drop the packets.
The APPs based on DPDK should avoid providing such packets.
Device Config Function (DCF)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This section demonstrates ICE DCF PMD, which shares the core module with ICE
PMD and iAVF PMD.
A DCF (Device Config Function) PMD bounds to the device's trusted VF with ID 0,
it can act as a sole controlling entity to exercise advance functionality (such
as switch, ACL) for the rest VFs.
The DCF PMD needs to advertise and acquire DCF capability which allows DCF to
send AdminQ commands that it would like to execute over to the PF and receive
responses for the same from PF.
.. _figure_ice_dcf:
.. figure:: img/ice_dcf.*
DCF Communication flow.
#. Create the VFs::
echo 4 > /sys/bus/pci/devices/0000\:18\:00.0/sriov_numvfs
#. Enable the VF0 trust on::
ip link set dev enp24s0f0 vf 0 trust on
#. Bind the VF0, and run testpmd with 'cap=dcf' devarg::
testpmd -l 22-25 -n 4 -w 18:01.0,cap=dcf -- -i
#. Monitor the VF2 interface network traffic::
tcpdump -e -nn -i enp24s1f2
#. Create one flow to redirect the traffic to VF2 by DCF::
flow create 0 priority 0 ingress pattern eth / ipv4 src is 192.168.0.2 \
dst is 192.168.0.3 / end actions vf id 2 / end
#. Send the packet, and it should be displayed on tcpdump::
sendp(Ether(src='3c:fd:fe:aa:bb:78', dst='00:00:00:01:02:03')/IP(src=' \
192.168.0.2', dst="192.168.0.3")/TCP(flags='S')/Raw(load='XXXXXXXXXX'), \
iface="enp24s0f0", count=10)
Sample Application Notes
------------------------
Vlan filter
~~~~~~~~~~~
Vlan filter only works when Promiscuous mode is off.
To start ``testpmd``, and add vlan 10 to port 0:
.. code-block:: console
./app/testpmd -l 0-15 -n 4 -- -i
...
testpmd> rx_vlan add 10 0
Limitations or Known issues
---------------------------
The Intel E810 requires a programmable pipeline package be downloaded
by the driver to support normal operations. The E810 has a limited
functionality built in to allow PXE boot and other use cases, but the
driver must download a package file during the driver initialization
stage.
The default DDP package file name is ice.pkg. For a specific NIC, the
DDP package supposed to be loaded can have a filename: ice-xxxxxx.pkg,
where 'xxxxxx' is the 64-bit PCIe Device Serial Number of the NIC. For
example, if the NIC's device serial number is 00-CC-BB-FF-FF-AA-05-68,
the device-specific DDP package filename is ice-00ccbbffffaa0568.pkg
(in hex and all low case). During initialization, the driver searches
in the following paths in order: /lib/firmware/updates/intel/ice/ddp
and /lib/firmware/intel/ice/ddp. The corresponding device-specific DDP
package will be downloaded first if the file exists. If not, then the
driver tries to load the default package. The type of loaded package
is stored in ``ice_adapter->active_pkg_type``.
A symbolic link to the DDP package file is also ok. The same package
file is used by both the kernel driver and the DPDK PMD.
limitation
~~~~~~~~~~
Ice code released is for evaluation only currently.
|