1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Copyright(c) 2011-2019, Intel Corporation All rights reserved.
;
; Redistribution and use in source and binary forms, with or without
; modification, are permitted provided that the following conditions
; are met:
; * Redistributions of source code must retain the above copyright
; notice, this list of conditions and the following disclaimer.
; * Redistributions in binary form must reproduce the above copyright
; notice, this list of conditions and the following disclaimer in
; the documentation and/or other materials provided with the
; distribution.
; * Neither the name of Intel Corporation nor the names of its
; contributors may be used to endorse or promote products derived
; from this software without specific prior written permission.
;
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Authors:
; Erdinc Ozturk
; Vinodh Gopal
; James Guilford
;
;
; References:
; This code was derived and highly optimized from the code described in paper:
; Vinodh Gopal et. al. Optimized Galois-Counter-Mode Implementation on Intel Architecture Processors. August, 2010
; The details of the implementation is explained in:
; Erdinc Ozturk et. al. Enabling High-Performance Galois-Counter-Mode on Intel Architecture Processors. October, 2012.
;
;
;
;
; Assumptions:
;
;
;
; iv:
; 0 1 2 3
; 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
; | Salt (From the SA) |
; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
; | Initialization Vector |
; | (This is the sequence number from IPSec header) |
; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
; | 0x1 |
; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;
;
;
; AAD:
; AAD will be padded with 0 to the next 16byte multiple
; for example, assume AAD is a u32 vector
;
; if AAD is 8 bytes:
; AAD[3] = {A0, A1};
; padded AAD in xmm register = {A1 A0 0 0}
;
; 0 1 2 3
; 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
; | SPI (A1) |
; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
; | 32-bit Sequence Number (A0) |
; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
; | 0x0 |
; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;
; AAD Format with 32-bit Sequence Number
;
; if AAD is 12 bytes:
; AAD[3] = {A0, A1, A2};
; padded AAD in xmm register = {A2 A1 A0 0}
;
; 0 1 2 3
; 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
; | SPI (A2) |
; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
; | 64-bit Extended Sequence Number {A1,A0} |
; | |
; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
; | 0x0 |
; +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
;
; AAD Format with 64-bit Extended Sequence Number
;
;
; aadLen:
; Must be a multiple of 4 bytes and from the definition of the spec.
; The code additionally supports any aadLen length.
;
; TLen:
; from the definition of the spec, TLen can only be 8, 12 or 16 bytes.
;
; poly = x^128 + x^127 + x^126 + x^121 + 1
; throughout the code, one tab and two tab indentations are used. one tab is for GHASH part, two tabs is for AES part.
;
%include "include/os.asm"
%include "include/reg_sizes.asm"
%include "include/clear_regs.asm"
%include "include/gcm_defines.asm"
%include "include/gcm_keys_avx2_avx512.asm"
%include "include/memcpy.asm"
%ifndef GCM128_MODE
%ifndef GCM192_MODE
%ifndef GCM256_MODE
%error "No GCM mode selected for gcm_avx_gen4.asm!"
%endif
%endif
%endif
;; Decide on AES-GCM key size to compile for
%ifdef GCM128_MODE
%define NROUNDS 9
%define FN_NAME(x,y) aes_gcm_ %+ x %+ _128 %+ y %+ avx_gen4
%endif
%ifdef GCM192_MODE
%define NROUNDS 11
%define FN_NAME(x,y) aes_gcm_ %+ x %+ _192 %+ y %+ avx_gen4
%endif
%ifdef GCM256_MODE
%define NROUNDS 13
%define FN_NAME(x,y) aes_gcm_ %+ x %+ _256 %+ y %+ avx_gen4
%endif
section .text
default rel
; need to push 4 registers into stack to maintain
%define STACK_OFFSET 8*4
%define TMP2 16*0 ; Temporary storage for AES State 2 (State 1 is stored in an XMM register)
%define TMP3 16*1 ; Temporary storage for AES State 3
%define TMP4 16*2 ; Temporary storage for AES State 4
%define TMP5 16*3 ; Temporary storage for AES State 5
%define TMP6 16*4 ; Temporary storage for AES State 6
%define TMP7 16*5 ; Temporary storage for AES State 7
%define TMP8 16*6 ; Temporary storage for AES State 8
%define LOCAL_STORAGE 16*7
%ifidn __OUTPUT_FORMAT__, win64
%define XMM_STORAGE 16*10
%else
%define XMM_STORAGE 0
%endif
%define VARIABLE_OFFSET LOCAL_STORAGE + XMM_STORAGE
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Utility Macros
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; GHASH_MUL MACRO to implement: Data*HashKey mod (128,127,126,121,0)
; Input: A and B (128-bits each, bit-reflected)
; Output: C = A*B*x mod poly, (i.e. >>1 )
; To compute GH = GH*HashKey mod poly, give HK = HashKey<<1 mod poly as input
; GH = GH * HK * x mod poly which is equivalent to GH*HashKey mod poly.
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro GHASH_MUL 7
%define %%GH %1 ; 16 Bytes
%define %%HK %2 ; 16 Bytes
%define %%T1 %3
%define %%T2 %4
%define %%T3 %5
%define %%T4 %6
%define %%T5 %7
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vpclmulqdq %%T1, %%GH, %%HK, 0x11 ; %%T1 = a1*b1
vpclmulqdq %%T2, %%GH, %%HK, 0x00 ; %%T2 = a0*b0
vpclmulqdq %%T3, %%GH, %%HK, 0x01 ; %%T3 = a1*b0
vpclmulqdq %%GH, %%GH, %%HK, 0x10 ; %%GH = a0*b1
vpxor %%GH, %%GH, %%T3
vpsrldq %%T3, %%GH, 8 ; shift-R %%GH 2 DWs
vpslldq %%GH, %%GH, 8 ; shift-L %%GH 2 DWs
vpxor %%T1, %%T1, %%T3
vpxor %%GH, %%GH, %%T2
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;first phase of the reduction
vmovdqa %%T3, [rel POLY2]
vpclmulqdq %%T2, %%T3, %%GH, 0x01
vpslldq %%T2, %%T2, 8 ; shift-L %%T2 2 DWs
vpxor %%GH, %%GH, %%T2 ; first phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;second phase of the reduction
vpclmulqdq %%T2, %%T3, %%GH, 0x00
vpsrldq %%T2, %%T2, 4 ; shift-R %%T2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R)
vpclmulqdq %%GH, %%T3, %%GH, 0x10
vpslldq %%GH, %%GH, 4 ; shift-L %%GH 1 DW (Shift-L 1-DW to obtain result with no shifts)
vpxor %%GH, %%GH, %%T2 ; second phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vpxor %%GH, %%GH, %%T1 ; the result is in %%GH
%endmacro
; In PRECOMPUTE, the commands filling Hashkey_i_k are not required for avx_gen4
; functions, but are kept to allow users to switch cpu architectures between calls
; of pre, init, update, and finalize.
%macro PRECOMPUTE 8
%define %%GDATA %1
%define %%HK %2
%define %%T1 %3
%define %%T2 %4
%define %%T3 %5
%define %%T4 %6
%define %%T5 %7
%define %%T6 %8
; Haskey_i_k holds XORed values of the low and high parts of the Haskey_i
vmovdqa %%T5, %%HK
GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^2<<1 mod poly
vmovdqu [%%GDATA + HashKey_2], %%T5 ; [HashKey_2] = HashKey^2<<1 mod poly
GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^3<<1 mod poly
vmovdqu [%%GDATA + HashKey_3], %%T5
GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^4<<1 mod poly
vmovdqu [%%GDATA + HashKey_4], %%T5
GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^5<<1 mod poly
vmovdqu [%%GDATA + HashKey_5], %%T5
GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^6<<1 mod poly
vmovdqu [%%GDATA + HashKey_6], %%T5
GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^7<<1 mod poly
vmovdqu [%%GDATA + HashKey_7], %%T5
GHASH_MUL %%T5, %%HK, %%T1, %%T3, %%T4, %%T6, %%T2 ; %%T5 = HashKey^8<<1 mod poly
vmovdqu [%%GDATA + HashKey_8], %%T5
%endmacro
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; READ_SMALL_DATA_INPUT: Packs xmm register with data when data input is less than 16 bytes.
; Returns 0 if data has length 0.
; Input: The input data (INPUT), that data's length (LENGTH).
; Output: The packed xmm register (OUTPUT).
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro READ_SMALL_DATA_INPUT 6
%define %%OUTPUT %1 ; %%OUTPUT is an xmm register
%define %%INPUT %2
%define %%LENGTH %3
%define %%END_READ_LOCATION %4 ; All this and the lower inputs are temp registers
%define %%COUNTER %5
%define %%TMP1 %6
vpxor %%OUTPUT, %%OUTPUT
mov %%COUNTER, %%LENGTH
mov %%END_READ_LOCATION, %%INPUT
add %%END_READ_LOCATION, %%LENGTH
xor %%TMP1, %%TMP1
cmp %%COUNTER, 8
jl %%_byte_loop_2
vpinsrq %%OUTPUT, [%%INPUT],0 ;Read in 8 bytes if they exists
je %%_done
sub %%COUNTER, 8
%%_byte_loop_1: ;Read in data 1 byte at a time while data is left
shl %%TMP1, 8 ;This loop handles when 8 bytes were already read in
dec %%END_READ_LOCATION
mov BYTE(%%TMP1), BYTE [%%END_READ_LOCATION]
dec %%COUNTER
jg %%_byte_loop_1
vpinsrq %%OUTPUT, %%TMP1, 1
jmp %%_done
%%_byte_loop_2: ;Read in data 1 byte at a time while data is left
;; NOTE: in current implementation check for zero length is obsolete here.
;; The adequate checks are done by callers of this macro.
;; cmp %%COUNTER, 0
;; je %%_done
shl %%TMP1, 8 ;This loop handles when no bytes were already read in
dec %%END_READ_LOCATION
mov BYTE(%%TMP1), BYTE [%%END_READ_LOCATION]
dec %%COUNTER
jg %%_byte_loop_2
vpinsrq %%OUTPUT, %%TMP1, 0
%%_done:
%endmacro ; READ_SMALL_DATA_INPUT
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; CALC_AAD_HASH: Calculates the hash of the data which will not be encrypted.
; Input: The input data (A_IN), that data's length (A_LEN), and the hash key (HASH_KEY).
; Output: The hash of the data (AAD_HASH).
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro CALC_AAD_HASH 15
%define %%A_IN %1
%define %%A_LEN %2
%define %%AAD_HASH %3
%define %%GDATA_KEY %4
%define %%XTMP0 %5 ; xmm temp reg 5
%define %%XTMP1 %6 ; xmm temp reg 5
%define %%XTMP2 %7
%define %%XTMP3 %8
%define %%XTMP4 %9
%define %%XTMP5 %10 ; xmm temp reg 5
%define %%T1 %11 ; temp reg 1
%define %%T2 %12
%define %%T3 %13
%define %%T4 %14
%define %%T5 %15 ; temp reg 5
mov %%T1, %%A_IN ; T1 = AAD
mov %%T2, %%A_LEN ; T2 = aadLen
vpxor %%AAD_HASH, %%AAD_HASH
%%_get_AAD_loop128:
cmp %%T2, 128
jl %%_exit_AAD_loop128
vmovdqu %%XTMP0, [%%T1 + 16*0]
vpshufb %%XTMP0, [rel SHUF_MASK]
vpxor %%XTMP0, %%AAD_HASH
vmovdqu %%XTMP5, [%%GDATA_KEY + HashKey_8]
vpclmulqdq %%XTMP1, %%XTMP0, %%XTMP5, 0x11 ; %%T1 = a1*b1
vpclmulqdq %%XTMP2, %%XTMP0, %%XTMP5, 0x00 ; %%T2 = a0*b0
vpclmulqdq %%XTMP3, %%XTMP0, %%XTMP5, 0x01 ; %%T3 = a1*b0
vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x10 ; %%T4 = a0*b1
vpxor %%XTMP3, %%XTMP3, %%XTMP4 ; %%T3 = a1*b0 + a0*b1
%assign i 1
%assign j 7
%rep 7
vmovdqu %%XTMP0, [%%T1 + 16*i]
vpshufb %%XTMP0, [rel SHUF_MASK]
vmovdqu %%XTMP5, [%%GDATA_KEY + HashKey_ %+ j]
vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x11 ; %%T1 = T1 + a1*b1
vpxor %%XTMP1, %%XTMP1, %%XTMP4
vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x00 ; %%T2 = T2 + a0*b0
vpxor %%XTMP2, %%XTMP2, %%XTMP4
vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x01 ; %%T3 = T3 + a1*b0 + a0*b1
vpxor %%XTMP3, %%XTMP3, %%XTMP4
vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x10
vpxor %%XTMP3, %%XTMP3, %%XTMP4
%assign i (i + 1)
%assign j (j - 1)
%endrep
vpslldq %%XTMP4, %%XTMP3, 8 ; shift-L 2 DWs
vpsrldq %%XTMP3, %%XTMP3, 8 ; shift-R 2 DWs
vpxor %%XTMP2, %%XTMP2, %%XTMP4
vpxor %%XTMP1, %%XTMP1, %%XTMP3 ; accumulate the results in %%T1(M):%%T2(L)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;first phase of the reduction
vmovdqa %%XTMP5, [rel POLY2]
vpclmulqdq %%XTMP0, %%XTMP5, %%XTMP2, 0x01
vpslldq %%XTMP0, %%XTMP0, 8 ; shift-L xmm2 2 DWs
vpxor %%XTMP2, %%XTMP2, %%XTMP0 ; first phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;second phase of the reduction
vpclmulqdq %%XTMP3, %%XTMP5, %%XTMP2, 0x00
vpsrldq %%XTMP3, %%XTMP3, 4 ; shift-R 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R)
vpclmulqdq %%XTMP4, %%XTMP5, %%XTMP2, 0x10
vpslldq %%XTMP4, %%XTMP4, 4 ; shift-L 1 DW (Shift-L 1-DW to obtain result with no shifts)
vpxor %%XTMP4, %%XTMP4, %%XTMP3 ; second phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vpxor %%AAD_HASH, %%XTMP1, %%XTMP4 ; the result is in %%T1
sub %%T2, 128
je %%_CALC_AAD_done
add %%T1, 128
jmp %%_get_AAD_loop128
%%_exit_AAD_loop128:
cmp %%T2, 16
jl %%_get_small_AAD_block
;; calculate hash_key position to start with
mov %%T3, %%T2
and %%T3, -16 ; 1 to 7 blocks possible here
neg %%T3
add %%T3, HashKey_1 + 16
lea %%T3, [%%GDATA_KEY + %%T3]
vmovdqu %%XTMP0, [%%T1]
vpshufb %%XTMP0, [rel SHUF_MASK]
vpxor %%XTMP0, %%AAD_HASH
vmovdqu %%XTMP5, [%%T3]
vpclmulqdq %%XTMP1, %%XTMP0, %%XTMP5, 0x11 ; %%T1 = a1*b1
vpclmulqdq %%XTMP2, %%XTMP0, %%XTMP5, 0x00 ; %%T2 = a0*b0
vpclmulqdq %%XTMP3, %%XTMP0, %%XTMP5, 0x01 ; %%T3 = a1*b0
vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x10 ; %%T4 = a0*b1
vpxor %%XTMP3, %%XTMP3, %%XTMP4 ; %%T3 = a1*b0 + a0*b1
add %%T3, 16 ; move to next hashkey
add %%T1, 16 ; move to next data block
sub %%T2, 16
cmp %%T2, 16
jl %%_AAD_reduce
%%_AAD_blocks:
vmovdqu %%XTMP0, [%%T1]
vpshufb %%XTMP0, [rel SHUF_MASK]
vmovdqu %%XTMP5, [%%T3]
vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x11 ; %%T1 = T1 + a1*b1
vpxor %%XTMP1, %%XTMP1, %%XTMP4
vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x00 ; %%T2 = T2 + a0*b0
vpxor %%XTMP2, %%XTMP2, %%XTMP4
vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x01 ; %%T3 = T3 + a1*b0 + a0*b1
vpxor %%XTMP3, %%XTMP3, %%XTMP4
vpclmulqdq %%XTMP4, %%XTMP0, %%XTMP5, 0x10
vpxor %%XTMP3, %%XTMP3, %%XTMP4
add %%T3, 16 ; move to next hashkey
add %%T1, 16
sub %%T2, 16
cmp %%T2, 16
jl %%_AAD_reduce
jmp %%_AAD_blocks
%%_AAD_reduce:
vpslldq %%XTMP4, %%XTMP3, 8 ; shift-L 2 DWs
vpsrldq %%XTMP3, %%XTMP3, 8 ; shift-R 2 DWs
vpxor %%XTMP2, %%XTMP2, %%XTMP4
vpxor %%XTMP1, %%XTMP1, %%XTMP3 ; accumulate the results in %%T1(M):%%T2(L)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;first phase of the reduction
vmovdqa %%XTMP5, [rel POLY2]
vpclmulqdq %%XTMP0, %%XTMP5, %%XTMP2, 0x01
vpslldq %%XTMP0, %%XTMP0, 8 ; shift-L xmm2 2 DWs
vpxor %%XTMP2, %%XTMP2, %%XTMP0 ; first phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;second phase of the reduction
vpclmulqdq %%XTMP3, %%XTMP5, %%XTMP2, 0x00
vpsrldq %%XTMP3, %%XTMP3, 4 ; shift-R 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R)
vpclmulqdq %%XTMP4, %%XTMP5, %%XTMP2, 0x10
vpslldq %%XTMP4, %%XTMP4, 4 ; shift-L 1 DW (Shift-L 1-DW to obtain result with no shifts)
vpxor %%XTMP4, %%XTMP4, %%XTMP3 ; second phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vpxor %%AAD_HASH, %%XTMP1, %%XTMP4 ; the result is in %%T1
or %%T2, %%T2
je %%_CALC_AAD_done
%%_get_small_AAD_block:
vmovdqu %%XTMP0, [%%GDATA_KEY + HashKey]
READ_SMALL_DATA_INPUT %%XTMP1, %%T1, %%T2, %%T3, %%T4, %%T5
;byte-reflect the AAD data
vpshufb %%XTMP1, [rel SHUF_MASK]
vpxor %%AAD_HASH, %%XTMP1
GHASH_MUL %%AAD_HASH, %%XTMP0, %%XTMP1, %%XTMP2, %%XTMP3, %%XTMP4, %%XTMP5
%%_CALC_AAD_done:
%endmacro ; CALC_AAD_HASH
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; PARTIAL_BLOCK: Handles encryption/decryption and the tag partial blocks between update calls.
; Requires the input data be at least 1 byte long.
; Input: gcm_key_data * (GDATA_KEY), gcm_context_data *(GDATA_CTX), input text (PLAIN_CYPH_IN),
; input text length (PLAIN_CYPH_LEN), the current data offset (DATA_OFFSET),
; and whether encoding or decoding (ENC_DEC)
; Output: A cypher of the first partial block (CYPH_PLAIN_OUT), and updated GDATA_CTX
; Clobbers rax, r10, r12, r13, r15, xmm0, xmm1, xmm2, xmm3, xmm5, xmm6, xmm9, xmm10, xmm11, xmm13
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro PARTIAL_BLOCK 8
%define %%GDATA_KEY %1
%define %%GDATA_CTX %2
%define %%CYPH_PLAIN_OUT %3
%define %%PLAIN_CYPH_IN %4
%define %%PLAIN_CYPH_LEN %5
%define %%DATA_OFFSET %6
%define %%AAD_HASH %7
%define %%ENC_DEC %8
mov r13, [%%GDATA_CTX + PBlockLen]
cmp r13, 0
je %%_partial_block_done ;Leave Macro if no partial blocks
cmp %%PLAIN_CYPH_LEN, 16 ;Read in input data without over reading
jl %%_fewer_than_16_bytes
VXLDR xmm1, [%%PLAIN_CYPH_IN] ;If more than 16 bytes of data, just fill the xmm register
jmp %%_data_read
%%_fewer_than_16_bytes:
lea r10, [%%PLAIN_CYPH_IN + %%DATA_OFFSET]
READ_SMALL_DATA_INPUT xmm1, r10, %%PLAIN_CYPH_LEN, rax, r12, r15
%%_data_read: ;Finished reading in data
vmovdqu xmm9, [%%GDATA_CTX + PBlockEncKey] ;xmm9 = my_ctx_data.partial_block_enc_key
vmovdqu xmm13, [%%GDATA_KEY + HashKey]
lea r12, [rel SHIFT_MASK]
add r12, r13 ; adjust the shuffle mask pointer to be able to shift r13 bytes (16-r13 is the number of bytes in plaintext mod 16)
vmovdqu xmm2, [r12] ; get the appropriate shuffle mask
vpshufb xmm9, xmm2 ;shift right r13 bytes
%ifidn %%ENC_DEC, DEC
vmovdqa xmm3, xmm1
vpxor xmm9, xmm1 ; Cyphertext XOR E(K, Yn)
mov r15, %%PLAIN_CYPH_LEN
add r15, r13
sub r15, 16 ;Set r15 to be the amount of data left in CYPH_PLAIN_IN after filling the block
jge %%_no_extra_mask_1 ;Determine if if partial block is not being filled and shift mask accordingly
sub r12, r15
%%_no_extra_mask_1:
vmovdqu xmm1, [r12 + ALL_F - SHIFT_MASK]; get the appropriate mask to mask out bottom r13 bytes of xmm9
vpand xmm9, xmm1 ; mask out bottom r13 bytes of xmm9
vpand xmm3, xmm1
vpshufb xmm3, [rel SHUF_MASK]
vpshufb xmm3, xmm2
vpxor %%AAD_HASH, xmm3
cmp r15,0
jl %%_partial_incomplete_1
GHASH_MUL %%AAD_HASH, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6 ;GHASH computation for the last <16 Byte block
xor rax,rax
mov [%%GDATA_CTX + PBlockLen], rax
jmp %%_dec_done
%%_partial_incomplete_1:
%ifidn __OUTPUT_FORMAT__, win64
mov rax, %%PLAIN_CYPH_LEN
add [%%GDATA_CTX + PBlockLen], rax
%else
add [%%GDATA_CTX + PBlockLen], %%PLAIN_CYPH_LEN
%endif
%%_dec_done:
vmovdqu [%%GDATA_CTX + AadHash], %%AAD_HASH
%else
vpxor xmm9, xmm1 ; Plaintext XOR E(K, Yn)
mov r15, %%PLAIN_CYPH_LEN
add r15, r13
sub r15, 16 ;Set r15 to be the amount of data left in CYPH_PLAIN_IN after filling the block
jge %%_no_extra_mask_2 ;Determine if if partial block is not being filled and shift mask accordingly
sub r12, r15
%%_no_extra_mask_2:
vmovdqu xmm1, [r12 + ALL_F-SHIFT_MASK] ; get the appropriate mask to mask out bottom r13 bytes of xmm9
vpand xmm9, xmm1 ; mask out bottom r13 bytes of xmm9
vpshufb xmm9, [rel SHUF_MASK]
vpshufb xmm9, xmm2
vpxor %%AAD_HASH, xmm9
cmp r15,0
jl %%_partial_incomplete_2
GHASH_MUL %%AAD_HASH, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6 ;GHASH computation for the last <16 Byte block
xor rax,rax
mov [%%GDATA_CTX + PBlockLen], rax
jmp %%_encode_done
%%_partial_incomplete_2:
%ifidn __OUTPUT_FORMAT__, win64
mov rax, %%PLAIN_CYPH_LEN
add [%%GDATA_CTX + PBlockLen], rax
%else
add [%%GDATA_CTX + PBlockLen], %%PLAIN_CYPH_LEN
%endif
%%_encode_done:
vmovdqu [%%GDATA_CTX + AadHash], %%AAD_HASH
vpshufb xmm9, [rel SHUF_MASK] ; shuffle xmm9 back to output as ciphertext
vpshufb xmm9, xmm2
%endif
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; output encrypted Bytes
cmp r15,0
jl %%_partial_fill
mov r12, r13
mov r13, 16
sub r13, r12 ; Set r13 to be the number of bytes to write out
jmp %%_count_set
%%_partial_fill:
mov r13, %%PLAIN_CYPH_LEN
%%_count_set:
vmovq rax, xmm9
cmp r13, 8
jle %%_less_than_8_bytes_left
mov [%%CYPH_PLAIN_OUT+ %%DATA_OFFSET], rax
add %%DATA_OFFSET, 8
vpsrldq xmm9, xmm9, 8
vmovq rax, xmm9
sub r13, 8
%%_less_than_8_bytes_left:
mov BYTE [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], al
add %%DATA_OFFSET, 1
shr rax, 8
sub r13, 1
jne %%_less_than_8_bytes_left
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%%_partial_block_done:
%endmacro ; PARTIAL_BLOCK
%macro GHASH_SINGLE_MUL 9
%define %%GDATA %1
%define %%HASHKEY %2
%define %%CIPHER %3
%define %%STATE_11 %4
%define %%STATE_00 %5
%define %%STATE_MID %6
%define %%T1 %7
%define %%T2 %8
%define %%FIRST %9
vmovdqu %%T1, [%%GDATA + %%HASHKEY]
%ifidn %%FIRST, first
vpclmulqdq %%STATE_11, %%CIPHER, %%T1, 0x11 ; %%T4 = a1*b1
vpclmulqdq %%STATE_00, %%CIPHER, %%T1, 0x00 ; %%T4_2 = a0*b0
vpclmulqdq %%STATE_MID, %%CIPHER, %%T1, 0x01 ; %%T6 = a1*b0
vpclmulqdq %%T2, %%CIPHER, %%T1, 0x10 ; %%T5 = a0*b1
vpxor %%STATE_MID, %%STATE_MID, %%T2
%else
vpclmulqdq %%T2, %%CIPHER, %%T1, 0x11
vpxor %%STATE_11, %%STATE_11, %%T2
vpclmulqdq %%T2, %%CIPHER, %%T1, 0x00
vpxor %%STATE_00, %%STATE_00, %%T2
vpclmulqdq %%T2, %%CIPHER, %%T1, 0x01
vpxor %%STATE_MID, %%STATE_MID, %%T2
vpclmulqdq %%T2, %%CIPHER, %%T1, 0x10
vpxor %%STATE_MID, %%STATE_MID, %%T2
%endif
%endmacro
; if a = number of total plaintext bytes
; b = floor(a/16)
; %%num_initial_blocks = b mod 8;
; encrypt the initial %%num_initial_blocks blocks and apply ghash on the ciphertext
; %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r14 are used as a pointer only, not modified.
; Updated AAD_HASH is returned in %%T3
%macro INITIAL_BLOCKS 23
%define %%GDATA_KEY %1
%define %%CYPH_PLAIN_OUT %2
%define %%PLAIN_CYPH_IN %3
%define %%LENGTH %4
%define %%DATA_OFFSET %5
%define %%num_initial_blocks %6 ; can be 0, 1, 2, 3, 4, 5, 6 or 7
%define %%T1 %7
%define %%T2 %8
%define %%T3 %9
%define %%T4 %10
%define %%T5 %11
%define %%CTR %12
%define %%XMM1 %13
%define %%XMM2 %14
%define %%XMM3 %15
%define %%XMM4 %16
%define %%XMM5 %17
%define %%XMM6 %18
%define %%XMM7 %19
%define %%XMM8 %20
%define %%T6 %21
%define %%T_key %22
%define %%ENC_DEC %23
%assign i (8-%%num_initial_blocks)
;; Move AAD_HASH to temp reg
vmovdqu %%T2, %%XMM8
;; Start AES for %%num_initial_blocks blocks
;; vmovdqu %%CTR, [%%GDATA_CTX + CurCount] ; %%CTR = Y0
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
vpaddd %%CTR, %%CTR, [rel ONE] ; INCR Y0
vmovdqa reg(i), %%CTR
vpshufb reg(i), [rel SHUF_MASK] ; perform a 16Byte swap
%assign i (i+1)
%endrep
%if(%%num_initial_blocks>0)
vmovdqu %%T_key, [%%GDATA_KEY+16*0]
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
vpxor reg(i),reg(i),%%T_key
%assign i (i+1)
%endrep
%assign j 1
%rep NROUNDS
vmovdqu %%T_key, [%%GDATA_KEY+16*j]
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
vaesenc reg(i),%%T_key
%assign i (i+1)
%endrep
%assign j (j+1)
%endrep
vmovdqu %%T_key, [%%GDATA_KEY+16*j]
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
vaesenclast reg(i),%%T_key
%assign i (i+1)
%endrep
%endif ; %if(%%num_initial_blocks>0)
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET]
vpxor reg(i), reg(i), %%T1
;; Write back ciphertext for %%num_initial_blocks blocks
VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], reg(i)
add %%DATA_OFFSET, 16
%ifidn %%ENC_DEC, DEC
vmovdqa reg(i), %%T1
%endif
;; Prepare ciphertext for GHASH computations
vpshufb reg(i), [rel SHUF_MASK]
%assign i (i+1)
%endrep
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%assign i (9-%%num_initial_blocks)
%if(%%num_initial_blocks>0)
vmovdqa %%T3, reg(i)
%assign i (i+1)
%endif
%if(%%num_initial_blocks>1)
%rep %%num_initial_blocks-1
vmovdqu [rsp + TMP %+ i], reg(i)
%assign i (i+1)
%endrep
%endif
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Prepare 8 counter blocks and perform rounds of AES cipher on
;; them, load plain/cipher text and store cipher/plain text.
;; Stitch GHASH computation in between AES rounds.
vpaddd %%XMM1, %%CTR, [rel ONE] ; INCR Y0
vpaddd %%XMM2, %%CTR, [rel TWO] ; INCR Y0
vpaddd %%XMM3, %%XMM1, [rel TWO] ; INCR Y0
vpaddd %%XMM4, %%XMM2, [rel TWO] ; INCR Y0
vpaddd %%XMM5, %%XMM3, [rel TWO] ; INCR Y0
vpaddd %%XMM6, %%XMM4, [rel TWO] ; INCR Y0
vpaddd %%XMM7, %%XMM5, [rel TWO] ; INCR Y0
vpaddd %%XMM8, %%XMM6, [rel TWO] ; INCR Y0
vmovdqa %%CTR, %%XMM8
vpshufb %%XMM1, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM2, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM3, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM4, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM5, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM6, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM7, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM8, [rel SHUF_MASK] ; perform a 16Byte swap
vmovdqu %%T_key, [%%GDATA_KEY+16*0]
vpxor %%XMM1, %%XMM1, %%T_key
vpxor %%XMM2, %%XMM2, %%T_key
vpxor %%XMM3, %%XMM3, %%T_key
vpxor %%XMM4, %%XMM4, %%T_key
vpxor %%XMM5, %%XMM5, %%T_key
vpxor %%XMM6, %%XMM6, %%T_key
vpxor %%XMM7, %%XMM7, %%T_key
vpxor %%XMM8, %%XMM8, %%T_key
%assign i (8-%%num_initial_blocks)
%assign j (9-%%num_initial_blocks)
%assign k (%%num_initial_blocks)
%define %%T4_2 %%T4
%if(%%num_initial_blocks>0)
;; Hash in AES state
;; T2 - incoming AAD hash
vpxor %%T2, %%T3
;; GDATA, HASHKEY, CIPHER,
;; STATE_11, STATE_00, STATE_MID, T1, T2
GHASH_SINGLE_MUL %%GDATA_KEY, HashKey_ %+ k, %%T2, \
%%T1, %%T4, %%T6, %%T5, %%T3, first
%endif
vmovdqu %%T_key, [%%GDATA_KEY+16*1]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
vmovdqu %%T_key, [%%GDATA_KEY+16*2]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
%assign i (i+1)
%assign j (j+1)
%assign k (k-1)
%if(%%num_initial_blocks>1)
;; GDATA, HASHKEY, CIPHER,
;; STATE_11, STATE_00, STATE_MID, T1, T2
vmovdqu %%T2, [rsp + TMP %+ j]
GHASH_SINGLE_MUL %%GDATA_KEY, HashKey_ %+ k, %%T2, \
%%T1, %%T4, %%T6, %%T5, %%T3, not_first
%endif
vmovdqu %%T_key, [%%GDATA_KEY+16*3]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
vmovdqu %%T_key, [%%GDATA_KEY+16*4]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
%assign i (i+1)
%assign j (j+1)
%assign k (k-1)
%if(%%num_initial_blocks>2)
;; GDATA, HASHKEY, CIPHER,
;; STATE_11, STATE_00, STATE_MID, T1, T2
vmovdqu %%T2, [rsp + TMP %+ j]
GHASH_SINGLE_MUL %%GDATA_KEY, HashKey_ %+ k, %%T2, \
%%T1, %%T4, %%T6, %%T5, %%T3, not_first
%endif
%assign i (i+1)
%assign j (j+1)
%assign k (k-1)
%if(%%num_initial_blocks>3)
;; GDATA, HASHKEY, CIPHER,
;; STATE_11, STATE_00, STATE_MID, T1, T2
vmovdqu %%T2, [rsp + TMP %+ j]
GHASH_SINGLE_MUL %%GDATA_KEY, HashKey_ %+ k, %%T2, \
%%T1, %%T4, %%T6, %%T5, %%T3, not_first
%endif
vmovdqu %%T_key, [%%GDATA_KEY+16*5]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
vmovdqu %%T_key, [%%GDATA_KEY+16*6]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
%assign i (i+1)
%assign j (j+1)
%assign k (k-1)
%if(%%num_initial_blocks>4)
;; GDATA, HASHKEY, CIPHER,
;; STATE_11, STATE_00, STATE_MID, T1, T2
vmovdqu %%T2, [rsp + TMP %+ j]
GHASH_SINGLE_MUL %%GDATA_KEY, HashKey_ %+ k, %%T2, \
%%T1, %%T4, %%T6, %%T5, %%T3, not_first
%endif
vmovdqu %%T_key, [%%GDATA_KEY+16*7]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
vmovdqu %%T_key, [%%GDATA_KEY+16*8]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
%assign i (i+1)
%assign j (j+1)
%assign k (k-1)
%if(%%num_initial_blocks>5)
;; GDATA, HASHKEY, CIPHER,
;; STATE_11, STATE_00, STATE_MID, T1, T2
vmovdqu %%T2, [rsp + TMP %+ j]
GHASH_SINGLE_MUL %%GDATA_KEY, HashKey_ %+ k, %%T2, \
%%T1, %%T4, %%T6, %%T5, %%T3, not_first
%endif
vmovdqu %%T_key, [%%GDATA_KEY+16*9]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
%ifndef GCM128_MODE
vmovdqu %%T_key, [%%GDATA_KEY+16*10]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
%endif
%assign i (i+1)
%assign j (j+1)
%assign k (k-1)
%if(%%num_initial_blocks>6)
;; GDATA, HASHKEY, CIPHER,
;; STATE_11, STATE_00, STATE_MID, T1, T2
vmovdqu %%T2, [rsp + TMP %+ j]
GHASH_SINGLE_MUL %%GDATA_KEY, HashKey_ %+ k, %%T2, \
%%T1, %%T4, %%T6, %%T5, %%T3, not_first
%endif
%ifdef GCM128_MODE
vmovdqu %%T_key, [%%GDATA_KEY+16*10]
vaesenclast %%XMM1, %%T_key
vaesenclast %%XMM2, %%T_key
vaesenclast %%XMM3, %%T_key
vaesenclast %%XMM4, %%T_key
vaesenclast %%XMM5, %%T_key
vaesenclast %%XMM6, %%T_key
vaesenclast %%XMM7, %%T_key
vaesenclast %%XMM8, %%T_key
%endif
%ifdef GCM192_MODE
vmovdqu %%T_key, [%%GDATA_KEY+16*11]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
vmovdqu %%T_key, [%%GDATA_KEY+16*12]
vaesenclast %%XMM1, %%T_key
vaesenclast %%XMM2, %%T_key
vaesenclast %%XMM3, %%T_key
vaesenclast %%XMM4, %%T_key
vaesenclast %%XMM5, %%T_key
vaesenclast %%XMM6, %%T_key
vaesenclast %%XMM7, %%T_key
vaesenclast %%XMM8, %%T_key
%endif
%ifdef GCM256_MODE
vmovdqu %%T_key, [%%GDATA_KEY+16*11]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
vmovdqu %%T_key, [%%GDATA_KEY+16*12]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
%endif
%assign i (i+1)
%assign j (j+1)
%assign k (k-1)
%if(%%num_initial_blocks>7)
;; GDATA, HASHKEY, CIPHER,
;; STATE_11, STATE_00, STATE_MID, T1, T2
vmovdqu %%T2, [rsp + TMP %+ j]
GHASH_SINGLE_MUL %%GDATA_KEY, HashKey_ %+ k, %%T2, \
%%T1, %%T4, %%T6, %%T5, %%T3, not_first
%endif
%ifdef GCM256_MODE ; GCM256
vmovdqu %%T_key, [%%GDATA_KEY+16*13]
vaesenc %%XMM1, %%T_key
vaesenc %%XMM2, %%T_key
vaesenc %%XMM3, %%T_key
vaesenc %%XMM4, %%T_key
vaesenc %%XMM5, %%T_key
vaesenc %%XMM6, %%T_key
vaesenc %%XMM7, %%T_key
vaesenc %%XMM8, %%T_key
vmovdqu %%T_key, [%%GDATA_KEY+16*14]
vaesenclast %%XMM1, %%T_key
vaesenclast %%XMM2, %%T_key
vaesenclast %%XMM3, %%T_key
vaesenclast %%XMM4, %%T_key
vaesenclast %%XMM5, %%T_key
vaesenclast %%XMM6, %%T_key
vaesenclast %%XMM7, %%T_key
vaesenclast %%XMM8, %%T_key
%endif ; GCM256 mode
%if(%%num_initial_blocks>0)
vpsrldq %%T3, %%T6, 8 ; shift-R %%T2 2 DWs
vpslldq %%T6, %%T6, 8 ; shift-L %%T3 2 DWs
vpxor %%T1, %%T1, %%T3 ; accumulate the results in %%T1:%%T4
vpxor %%T4, %%T6, %%T4
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; First phase of the reduction
vmovdqa %%T3, [rel POLY2]
vpclmulqdq %%T2, %%T3, %%T4, 0x01
vpslldq %%T2, %%T2, 8 ; shift-L xmm2 2 DWs
;; First phase of the reduction complete
vpxor %%T4, %%T4, %%T2
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Second phase of the reduction
vpclmulqdq %%T2, %%T3, %%T4, 0x00
;; Shift-R xmm2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R)
vpsrldq %%T2, %%T2, 4
vpclmulqdq %%T4, %%T3, %%T4, 0x10
;; Shift-L xmm0 1 DW (Shift-L 1-DW to obtain result with no shifts)
vpslldq %%T4, %%T4, 4
;; Second phase of the reduction complete
vpxor %%T4, %%T4, %%T2
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; The result is in %%T3
vpxor %%T3, %%T1, %%T4
%else
;; The hash should end up in T3
vmovdqa %%T3, %%T2
%endif
;; Final hash is now in T3
%if %%num_initial_blocks > 0
;; NOTE: obsolete in case %%num_initial_blocks = 0
sub %%LENGTH, 16*%%num_initial_blocks
%endif
VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*0]
vpxor %%XMM1, %%XMM1, %%T1
VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*0], %%XMM1
%ifidn %%ENC_DEC, DEC
vmovdqa %%XMM1, %%T1
%endif
VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*1]
vpxor %%XMM2, %%XMM2, %%T1
VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*1], %%XMM2
%ifidn %%ENC_DEC, DEC
vmovdqa %%XMM2, %%T1
%endif
VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*2]
vpxor %%XMM3, %%XMM3, %%T1
VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*2], %%XMM3
%ifidn %%ENC_DEC, DEC
vmovdqa %%XMM3, %%T1
%endif
VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*3]
vpxor %%XMM4, %%XMM4, %%T1
VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*3], %%XMM4
%ifidn %%ENC_DEC, DEC
vmovdqa %%XMM4, %%T1
%endif
VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*4]
vpxor %%XMM5, %%XMM5, %%T1
VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*4], %%XMM5
%ifidn %%ENC_DEC, DEC
vmovdqa %%XMM5, %%T1
%endif
VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*5]
vpxor %%XMM6, %%XMM6, %%T1
VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*5], %%XMM6
%ifidn %%ENC_DEC, DEC
vmovdqa %%XMM6, %%T1
%endif
VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*6]
vpxor %%XMM7, %%XMM7, %%T1
VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*6], %%XMM7
%ifidn %%ENC_DEC, DEC
vmovdqa %%XMM7, %%T1
%endif
%if %%num_initial_blocks > 0
;; NOTE: 'jl' is never taken for %%num_initial_blocks = 0
;; This macro is executed for lenght 128 and up,
;; zero length is checked in GCM_ENC_DEC.
;; If the last block is partial then the xor will be done later
;; in ENCRYPT_FINAL_PARTIAL_BLOCK.
;; We know it's partial if LENGTH - 16*num_initial_blocks < 128
cmp %%LENGTH, 128
jl %%_initial_skip_last_word_write
%endif
VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET + 16*7]
vpxor %%XMM8, %%XMM8, %%T1
VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET + 16*7], %%XMM8
%ifidn %%ENC_DEC, DEC
vmovdqa %%XMM8, %%T1
%endif
;; Update %%LENGTH with the number of blocks processed
sub %%LENGTH, 16
add %%DATA_OFFSET, 16
%%_initial_skip_last_word_write:
sub %%LENGTH, 128-16
add %%DATA_OFFSET, 128-16
vpshufb %%XMM1, [rel SHUF_MASK] ; perform a 16Byte swap
;; Combine GHASHed value with the corresponding ciphertext
vpxor %%XMM1, %%XMM1, %%T3
vpshufb %%XMM2, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM3, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM4, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM5, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM6, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM7, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM8, [rel SHUF_MASK] ; perform a 16Byte swap
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%%_initial_blocks_done:
%endmacro
;;; INITIAL_BLOCKS macro with support for a partial final block.
;;; num_initial_blocks is expected to include the partial final block
;;; in the count.
%macro INITIAL_BLOCKS_PARTIAL 25
%define %%GDATA_KEY %1
%define %%GDATA_CTX %2
%define %%CYPH_PLAIN_OUT %3
%define %%PLAIN_CYPH_IN %4
%define %%LENGTH %5
%define %%DATA_OFFSET %6
%define %%num_initial_blocks %7 ; can be 1, 2, 3, 4, 5, 6 or 7 (not 0)
%define %%T1 %8
%define %%T2 %9
%define %%T3 %10
%define %%T4 %11
%define %%T5 %12
%define %%CTR %13
%define %%XMM1 %14
%define %%XMM2 %15
%define %%XMM3 %16
%define %%XMM4 %17
%define %%XMM5 %18
%define %%XMM6 %19
%define %%XMM7 %20
%define %%XMM8 %21
%define %%T6 %22
%define %%T_key %23
%define %%ENC_DEC %24
%define %%INSTANCE_TYPE %25
%assign i (8-%%num_initial_blocks)
;; Move AAD_HASH to temp reg
vmovdqu %%T2, %%XMM8
;; vmovdqu %%CTR, [%%GDATA_CTX + CurCount] ; %%CTR = Y0
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
;; Compute AES counters
vpaddd %%CTR, %%CTR, [rel ONE] ; INCR Y0
vmovdqa reg(i), %%CTR
vpshufb reg(i), [rel SHUF_MASK] ; perform a 16Byte swap
%assign i (i+1)
%endrep
vmovdqu %%T_key, [%%GDATA_KEY+16*0]
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
; Start AES for %%num_initial_blocks blocks
vpxor reg(i),reg(i),%%T_key
%assign i (i+1)
%endrep
%assign j 1
%rep NROUNDS
vmovdqu %%T_key, [%%GDATA_KEY+16*j]
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
vaesenc reg(i),%%T_key
%assign i (i+1)
%endrep
%assign j (j+1)
%endrep
vmovdqu %%T_key, [%%GDATA_KEY+16*j]
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks
vaesenclast reg(i),%%T_key
%assign i (i+1)
%endrep
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Hash all but the last block of data
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%assign i (9-%%num_initial_blocks)
%rep %%num_initial_blocks-1
;; Encrypt the message for all but the last block
VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET]
vpxor reg(i), reg(i), %%T1
;; write back ciphertext for %%num_initial_blocks blocks
VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], reg(i)
add %%DATA_OFFSET, 16
%ifidn %%ENC_DEC, DEC
vmovdqa reg(i), %%T1
%endif
;; Prepare ciphertext for GHASH computations
vpshufb reg(i), [rel SHUF_MASK]
%assign i (i+1)
%endrep
;; The final block of data may be <16B
sub %%LENGTH, 16*(%%num_initial_blocks-1)
%if %%num_initial_blocks < 8
;; NOTE: the 'jl' is always taken for num_initial_blocks = 8.
;; This is run in the context of GCM_ENC_DEC_SMALL for length < 128.
cmp %%LENGTH, 16
jl %%_small_initial_partial_block
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Handle a full length final block - encrypt and hash all blocks
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
sub %%LENGTH, 16
mov [%%GDATA_CTX + PBlockLen], %%LENGTH
;; Encrypt the message
VXLDR %%T1, [%%PLAIN_CYPH_IN + %%DATA_OFFSET]
vpxor reg(i), reg(i), %%T1
;; write back ciphertext for %%num_initial_blocks blocks
VXSTR [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], reg(i)
add %%DATA_OFFSET, 16
%ifidn %%ENC_DEC, DEC
vmovdqa reg(i), %%T1
%endif
;; Prepare ciphertext for GHASH computations
vpshufb reg(i), [rel SHUF_MASK]
;; Hash all of the data
%assign i (8-%%num_initial_blocks)
%assign j (9-%%num_initial_blocks)
%assign k (%%num_initial_blocks)
%assign last_block_to_hash 0
%if(%%num_initial_blocks>last_block_to_hash)
;; Hash in AES state
vpxor %%T2, reg(j)
;; T2 - incoming AAD hash
;; reg(i) holds ciphertext
;; T5 - hash key
;; T6 - updated xor
;; reg(1)/xmm1 should now be available for tmp use
vmovdqu %%T5, [%%GDATA_KEY + HashKey_ %+ k]
vpclmulqdq %%T1, %%T2, %%T5, 0x11 ; %%T4 = a1*b1
vpclmulqdq %%T4, %%T2, %%T5, 0x00 ; %%T4 = a0*b0
vpclmulqdq %%T6, %%T2, %%T5, 0x01 ; %%T6 = a1*b0
vpclmulqdq %%T5, %%T2, %%T5, 0x10 ; %%T5 = a0*b1
vpxor %%T6, %%T6, %%T5
%endif
%assign i (i+1)
%assign j (j+1)
%assign k (k-1)
%assign rep_count (%%num_initial_blocks-1)
%rep rep_count
vmovdqu %%T5, [%%GDATA_KEY + HashKey_ %+ k]
vpclmulqdq %%T3, reg(j), %%T5, 0x11
vpxor %%T1, %%T1, %%T3
vpclmulqdq %%T3, reg(j), %%T5, 0x00
vpxor %%T4, %%T4, %%T3
vpclmulqdq %%T3, reg(j), %%T5, 0x01
vpxor %%T6, %%T6, %%T3
vpclmulqdq %%T3, reg(j), %%T5, 0x10
vpxor %%T6, %%T6, %%T3
%assign i (i+1)
%assign j (j+1)
%assign k (k-1)
%endrep
;; Record that a reduction is needed
mov r12, 1
jmp %%_small_initial_compute_hash
%endif ; %if %%num_initial_blocks < 8
%%_small_initial_partial_block:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Handle ghash for a <16B final block
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; In this case if it's a single call to encrypt we can
;; hash all of the data but if it's an init / update / finalize
;; series of call we need to leave the last block if it's
;; less than a full block of data.
mov [%%GDATA_CTX + PBlockLen], %%LENGTH
vmovdqu [%%GDATA_CTX + PBlockEncKey], reg(i)
;; Handle a partial final block
;; GDATA, KEY, T1, T2
;; r13 - length
;; LT16 - indicates type of read and that the buffer is less than 16 bytes long
;; NOTE: could be replaced with %%LENGTH but at this point
;; %%LENGTH is always less than 16.
;; No PLAIN_CYPH_LEN argument available in this macro.
ENCRYPT_FINAL_PARTIAL_BLOCK reg(i), %%T1, %%T3, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, LT16, %%ENC_DEC, %%DATA_OFFSET
vpshufb reg(i), [rel SHUF_MASK]
%ifidn %%INSTANCE_TYPE, multi_call
%assign i (8-%%num_initial_blocks)
%assign j (9-%%num_initial_blocks)
%assign k (%%num_initial_blocks-1)
%assign last_block_to_hash 1
%else
%assign i (8-%%num_initial_blocks)
%assign j (9-%%num_initial_blocks)
%assign k (%%num_initial_blocks)
%assign last_block_to_hash 0
%endif
%if(%%num_initial_blocks>last_block_to_hash)
;; Record that a reduction is needed
mov r12, 1
;; Hash in AES state
vpxor %%T2, reg(j)
;; T2 - incoming AAD hash
;; reg(i) holds ciphertext
;; T5 - hash key
;; T6 - updated xor
;; reg(1)/xmm1 should now be available for tmp use
vmovdqu %%T5, [%%GDATA_KEY + HashKey_ %+ k]
vpclmulqdq %%T1, %%T2, %%T5, 0x11 ; %%T4 = a1*b1
vpclmulqdq %%T4, %%T2, %%T5, 0x00 ; %%T4 = a0*b0
vpclmulqdq %%T6, %%T2, %%T5, 0x01 ; %%T6 = a1*b0
vpclmulqdq %%T5, %%T2, %%T5, 0x10 ; %%T5 = a0*b1
vpxor %%T6, %%T6, %%T5
%else
;; Record that a reduction is not needed -
;; In this case no hashes are computed because there
;; is only one initial block and it is < 16B in length.
mov r12, 0
%endif
%assign i (i+1)
%assign j (j+1)
%assign k (k-1)
%ifidn %%INSTANCE_TYPE, multi_call
%assign rep_count (%%num_initial_blocks-2)
%%_multi_call_hash:
%else
%assign rep_count (%%num_initial_blocks-1)
%endif
%if rep_count < 0
;; quick fix for negative rep_count (to be investigated)
%assign rep_count 0
%endif
%rep rep_count
vmovdqu %%T5, [%%GDATA_KEY + HashKey_ %+ k]
vpclmulqdq %%T3, reg(j), %%T5, 0x11
vpxor %%T1, %%T1, %%T3
vpclmulqdq %%T3, reg(j), %%T5, 0x00
vpxor %%T4, %%T4, %%T3
vpclmulqdq %%T3, reg(j), %%T5, 0x01
vpxor %%T6, %%T6, %%T3
vpclmulqdq %%T3, reg(j), %%T5, 0x10
vpxor %%T6, %%T6, %%T3
%assign i (i+1)
%assign j (j+1)
%assign k (k-1)
%endrep
%%_small_initial_compute_hash:
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Ghash reduction
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%if(%%num_initial_blocks=1)
%ifidn %%INSTANCE_TYPE, multi_call
;; We only need to check if a reduction is needed if
;; initial_blocks == 1 and init/update/final is being used.
;; In this case we may just have a partial block, and that
;; gets hashed in finalize.
cmp r12, 0
je %%_no_reduction_needed
%endif
%endif
vpsrldq %%T3, %%T6, 8 ; shift-R %%T2 2 DWs
vpslldq %%T6, %%T6, 8 ; shift-L %%T3 2 DWs
vpxor %%T1, %%T1, %%T3 ; accumulate the results in %%T1:%%T4
vpxor %%T4, %%T6, %%T4
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; First phase of the reduction
vmovdqa %%T3, [rel POLY2]
vpclmulqdq %%T2, %%T3, %%T4, 0x01
;; shift-L xmm2 2 DWs
vpslldq %%T2, %%T2, 8
vpxor %%T4, %%T4, %%T2
;; First phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Second phase of the reduction
vpclmulqdq %%T2, %%T3, %%T4, 0x00
;; Shift-R xmm2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R)
vpsrldq %%T2, %%T2, 4
vpclmulqdq %%T4, %%T3, %%T4, 0x10
;; Shift-L xmm0 1 DW (Shift-L 1-DW to obtain result with no shifts)
vpslldq %%T4, %%T4, 4
vpxor %%T4, %%T4, %%T2
;; Second phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vpxor %%T3, %%T1, %%T4
%ifidn %%INSTANCE_TYPE, multi_call
;; If using init/update/finalize, we need to xor any partial block data
;; into the hash.
%if %%num_initial_blocks > 1
;; NOTE: for %%num_initial_blocks = 0 the xor never takes place
%if %%num_initial_blocks != 8
;; NOTE: for %%num_initial_blocks = 8, %%LENGTH, stored in [PBlockLen] is never zero
cmp qword [%%GDATA_CTX + PBlockLen], 0
je %%_no_partial_block_xor
%endif ; %%num_initial_blocks != 8
vpxor %%T3, %%T3, reg(8)
%%_no_partial_block_xor:
%endif ; %%num_initial_blocks > 1
%endif ; %%INSTANCE_TYPE, multi_call
%if(%%num_initial_blocks=1)
%ifidn %%INSTANCE_TYPE, multi_call
;; NOTE: %%_no_reduction_needed case only valid for
;; multi_call with initial_blocks = 1.
;; Look for comment above around '_no_reduction_needed'
;; The jmp below is obsolete as the code will fall through.
;; The result is in %%T3
jmp %%_after_reduction
%%_no_reduction_needed:
;; The hash should end up in T3. The only way we should get here is if
;; there is a partial block of data, so xor that into the hash.
vpxor %%T3, %%T2, reg(8)
%endif ; %%INSTANCE_TYPE = multi_call
%endif ; %%num_initial_blocks=1
%%_after_reduction:
;; Final hash is now in T3
%endmacro ; INITIAL_BLOCKS_PARTIAL
; encrypt 8 blocks at a time
; ghash the 8 previously encrypted ciphertext blocks
; %%GDATA (KEY), %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN are used as pointers only, not modified
; %%DATA_OFFSET is the data offset value
%macro GHASH_8_ENCRYPT_8_PARALLEL 23
%define %%GDATA %1
%define %%CYPH_PLAIN_OUT %2
%define %%PLAIN_CYPH_IN %3
%define %%DATA_OFFSET %4
%define %%T1 %5
%define %%T2 %6
%define %%T3 %7
%define %%T4 %8
%define %%T5 %9
%define %%T6 %10
%define %%CTR %11
%define %%XMM1 %12
%define %%XMM2 %13
%define %%XMM3 %14
%define %%XMM4 %15
%define %%XMM5 %16
%define %%XMM6 %17
%define %%XMM7 %18
%define %%XMM8 %19
%define %%T7 %20
%define %%loop_idx %21
%define %%ENC_DEC %22
%define %%FULL_PARTIAL %23
vmovdqa %%T2, %%XMM1
vmovdqu [rsp + TMP2], %%XMM2
vmovdqu [rsp + TMP3], %%XMM3
vmovdqu [rsp + TMP4], %%XMM4
vmovdqu [rsp + TMP5], %%XMM5
vmovdqu [rsp + TMP6], %%XMM6
vmovdqu [rsp + TMP7], %%XMM7
vmovdqu [rsp + TMP8], %%XMM8
%ifidn %%loop_idx, in_order
vpaddd %%XMM1, %%CTR, [rel ONE] ; INCR CNT
vmovdqa %%T5, [rel TWO]
vpaddd %%XMM2, %%CTR, %%T5
vpaddd %%XMM3, %%XMM1, %%T5
vpaddd %%XMM4, %%XMM2, %%T5
vpaddd %%XMM5, %%XMM3, %%T5
vpaddd %%XMM6, %%XMM4, %%T5
vpaddd %%XMM7, %%XMM5, %%T5
vpaddd %%XMM8, %%XMM6, %%T5
vmovdqa %%CTR, %%XMM8
vmovdqa %%T5, [rel SHUF_MASK]
vpshufb %%XMM1, %%T5 ; perform a 16Byte swap
vpshufb %%XMM2, %%T5 ; perform a 16Byte swap
vpshufb %%XMM3, %%T5 ; perform a 16Byte swap
vpshufb %%XMM4, %%T5 ; perform a 16Byte swap
vpshufb %%XMM5, %%T5 ; perform a 16Byte swap
vpshufb %%XMM6, %%T5 ; perform a 16Byte swap
vpshufb %%XMM7, %%T5 ; perform a 16Byte swap
vpshufb %%XMM8, %%T5 ; perform a 16Byte swap
%else
vpaddd %%XMM1, %%CTR, [rel ONEf] ; INCR CNT
vmovdqa %%T5, [rel TWOf]
vpaddd %%XMM2, %%CTR, %%T5
vpaddd %%XMM3, %%XMM1, %%T5
vpaddd %%XMM4, %%XMM2, %%T5
vpaddd %%XMM5, %%XMM3, %%T5
vpaddd %%XMM6, %%XMM4, %%T5
vpaddd %%XMM7, %%XMM5, %%T5
vpaddd %%XMM8, %%XMM6, %%T5
vmovdqa %%CTR, %%XMM8
%endif
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T1, [%%GDATA + 16*0]
vpxor %%XMM1, %%XMM1, %%T1
vpxor %%XMM2, %%XMM2, %%T1
vpxor %%XMM3, %%XMM3, %%T1
vpxor %%XMM4, %%XMM4, %%T1
vpxor %%XMM5, %%XMM5, %%T1
vpxor %%XMM6, %%XMM6, %%T1
vpxor %%XMM7, %%XMM7, %%T1
vpxor %%XMM8, %%XMM8, %%T1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T1, [%%GDATA + 16*1]
vaesenc %%XMM1, %%T1
vaesenc %%XMM2, %%T1
vaesenc %%XMM3, %%T1
vaesenc %%XMM4, %%T1
vaesenc %%XMM5, %%T1
vaesenc %%XMM6, %%T1
vaesenc %%XMM7, %%T1
vaesenc %%XMM8, %%T1
vmovdqu %%T1, [%%GDATA + 16*2]
vaesenc %%XMM1, %%T1
vaesenc %%XMM2, %%T1
vaesenc %%XMM3, %%T1
vaesenc %%XMM4, %%T1
vaesenc %%XMM5, %%T1
vaesenc %%XMM6, %%T1
vaesenc %%XMM7, %%T1
vaesenc %%XMM8, %%T1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_8]
vpclmulqdq %%T4, %%T2, %%T5, 0x11 ; %%T4 = a1*b1
vpclmulqdq %%T7, %%T2, %%T5, 0x00 ; %%T7 = a0*b0
vpclmulqdq %%T6, %%T2, %%T5, 0x01 ; %%T6 = a1*b0
vpclmulqdq %%T5, %%T2, %%T5, 0x10 ; %%T5 = a0*b1
vpxor %%T6, %%T6, %%T5
vmovdqu %%T1, [%%GDATA + 16*3]
vaesenc %%XMM1, %%T1
vaesenc %%XMM2, %%T1
vaesenc %%XMM3, %%T1
vaesenc %%XMM4, %%T1
vaesenc %%XMM5, %%T1
vaesenc %%XMM6, %%T1
vaesenc %%XMM7, %%T1
vaesenc %%XMM8, %%T1
vmovdqu %%T1, [rsp + TMP2]
vmovdqu %%T5, [%%GDATA + HashKey_7]
vpclmulqdq %%T3, %%T1, %%T5, 0x11
vpxor %%T4, %%T4, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x00
vpxor %%T7, %%T7, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x01
vpxor %%T6, %%T6, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x10
vpxor %%T6, %%T6, %%T3
vmovdqu %%T1, [%%GDATA + 16*4]
vaesenc %%XMM1, %%T1
vaesenc %%XMM2, %%T1
vaesenc %%XMM3, %%T1
vaesenc %%XMM4, %%T1
vaesenc %%XMM5, %%T1
vaesenc %%XMM6, %%T1
vaesenc %%XMM7, %%T1
vaesenc %%XMM8, %%T1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T1, [rsp + TMP3]
vmovdqu %%T5, [%%GDATA + HashKey_6]
vpclmulqdq %%T3, %%T1, %%T5, 0x11
vpxor %%T4, %%T4, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x00
vpxor %%T7, %%T7, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x01
vpxor %%T6, %%T6, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x10
vpxor %%T6, %%T6, %%T3
vmovdqu %%T1, [%%GDATA + 16*5]
vaesenc %%XMM1, %%T1
vaesenc %%XMM2, %%T1
vaesenc %%XMM3, %%T1
vaesenc %%XMM4, %%T1
vaesenc %%XMM5, %%T1
vaesenc %%XMM6, %%T1
vaesenc %%XMM7, %%T1
vaesenc %%XMM8, %%T1
vmovdqu %%T1, [rsp + TMP4]
vmovdqu %%T5, [%%GDATA + HashKey_5]
vpclmulqdq %%T3, %%T1, %%T5, 0x11
vpxor %%T4, %%T4, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x00
vpxor %%T7, %%T7, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x01
vpxor %%T6, %%T6, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x10
vpxor %%T6, %%T6, %%T3
vmovdqu %%T1, [%%GDATA + 16*6]
vaesenc %%XMM1, %%T1
vaesenc %%XMM2, %%T1
vaesenc %%XMM3, %%T1
vaesenc %%XMM4, %%T1
vaesenc %%XMM5, %%T1
vaesenc %%XMM6, %%T1
vaesenc %%XMM7, %%T1
vaesenc %%XMM8, %%T1
vmovdqu %%T1, [rsp + TMP5]
vmovdqu %%T5, [%%GDATA + HashKey_4]
vpclmulqdq %%T3, %%T1, %%T5, 0x11
vpxor %%T4, %%T4, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x00
vpxor %%T7, %%T7, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x01
vpxor %%T6, %%T6, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x10
vpxor %%T6, %%T6, %%T3
vmovdqu %%T1, [%%GDATA + 16*7]
vaesenc %%XMM1, %%T1
vaesenc %%XMM2, %%T1
vaesenc %%XMM3, %%T1
vaesenc %%XMM4, %%T1
vaesenc %%XMM5, %%T1
vaesenc %%XMM6, %%T1
vaesenc %%XMM7, %%T1
vaesenc %%XMM8, %%T1
vmovdqu %%T1, [rsp + TMP6]
vmovdqu %%T5, [%%GDATA + HashKey_3]
vpclmulqdq %%T3, %%T1, %%T5, 0x11
vpxor %%T4, %%T4, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x00
vpxor %%T7, %%T7, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x01
vpxor %%T6, %%T6, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x10
vpxor %%T6, %%T6, %%T3
vmovdqu %%T1, [%%GDATA + 16*8]
vaesenc %%XMM1, %%T1
vaesenc %%XMM2, %%T1
vaesenc %%XMM3, %%T1
vaesenc %%XMM4, %%T1
vaesenc %%XMM5, %%T1
vaesenc %%XMM6, %%T1
vaesenc %%XMM7, %%T1
vaesenc %%XMM8, %%T1
vmovdqu %%T1, [rsp + TMP7]
vmovdqu %%T5, [%%GDATA + HashKey_2]
vpclmulqdq %%T3, %%T1, %%T5, 0x11
vpxor %%T4, %%T4, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x00
vpxor %%T7, %%T7, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x01
vpxor %%T6, %%T6, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x10
vpxor %%T6, %%T6, %%T3
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + 16*9]
vaesenc %%XMM1, %%T5
vaesenc %%XMM2, %%T5
vaesenc %%XMM3, %%T5
vaesenc %%XMM4, %%T5
vaesenc %%XMM5, %%T5
vaesenc %%XMM6, %%T5
vaesenc %%XMM7, %%T5
vaesenc %%XMM8, %%T5
vmovdqu %%T1, [rsp + TMP8]
vmovdqu %%T5, [%%GDATA + HashKey]
vpclmulqdq %%T3, %%T1, %%T5, 0x00
vpxor %%T7, %%T7, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x01
vpxor %%T6, %%T6, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x10
vpxor %%T6, %%T6, %%T3
vpclmulqdq %%T3, %%T1, %%T5, 0x11
vpxor %%T1, %%T4, %%T3
vmovdqu %%T5, [%%GDATA + 16*10]
%ifndef GCM128_MODE ; GCM192 or GCM256
vaesenc %%XMM1, %%T5
vaesenc %%XMM2, %%T5
vaesenc %%XMM3, %%T5
vaesenc %%XMM4, %%T5
vaesenc %%XMM5, %%T5
vaesenc %%XMM6, %%T5
vaesenc %%XMM7, %%T5
vaesenc %%XMM8, %%T5
vmovdqu %%T5, [%%GDATA + 16*11]
vaesenc %%XMM1, %%T5
vaesenc %%XMM2, %%T5
vaesenc %%XMM3, %%T5
vaesenc %%XMM4, %%T5
vaesenc %%XMM5, %%T5
vaesenc %%XMM6, %%T5
vaesenc %%XMM7, %%T5
vaesenc %%XMM8, %%T5
vmovdqu %%T5, [%%GDATA + 16*12]
%endif
%ifdef GCM256_MODE
vaesenc %%XMM1, %%T5
vaesenc %%XMM2, %%T5
vaesenc %%XMM3, %%T5
vaesenc %%XMM4, %%T5
vaesenc %%XMM5, %%T5
vaesenc %%XMM6, %%T5
vaesenc %%XMM7, %%T5
vaesenc %%XMM8, %%T5
vmovdqu %%T5, [%%GDATA + 16*13]
vaesenc %%XMM1, %%T5
vaesenc %%XMM2, %%T5
vaesenc %%XMM3, %%T5
vaesenc %%XMM4, %%T5
vaesenc %%XMM5, %%T5
vaesenc %%XMM6, %%T5
vaesenc %%XMM7, %%T5
vaesenc %%XMM8, %%T5
vmovdqu %%T5, [%%GDATA + 16*14]
%endif ; GCM256
%assign i 0
%assign j 1
%rep 8
;; SNP TBD: This is pretty ugly - consider whether just XORing the
;; data in after vaesenclast is simpler and performant. Would
;; also have to ripple it through partial block and ghash_mul_8.
%ifidn %%FULL_PARTIAL, full
%ifdef NT_LD
VXLDR %%T2, [%%PLAIN_CYPH_IN+%%DATA_OFFSET+16*i]
vpxor %%T2, %%T2, %%T5
%else
vpxor %%T2, %%T5, [%%PLAIN_CYPH_IN+%%DATA_OFFSET+16*i]
%endif
%ifidn %%ENC_DEC, ENC
vaesenclast reg(j), reg(j), %%T2
%else
vaesenclast %%T3, reg(j), %%T2
vpxor reg(j), %%T2, %%T5
VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*i], %%T3
%endif
%else
; Don't read the final data during partial block processing
%ifdef NT_LD
%if (i<7)
VXLDR %%T2, [%%PLAIN_CYPH_IN+%%DATA_OFFSET+16*i]
vpxor %%T2, %%T2, %%T5
%else
;; Stage the key directly in T2 rather than hash it with plaintext
vmovdqu %%T2, %%T5
%endif
%else
%if (i<7)
vpxor %%T2, %%T5, [%%PLAIN_CYPH_IN+%%DATA_OFFSET+16*i]
%else
;; Stage the key directly in T2 rather than hash it with plaintext
vmovdqu %%T2, %%T5
%endif
%endif
%ifidn %%ENC_DEC, ENC
vaesenclast reg(j), reg(j), %%T2
%else
%if (i<7)
vaesenclast %%T3, reg(j), %%T2
vpxor reg(j), %%T2, %%T5
;; Do not read the data since it could fault
VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*i], %%T3
%else
vaesenclast reg(j), reg(j), %%T2
%endif
%endif
%endif
%assign i (i+1)
%assign j (j+1)
%endrep
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vpslldq %%T3, %%T6, 8 ; shift-L %%T3 2 DWs
vpsrldq %%T6, %%T6, 8 ; shift-R %%T2 2 DWs
vpxor %%T7, %%T7, %%T3
vpxor %%T1, %%T1, %%T6 ; accumulate the results in %%T1:%%T7
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;first phase of the reduction
vmovdqa %%T3, [rel POLY2]
vpclmulqdq %%T2, %%T3, %%T7, 0x01
vpslldq %%T2, %%T2, 8 ; shift-L xmm2 2 DWs
vpxor %%T7, %%T7, %%T2 ; first phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%ifidn %%ENC_DEC, ENC
; Write to the Ciphertext buffer
VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*0], %%XMM1
VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*1], %%XMM2
VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*2], %%XMM3
VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*3], %%XMM4
VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*4], %%XMM5
VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*5], %%XMM6
VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*6], %%XMM7
%ifidn %%FULL_PARTIAL, full
;; Avoid writing past the buffer if handling a partial block
VXSTR [%%CYPH_PLAIN_OUT+%%DATA_OFFSET+16*7], %%XMM8
%endif
%endif
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;second phase of the reduction
vpclmulqdq %%T2, %%T3, %%T7, 0x00
vpsrldq %%T2, %%T2, 4 ; shift-R xmm2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R)
vpclmulqdq %%T4, %%T3, %%T7, 0x10
vpslldq %%T4, %%T4, 4 ; shift-L xmm0 1 DW (Shift-L 1-DW to obtain result with no shifts)
vpxor %%T4, %%T4, %%T2 ; second phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vpxor %%T1, %%T1, %%T4 ; the result is in %%T1
vpshufb %%XMM1, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM2, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM3, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM4, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM5, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM6, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM7, [rel SHUF_MASK] ; perform a 16Byte swap
vpshufb %%XMM8, [rel SHUF_MASK] ; perform a 16Byte swap
vpxor %%XMM1, %%T1
%endmacro ; GHASH_8_ENCRYPT_8_PARALLEL
; GHASH the last 4 ciphertext blocks.
%macro GHASH_LAST_8 16
%define %%GDATA %1
%define %%T1 %2
%define %%T2 %3
%define %%T3 %4
%define %%T4 %5
%define %%T5 %6
%define %%T6 %7
%define %%T7 %8
%define %%XMM1 %9
%define %%XMM2 %10
%define %%XMM3 %11
%define %%XMM4 %12
%define %%XMM5 %13
%define %%XMM6 %14
%define %%XMM7 %15
%define %%XMM8 %16
;; Karatsuba Method
vmovdqu %%T5, [%%GDATA + HashKey_8]
vpshufd %%T2, %%XMM1, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM1
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T6, %%XMM1, %%T5, 0x11
vpclmulqdq %%T7, %%XMM1, %%T5, 0x00
vpclmulqdq %%XMM1, %%T2, %%T3, 0x00
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_7]
vpshufd %%T2, %%XMM2, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM2
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM2, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM2, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_6]
vpshufd %%T2, %%XMM3, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM3
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM3, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM3, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_5]
vpshufd %%T2, %%XMM4, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM4
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM4, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM4, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_4]
vpshufd %%T2, %%XMM5, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM5
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM5, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM5, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_3]
vpshufd %%T2, %%XMM6, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM6
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM6, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM6, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_2]
vpshufd %%T2, %%XMM7, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM7
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM7, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM7, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey]
vpshufd %%T2, %%XMM8, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM8
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM8, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM8, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
vpxor %%XMM1, %%XMM1, %%T6
vpxor %%T2, %%XMM1, %%T7
vpslldq %%T4, %%T2, 8
vpsrldq %%T2, %%T2, 8
vpxor %%T7, %%T7, %%T4
vpxor %%T6, %%T6, %%T2 ; <%%T6:%%T7> holds the result of the accumulated carry-less multiplications
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;first phase of the reduction
vmovdqa %%T3, [rel POLY2]
vpclmulqdq %%T2, %%T3, %%T7, 0x01
vpslldq %%T2, %%T2, 8 ; shift-L xmm2 2 DWs
vpxor %%T7, %%T7, %%T2 ; first phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;second phase of the reduction
vpclmulqdq %%T2, %%T3, %%T7, 0x00
vpsrldq %%T2, %%T2, 4 ; shift-R %%T2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R)
vpclmulqdq %%T4, %%T3, %%T7, 0x10
vpslldq %%T4, %%T4, 4 ; shift-L %%T4 1 DW (Shift-L 1-DW to obtain result with no shifts)
vpxor %%T4, %%T4, %%T2 ; second phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vpxor %%T6, %%T6, %%T4 ; the result is in %%T6
%endmacro
; GHASH the last 4 ciphertext blocks.
%macro GHASH_LAST_7 15
%define %%GDATA %1
%define %%T1 %2
%define %%T2 %3
%define %%T3 %4
%define %%T4 %5
%define %%T5 %6
%define %%T6 %7
%define %%T7 %8
%define %%XMM1 %9
%define %%XMM2 %10
%define %%XMM3 %11
%define %%XMM4 %12
%define %%XMM5 %13
%define %%XMM6 %14
%define %%XMM7 %15
;; Karatsuba Method
vmovdqu %%T5, [%%GDATA + HashKey_7]
vpshufd %%T2, %%XMM1, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM1
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T6, %%XMM1, %%T5, 0x11
vpclmulqdq %%T7, %%XMM1, %%T5, 0x00
vpclmulqdq %%XMM1, %%T2, %%T3, 0x00
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_6]
vpshufd %%T2, %%XMM2, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM2
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM2, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM2, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_5]
vpshufd %%T2, %%XMM3, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM3
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM3, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM3, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_4]
vpshufd %%T2, %%XMM4, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM4
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM4, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM4, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_3]
vpshufd %%T2, %%XMM5, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM5
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM5, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM5, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_2]
vpshufd %%T2, %%XMM6, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM6
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM6, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM6, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
;;;;;;;;;;;;;;;;;;;;;;
vmovdqu %%T5, [%%GDATA + HashKey_1]
vpshufd %%T2, %%XMM7, 01001110b
vpshufd %%T3, %%T5, 01001110b
vpxor %%T2, %%T2, %%XMM7
vpxor %%T3, %%T3, %%T5
vpclmulqdq %%T4, %%XMM7, %%T5, 0x11
vpxor %%T6, %%T6, %%T4
vpclmulqdq %%T4, %%XMM7, %%T5, 0x00
vpxor %%T7, %%T7, %%T4
vpclmulqdq %%T2, %%T2, %%T3, 0x00
vpxor %%XMM1, %%XMM1, %%T2
;;;;;;;;;;;;;;;;;;;;;;
vpxor %%XMM1, %%XMM1, %%T6
vpxor %%T2, %%XMM1, %%T7
vpslldq %%T4, %%T2, 8
vpsrldq %%T2, %%T2, 8
vpxor %%T7, %%T7, %%T4
vpxor %%T6, %%T6, %%T2 ; <%%T6:%%T7> holds the result of the accumulated carry-less multiplications
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;first phase of the reduction
vmovdqa %%T3, [rel POLY2]
vpclmulqdq %%T2, %%T3, %%T7, 0x01
vpslldq %%T2, %%T2, 8 ; shift-L xmm2 2 DWs
vpxor %%T7, %%T7, %%T2 ; first phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;second phase of the reduction
vpclmulqdq %%T2, %%T3, %%T7, 0x00
vpsrldq %%T2, %%T2, 4 ; shift-R %%T2 1 DW (Shift-R only 1-DW to obtain 2-DWs shift-R)
vpclmulqdq %%T4, %%T3, %%T7, 0x10
vpslldq %%T4, %%T4, 4 ; shift-L %%T4 1 DW (Shift-L 1-DW to obtain result with no shifts)
vpxor %%T4, %%T4, %%T2 ; second phase of the reduction complete
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vpxor %%T6, %%T6, %%T4 ; the result is in %%T6
%endmacro
;;; Handle encryption of the final partial block
;;; IN:
;;; r13 - Number of bytes to read
;;; MODIFIES:
;;; KEY - Key for encrypting the partial block
;;; HASH - Current hash value
;;; SMASHES:
;;; r10, r12, r15, rax
;;; T1, T2
;;; Note:
;;; PLAIN_CYPH_LEN, %7, is passed only to determine
;;; if buffer is big enough to do a 16 byte read & shift.
;;; 'LT16' is passed here only if buffer is known to be smaller
;;; than 16 bytes.
;;; Any other value passed here will result in 16 byte read
;;; code path.
;;; TBD: Remove HASH from the instantiation
%macro ENCRYPT_FINAL_PARTIAL_BLOCK 8
%define %%KEY %1
%define %%T1 %2
%define %%T2 %3
%define %%CYPH_PLAIN_OUT %4
%define %%PLAIN_CYPH_IN %5
%define %%PLAIN_CYPH_LEN %6
%define %%ENC_DEC %7
%define %%DATA_OFFSET %8
;; NOTE: type of read tuned based %%PLAIN_CYPH_LEN setting
%ifidn %%PLAIN_CYPH_LEN, LT16
;; Handle the case where the message is < 16 bytes
lea r10, [%%PLAIN_CYPH_IN + %%DATA_OFFSET]
;; T1 - packed output
;; r10 - input data address
;; r13 - input data length
;; r12, r15, rax - temp registers
READ_SMALL_DATA_INPUT %%T1, r10, r13, r12, r15, rax
lea r12, [SHIFT_MASK + 16]
sub r12, r13
%else
;; Handle the case where the message is >= 16 bytes
sub %%DATA_OFFSET, 16
add %%DATA_OFFSET, r13
;; Receive the last <16 Byte block
vmovdqu %%T1, [%%PLAIN_CYPH_IN+%%DATA_OFFSET]
sub %%DATA_OFFSET, r13
add %%DATA_OFFSET, 16
lea r12, [SHIFT_MASK + 16]
;; Adjust the shuffle mask pointer to be able to shift 16-r13 bytes
;; (r13 is the number of bytes in plaintext mod 16)
sub r12, r13
;; Get the appropriate shuffle mask
vmovdqu %%T2, [r12]
;; shift right 16-r13 bytes
vpshufb %%T1, %%T2
%endif ; %%PLAIN_CYPH_LEN, LT16
;; At this point T1 contains the partial block data
%ifidn %%ENC_DEC, DEC
;; Plaintext XOR E(K, Yn)
;; Set aside the ciphertext
vmovdqa %%T2, %%T1
vpxor %%KEY, %%KEY, %%T1
;; Get the appropriate mask to mask out top 16-r13 bytes of ciphertext
vmovdqu %%T1, [r12 + ALL_F - SHIFT_MASK]
;; Mask out top 16-r13 bytes of ciphertext
vpand %%KEY, %%KEY, %%T1
;; Prepare the ciphertext for the hash
;; mask out top 16-r13 bytes of the plaintext
vpand %%T2, %%T2, %%T1
%else
;; Plaintext XOR E(K, Yn)
vpxor %%KEY, %%KEY, %%T1
;; Get the appropriate mask to mask out top 16-r13 bytes of %%KEY
vmovdqu %%T1, [r12 + ALL_F - SHIFT_MASK]
;; Mask out top 16-r13 bytes of %%KEY
vpand %%KEY, %%KEY, %%T1
%endif
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Output r13 Bytes
vmovq rax, %%KEY
cmp r13, 8
jle %%_less_than_8_bytes_left
mov [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], rax
add %%DATA_OFFSET, 8
vpsrldq %%T1, %%KEY, 8
vmovq rax, %%T1
sub r13, 8
%%_less_than_8_bytes_left:
mov BYTE [%%CYPH_PLAIN_OUT + %%DATA_OFFSET], al
add %%DATA_OFFSET, 1
shr rax, 8
sub r13, 1
jne %%_less_than_8_bytes_left
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%ifidn %%ENC_DEC, DEC
;; If decrypt, restore the ciphertext into %%KEY
vmovdqu %%KEY, %%T2
%endif
%endmacro ; ENCRYPT_FINAL_PARTIAL_BLOCK
; Encryption of a single block
%macro ENCRYPT_SINGLE_BLOCK 2
%define %%GDATA %1
%define %%XMM0 %2
vpxor %%XMM0, %%XMM0, [%%GDATA+16*0]
%assign i 1
%rep NROUNDS
vaesenc %%XMM0, [%%GDATA+16*i]
%assign i (i+1)
%endrep
vaesenclast %%XMM0, [%%GDATA+16*i]
%endmacro
;; Start of Stack Setup
%macro FUNC_SAVE 0
;; Required for Update/GMC_ENC
;the number of pushes must equal STACK_OFFSET
push r12
push r13
push r14
push r15
mov r14, rsp
sub rsp, VARIABLE_OFFSET
and rsp, ~63
%ifidn __OUTPUT_FORMAT__, win64
; xmm6:xmm15 need to be maintained for Windows
vmovdqu [rsp + LOCAL_STORAGE + 0*16],xmm6
vmovdqu [rsp + LOCAL_STORAGE + 1*16],xmm7
vmovdqu [rsp + LOCAL_STORAGE + 2*16],xmm8
vmovdqu [rsp + LOCAL_STORAGE + 3*16],xmm9
vmovdqu [rsp + LOCAL_STORAGE + 4*16],xmm10
vmovdqu [rsp + LOCAL_STORAGE + 5*16],xmm11
vmovdqu [rsp + LOCAL_STORAGE + 6*16],xmm12
vmovdqu [rsp + LOCAL_STORAGE + 7*16],xmm13
vmovdqu [rsp + LOCAL_STORAGE + 8*16],xmm14
vmovdqu [rsp + LOCAL_STORAGE + 9*16],xmm15
%endif
%endmacro
%macro FUNC_RESTORE 0
%ifdef SAFE_DATA
clear_scratch_gps_asm
clear_scratch_ymms_asm
%endif
%ifidn __OUTPUT_FORMAT__, win64
vmovdqu xmm15, [rsp + LOCAL_STORAGE + 9*16]
vmovdqu xmm14, [rsp + LOCAL_STORAGE + 8*16]
vmovdqu xmm13, [rsp + LOCAL_STORAGE + 7*16]
vmovdqu xmm12, [rsp + LOCAL_STORAGE + 6*16]
vmovdqu xmm11, [rsp + LOCAL_STORAGE + 5*16]
vmovdqu xmm10, [rsp + LOCAL_STORAGE + 4*16]
vmovdqu xmm9, [rsp + LOCAL_STORAGE + 3*16]
vmovdqu xmm8, [rsp + LOCAL_STORAGE + 2*16]
vmovdqu xmm7, [rsp + LOCAL_STORAGE + 1*16]
vmovdqu xmm6, [rsp + LOCAL_STORAGE + 0*16]
%endif
;; Required for Update/GMC_ENC
mov rsp, r14
pop r15
pop r14
pop r13
pop r12
%endmacro
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; GCM_INIT initializes a gcm_context_data struct to prepare for encoding/decoding.
; Input: gcm_key_data * (GDATA_KEY), gcm_context_data *(GDATA_CTX), IV,
; Additional Authentication data (A_IN), Additional Data length (A_LEN).
; Output: Updated GDATA_CTX with the hash of A_IN (AadHash) and initialized other parts of GDATA_CTX.
; Clobbers rax, r10-r13, and xmm0-xmm6
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro GCM_INIT 5
%define %%GDATA_KEY %1
%define %%GDATA_CTX %2
%define %%IV %3
%define %%A_IN %4
%define %%A_LEN %5
%define %%AAD_HASH xmm14
mov r10, %%A_LEN
cmp r10, 0
je %%_aad_is_zero
CALC_AAD_HASH %%A_IN, %%A_LEN, %%AAD_HASH, %%GDATA_KEY, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, r10, r11, r12, r13, rax
jmp %%_after_aad
%%_aad_is_zero:
vpxor %%AAD_HASH, %%AAD_HASH
%%_after_aad:
mov r10, %%A_LEN
vpxor xmm2, xmm3
vmovdqu [%%GDATA_CTX + AadHash], %%AAD_HASH ; ctx_data.aad hash = aad_hash
mov [%%GDATA_CTX + AadLen], r10 ; ctx_data.aad_length = aad_length
xor r10, r10
mov [%%GDATA_CTX + InLen], r10 ; ctx_data.in_length = 0
mov [%%GDATA_CTX + PBlockLen], r10 ; ctx_data.partial_block_length = 0
vmovdqu [%%GDATA_CTX + PBlockEncKey], xmm2 ; ctx_data.partial_block_enc_key = 0
mov r10, %%IV
vmovdqa xmm2, [rel ONEf] ; read 12 IV bytes and pad with 0x00000001
vpinsrq xmm2, [r10], 0
vpinsrd xmm2, [r10+8], 2
vmovdqu [%%GDATA_CTX + OrigIV], xmm2 ; ctx_data.orig_IV = iv
vpshufb xmm2, [rel SHUF_MASK]
vmovdqu [%%GDATA_CTX + CurCount], xmm2 ; ctx_data.current_counter = iv
%endmacro
%macro GCM_ENC_DEC_SMALL 12
%define %%GDATA_KEY %1
%define %%GDATA_CTX %2
%define %%CYPH_PLAIN_OUT %3
%define %%PLAIN_CYPH_IN %4
%define %%PLAIN_CYPH_LEN %5
%define %%ENC_DEC %6
%define %%DATA_OFFSET %7
%define %%LENGTH %8
%define %%NUM_BLOCKS %9
%define %%CTR %10
%define %%HASH %11
%define %%INSTANCE_TYPE %12
;; NOTE: the check below is obsolete in current implementation. The check is already done in GCM_ENC_DEC.
;; cmp %%NUM_BLOCKS, 0
;; je %%_small_initial_blocks_encrypted
cmp %%NUM_BLOCKS, 8
je %%_small_initial_num_blocks_is_8
cmp %%NUM_BLOCKS, 7
je %%_small_initial_num_blocks_is_7
cmp %%NUM_BLOCKS, 6
je %%_small_initial_num_blocks_is_6
cmp %%NUM_BLOCKS, 5
je %%_small_initial_num_blocks_is_5
cmp %%NUM_BLOCKS, 4
je %%_small_initial_num_blocks_is_4
cmp %%NUM_BLOCKS, 3
je %%_small_initial_num_blocks_is_3
cmp %%NUM_BLOCKS, 2
je %%_small_initial_num_blocks_is_2
jmp %%_small_initial_num_blocks_is_1
%%_small_initial_num_blocks_is_8:
INITIAL_BLOCKS_PARTIAL %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 8, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC, %%INSTANCE_TYPE
jmp %%_small_initial_blocks_encrypted
%%_small_initial_num_blocks_is_7:
;; r13 - %%LENGTH
;; xmm12 - T1
;; xmm13 - T2
;; xmm14 - T3 - AAD HASH OUT when not producing 8 AES keys
;; xmm15 - T4
;; xmm11 - T5
;; xmm9 - CTR
;; xmm1 - XMM1 - Cipher + Hash when producing 8 AES keys
;; xmm2 - XMM2
;; xmm3 - XMM3
;; xmm4 - XMM4
;; xmm5 - XMM5
;; xmm6 - XMM6
;; xmm7 - XMM7
;; xmm8 - XMM8 - AAD HASH IN
;; xmm10 - T6
;; xmm0 - T_key
INITIAL_BLOCKS_PARTIAL %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 7, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC, %%INSTANCE_TYPE
jmp %%_small_initial_blocks_encrypted
%%_small_initial_num_blocks_is_6:
INITIAL_BLOCKS_PARTIAL %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 6, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC, %%INSTANCE_TYPE
jmp %%_small_initial_blocks_encrypted
%%_small_initial_num_blocks_is_5:
INITIAL_BLOCKS_PARTIAL %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 5, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC, %%INSTANCE_TYPE
jmp %%_small_initial_blocks_encrypted
%%_small_initial_num_blocks_is_4:
INITIAL_BLOCKS_PARTIAL %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 4, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC, %%INSTANCE_TYPE
jmp %%_small_initial_blocks_encrypted
%%_small_initial_num_blocks_is_3:
INITIAL_BLOCKS_PARTIAL %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 3, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC, %%INSTANCE_TYPE
jmp %%_small_initial_blocks_encrypted
%%_small_initial_num_blocks_is_2:
INITIAL_BLOCKS_PARTIAL %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 2, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC, %%INSTANCE_TYPE
jmp %%_small_initial_blocks_encrypted
%%_small_initial_num_blocks_is_1:
INITIAL_BLOCKS_PARTIAL %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 1, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC, %%INSTANCE_TYPE
;; Note: zero initial blocks not allowed.
%%_small_initial_blocks_encrypted:
%endmacro ; GCM_ENC_DEC_SMALL
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; GCM_ENC_DEC Encodes/Decodes given data. Assumes that the passed gcm_context_data struct
; has been initialized by GCM_INIT
; Requires the input data be at least 1 byte long because of READ_SMALL_INPUT_DATA.
; Input: gcm_key_data struct* (GDATA_KEY), gcm_context_data *(GDATA_CTX), input text (PLAIN_CYPH_IN),
; input text length (PLAIN_CYPH_LEN) and whether encoding or decoding (ENC_DEC).
; Output: A cypher of the given plain text (CYPH_PLAIN_OUT), and updated GDATA_CTX
; Clobbers rax, r10-r15, and xmm0-xmm15
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro GCM_ENC_DEC 7
%define %%GDATA_KEY %1
%define %%GDATA_CTX %2
%define %%CYPH_PLAIN_OUT %3
%define %%PLAIN_CYPH_IN %4
%define %%PLAIN_CYPH_LEN %5
%define %%ENC_DEC %6
%define %%INSTANCE_TYPE %7
%define %%DATA_OFFSET r11
; Macro flow:
; calculate the number of 16byte blocks in the message
; process (number of 16byte blocks) mod 8 '%%_initial_num_blocks_is_# .. %%_initial_blocks_encrypted'
; process 8 16 byte blocks at a time until all are done '%%_encrypt_by_8_new .. %%_eight_cipher_left'
; if there is a block of less tahn 16 bytes process it '%%_zero_cipher_left .. %%_multiple_of_16_bytes'
cmp %%PLAIN_CYPH_LEN, 0
je %%_enc_dec_done
xor %%DATA_OFFSET, %%DATA_OFFSET
;; Update length of data processed
%ifidn __OUTPUT_FORMAT__, win64
mov rax, %%PLAIN_CYPH_LEN
add [%%GDATA_CTX + InLen], rax
%else
add [%%GDATA_CTX + InLen], %%PLAIN_CYPH_LEN
%endif
vmovdqu xmm13, [%%GDATA_KEY + HashKey]
vmovdqu xmm8, [%%GDATA_CTX + AadHash]
%ifidn %%INSTANCE_TYPE, multi_call
;; NOTE: partial block processing makes only sense for multi_call here.
;; Used for the update flow - if there was a previous partial
;; block fill the remaining bytes here.
PARTIAL_BLOCK %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%PLAIN_CYPH_LEN, %%DATA_OFFSET, xmm8, %%ENC_DEC
%endif
;; lift CTR set from initial_blocks to here
%ifidn %%INSTANCE_TYPE, single_call
vmovdqu xmm9, xmm2
%else
vmovdqu xmm9, [%%GDATA_CTX + CurCount]
%endif
;; Save the amount of data left to process in r10
mov r13, %%PLAIN_CYPH_LEN
%ifidn %%INSTANCE_TYPE, multi_call
;; NOTE: %%DATA_OFFSET is zero in single_call case.
;; Consequently PLAIN_CYPH_LEN will never be zero after
;; %%DATA_OFFSET subtraction below.
sub r13, %%DATA_OFFSET
;; There may be no more data if it was consumed in the partial block.
cmp r13, 0
je %%_enc_dec_done
%endif ; %%INSTANCE_TYPE, multi_call
mov r10, r13
;; Determine how many blocks to process in INITIAL
mov r12, r13
shr r12, 4
and r12, 7
;; Process one additional block in INITIAL if there is a partial block
and r10, 0xf
blsmsk r10, r10 ; Set CF if zero
cmc ; Flip CF
adc r12, 0x0 ; Process an additional INITIAL block if CF set
;; Less than 127B will be handled by the small message code, which
;; can process up to 7 16B blocks.
cmp r13, 128
jge %%_large_message_path
GCM_ENC_DEC_SMALL %%GDATA_KEY, %%GDATA_CTX, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%PLAIN_CYPH_LEN, %%ENC_DEC, %%DATA_OFFSET, r13, r12, xmm9, xmm14, %%INSTANCE_TYPE
jmp %%_ghash_done
%%_large_message_path:
and r12, 0x7 ; Still, don't allow 8 INITIAL blocks since this will
; can be handled by the x8 partial loop.
cmp r12, 0
je %%_initial_num_blocks_is_0
cmp r12, 7
je %%_initial_num_blocks_is_7
cmp r12, 6
je %%_initial_num_blocks_is_6
cmp r12, 5
je %%_initial_num_blocks_is_5
cmp r12, 4
je %%_initial_num_blocks_is_4
cmp r12, 3
je %%_initial_num_blocks_is_3
cmp r12, 2
je %%_initial_num_blocks_is_2
jmp %%_initial_num_blocks_is_1
%%_initial_num_blocks_is_7:
;; r13 - %%LENGTH
;; xmm12 - T1
;; xmm13 - T2
;; xmm14 - T3 - AAD HASH OUT when not producing 8 AES keys
;; xmm15 - T4
;; xmm11 - T5
;; xmm9 - CTR
;; xmm1 - XMM1 - Cipher + Hash when producing 8 AES keys
;; xmm2 - XMM2
;; xmm3 - XMM3
;; xmm4 - XMM4
;; xmm5 - XMM5
;; xmm6 - XMM6
;; xmm7 - XMM7
;; xmm8 - XMM8 - AAD HASH IN
;; xmm10 - T6
;; xmm0 - T_key
INITIAL_BLOCKS %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 7, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
jmp %%_initial_blocks_encrypted
%%_initial_num_blocks_is_6:
INITIAL_BLOCKS %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 6, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
jmp %%_initial_blocks_encrypted
%%_initial_num_blocks_is_5:
INITIAL_BLOCKS %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 5, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
jmp %%_initial_blocks_encrypted
%%_initial_num_blocks_is_4:
INITIAL_BLOCKS %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 4, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
jmp %%_initial_blocks_encrypted
%%_initial_num_blocks_is_3:
INITIAL_BLOCKS %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 3, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
jmp %%_initial_blocks_encrypted
%%_initial_num_blocks_is_2:
INITIAL_BLOCKS %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 2, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
jmp %%_initial_blocks_encrypted
%%_initial_num_blocks_is_1:
INITIAL_BLOCKS %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 1, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
jmp %%_initial_blocks_encrypted
%%_initial_num_blocks_is_0:
INITIAL_BLOCKS %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, r13, %%DATA_OFFSET, 0, xmm12, xmm13, xmm14, xmm15, xmm11, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm10, xmm0, %%ENC_DEC
%%_initial_blocks_encrypted:
;; The entire message was encrypted processed in initial and now need to be hashed
cmp r13, 0
je %%_encrypt_done
;; Encrypt the final <16 byte (partial) block, then hash
cmp r13, 16
jl %%_encrypt_final_partial
;; Process 7 full blocks plus a partial block
cmp r13, 128
jl %%_encrypt_by_8_partial
%%_encrypt_by_8_parallel:
;; in_order vs. out_order is an optimization to increment the counter without shuffling
;; it back into little endian. r15d keeps track of when we need to increent in order so
;; that the carry is handled correctly.
vmovd r15d, xmm9
and r15d, 255
vpshufb xmm9, [rel SHUF_MASK]
%%_encrypt_by_8_new:
cmp r15d, 255-8
jg %%_encrypt_by_8
;; xmm0 - T1
;; xmm10 - T2
;; xmm11 - T3
;; xmm12 - T4
;; xmm13 - T5
;; xmm14 - T6
;; xmm9 - CTR
;; xmm1 - XMM1
;; xmm2 - XMM2
;; xmm3 - XMM3
;; xmm4 - XMM4
;; xmm5 - XMM5
;; xmm6 - XMM6
;; xmm7 - XMM7
;; xmm8 - XMM8
;; xmm15 - T7
add r15b, 8
GHASH_8_ENCRYPT_8_PARALLEL %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%DATA_OFFSET, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm15, out_order, %%ENC_DEC, full
add %%DATA_OFFSET, 128
sub r13, 128
cmp r13, 128
jge %%_encrypt_by_8_new
vpshufb xmm9, [rel SHUF_MASK]
jmp %%_encrypt_by_8_parallel_done
%%_encrypt_by_8:
vpshufb xmm9, [rel SHUF_MASK]
add r15b, 8
GHASH_8_ENCRYPT_8_PARALLEL %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%DATA_OFFSET, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm15, in_order, %%ENC_DEC, full
vpshufb xmm9, [rel SHUF_MASK]
add %%DATA_OFFSET, 128
sub r13, 128
cmp r13, 128
jge %%_encrypt_by_8_new
vpshufb xmm9, [rel SHUF_MASK]
%%_encrypt_by_8_parallel_done:
;; Test to see if we need a by 8 with partial block. At this point
;; bytes remaining should be either zero or between 113-127.
cmp r13, 0
je %%_encrypt_done
%%_encrypt_by_8_partial:
;; Shuffle needed to align key for partial block xor. out_order
;; is a little faster because it avoids extra shuffles.
;; TBD: Might need to account for when we don't have room to increment the counter.
;; Process parallel buffers with a final partial block.
GHASH_8_ENCRYPT_8_PARALLEL %%GDATA_KEY, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%DATA_OFFSET, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm9, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm15, in_order, %%ENC_DEC, partial
add %%DATA_OFFSET, 128-16
sub r13, 128-16
%%_encrypt_final_partial:
vpshufb xmm8, [rel SHUF_MASK]
mov [%%GDATA_CTX + PBlockLen], r13
vmovdqu [%%GDATA_CTX + PBlockEncKey], xmm8
;; xmm8 - Final encrypted counter - need to hash with partial or full block ciphertext
;; GDATA, KEY, T1, T2
ENCRYPT_FINAL_PARTIAL_BLOCK xmm8, xmm0, xmm10, %%CYPH_PLAIN_OUT, %%PLAIN_CYPH_IN, %%PLAIN_CYPH_LEN, %%ENC_DEC, %%DATA_OFFSET
vpshufb xmm8, [rel SHUF_MASK]
%%_encrypt_done:
;; Mapping to macro parameters
;; IN:
;; xmm9 contains the counter
;; xmm1-xmm8 contain the xor'd ciphertext
;; OUT:
;; xmm14 contains the final hash
;; GDATA, T1, T2, T3, T4, T5, T6, T7, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8
%ifidn %%INSTANCE_TYPE, multi_call
mov r13, [%%GDATA_CTX + PBlockLen]
cmp r13, 0
jz %%_hash_last_8
GHASH_LAST_7 %%GDATA_KEY, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7
;; XOR the partial word into the hash
vpxor xmm14, xmm14, xmm8
jmp %%_ghash_done
%endif
%%_hash_last_8:
GHASH_LAST_8 %%GDATA_KEY, xmm0, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8
%%_ghash_done:
vmovdqu [%%GDATA_CTX + CurCount], xmm9 ; my_ctx_data.current_counter = xmm9
vmovdqu [%%GDATA_CTX + AadHash], xmm14 ; my_ctx_data.aad hash = xmm14
%%_enc_dec_done:
%endmacro
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; GCM_COMPLETE Finishes Encyrption/Decryption of last partial block after GCM_UPDATE finishes.
; Input: A gcm_key_data * (GDATA_KEY), gcm_context_data (GDATA_CTX) and whether encoding or decoding (ENC_DEC).
; Output: Authorization Tag (AUTH_TAG) and Authorization Tag length (AUTH_TAG_LEN)
; Clobbers rax, r10-r12, and xmm0, xmm1, xmm5, xmm6, xmm9, xmm11, xmm14, xmm15
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
%macro GCM_COMPLETE 6
%define %%GDATA_KEY %1
%define %%GDATA_CTX %2
%define %%AUTH_TAG %3
%define %%AUTH_TAG_LEN %4
%define %%ENC_DEC %5
%define %%INSTANCE_TYPE %6
%define %%PLAIN_CYPH_LEN rax
vmovdqu xmm13, [%%GDATA_KEY + HashKey]
;; Start AES as early as possible
vmovdqu xmm9, [%%GDATA_CTX + OrigIV] ; xmm9 = Y0
ENCRYPT_SINGLE_BLOCK %%GDATA_KEY, xmm9 ; E(K, Y0)
%ifidn %%INSTANCE_TYPE, multi_call
;; If the GCM function is called as a single function call rather
;; than invoking the individual parts (init, update, finalize) we
;; can remove a write to read dependency on AadHash.
vmovdqu xmm14, [%%GDATA_CTX + AadHash]
;; Encrypt the final partial block. If we did this as a single call then
;; the partial block was handled in the main GCM_ENC_DEC macro.
mov r12, [%%GDATA_CTX + PBlockLen]
cmp r12, 0
je %%_partial_done
GHASH_MUL xmm14, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6 ;GHASH computation for the last <16 Byte block
vmovdqu [%%GDATA_CTX + AadHash], xmm14
%%_partial_done:
%endif
mov r12, [%%GDATA_CTX + AadLen] ; r12 = aadLen (number of bytes)
mov %%PLAIN_CYPH_LEN, [%%GDATA_CTX + InLen]
shl r12, 3 ; convert into number of bits
vmovd xmm15, r12d ; len(A) in xmm15
shl %%PLAIN_CYPH_LEN, 3 ; len(C) in bits (*128)
vmovq xmm1, %%PLAIN_CYPH_LEN
vpslldq xmm15, xmm15, 8 ; xmm15 = len(A)|| 0x0000000000000000
vpxor xmm15, xmm15, xmm1 ; xmm15 = len(A)||len(C)
vpxor xmm14, xmm15
GHASH_MUL xmm14, xmm13, xmm0, xmm10, xmm11, xmm5, xmm6
vpshufb xmm14, [rel SHUF_MASK] ; perform a 16Byte swap
vpxor xmm9, xmm9, xmm14
%%_return_T:
mov r10, %%AUTH_TAG ; r10 = authTag
mov r11, %%AUTH_TAG_LEN ; r11 = auth_tag_len
cmp r11, 16
je %%_T_16
cmp r11, 12
je %%_T_12
cmp r11, 8
je %%_T_8
simd_store_avx r10, xmm9, r11, r12, rax
jmp %%_return_T_done
%%_T_8:
vmovq rax, xmm9
mov [r10], rax
jmp %%_return_T_done
%%_T_12:
vmovq rax, xmm9
mov [r10], rax
vpsrldq xmm9, xmm9, 8
vmovd eax, xmm9
mov [r10 + 8], eax
jmp %%_return_T_done
%%_T_16:
vmovdqu [r10], xmm9
%%_return_T_done:
%ifdef SAFE_DATA
;; Clear sensitive data from context structure
vpxor xmm0, xmm0
vmovdqu [%%GDATA_CTX + AadHash], xmm0
vmovdqu [%%GDATA_CTX + PBlockEncKey], xmm0
%endif
%endmacro ; GCM_COMPLETE
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void aes_gcm_precomp_128_avx_gen4 /
; aes_gcm_precomp_192_avx_gen4 /
; aes_gcm_precomp_256_avx_gen4
; (struct gcm_key_data *key_data)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MKGLOBAL(FN_NAME(precomp,_),function,)
FN_NAME(precomp,_):
%ifdef SAFE_PARAM
;; Check key_data != NULL
cmp arg1, 0
jz exit_precomp
%endif
push r12
push r13
push r14
push r15
mov r14, rsp
sub rsp, VARIABLE_OFFSET
and rsp, ~63 ; align rsp to 64 bytes
%ifidn __OUTPUT_FORMAT__, win64
; only xmm6 needs to be maintained
vmovdqu [rsp + LOCAL_STORAGE + 0*16],xmm6
%endif
vpxor xmm6, xmm6
ENCRYPT_SINGLE_BLOCK arg1, xmm6 ; xmm6 = HashKey
vpshufb xmm6, [rel SHUF_MASK]
;;;;;;;;;;;;;;; PRECOMPUTATION of HashKey<<1 mod poly from the HashKey;;;;;;;;;;;;;;;
vmovdqa xmm2, xmm6
vpsllq xmm6, xmm6, 1
vpsrlq xmm2, xmm2, 63
vmovdqa xmm1, xmm2
vpslldq xmm2, xmm2, 8
vpsrldq xmm1, xmm1, 8
vpor xmm6, xmm6, xmm2
;reduction
vpshufd xmm2, xmm1, 00100100b
vpcmpeqd xmm2, [rel TWOONE]
vpand xmm2, xmm2, [rel POLY]
vpxor xmm6, xmm6, xmm2 ; xmm6 holds the HashKey<<1 mod poly
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
vmovdqu [arg1 + HashKey], xmm6 ; store HashKey<<1 mod poly
PRECOMPUTE arg1, xmm6, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5
%ifidn __OUTPUT_FORMAT__, win64
vmovdqu xmm6, [rsp + LOCAL_STORAGE + 0*16]
%endif
mov rsp, r14
pop r15
pop r14
pop r13
pop r12
%ifdef SAFE_DATA
clear_scratch_gps_asm
clear_scratch_ymms_asm
%endif
exit_precomp:
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void aes_gcm_init_128_avx_gen4 / aes_gcm_init_192_avx_gen4 / aes_gcm_init_256_avx_gen4
; (const struct gcm_key_data *key_data,
; struct gcm_context_data *context_data,
; u8 *iv,
; const u8 *aad,
; u64 aad_len);
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MKGLOBAL(FN_NAME(init,_),function,)
FN_NAME(init,_):
push r12
push r13
%ifidn __OUTPUT_FORMAT__, win64
push r14
push r15
mov r14, rsp
; xmm6:xmm15 need to be maintained for Windows
sub rsp, 1*16
movdqu [rsp + 0*16], xmm6
%endif
%ifdef SAFE_PARAM
;; Check key_data != NULL
cmp arg1, 0
jz exit_init
;; Check context_data != NULL
cmp arg2, 0
jz exit_init
;; Check IV != NULL
cmp arg3, 0
jz exit_init
;; Check if aad_len == 0
cmp arg5, 0
jz skip_aad_check_init
;; Check aad != NULL (aad_len != 0)
cmp arg4, 0
jz exit_init
skip_aad_check_init:
%endif
GCM_INIT arg1, arg2, arg3, arg4, arg5
%ifdef SAFE_DATA
clear_scratch_gps_asm
clear_scratch_ymms_asm
%endif
exit_init:
%ifidn __OUTPUT_FORMAT__, win64
movdqu xmm6 , [rsp + 0*16]
mov rsp, r14
pop r15
pop r14
%endif
pop r13
pop r12
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void aes_gcm_enc_128_update_avx_gen4 / aes_gcm_enc_192_update_avx_gen4 /
; aes_gcm_enc_128_update_avx_gen4
; (const struct gcm_key_data *key_data,
; struct gcm_context_data *context_data,
; u8 *out,
; const u8 *in,
; u64 plaintext_len);
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MKGLOBAL(FN_NAME(enc,_update_),function,)
FN_NAME(enc,_update_):
FUNC_SAVE
%ifdef SAFE_PARAM
;; Check key_data != NULL
cmp arg1, 0
jz exit_update_enc
;; Check context_data != NULL
cmp arg2, 0
jz exit_update_enc
;; Check if plaintext_len == 0
cmp arg5, 0
jz skip_in_out_check_update_enc
;; Check out != NULL (plaintext_len != 0)
cmp arg3, 0
jz exit_update_enc
;; Check in != NULL (plaintext_len != 0)
cmp arg4, 0
jz exit_update_enc
skip_in_out_check_update_enc:
%endif
GCM_ENC_DEC arg1, arg2, arg3, arg4, arg5, ENC, multi_call
exit_update_enc:
FUNC_RESTORE
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void aes_gcm_dec_128_update_avx_gen4 / aes_gcm_dec_192_update_avx_gen4 /
; aes_gcm_dec_256_update_avx_gen4
; (const struct gcm_key_data *key_data,
; struct gcm_context_data *context_data,
; u8 *out,
; const u8 *in,
; u64 plaintext_len);
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MKGLOBAL(FN_NAME(dec,_update_),function,)
FN_NAME(dec,_update_):
FUNC_SAVE
%ifdef SAFE_PARAM
;; Check key_data != NULL
cmp arg1, 0
jz exit_update_dec
;; Check context_data != NULL
cmp arg2, 0
jz exit_update_dec
;; Check if plaintext_len == 0
cmp arg5, 0
jz skip_in_out_check_update_dec
;; Check out != NULL (plaintext_len != 0)
cmp arg3, 0
jz exit_update_dec
;; Check in != NULL (plaintext_len != 0)
cmp arg4, 0
jz exit_update_dec
skip_in_out_check_update_dec:
%endif
GCM_ENC_DEC arg1, arg2, arg3, arg4, arg5, DEC, multi_call
exit_update_dec:
FUNC_RESTORE
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void aes_gcm_enc_128_finalize_avx_gen4 / aes_gcm_enc_192_finalize_avx_gen4 /
; aes_gcm_enc_256_finalize_avx_gen4
; (const struct gcm_key_data *key_data,
; struct gcm_context_data *context_data,
; u8 *auth_tag,
; u64 auth_tag_len);
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MKGLOBAL(FN_NAME(enc,_finalize_),function,)
FN_NAME(enc,_finalize_):
%ifdef SAFE_PARAM
;; Check key_data != NULL
cmp arg1, 0
jz exit_enc_fin
;; Check context_data != NULL
cmp arg2, 0
jz exit_enc_fin
;; Check auth_tag != NULL
cmp arg3, 0
jz exit_enc_fin
;; Check auth_tag_len == 0 or > 16
cmp arg4, 0
jz exit_enc_fin
cmp arg4, 16
ja exit_enc_fin
%endif
push r12
%ifidn __OUTPUT_FORMAT__, win64
; xmm6:xmm15 need to be maintained for Windows
sub rsp, 5*16
vmovdqu [rsp + 0*16], xmm6
vmovdqu [rsp + 1*16], xmm9
vmovdqu [rsp + 2*16], xmm11
vmovdqu [rsp + 3*16], xmm14
vmovdqu [rsp + 4*16], xmm15
%endif
GCM_COMPLETE arg1, arg2, arg3, arg4, ENC, multi_call
%ifdef SAFE_DATA
clear_scratch_gps_asm
clear_scratch_ymms_asm
%endif
%ifidn __OUTPUT_FORMAT__, win64
vmovdqu xmm15, [rsp + 4*16]
vmovdqu xmm14, [rsp + 3*16]
vmovdqu xmm11, [rsp + 2*16]
vmovdqu xmm9, [rsp + 1*16]
vmovdqu xmm6, [rsp + 0*16]
add rsp, 5*16
%endif
pop r12
exit_enc_fin:
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void aes_gcm_dec_128_finalize_avx_gen4 / aes_gcm_dec_192_finalize_avx_gen4
; aes_gcm_dec_256_finalize_avx_gen4
; (const struct gcm_key_data *key_data,
; struct gcm_context_data *context_data,
; u8 *auth_tag,
; u64 auth_tag_len);
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MKGLOBAL(FN_NAME(dec,_finalize_),function,)
FN_NAME(dec,_finalize_):
%ifdef SAFE_PARAM
;; Check key_data != NULL
cmp arg1, 0
jz exit_dec_fin
;; Check context_data != NULL
cmp arg2, 0
jz exit_dec_fin
;; Check auth_tag != NULL
cmp arg3, 0
jz exit_dec_fin
;; Check auth_tag_len == 0 or > 16
cmp arg4, 0
jz exit_dec_fin
cmp arg4, 16
ja exit_dec_fin
%endif
push r12
%ifidn __OUTPUT_FORMAT__, win64
; xmm6:xmm15 need to be maintained for Windows
sub rsp, 5*16
vmovdqu [rsp + 0*16], xmm6
vmovdqu [rsp + 1*16], xmm9
vmovdqu [rsp + 2*16], xmm11
vmovdqu [rsp + 3*16], xmm14
vmovdqu [rsp + 4*16], xmm15
%endif
GCM_COMPLETE arg1, arg2, arg3, arg4, DEC, multi_call
%ifdef SAFE_DATA
clear_scratch_gps_asm
clear_scratch_ymms_asm
%endif
%ifidn __OUTPUT_FORMAT__, win64
vmovdqu xmm15, [rsp + 4*16]
vmovdqu xmm14, [rsp + 3*16]
vmovdqu xmm11, [rsp + 2*16]
vmovdqu xmm9, [rsp + 1*16]
vmovdqu xmm6, [rsp + 0*16]
add rsp, 5*16
%endif
pop r12
exit_dec_fin:
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void aes_gcm_enc_128_avx_gen4 / aes_gcm_enc_192_avx_gen4 / aes_gcm_enc_256_avx_gen4
; (const struct gcm_key_data *key_data,
; struct gcm_context_data *context_data,
; u8 *out,
; const u8 *in,
; u64 plaintext_len,
; u8 *iv,
; const u8 *aad,
; u64 aad_len,
; u8 *auth_tag,
; u64 auth_tag_len);
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MKGLOBAL(FN_NAME(enc,_),function,)
FN_NAME(enc,_):
FUNC_SAVE
%ifdef SAFE_PARAM
;; Check key_data != NULL
cmp arg1, 0
jz exit_enc
;; Check context_data != NULL
cmp arg2, 0
jz exit_enc
;; Check IV != NULL
cmp arg6, 0
jz exit_enc
;; Check auth_tag != NULL
cmp arg9, 0
jz exit_enc
;; Check auth_tag_len == 0 or > 16
cmp arg10, 0
jz exit_enc
cmp arg10, 16
ja exit_enc
;; Check if plaintext_len == 0
cmp arg5, 0
jz skip_in_out_check_enc
;; Check out != NULL (plaintext_len != 0)
cmp arg3, 0
jz exit_enc
;; Check in != NULL (plaintext_len != 0)
cmp arg4, 0
jz exit_enc
skip_in_out_check_enc:
;; Check if aad_len == 0
cmp arg8, 0
jz skip_aad_check_enc
;; Check aad != NULL (aad_len != 0)
cmp arg7, 0
jz exit_enc
skip_aad_check_enc:
%endif
GCM_INIT arg1, arg2, arg6, arg7, arg8
GCM_ENC_DEC arg1, arg2, arg3, arg4, arg5, ENC, single_call
GCM_COMPLETE arg1, arg2, arg9, arg10, ENC, single_call
exit_enc:
FUNC_RESTORE
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;void aes_gcm_dec_128_avx_gen4 / aes_gcm_dec_192_avx_gen4 / aes_gcm_dec_256_avx_gen4
; (const struct gcm_key_data *key_data,
; struct gcm_context_data *context_data,
; u8 *out,
; const u8 *in,
; u64 plaintext_len,
; u8 *iv,
; const u8 *aad,
; u64 aad_len,
; u8 *auth_tag,
; u64 auth_tag_len);
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
MKGLOBAL(FN_NAME(dec,_),function,)
FN_NAME(dec,_):
FUNC_SAVE
%ifdef SAFE_PARAM
;; Check key_data != NULL
cmp arg1, 0
jz exit_dec
;; Check context_data != NULL
cmp arg2, 0
jz exit_dec
;; Check IV != NULL
cmp arg6, 0
jz exit_dec
;; Check auth_tag != NULL
cmp arg9, 0
jz exit_dec
;; Check auth_tag_len == 0 or > 16
cmp arg10, 0
jz exit_dec
cmp arg10, 16
ja exit_dec
;; Check if plaintext_len == 0
cmp arg5, 0
jz skip_in_out_check_dec
;; Check out != NULL (plaintext_len != 0)
cmp arg3, 0
jz exit_dec
;; Check in != NULL (plaintext_len != 0)
cmp arg4, 0
jz exit_dec
skip_in_out_check_dec:
;; Check if aad_len == 0
cmp arg8, 0
jz skip_aad_check_dec
;; Check aad != NULL (aad_len != 0)
cmp arg7, 0
jz exit_dec
skip_aad_check_dec:
%endif
GCM_INIT arg1, arg2, arg6, arg7, arg8
GCM_ENC_DEC arg1, arg2, arg3, arg4, arg5, DEC, single_call
GCM_COMPLETE arg1, arg2, arg9, arg10, DEC, single_call
exit_dec:
FUNC_RESTORE
ret
%ifdef LINUX
section .note.GNU-stack noalloc noexec nowrite progbits
%endif
|