summaryrefslogtreecommitdiffstats
path: root/src/spdk/intel-ipsec-mb/sse/pon_sse.asm
blob: 32585f5f8626eb0df96368e59823ae79ca96033f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
;;
;; Copyright (c) 2019, Intel Corporation
;;
;; Redistribution and use in source and binary forms, with or without
;; modification, are permitted provided that the following conditions are met:
;;
;;     * Redistributions of source code must retain the above copyright notice,
;;       this list of conditions and the following disclaimer.
;;     * Redistributions in binary form must reproduce the above copyright
;;       notice, this list of conditions and the following disclaimer in the
;;       documentation and/or other materials provided with the distribution.
;;     * Neither the name of Intel Corporation nor the names of its contributors
;;       may be used to endorse or promote products derived from this software
;;       without specific prior written permission.
;;
;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
;; AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
;; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
;; DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
;; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
;; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
;; SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
;; CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
;; OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
;; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;

%include "job_aes_hmac.asm"
%include "include/os.asm"
%include "include/memcpy.asm"

;;; This is implementation of stitched algorithms: AES128-CTR + CRC32 + BIP
;;; This combination is required by PON/xPON/gPON standard.
;;; Note: BIP is running XOR of double words
;;; Order of operations:
;;; - encrypt: CRC32, AES-CTR and BIP
;;; - decrypt: BIP, AES-CTR and CRC32

%ifndef DEC_FN_NAME
%define DEC_FN_NAME submit_job_pon_dec_sse
%endif
%ifndef ENC_FN_NAME
%define ENC_FN_NAME submit_job_pon_enc_sse
%endif
%ifndef ENC_NO_CTR_FN_NAME
%define ENC_NO_CTR_FN_NAME submit_job_pon_enc_no_ctr_sse
%endif
%ifndef DEC_NO_CTR_FN_NAME
%define DEC_NO_CTR_FN_NAME submit_job_pon_dec_no_ctr_sse
%endif

extern byteswap_const
extern ddq_add_1

section .data
default rel

;;; Precomputed constants for CRC32 (Ethernet FCS)
;;;   Details of the CRC algorithm and 4 byte buffer of
;;;   {0x01, 0x02, 0x03, 0x04}:
;;;     Result     Poly       Init        RefIn  RefOut  XorOut
;;;     0xB63CFBCD 0x04C11DB7 0xFFFFFFFF  true   true    0xFFFFFFFF
align 16
rk1:
        dq 0x00000000ccaa009e, 0x00000001751997d0

align 16
rk5:
        dq 0x00000000ccaa009e, 0x0000000163cd6124

align 16
rk7:
        dq 0x00000001f7011640, 0x00000001db710640

align 16
pshufb_shf_table:
        ;;  use these values for shift registers with the pshufb instruction
        dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
        dq 0x0706050403020100, 0x000e0d0c0b0a0908

align 16
init_crc_value:
        dq 0x00000000FFFFFFFF, 0x0000000000000000

align 16
mask:
        dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000

align 16
mask2:
        dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
align 16
mask3:
        dq 0x8080808080808080, 0x8080808080808080

align 16
mask_out_top_bytes:
        dq 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF
        dq 0x0000000000000000, 0x0000000000000000

;; Precomputed constants for HEC calculation (XGEM header)
;; POLY 0x53900000:
;;         k1    = 0xf9800000
;;         k2    = 0xa0900000
;;         k3    = 0x7cc00000
;;         q     = 0x46b927ec
;;         p_res = 0x53900000

align 16
k3_q:
        dq 0x7cc00000, 0x46b927ec

align 16
p_res:
        dq 0x53900000, 0

align 16
mask_out_top_64bits:
        dq 0xffffffff_ffffffff, 0

section .text

%define NUM_AES_ROUNDS 10

;; note: leave xmm0 free for implicit blend
%define xcounter xmm7
%define xbip    xmm1
%define xcrc    xmm2
%define xcrckey xmm3
%define xtmp1   xmm4
%define xtmp2   xmm5
%define xtmp3   xmm6
%define xtmp4   xmm8

%ifdef LINUX
%define arg1    rdi
%define arg2    rsi
%define arg3    rdx
%define arg4    rcx
%define tmp_1   r8
%define tmp_2   r9
%define tmp_3   r10
%define tmp_4   r11
%define tmp_5   r12
%define tmp_6   r13
%define tmp_7   r14
%else
%define arg1    rcx
%define arg2    rdx
%define arg3    r8
%define arg4    r9
%define tmp_1   r10
%define tmp_2   r11
%define tmp_3   rax
%define tmp_4   r12
%define tmp_5   r13
%define tmp_6   r14
%define tmp_7   r15
%endif

%define job     arg1

%define p_in    arg2
%define p_keys  arg3
%define p_out   arg4

%define num_bytes       tmp_1   ; bytes to cipher
%define tmp             tmp_2
%define ctr_check       tmp_3   ; counter block overflow check
%define bytes_to_crc    tmp_4   ; number of bytes to CRC ( < num_bytes)

%define ethernet_fcs    tmp_6   ; not used together with tmp3
%define tmp2            tmp_5
%define tmp3            tmp_6

%define write_back_crc   tmp_7
%define decrypt_not_done tmp_7

;;; ============================================================================
;;; Does all AES encryption rounds
%macro AES_ENC_ROUNDS 3
%define %%KP            %1      ; [in] pointer to expanded keys
%define %%N_ROUNDS      %2      ; [in] max rounds (128bit: 10, 12, 14)
%define %%BLOCK         %3      ; [in/out] XMM with encrypted block

%assign round 0
        pxor            %%BLOCK, [%%KP + (round * 16)]

%rep (%%N_ROUNDS - 1)
%assign round (round + 1)
        aesenc          %%BLOCK, [%%KP + (round * 16)]
%endrep

%assign round (round + 1)
        aesenclast      %%BLOCK, [%%KP + (round * 16)]

%endmacro

;;; ============================================================================
;;; PON stitched algorithm round on a single AES block (16 bytes):
;;;   AES-CTR (optional, depending on %%CIPH)
;;;   - prepares counter blocks
;;;   - encrypts counter blocks
;;;   - loads text
;;;   - xor's text against encrypted blocks
;;;   - stores cipher text
;;;   BIP
;;;   - BIP update on 4 x 32-bits
;;;   CRC32
;;;   - CRC32 calculation
;;; Note: via selection of no_crc, no_bip, no_load, no_store different macro
;;;       behaviour can be achieved to match needs of the overall algorithm.
%macro DO_PON 15
%define %%KP            %1      ; [in] GP, pointer to expanded keys
%define %%N_ROUNDS      %2      ; [in] number of AES rounds (10, 12 or 14)
%define %%CTR           %3      ; [in/out] XMM with counter block
%define %%INP           %4      ; [in/out] GP with input text pointer or "no_load"
%define %%OUTP          %5      ; [in/out] GP with output text pointer or "no_store"
%define %%XBIP_IN_OUT   %6      ; [in/out] XMM with BIP value or "no_bip"
%define %%XCRC_IN_OUT   %7      ; [in/out] XMM with CRC (can be anything if "no_crc" below)
%define %%XCRC_MUL      %8      ; [in] XMM with CRC multiplier constant (can be anything if "no_crc" below)
%define %%TXMM0         %9      ; [clobbered|out] XMM temporary or data out (no_store)
%define %%TXMM1         %10     ; [clobbered|in] XMM temporary or data in (no_load)
%define %%TXMM2         %11     ; [clobbered] XMM temporary
%define %%CRC_TYPE      %12     ; [in] "first_crc" or "next_crc" or "no_crc"
%define %%DIR           %13     ; [in] "ENC" or "DEC"
%define %%CIPH          %14     ; [in] "CTR" or "NO_CTR"
%define %%CTR_CHECK     %15     ; [in/out] GP with 64bit counter (to identify overflow)

%ifidn %%CIPH, CTR
        ;; prepare counter blocks for encryption
        movdqa          %%TXMM0, %%CTR
        pshufb          %%TXMM0, [rel byteswap_const]
        ;; perform 1 increment on whole 128 bits
        movdqa          %%TXMM2,  [rel ddq_add_1]
        paddq           %%CTR, %%TXMM2
        add             %%CTR_CHECK, 1
        jnc             %%_no_ctr_overflow
        ;; Add 1 to the top 64 bits. First shift left value 1 by 64 bits.
        pslldq          %%TXMM2, 8
        paddq           %%CTR, %%TXMM2
%%_no_ctr_overflow:
%endif
        ;; CRC calculation
%ifidn %%CRC_TYPE, next_crc
        movdqa          %%TXMM2, %%XCRC_IN_OUT
        pclmulqdq       %%TXMM2, %%XCRC_MUL, 0x01
        pclmulqdq       %%XCRC_IN_OUT, %%XCRC_MUL, 0x10
%endif

%ifnidn %%INP, no_load
        movdqu          %%TXMM1, [%%INP]
%endif

%ifidn %%CIPH, CTR
        ;; AES rounds
        AES_ENC_ROUNDS  %%KP, %%N_ROUNDS, %%TXMM0

        ;; xor plaintext/ciphertext against encrypted counter blocks
        pxor            %%TXMM0, %%TXMM1
%else ;; CIPH = NO_CTR
        ;; if no encryption needs to be done, move from input to output reg
        movdqa          %%TXMM0, %%TXMM1
%endif ;; CIPH = CTR

%ifidn %%CIPH, CTR
%ifidn %%DIR, ENC
        ;; CRC calculation for ENCRYPTION
%ifidn %%CRC_TYPE, first_crc
        ;; in the first run just XOR initial CRC with the first block
        pxor            %%XCRC_IN_OUT, %%TXMM1
%endif
%ifidn %%CRC_TYPE, next_crc
        ;; - XOR results of CLMUL's together
        ;; - then XOR against text block
        pxor            %%XCRC_IN_OUT, %%TXMM2
        pxor            %%XCRC_IN_OUT, %%TXMM1
%endif
%else
        ;; CRC calculation for DECRYPTION
%ifidn %%CRC_TYPE, first_crc
        ;; in the first run just XOR initial CRC with the first block
        pxor            %%XCRC_IN_OUT, %%TXMM0
%endif
%ifidn %%CRC_TYPE, next_crc
        ;; - XOR results of CLMUL's together
        ;; - then XOR against text block
        pxor            %%XCRC_IN_OUT, %%TXMM2
        pxor            %%XCRC_IN_OUT, %%TXMM0
%endif
%endif                        ; DECRYPT
%else ;; CIPH = NO_CTR
        ;; CRC calculation for DECRYPTION
%ifidn %%CRC_TYPE, first_crc
        ;; in the first run just XOR initial CRC with the first block
        pxor            %%XCRC_IN_OUT, %%TXMM1
%endif
%ifidn %%CRC_TYPE, next_crc
        ;; - XOR results of CLMUL's together
        ;; - then XOR against text block
        pxor            %%XCRC_IN_OUT, %%TXMM2
        pxor            %%XCRC_IN_OUT, %%TXMM1
%endif

%endif ;; CIPH = CTR

        ;; store the result in the output buffer
%ifnidn %%OUTP, no_store
        movdqu          [%%OUTP], %%TXMM0
%endif

        ;; update BIP value - always use cipher text for BIP
%ifidn %%DIR, ENC
%ifnidn %%XBIP_IN_OUT, no_bip
        pxor            %%XBIP_IN_OUT, %%TXMM0
%endif
%else
%ifnidn %%XBIP_IN_OUT, no_bip
        pxor            %%XBIP_IN_OUT, %%TXMM1
%endif
%endif                          ; DECRYPT

        ;; increment in/out pointers
%ifnidn %%INP, no_load
        add             %%INP,  16
%endif
%ifnidn %%OUTP, no_store
        add             %%OUTP, 16
%endif
%endmacro                       ; DO_PON

;;; ============================================================================
;;; CIPHER and BIP specified number of bytes
%macro CIPHER_BIP_REST 14
%define %%NUM_BYTES   %1        ; [in/clobbered] number of bytes to cipher
%define %%DIR         %2        ; [in] "ENC" or "DEC"
%define %%CIPH        %3        ; [in] "CTR" or "NO_CTR"
%define %%PTR_IN      %4        ; [in/clobbered] GPR pointer to input buffer
%define %%PTR_OUT     %5        ; [in/clobbered] GPR pointer to output buffer
%define %%PTR_KEYS    %6        ; [in] GPR pointer to expanded keys
%define %%XBIP_IN_OUT %7        ; [in/out] XMM 128-bit BIP state
%define %%XCTR_IN_OUT %8        ; [in/out] XMM 128-bit AES counter block
%define %%XMMT1       %9        ; [clobbered] temporary XMM
%define %%XMMT2       %10       ; [clobbered] temporary XMM
%define %%XMMT3       %11       ; [clobbered] temporary XMM
%define %%CTR_CHECK   %12       ; [in/out] GP with 64bit counter (to identify overflow)
%define %%GPT1        %13       ; [clobbered] temporary GP
%define %%GPT2        %14       ; [clobbered] temporary GP

%%_cipher_last_blocks:
        cmp     %%NUM_BYTES, 16
        jb      %%_partial_block_left

        DO_PON  %%PTR_KEYS, NUM_AES_ROUNDS, %%XCTR_IN_OUT, %%PTR_IN, %%PTR_OUT, %%XBIP_IN_OUT, \
                no_crc, no_crc, %%XMMT1, %%XMMT2, %%XMMT3, no_crc, %%DIR, %%CIPH, %%CTR_CHECK
        sub     %%NUM_BYTES, 16
        jz      %%_bip_done
        jmp     %%_cipher_last_blocks

%%_partial_block_left:
        simd_load_sse_15_1 %%XMMT2, %%PTR_IN, %%NUM_BYTES

        ;; DO_PON() is not loading nor storing the data in this case:
        ;; XMMT2 = data in
        ;; XMMT1 = data out
        DO_PON  %%PTR_KEYS, NUM_AES_ROUNDS, %%XCTR_IN_OUT, no_load, no_store, no_bip, \
                no_crc, no_crc, %%XMMT1, %%XMMT2, %%XMMT3, no_crc, %%DIR, %%CIPH, %%CTR_CHECK

        ;; BIP update for partial block (mask out bytes outside the message)
        lea     %%GPT1, [rel mask_out_top_bytes + 16]
        sub     %%GPT1, %%NUM_BYTES
        movdqu  %%XMMT3, [%%GPT1]
        ;; put masked cipher text into XMMT2 for BIP update
%ifidn %%DIR, ENC
        movdqa  %%XMMT2, %%XMMT1
        pand    %%XMMT2, %%XMMT3
%else
        pand    %%XMMT2, %%XMMT3
%endif
        pxor    %%XBIP_IN_OUT, %%XMMT2

        ;; store partial bytes in the output buffer
        simd_store_sse_15 %%PTR_OUT, %%XMMT1, %%NUM_BYTES, %%GPT1, %%GPT2

%%_bip_done:
%endmacro                       ; CIPHER_BIP_REST
;; =============================================================================
;; Barrett reduction from 128-bits to 32-bits modulo Ethernet FCS polynomial

%macro CRC32_REDUCE_128_TO_32 5
%define %%CRC   %1         ; [out] GP to store 32-bit Ethernet FCS value
%define %%XCRC  %2         ; [in/clobbered] XMM with CRC
%define %%XT1   %3         ; [clobbered] temporary xmm register
%define %%XT2   %4         ; [clobbered] temporary xmm register
%define %%XT3   %5         ; [clobbered] temporary xmm register

%define %%XCRCKEY %%XT3

        ;;  compute CRC of a 128-bit value
        movdqa          %%XCRCKEY, [rel rk5]

        ;; 64b fold
        movdqa          %%XT1, %%XCRC
        pclmulqdq       %%XT1, %%XCRCKEY, 0x00
        psrldq          %%XCRC, 8
        pxor            %%XCRC, %%XT1

        ;; 32b fold
        movdqa          %%XT1, %%XCRC
        pslldq          %%XT1, 4
        pclmulqdq       %%XT1, %%XCRCKEY, 0x10
        pxor            %%XCRC, %%XT1

%%_crc_barrett:
        ;; Barrett reduction
        pand            %%XCRC, [rel mask2]
        movdqa          %%XT1, %%XCRC
        movdqa          %%XT2, %%XCRC
        movdqa          %%XCRCKEY, [rel rk7]

        pclmulqdq       %%XCRC, %%XCRCKEY, 0x00
        pxor            %%XCRC, %%XT2
        pand            %%XCRC, [rel mask]
        movdqa          %%XT2, %%XCRC
        pclmulqdq       %%XCRC, %%XCRCKEY, 0x10
        pxor            %%XCRC, %%XT2
        pxor            %%XCRC, %%XT1
        pextrd          DWORD(%%CRC), %%XCRC, 2 ; 32-bit CRC value
        not             DWORD(%%CRC)
%endmacro

;; =============================================================================
;; Barrett reduction from 128-bits to 32-bits modulo 0x53900000 polynomial

%macro HEC_REDUCE_128_TO_32 4
%define %%XMM_IN_OUT %1         ; [in/out] xmm register with data in and out
%define %%XT1        %2         ; [clobbered] temporary xmm register
%define %%XT2        %3         ; [clobbered] temporary xmm register
%define %%XT3        %4         ; [clobbered] temporary xmm register

%define %%K3_Q  %%XT1
%define %%P_RES %%XT2
%define %%XTMP  %%XT3

        ;; 128 to 64 bit reduction
        movdqa          %%K3_Q,  [k3_q]
        movdqa          %%P_RES, [p_res]

        movdqa          %%XTMP, %%XMM_IN_OUT
        pclmulqdq       %%XTMP, %%K3_Q, 0x01 ; K3
        pxor            %%XTMP, %%XMM_IN_OUT

        pclmulqdq       %%XTMP, %%K3_Q, 0x01 ; K3
        pxor            %%XMM_IN_OUT, %%XTMP

        pand            %%XMM_IN_OUT, [rel mask_out_top_64bits]

        ;; 64 to 32 bit reduction
        movdqa          %%XTMP, %%XMM_IN_OUT
        psrldq          %%XTMP, 4
        pclmulqdq       %%XTMP, %%K3_Q, 0x10 ; Q
        pxor            %%XTMP, %%XMM_IN_OUT
        psrldq          %%XTMP, 4

        pclmulqdq       %%XTMP, %%P_RES, 0x00 ; P
        pxor            %%XMM_IN_OUT, %%XTMP
%endmacro

;; =============================================================================
;; Barrett reduction from 64-bits to 32-bits modulo 0x53900000 polynomial

%macro HEC_REDUCE_64_TO_32 4
%define %%XMM_IN_OUT %1         ; [in/out] xmm register with data in and out
%define %%XT1        %2         ; [clobbered] temporary xmm register
%define %%XT2        %3         ; [clobbered] temporary xmm register
%define %%XT3        %4         ; [clobbered] temporary xmm register

%define %%K3_Q  %%XT1
%define %%P_RES %%XT2
%define %%XTMP  %%XT3

        movdqa          %%K3_Q,  [k3_q]
        movdqa          %%P_RES, [p_res]

        ;; 64 to 32 bit reduction
        movdqa          %%XTMP, %%XMM_IN_OUT
        psrldq          %%XTMP, 4
        pclmulqdq       %%XTMP, %%K3_Q, 0x10 ; Q
        pxor            %%XTMP, %%XMM_IN_OUT
        psrldq          %%XTMP, 4

        pclmulqdq       %%XTMP, %%P_RES, 0x00 ; P
        pxor            %%XMM_IN_OUT, %%XTMP
%endmacro

;; =============================================================================
;; HEC compute and header update for 32-bit XGEM headers
%macro HEC_COMPUTE_32 6
%define %%HEC_IN_OUT %1         ; [in/out] GP register with HEC in LE format
%define %%GT1        %2         ; [clobbered] temporary GP register
%define %%XT1        %4         ; [clobbered] temporary xmm register
%define %%XT2        %5         ; [clobbered] temporary xmm register
%define %%XT3        %6         ; [clobbered] temporary xmm register
%define %%XT4        %7         ; [clobbered] temporary xmm register

        mov             DWORD(%%GT1), DWORD(%%HEC_IN_OUT)
        ;; shift out 13 bits of HEC value for CRC computation
        shr             DWORD(%%GT1), 13

        ;; mask out current HEC value to merge with an updated HEC at the end
        and             DWORD(%%HEC_IN_OUT), 0xffff_e000

        ;; prepare the message for CRC computation
        movd            %%XT1, DWORD(%%GT1)
        pslldq          %%XT1, 4         ; shift left by 32-bits

        HEC_REDUCE_64_TO_32 %%XT1, %%XT2, %%XT3, %%XT4

        ;; extract 32-bit value
        ;; - normally perform 20 bit shift right but bit 0 is a parity bit
        movd            DWORD(%%GT1), %%XT1
        shr             DWORD(%%GT1), (20 - 1)

        ;; merge header bytes with updated 12-bit CRC value and
        ;; compute parity
        or              DWORD(%%GT1), DWORD(%%HEC_IN_OUT)
        popcnt          DWORD(%%HEC_IN_OUT), DWORD(%%GT1)
        and             DWORD(%%HEC_IN_OUT), 1
        or              DWORD(%%HEC_IN_OUT), DWORD(%%GT1)
%endmacro

;; =============================================================================
;; HEC compute and header update for 64-bit XGEM headers
%macro HEC_COMPUTE_64 6
%define %%HEC_IN_OUT %1         ; [in/out] GP register with HEC in LE format
%define %%GT1        %2         ; [clobbered] temporary GP register
%define %%XT1        %3         ; [clobbered] temporary xmm register
%define %%XT2        %4         ; [clobbered] temporary xmm register
%define %%XT3        %5         ; [clobbered] temporary xmm register
%define %%XT4        %6         ; [clobbered] temporary xmm register

        mov             %%GT1, %%HEC_IN_OUT
        ;; shift out 13 bits of HEC value for CRC computation
        shr             %%GT1, 13

        ;; mask out current HEC value to merge with an updated HEC at the end
        and             %%HEC_IN_OUT, 0xffff_ffff_ffff_e000

        ;; prepare the message for CRC computation
        movq            %%XT1, %%GT1
        pslldq          %%XT1, 4         ; shift left by 32-bits

        HEC_REDUCE_128_TO_32 %%XT1, %%XT2, %%XT3, %%XT4

        ;; extract 32-bit value
        ;; - normally perform 20 bit shift right but bit 0 is a parity bit
        movd            DWORD(%%GT1), %%XT1
        shr             DWORD(%%GT1), (20 - 1)

        ;; merge header bytes with updated 12-bit CRC value and
        ;; compute parity
        or              %%GT1, %%HEC_IN_OUT
        popcnt          %%HEC_IN_OUT, %%GT1
        and             %%HEC_IN_OUT, 1
        or              %%HEC_IN_OUT, %%GT1
%endmacro

;;; ============================================================================
;;; PON stitched algorithm of AES128-CTR, CRC and BIP
;;; - this is master macro that implements encrypt/decrypt API
;;; - calls other macros and directly uses registers
;;;   defined at the top of the file
%macro AES128_CTR_PON 2
%define %%DIR   %1              ; [in] direction "ENC" or "DEC"
%define %%CIPH  %2              ; [in] cipher "CTR" or "NO_CTR"

        push    r12
        push    r13
        push    r14
%ifndef LINUX
        push    r15
%endif

%ifidn %%DIR, ENC
        ;; by default write back CRC for encryption
        mov     DWORD(write_back_crc), 1
%else
        ;; mark decryption as finished
        mov     DWORD(decrypt_not_done), 1
%endif
        ;; START BIP (and update HEC if encrypt direction)
        ;; - load XGEM header (8 bytes) for BIP (not part of encrypted payload)
        ;; - convert it into LE
        ;; - update HEC field in the header
        ;; - convert it into BE
        ;; - store back the header (with updated HEC)
        ;; - start BIP
        ;; (free to use tmp_1, tmp_2 and tmp_3 at this stage)
        mov     tmp_2, [job + _src]
        add     tmp_2, [job + _hash_start_src_offset_in_bytes]
        mov     tmp_3, [tmp_2]
%ifidn %%DIR, ENC
        bswap   tmp_3                   ; go to LE
        HEC_COMPUTE_64 tmp_3, tmp_1, xtmp1, xtmp2, xtmp3, xtmp4
        mov     bytes_to_crc, tmp_3
        shr     bytes_to_crc, (48 + 2)  ; PLI = MSB 14 bits
        bswap   tmp_3                   ; go back to BE
        mov     [tmp_2], tmp_3
        movq    xbip, tmp_3
%else
        movq    xbip, tmp_3
        mov     bytes_to_crc, tmp_3
        bswap   bytes_to_crc            ; go to LE
        shr     bytes_to_crc, (48 + 2)  ; PLI = MSB 14 bits
%endif
        cmp     bytes_to_crc, 4
        ja      %%_crc_not_zero
        ;; XGEM payload shorter or equal to 4 bytes
%ifidn %%DIR, ENC
        ;; Don't write Ethernet FCS on encryption
       xor     DWORD(write_back_crc), DWORD(write_back_crc)
%else
        ;; Mark decryption as not finished
        ;; - Ethernet FCS is not computed
        ;; - decrypt + BIP to be done at the end
        xor     DWORD(decrypt_not_done), DWORD(decrypt_not_done)
%endif
        mov     DWORD(bytes_to_crc), 4  ; it will be zero after the sub (avoid jmp)
%%_crc_not_zero:
        sub     bytes_to_crc, 4         ; subtract size of the CRC itself

%ifidn %%CIPH, CTR
        ;; - read 16 bytes of IV
        ;; - convert to little endian format
        ;; - save least significant 8 bytes in GP register for overflow check
        mov     tmp, [job + _iv]
        movdqu  xcounter, [tmp]
        pshufb  xcounter, [rel byteswap_const]
        movq    ctr_check, xcounter
%endif

        ;; get input buffer (after XGEM header)
        mov     p_in, [job + _src]
        add     p_in, [job + _cipher_start_src_offset_in_bytes]

        ;; get output buffer
        mov     p_out, [job + _dst]

%ifidn %%CIPH, CTR
        ;; get key pointers
        mov     p_keys, [job + _aes_enc_key_expanded]
%endif

        ;; initial CRC value
        movdqa  xcrc, [rel init_crc_value]

        ;; load CRC constants
        movdqa  xcrckey, [rel rk1] ; rk1 and rk2 in xcrckey

        ;; get number of bytes to cipher
%ifidn %%CIPH, CTR
        mov     num_bytes, [job + _msg_len_to_cipher_in_bytes]
%else
        ;; Message length to cipher is 0
        ;; - length is obtained from message length to hash (BIP) minus XGEM header size
        mov     num_bytes, [job + _msg_len_to_hash_in_bytes]
        sub     num_bytes, 8
%endif
        or      bytes_to_crc, bytes_to_crc
        jz      %%_crc_done

        cmp     bytes_to_crc, 32
        jae     %%_at_least_32_bytes

%ifidn %%DIR, DEC
        ;; decrypt the buffer first
        mov     tmp, num_bytes
        CIPHER_BIP_REST tmp, %%DIR, %%CIPH, p_in, p_out, p_keys, xbip, \
                        xcounter, xtmp1, xtmp2, xtmp3, ctr_check, tmp2, tmp3

        ;; correct in/out pointers - go back to start of the buffers
        mov     tmp, num_bytes
        and     tmp, -16        ; partial block handler doesn't increment pointers
        sub     p_in, tmp
        sub     p_out, tmp
%endif                          ; DECRYPTION

        ;; less than 32 bytes
        cmp     bytes_to_crc, 16
        je      %%_exact_16_left
        jl      %%_less_than_16_left
        ;; load the plaintext
%ifidn %%DIR, ENC
        movdqu  xtmp1, [p_in]
%else
        movdqu  xtmp1, [p_out]
%endif
        pxor    xcrc, xtmp1   ; xor the initial crc value
        jmp     %%_crc_two_xmms

%%_exact_16_left:
%ifidn %%DIR, ENC
        movdqu  xtmp1, [p_in]
%else
        movdqu  xtmp1, [p_out]
%endif
        pxor    xcrc, xtmp1 ; xor the initial CRC value
        jmp     %%_128_done

%%_less_than_16_left:
%ifidn %%DIR, ENC
        simd_load_sse_15_1 xtmp1, p_in, bytes_to_crc
%else
        simd_load_sse_15_1 xtmp1, p_out, bytes_to_crc
%endif
        pxor    xcrc, xtmp1 ; xor the initial CRC value

        lea     tmp, [rel pshufb_shf_table]
        movdqu  xtmp1, [tmp + bytes_to_crc]
        pshufb  xcrc, xtmp1
        jmp     %%_128_done

%%_at_least_32_bytes:
        DO_PON  p_keys, NUM_AES_ROUNDS, xcounter, p_in, p_out, xbip, \
                xcrc, xcrckey, xtmp1, xtmp2, xtmp3, first_crc, %%DIR, %%CIPH, ctr_check
        sub     num_bytes, 16
        sub     bytes_to_crc, 16

%%_main_loop:
        cmp     bytes_to_crc, 16
        jb      %%_exit_loop
        DO_PON  p_keys, NUM_AES_ROUNDS, xcounter, p_in, p_out, xbip, \
                xcrc, xcrckey, xtmp1, xtmp2, xtmp3, next_crc, %%DIR, %%CIPH, ctr_check
        sub     num_bytes, 16
        sub     bytes_to_crc, 16
%ifidn %%DIR, ENC
        jz      %%_128_done
%endif
        jmp     %%_main_loop

%%_exit_loop:

%ifidn %%DIR, DEC
        ;; decrypt rest of the message including CRC and optional padding
        mov     tmp, num_bytes

        CIPHER_BIP_REST tmp, %%DIR, %%CIPH, p_in, p_out, p_keys, xbip, \
                        xcounter, xtmp1, xtmp2, xtmp3, ctr_check, tmp2, tmp3

        mov     tmp, num_bytes  ; correct in/out pointers - to point before cipher & BIP
        and     tmp, -16        ; partial block handler doesn't increment pointers
        sub     p_in, tmp
        sub     p_out, tmp

        or      bytes_to_crc, bytes_to_crc
        jz      %%_128_done
%endif                          ; DECRYPTION

        ;; Partial bytes left - complete CRC calculation
%%_crc_two_xmms:
        lea             tmp, [rel pshufb_shf_table]
        movdqu          xtmp2, [tmp + bytes_to_crc]
%ifidn %%DIR, ENC
        movdqu          xtmp1, [p_in - 16 + bytes_to_crc]  ; xtmp1 = data for CRC
%else
        movdqu          xtmp1, [p_out - 16 + bytes_to_crc]  ; xtmp1 = data for CRC
%endif
        movdqa          xtmp3, xcrc
        pshufb          xcrc, xtmp2  ; top num_bytes with LSB xcrc
        pxor            xtmp2, [rel mask3]
        pshufb          xtmp3, xtmp2 ; bottom (16 - num_bytes) with MSB xcrc

        ;; data num_bytes (top) blended with MSB bytes of CRC (bottom)
        movdqa          xmm0, xtmp2
        pblendvb        xtmp3, xtmp1 ; xmm0 implicit

        ;; final CRC calculation
        movdqa          xtmp1, xcrc
        pclmulqdq       xtmp1, xcrckey, 0x01
        pclmulqdq       xcrc, xcrckey, 0x10
        pxor            xcrc, xtmp3
        pxor            xcrc, xtmp1

%%_128_done:
        CRC32_REDUCE_128_TO_32 ethernet_fcs, xcrc, xtmp1, xtmp2, xcrckey

%%_crc_done:
        ;; @todo - store-to-load problem in ENC case (to be fixed later)
        ;; - store CRC in input buffer and authentication tag output
        ;; - encrypt remaining bytes
%ifidn %%DIR, ENC
        or      DWORD(write_back_crc), DWORD(write_back_crc)
        jz      %%_skip_crc_write_back
        mov     [p_in + bytes_to_crc], DWORD(ethernet_fcs)
%%_skip_crc_write_back:
%endif
        mov     tmp, [job + _auth_tag_output]
        mov     [tmp + 4], DWORD(ethernet_fcs)

        or      num_bytes, num_bytes
        jz      %%_do_not_cipher_the_rest

        ;; encrypt rest of the message
        ;; - partial bytes including CRC and optional padding
        ;; decrypt rest of the message
        ;; - this may only happen when XGEM payload is short and padding is added
%ifidn %%DIR, DEC
        or      DWORD(decrypt_not_done), DWORD(decrypt_not_done)
        jnz     %%_do_not_cipher_the_rest
%endif
        CIPHER_BIP_REST num_bytes, %%DIR, %%CIPH, p_in, p_out, p_keys, xbip, \
                        xcounter, xtmp1, xtmp2, xtmp3, ctr_check, tmp2, tmp3
%%_do_not_cipher_the_rest:

        ;; finalize BIP
        movdqa  xtmp1, xbip
        movdqa  xtmp2, xbip
        movdqa  xtmp3, xbip
        psrldq  xtmp1, 4
        psrldq  xtmp2, 8
        psrldq  xtmp3, 12
        pxor    xtmp1, xtmp2
        pxor    xbip, xtmp3
        pxor    xbip, xtmp1
        movd    [tmp], xbip

        ;; set job status
        or      dword [job + _status], STS_COMPLETED

        ;;  return job
        mov     rax, job

%ifndef LINUX
        pop     r15
%endif
        pop     r14
        pop     r13
        pop     r12
%endmacro                       ; AES128_CTR_PON

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;; aes_cntr_128_pon_enc_sse(JOB_AES_HMAC *job)
align 32
MKGLOBAL(ENC_FN_NAME,function,internal)
ENC_FN_NAME:
        AES128_CTR_PON ENC, CTR
        ret

;;; aes_cntr_128_pon_dec_sse(JOB_AES_HMAC *job)
align 32
MKGLOBAL(DEC_FN_NAME,function,internal)
DEC_FN_NAME:
        AES128_CTR_PON DEC, CTR
        ret

;;; aes_cntr_128_pon_enc_no_ctr_sse(JOB_AES_HMAC *job)
align 32
MKGLOBAL(ENC_NO_CTR_FN_NAME,function,internal)
ENC_NO_CTR_FN_NAME:
        AES128_CTR_PON ENC, NO_CTR
        ret

;;; aes_cntr_128_pon_dec_no_ctr_sse(JOB_AES_HMAC *job)
align 32
MKGLOBAL(DEC_NO_CTR_FN_NAME,function,internal)
DEC_NO_CTR_FN_NAME:
        AES128_CTR_PON DEC, NO_CTR
        ret

%ifdef LINUX
section .note.GNU-stack noalloc noexec nowrite progbits
%endif