1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Chelsio Communications.
* All rights reserved.
*/
#include "base/common.h"
#include "smt.h"
void cxgbe_do_smt_write_rpl(struct adapter *adap,
const struct cpl_smt_write_rpl *rpl)
{
unsigned int smtidx = G_TID_TID(GET_TID(rpl));
struct smt_data *s = adap->smt;
if (unlikely(rpl->status != CPL_ERR_NONE)) {
struct smt_entry *e = &s->smtab[smtidx];
dev_err(adap,
"Unexpected SMT_WRITE_RPL status %u for entry %u\n",
rpl->status, smtidx);
t4_os_lock(&e->lock);
e->state = SMT_STATE_ERROR;
t4_os_unlock(&e->lock);
}
}
static int write_smt_entry(struct rte_eth_dev *dev, struct smt_entry *e)
{
unsigned int port_id = ethdev2pinfo(dev)->port_id;
struct adapter *adap = ethdev2adap(dev);
struct cpl_t6_smt_write_req *t6req;
struct smt_data *s = adap->smt;
struct cpl_smt_write_req *req;
struct sge_ctrl_txq *ctrlq;
struct rte_mbuf *mbuf;
u8 row;
ctrlq = &adap->sge.ctrlq[port_id];
mbuf = rte_pktmbuf_alloc(ctrlq->mb_pool);
if (!mbuf)
return -ENOMEM;
if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) {
mbuf->data_len = sizeof(*req);
mbuf->pkt_len = mbuf->data_len;
/* Source MAC Table (SMT) contains 256 SMAC entries
* organized in 128 rows of 2 entries each.
*/
req = rte_pktmbuf_mtod(mbuf, struct cpl_smt_write_req *);
INIT_TP_WR(req, 0);
/* Each row contains an SMAC pair.
* LSB selects the SMAC entry within a row
*/
if (e->idx & 1) {
req->pfvf1 = 0x0;
rte_memcpy(req->src_mac1, e->src_mac,
RTE_ETHER_ADDR_LEN);
/* fill pfvf0/src_mac0 with entry
* at prev index from smt-tab.
*/
req->pfvf0 = 0x0;
rte_memcpy(req->src_mac0, s->smtab[e->idx - 1].src_mac,
RTE_ETHER_ADDR_LEN);
} else {
req->pfvf0 = 0x0;
rte_memcpy(req->src_mac0, e->src_mac,
RTE_ETHER_ADDR_LEN);
/* fill pfvf1/src_mac1 with entry
* at next index from smt-tab
*/
req->pfvf1 = 0x0;
rte_memcpy(req->src_mac1, s->smtab[e->idx + 1].src_mac,
RTE_ETHER_ADDR_LEN);
}
row = (e->hw_idx >> 1);
} else {
mbuf->data_len = sizeof(*t6req);
mbuf->pkt_len = mbuf->data_len;
/* Source MAC Table (SMT) contains 256 SMAC entries */
t6req = rte_pktmbuf_mtod(mbuf, struct cpl_t6_smt_write_req *);
INIT_TP_WR(t6req, 0);
/* fill pfvf0/src_mac0 from smt-tab */
t6req->pfvf0 = 0x0;
rte_memcpy(t6req->src_mac0, s->smtab[e->idx].src_mac,
RTE_ETHER_ADDR_LEN);
row = e->hw_idx;
req = (struct cpl_smt_write_req *)t6req;
}
OPCODE_TID(req) =
cpu_to_be32(MK_OPCODE_TID(CPL_SMT_WRITE_REQ,
e->hw_idx |
V_TID_QID(adap->sge.fw_evtq.abs_id)));
req->params = cpu_to_be32(V_SMTW_NORPL(0) |
V_SMTW_IDX(row) |
V_SMTW_OVLAN_IDX(0));
t4_mgmt_tx(ctrlq, mbuf);
return 0;
}
/**
* find_or_alloc_smte - Find/Allocate a free SMT entry
* @s: SMT table
* @smac: Source MAC address to compare/add
* Returns pointer to the SMT entry found/created
*
* Finds/Allocates an SMT entry to be used by switching rule of a filter.
*/
static struct smt_entry *find_or_alloc_smte(struct smt_data *s, u8 *smac)
{
struct smt_entry *e, *end, *first_free = NULL;
for (e = &s->smtab[0], end = &s->smtab[s->smt_size]; e != end; ++e) {
if (!rte_atomic32_read(&e->refcnt)) {
if (!first_free)
first_free = e;
} else {
if (e->state == SMT_STATE_SWITCHING) {
/* This entry is actually in use. See if we can
* re-use it ?
*/
if (!memcmp(e->src_mac, smac,
RTE_ETHER_ADDR_LEN))
goto found;
}
}
}
if (!first_free)
return NULL;
e = first_free;
e->state = SMT_STATE_UNUSED;
found:
return e;
}
static struct smt_entry *t4_smt_alloc_switching(struct rte_eth_dev *dev,
u16 pfvf, u8 *smac)
{
struct adapter *adap = ethdev2adap(dev);
struct smt_data *s = adap->smt;
struct smt_entry *e;
int ret;
t4_os_write_lock(&s->lock);
e = find_or_alloc_smte(s, smac);
if (e) {
t4_os_lock(&e->lock);
if (!rte_atomic32_read(&e->refcnt)) {
e->pfvf = pfvf;
rte_memcpy(e->src_mac, smac, RTE_ETHER_ADDR_LEN);
ret = write_smt_entry(dev, e);
if (ret) {
e->pfvf = 0;
memset(e->src_mac, 0, RTE_ETHER_ADDR_LEN);
t4_os_unlock(&e->lock);
e = NULL;
goto out_write_unlock;
}
e->state = SMT_STATE_SWITCHING;
rte_atomic32_set(&e->refcnt, 1);
} else {
rte_atomic32_inc(&e->refcnt);
}
t4_os_unlock(&e->lock);
}
out_write_unlock:
t4_os_write_unlock(&s->lock);
return e;
}
/**
* cxgbe_smt_alloc_switching - Allocate an SMT entry for switching rule
* @dev: rte_eth_dev pointer
* @smac: MAC address to add to SMT
* Returns pointer to the SMT entry created
*
* Allocates an SMT entry to be used by switching rule of a filter.
*/
struct smt_entry *cxgbe_smt_alloc_switching(struct rte_eth_dev *dev, u8 *smac)
{
return t4_smt_alloc_switching(dev, 0x0, smac);
}
/**
* Initialize Source MAC Table
*/
struct smt_data *t4_init_smt(u32 smt_start_idx, u32 smt_size)
{
struct smt_data *s;
u32 i;
s = t4_alloc_mem(sizeof(*s) + smt_size * sizeof(struct smt_entry));
if (!s)
return NULL;
s->smt_start = smt_start_idx;
s->smt_size = smt_size;
t4_os_rwlock_init(&s->lock);
for (i = 0; i < s->smt_size; ++i) {
s->smtab[i].idx = i;
s->smtab[i].hw_idx = smt_start_idx + i;
s->smtab[i].state = SMT_STATE_UNUSED;
memset(&s->smtab[i].src_mac, 0, RTE_ETHER_ADDR_LEN);
t4_os_lock_init(&s->smtab[i].lock);
rte_atomic32_set(&s->smtab[i].refcnt, 0);
}
return s;
}
/**
* Cleanup Source MAC Table
*/
void t4_cleanup_smt(struct adapter *adap)
{
if (adap->smt)
t4_os_free(adap->smt);
}
|