1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
|
/*-
* BSD LICENSE
*
* Copyright (c) Intel Corporation.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "vmd.h"
#include "spdk/stdinc.h"
#include "spdk/likely.h"
static unsigned char *device_type[] = {
"PCI Express Endpoint",
"Legacy PCI Express Endpoint",
"Reserved 1",
"Reserved 2",
"Root Port of PCI Express Root Complex",
"Upstream Port of PCI Express Switch",
"Downstream Port of PCI Express Switch",
"PCI Express to PCI/PCI-X Bridge",
"PCI/PCI-X to PCI Express Bridge",
"Root Complex Integrated Endpoint",
"Root Complex Event Collector",
"Reserved Capability"
};
/*
* Container for all VMD adapter probed in the system.
*/
struct vmd_container {
uint32_t count;
struct vmd_adapter vmd[MAX_VMD_SUPPORTED];
};
static struct vmd_container g_vmd_container;
static uint8_t g_end_device_count;
static bool
vmd_is_valid_cfg_addr(struct vmd_pci_bus *bus, uint64_t addr)
{
return addr >= (uint64_t)bus->vmd->cfg_vaddr &&
addr < bus->vmd->cfgbar_size + (uint64_t)bus->vmd->cfg_vaddr;
}
static void
vmd_align_base_addrs(struct vmd_adapter *vmd, uint32_t alignment)
{
uint32_t pad;
/*
* Device is not in hot plug path, align the base address remaining from membar 1.
*/
if (vmd->physical_addr & (alignment - 1)) {
pad = alignment - (vmd->physical_addr & (alignment - 1));
vmd->physical_addr += pad;
vmd->current_addr_size -= pad;
}
}
static bool
vmd_device_is_enumerated(const struct vmd_pci_device *vmd_device)
{
return vmd_device->header->one.prefetch_base_upper == VMD_UPPER_BASE_SIGNATURE &&
vmd_device->header->one.prefetch_limit_upper == VMD_UPPER_LIMIT_SIGNATURE;
}
static bool
vmd_device_is_root_port(const struct vmd_pci_device *vmd_device)
{
return vmd_device->header->common.vendor_id == 0x8086 &&
(vmd_device->header->common.device_id == 0x2030 ||
vmd_device->header->common.device_id == 0x2031 ||
vmd_device->header->common.device_id == 0x2032 ||
vmd_device->header->common.device_id == 0x2033);
}
static void
vmd_hotplug_coalesce_regions(struct vmd_hot_plug *hp)
{
struct pci_mem_mgr *region, *prev;
do {
prev = NULL;
TAILQ_FOREACH(region, &hp->free_mem_queue, tailq) {
if (prev != NULL && (prev->addr + prev->size == region->addr)) {
break;
}
prev = region;
}
if (region != NULL) {
prev->size += region->size;
TAILQ_REMOVE(&hp->free_mem_queue, region, tailq);
TAILQ_INSERT_TAIL(&hp->unused_mem_queue, region, tailq);
}
} while (region != NULL);
}
static void
vmd_hotplug_free_region(struct vmd_hot_plug *hp, struct pci_mem_mgr *region)
{
struct pci_mem_mgr *current, *prev = NULL;
assert(region->addr >= hp->bar.start && region->addr < hp->bar.start + hp->bar.size);
TAILQ_FOREACH(current, &hp->free_mem_queue, tailq) {
if (current->addr > region->addr) {
break;
}
prev = current;
}
if (prev != NULL) {
assert(prev->addr + prev->size <= region->addr);
assert(current == NULL || (region->addr + region->size <= current->addr));
TAILQ_INSERT_AFTER(&hp->free_mem_queue, prev, region, tailq);
} else {
TAILQ_INSERT_HEAD(&hp->free_mem_queue, region, tailq);
}
vmd_hotplug_coalesce_regions(hp);
}
static void
vmd_hotplug_free_addr(struct vmd_hot_plug *hp, uint64_t addr)
{
struct pci_mem_mgr *region;
TAILQ_FOREACH(region, &hp->alloc_mem_queue, tailq) {
if (region->addr == addr) {
break;
}
}
assert(region != NULL);
TAILQ_REMOVE(&hp->alloc_mem_queue, region, tailq);
vmd_hotplug_free_region(hp, region);
}
static uint64_t
vmd_hotplug_allocate_base_addr(struct vmd_hot_plug *hp, uint32_t size)
{
struct pci_mem_mgr *region = NULL, *free_region;
TAILQ_FOREACH(region, &hp->free_mem_queue, tailq) {
if (region->size >= size) {
break;
}
}
if (region == NULL) {
SPDK_DEBUGLOG(SPDK_LOG_VMD, "Unable to find free hotplug memory region of size:"
"%"PRIx32"\n", size);
return 0;
}
TAILQ_REMOVE(&hp->free_mem_queue, region, tailq);
if (size < region->size) {
free_region = TAILQ_FIRST(&hp->unused_mem_queue);
if (free_region == NULL) {
SPDK_DEBUGLOG(SPDK_LOG_VMD, "Unable to find unused descriptor to store the "
"free region of size: %"PRIu32"\n", region->size - size);
} else {
TAILQ_REMOVE(&hp->unused_mem_queue, free_region, tailq);
free_region->size = region->size - size;
free_region->addr = region->addr + size;
region->size = size;
vmd_hotplug_free_region(hp, free_region);
}
}
TAILQ_INSERT_TAIL(&hp->alloc_mem_queue, region, tailq);
return region->addr;
}
/*
* Allocates an address from vmd membar for the input memory size
* vmdAdapter - vmd adapter object
* dev - vmd_pci_device to allocate a base address for.
* size - size of the memory window requested.
* Size must be an integral multiple of 2. Addresses are returned on the size boundary.
* Returns physical address within the VMD membar window, or 0x0 if cannot allocate window.
* Consider increasing the size of vmd membar if 0x0 is returned.
*/
static uint64_t
vmd_allocate_base_addr(struct vmd_adapter *vmd, struct vmd_pci_device *dev, uint32_t size)
{
uint64_t base_address = 0, padding = 0;
struct vmd_pci_bus *hp_bus;
if (size && ((size & (~size + 1)) != size)) {
return base_address;
}
/*
* If device is downstream of a hot plug port, allocate address from the
* range dedicated for the hot plug slot. Search the list of addresses allocated to determine
* if a free range exists that satisfy the input request. If a free range cannot be found,
* get a buffer from the unused chunk. First fit algorithm, is used.
*/
if (dev) {
hp_bus = dev->parent;
if (hp_bus && hp_bus->self && hp_bus->self->hotplug_capable) {
return vmd_hotplug_allocate_base_addr(&hp_bus->self->hp, size);
}
}
/* Ensure physical membar allocated is size aligned */
if (vmd->physical_addr & (size - 1)) {
padding = size - (vmd->physical_addr & (size - 1));
}
/* Allocate from membar if enough memory is left */
if (vmd->current_addr_size >= size + padding) {
base_address = vmd->physical_addr + padding;
vmd->physical_addr += size + padding;
vmd->current_addr_size -= size + padding;
}
SPDK_DEBUGLOG(SPDK_LOG_VMD, "allocated(size) %lx (%x)\n", base_address, size);
return base_address;
}
static bool
vmd_is_end_device(struct vmd_pci_device *dev)
{
return (dev && dev->header) &&
((dev->header->common.header_type & ~PCI_MULTI_FUNCTION) == PCI_HEADER_TYPE_NORMAL);
}
static void
vmd_update_base_limit_register(struct vmd_pci_device *dev, uint16_t base, uint16_t limit)
{
struct vmd_pci_bus *bus;
struct vmd_pci_device *bridge;
if (base == 0 || limit == 0) {
return;
}
if (dev->header->common.header_type == PCI_HEADER_TYPE_BRIDGE) {
bus = dev->bus_object;
} else {
bus = dev->parent;
}
bridge = bus->self;
SPDK_DEBUGLOG(SPDK_LOG_VMD, "base:limit = %x:%x\n", bridge->header->one.mem_base,
bridge->header->one.mem_limit);
if (dev->bus->vmd->scan_completed) {
return;
}
while (bus && bus->self != NULL) {
bridge = bus->self;
/* This is only for 32-bit memory space, need to revisit to support 64-bit */
if (bridge->header->one.mem_base > base) {
bridge->header->one.mem_base = base;
base = bridge->header->one.mem_base;
}
if (bridge->header->one.mem_limit < limit) {
bridge->header->one.mem_limit = limit;
limit = bridge->header->one.mem_limit;
}
bus = bus->parent;
}
}
static uint64_t
vmd_get_base_addr(struct vmd_pci_device *dev, uint32_t index, uint32_t size)
{
struct vmd_pci_bus *bus = dev->parent;
if (dev->header_type == PCI_HEADER_TYPE_BRIDGE) {
return dev->header->zero.BAR[index] & ~0xf;
} else {
if (bus->self->hotplug_capable) {
return vmd_hotplug_allocate_base_addr(&bus->self->hp, size);
} else {
return (uint64_t)bus->self->header->one.mem_base << 16;
}
}
}
static bool
vmd_assign_base_addrs(struct vmd_pci_device *dev)
{
uint16_t mem_base = 0, mem_limit = 0;
unsigned char mem_attr = 0;
int last;
struct vmd_adapter *vmd = NULL;
bool ret_val = false;
uint32_t bar_value;
uint32_t table_offset;
if (dev && dev->bus) {
vmd = dev->bus->vmd;
}
if (!vmd) {
return 0;
}
vmd_align_base_addrs(vmd, ONE_MB);
last = dev->header_type ? 2 : 6;
for (int i = 0; i < last; i++) {
bar_value = dev->header->zero.BAR[i];
dev->header->zero.BAR[i] = ~(0U);
dev->bar[i].size = dev->header->zero.BAR[i];
dev->header->zero.BAR[i] = bar_value;
if (dev->bar[i].size == ~(0U) || dev->bar[i].size == 0 ||
dev->header->zero.BAR[i] & 1) {
dev->bar[i].size = 0;
continue;
}
mem_attr = dev->bar[i].size & PCI_BASE_ADDR_MASK;
dev->bar[i].size = TWOS_COMPLEMENT(dev->bar[i].size & PCI_BASE_ADDR_MASK);
if (vmd->scan_completed) {
dev->bar[i].start = vmd_get_base_addr(dev, i, dev->bar[i].size);
} else {
dev->bar[i].start = vmd_allocate_base_addr(vmd, dev, dev->bar[i].size);
}
dev->header->zero.BAR[i] = (uint32_t)dev->bar[i].start;
if (!dev->bar[i].start) {
if (mem_attr == (PCI_BAR_MEMORY_PREFETCH | PCI_BAR_MEMORY_TYPE_64)) {
i++;
}
continue;
}
dev->bar[i].vaddr = ((uint64_t)vmd->mem_vaddr + (dev->bar[i].start - vmd->membar));
mem_limit = BRIDGE_BASEREG(dev->header->zero.BAR[i]) +
BRIDGE_BASEREG(dev->bar[i].size - 1);
if (!mem_base) {
mem_base = BRIDGE_BASEREG(dev->header->zero.BAR[i]);
}
ret_val = true;
if (mem_attr == (PCI_BAR_MEMORY_PREFETCH | PCI_BAR_MEMORY_TYPE_64)) {
i++;
if (i < last) {
dev->header->zero.BAR[i] = (uint32_t)(dev->bar[i].start >> PCI_DWORD_SHIFT);
}
}
}
/* Enable device MEM and bus mastering */
dev->header->zero.command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
uint16_t cmd = dev->header->zero.command;
cmd++;
if (dev->msix_cap && ret_val) {
table_offset = ((volatile struct pci_msix_cap *)dev->msix_cap)->msix_table_offset;
if (dev->bar[table_offset & 0x3].vaddr) {
dev->msix_table = (volatile struct pci_msix_table_entry *)
(dev->bar[table_offset & 0x3].vaddr + (table_offset & 0xfff8));
}
}
if (ret_val && vmd_is_end_device(dev)) {
vmd_update_base_limit_register(dev, mem_base, mem_limit);
}
return ret_val;
}
static void
vmd_get_device_capabilities(struct vmd_pci_device *dev)
{
volatile uint8_t *config_space;
uint8_t capabilities_offset;
struct pci_capabilities_header *capabilities_hdr;
config_space = (volatile uint8_t *)dev->header;
if ((dev->header->common.status & PCI_CAPABILITIES_LIST) == 0) {
return;
}
capabilities_offset = dev->header->zero.cap_pointer;
if (dev->header->common.header_type & PCI_HEADER_TYPE_BRIDGE) {
capabilities_offset = dev->header->one.cap_pointer;
}
while (capabilities_offset > 0) {
capabilities_hdr = (struct pci_capabilities_header *)
&config_space[capabilities_offset];
switch (capabilities_hdr->capability_id) {
case CAPABILITY_ID_PCI_EXPRESS:
dev->pcie_cap = (volatile struct pci_express_cap *)(capabilities_hdr);
break;
case CAPABILITY_ID_MSI:
dev->msi_cap = (volatile struct pci_msi_cap *)capabilities_hdr;
break;
case CAPABILITY_ID_MSIX:
dev->msix_cap = (volatile struct pci_msix_capability *)capabilities_hdr;
dev->msix_table_size = dev->msix_cap->message_control.bit.table_size + 1;
break;
default:
break;
}
capabilities_offset = capabilities_hdr->next;
}
}
static volatile struct pci_enhanced_capability_header *
vmd_get_enhanced_capabilities(struct vmd_pci_device *dev, uint16_t capability_id)
{
uint8_t *data;
uint16_t cap_offset = EXTENDED_CAPABILITY_OFFSET;
volatile struct pci_enhanced_capability_header *cap_hdr = NULL;
data = (uint8_t *)dev->header;
while (cap_offset >= EXTENDED_CAPABILITY_OFFSET) {
cap_hdr = (volatile struct pci_enhanced_capability_header *) &data[cap_offset];
if (cap_hdr->capability_id == capability_id) {
return cap_hdr;
}
cap_offset = cap_hdr->next;
if (cap_offset == 0 || cap_offset < EXTENDED_CAPABILITY_OFFSET) {
break;
}
}
return NULL;
}
static void
vmd_read_config_space(struct vmd_pci_device *dev)
{
/*
* Writes to the pci config space is posted weite. To ensure transaction reaches its destination
* before another write is posed, an immediate read of the written value should be performed.
*/
dev->header->common.command |= (BUS_MASTER_ENABLE | MEMORY_SPACE_ENABLE);
{ uint16_t cmd = dev->header->common.command; (void)cmd; }
vmd_get_device_capabilities(dev);
dev->sn_cap = (struct serial_number_capability *)vmd_get_enhanced_capabilities(dev,
DEVICE_SERIAL_NUMBER_CAP_ID);
}
static void
vmd_update_scan_info(struct vmd_pci_device *dev)
{
struct vmd_adapter *vmd_adapter = dev->bus->vmd;
if (vmd_adapter->root_port_updated) {
return;
}
if (dev->header_type == PCI_HEADER_TYPE_NORMAL) {
return;
}
if (vmd_device_is_root_port(dev)) {
vmd_adapter->root_port_updated = 1;
SPDK_DEBUGLOG(SPDK_LOG_VMD, "root_port_updated = %d\n",
vmd_adapter->root_port_updated);
SPDK_DEBUGLOG(SPDK_LOG_VMD, "upper:limit = %x : %x\n",
dev->header->one.prefetch_base_upper,
dev->header->one.prefetch_limit_upper);
if (vmd_device_is_enumerated(dev)) {
vmd_adapter->scan_completed = 1;
SPDK_DEBUGLOG(SPDK_LOG_VMD, "scan_completed = %d\n",
vmd_adapter->scan_completed);
}
}
}
static void
vmd_reset_base_limit_registers(struct vmd_pci_device *dev)
{
uint32_t reg __attribute__((unused));
assert(dev->header_type != PCI_HEADER_TYPE_NORMAL);
/*
* Writes to the pci config space are posted writes.
* To ensure transaction reaches its destination
* before another write is posted, an immediate read
* of the written value should be performed.
*/
dev->header->one.mem_base = 0xfff0;
reg = dev->header->one.mem_base;
dev->header->one.mem_limit = 0x0;
reg = dev->header->one.mem_limit;
dev->header->one.prefetch_base = 0x0;
reg = dev->header->one.prefetch_base;
dev->header->one.prefetch_limit = 0x0;
reg = dev->header->one.prefetch_limit;
dev->header->one.prefetch_base_upper = 0x0;
reg = dev->header->one.prefetch_base_upper;
dev->header->one.prefetch_limit_upper = 0x0;
reg = dev->header->one.prefetch_limit_upper;
dev->header->one.io_base_upper = 0x0;
reg = dev->header->one.io_base_upper;
dev->header->one.io_limit_upper = 0x0;
reg = dev->header->one.io_limit_upper;
dev->header->one.primary = 0;
reg = dev->header->one.primary;
dev->header->one.secondary = 0;
reg = dev->header->one.secondary;
dev->header->one.subordinate = 0;
reg = dev->header->one.subordinate;
}
static void
vmd_init_hotplug(struct vmd_pci_device *dev, struct vmd_pci_bus *bus)
{
struct vmd_adapter *vmd = bus->vmd;
struct vmd_hot_plug *hp = &dev->hp;
size_t mem_id;
dev->hotplug_capable = true;
hp->bar.size = 1 << 20;
if (!vmd->scan_completed) {
hp->bar.start = vmd_allocate_base_addr(vmd, NULL, hp->bar.size);
bus->self->header->one.mem_base = BRIDGE_BASEREG(hp->bar.start);
bus->self->header->one.mem_limit =
bus->self->header->one.mem_base + BRIDGE_BASEREG(hp->bar.size - 1);
} else {
hp->bar.start = (uint64_t)bus->self->header->one.mem_base << 16;
}
hp->bar.vaddr = (uint64_t)vmd->mem_vaddr + (hp->bar.start - vmd->membar);
TAILQ_INIT(&hp->free_mem_queue);
TAILQ_INIT(&hp->unused_mem_queue);
TAILQ_INIT(&hp->alloc_mem_queue);
hp->mem[0].size = hp->bar.size;
hp->mem[0].addr = hp->bar.start;
TAILQ_INSERT_TAIL(&hp->free_mem_queue, &hp->mem[0], tailq);
for (mem_id = 1; mem_id < ADDR_ELEM_COUNT; ++mem_id) {
TAILQ_INSERT_TAIL(&hp->unused_mem_queue, &hp->mem[mem_id], tailq);
}
SPDK_DEBUGLOG(SPDK_LOG_VMD, "%s: mem_base:mem_limit = %x : %x\n", __func__,
bus->self->header->one.mem_base, bus->self->header->one.mem_limit);
}
static bool
vmd_bus_device_present(struct vmd_pci_bus *bus, uint32_t devfn)
{
volatile struct pci_header *header;
header = (volatile struct pci_header *)(bus->vmd->cfg_vaddr +
CONFIG_OFFSET_ADDR(bus->bus_number, devfn, 0, 0));
if (!vmd_is_valid_cfg_addr(bus, (uint64_t)header)) {
return false;
}
if (header->common.vendor_id == PCI_INVALID_VENDORID || header->common.vendor_id == 0x0) {
return false;
}
return true;
}
static struct vmd_pci_device *
vmd_alloc_dev(struct vmd_pci_bus *bus, uint32_t devfn)
{
struct vmd_pci_device *dev = NULL;
struct pci_header volatile *header;
uint8_t header_type;
uint32_t rev_class;
/* Make sure we're not creating two devices on the same dev/fn */
TAILQ_FOREACH(dev, &bus->dev_list, tailq) {
if (dev->devfn == devfn) {
return NULL;
}
}
if (!vmd_bus_device_present(bus, devfn)) {
return NULL;
}
header = (struct pci_header * volatile)(bus->vmd->cfg_vaddr +
CONFIG_OFFSET_ADDR(bus->bus_number, devfn, 0, 0));
SPDK_DEBUGLOG(SPDK_LOG_VMD, "PCI device found: %04x:%04x ***\n",
header->common.vendor_id, header->common.device_id);
dev = calloc(1, sizeof(*dev));
if (!dev) {
return NULL;
}
dev->header = header;
dev->vid = dev->header->common.vendor_id;
dev->did = dev->header->common.device_id;
dev->bus = bus;
dev->parent = bus;
dev->devfn = devfn;
header_type = dev->header->common.header_type;
rev_class = dev->header->common.rev_class;
dev->class = rev_class >> 8;
dev->header_type = header_type & 0x7;
if (header_type == PCI_HEADER_TYPE_BRIDGE) {
vmd_update_scan_info(dev);
if (!dev->bus->vmd->scan_completed) {
vmd_reset_base_limit_registers(dev);
}
}
vmd_read_config_space(dev);
return dev;
}
static struct vmd_pci_bus *
vmd_create_new_bus(struct vmd_pci_bus *parent, struct vmd_pci_device *bridge, uint8_t bus_number)
{
struct vmd_pci_bus *new_bus;
new_bus = calloc(1, sizeof(*new_bus));
if (!new_bus) {
return NULL;
}
new_bus->parent = parent;
new_bus->domain = parent->domain;
new_bus->bus_number = bus_number;
new_bus->secondary_bus = new_bus->subordinate_bus = bus_number;
new_bus->self = bridge;
new_bus->vmd = parent->vmd;
TAILQ_INIT(&new_bus->dev_list);
bridge->subordinate = new_bus;
bridge->pci.addr.bus = new_bus->bus_number;
bridge->pci.addr.dev = bridge->devfn;
bridge->pci.addr.func = 0;
bridge->pci.addr.domain = parent->vmd->pci->addr.domain;
return new_bus;
}
/*
* Assigns a bus number from the list of available
* bus numbers. If the device is downstream of a hot plug port,
* assign the bus number from thiose assigned to the HP port. Otherwise,
* assign the next bus number from the vmd bus number list.
*/
static uint8_t
vmd_get_next_bus_number(struct vmd_pci_device *dev, struct vmd_adapter *vmd)
{
uint8_t bus = 0xff;
struct vmd_pci_bus *hp_bus;
if (dev) {
hp_bus = vmd_is_dev_in_hotplug_path(dev);
if (hp_bus && hp_bus->self && hp_bus->self->hotplug_capable) {
return vmd_hp_get_next_bus_number(&hp_bus->self->hp);
}
}
/* Device is not under a hot plug path. Return next global bus number */
if ((vmd->next_bus_number + 1) < vmd->max_pci_bus) {
bus = vmd->next_bus_number;
vmd->next_bus_number++;
}
return bus;
}
static uint8_t
vmd_get_hotplug_bus_numbers(struct vmd_pci_device *dev)
{
uint8_t bus_number = 0xff;
if (dev && dev->bus && dev->bus->vmd &&
((dev->bus->vmd->next_bus_number + RESERVED_HOTPLUG_BUSES) < dev->bus->vmd->max_pci_bus)) {
bus_number = RESERVED_HOTPLUG_BUSES;
dev->bus->vmd->next_bus_number += RESERVED_HOTPLUG_BUSES;
}
return bus_number;
}
static void
vmd_enable_msix(struct vmd_pci_device *dev)
{
volatile uint16_t control;
control = dev->msix_cap->message_control.as_uint16_t | (1 << 14);
dev->msix_cap->message_control.as_uint16_t = control;
control = dev->msix_cap->message_control.as_uint16_t;
dev->msix_cap->message_control.as_uint16_t = (control | (1 << 15));
control = dev->msix_cap->message_control.as_uint16_t;
control = control & ~(1 << 14);
dev->msix_cap->message_control.as_uint16_t = control;
control = dev->msix_cap->message_control.as_uint16_t;
}
static void
vmd_disable_msix(struct vmd_pci_device *dev)
{
volatile uint16_t control;
control = dev->msix_cap->message_control.as_uint16_t | (1 << 14);
dev->msix_cap->message_control.as_uint16_t = control;
control = dev->msix_cap->message_control.as_uint16_t & ~(1 << 15);
dev->msix_cap->message_control.as_uint16_t = control;
control = dev->msix_cap->message_control.as_uint16_t;
}
/*
* Set up MSI-X table entries for the port. Vmd MSIX vector 0 is used for
* port interrupt, so vector 0 is mapped to all MSIX entries for the port.
*/
static void
vmd_setup_msix(struct vmd_pci_device *dev, volatile struct pci_msix_table_entry *vmdEntry)
{
int entry;
if (!dev || !vmdEntry || !dev->msix_cap) {
return;
}
vmd_disable_msix(dev);
if (dev->msix_table == NULL || dev->msix_table_size > MAX_MSIX_TABLE_SIZE) {
return;
}
for (entry = 0; entry < dev->msix_table_size; ++entry) {
dev->msix_table[entry].vector_control = 1;
}
vmd_enable_msix(dev);
}
static void
vmd_bus_update_bridge_info(struct vmd_pci_device *bridge)
{
/* Update the subordinate bus of all bridges above this bridge */
volatile struct vmd_pci_device *dev = bridge;
uint8_t subordinate_bus;
if (!dev) {
return;
}
subordinate_bus = bridge->header->one.subordinate;
while (dev->parent_bridge != NULL) {
dev = dev->parent_bridge;
if (dev->header->one.subordinate < subordinate_bus) {
dev->header->one.subordinate = subordinate_bus;
subordinate_bus = dev->header->one.subordinate;
}
}
}
static bool
vmd_is_supported_device(struct vmd_pci_device *dev)
{
return dev->class == PCI_CLASS_STORAGE_EXPRESS;
}
static int
vmd_dev_map_bar(struct spdk_pci_device *pci_dev, uint32_t bar,
void **mapped_addr, uint64_t *phys_addr, uint64_t *size)
{
struct vmd_pci_device *dev = SPDK_CONTAINEROF(pci_dev, struct vmd_pci_device, pci);
*size = dev->bar[bar].size;
*phys_addr = dev->bar[bar].start;
*mapped_addr = (void *)dev->bar[bar].vaddr;
return 0;
}
static int
vmd_dev_unmap_bar(struct spdk_pci_device *_dev, uint32_t bar, void *addr)
{
return 0;
}
static int
vmd_dev_cfg_read(struct spdk_pci_device *_dev, void *value, uint32_t len,
uint32_t offset)
{
struct vmd_pci_device *dev = SPDK_CONTAINEROF(_dev, struct vmd_pci_device, pci);
volatile uint8_t *src = (volatile uint8_t *)dev->header;
uint8_t *dst = value;
size_t i;
if (len + offset > PCI_MAX_CFG_SIZE) {
return -1;
}
for (i = 0; i < len; ++i) {
dst[i] = src[offset + i];
}
return 0;
}
static int
vmd_dev_cfg_write(struct spdk_pci_device *_dev, void *value,
uint32_t len, uint32_t offset)
{
struct vmd_pci_device *dev = SPDK_CONTAINEROF(_dev, struct vmd_pci_device, pci);
volatile uint8_t *dst = (volatile uint8_t *)dev->header;
uint8_t *src = value;
size_t i;
if ((len + offset) > PCI_MAX_CFG_SIZE) {
return -1;
}
for (i = 0; i < len; ++i) {
dst[offset + i] = src[i];
}
return 0;
}
static void
vmd_dev_detach(struct spdk_pci_device *dev)
{
struct vmd_pci_device *vmd_device = (struct vmd_pci_device *)dev;
struct vmd_pci_device *bus_device = vmd_device->bus->self;
struct vmd_pci_bus *bus = vmd_device->bus;
size_t i, num_bars = vmd_device->header_type ? 2 : 6;
spdk_pci_unhook_device(dev);
TAILQ_REMOVE(&bus->dev_list, vmd_device, tailq);
/* Release the hotplug region if the device is under hotplug-capable bus */
if (bus_device && bus_device->hotplug_capable) {
for (i = 0; i < num_bars; ++i) {
if (vmd_device->bar[i].start != 0) {
vmd_hotplug_free_addr(&bus_device->hp, vmd_device->bar[i].start);
}
}
}
free(dev);
}
static void
vmd_dev_init(struct vmd_pci_device *dev)
{
uint8_t bdf[32];
dev->pci.addr.domain = dev->bus->vmd->domain;
dev->pci.addr.bus = dev->bus->bus_number;
dev->pci.addr.dev = dev->devfn;
dev->pci.addr.func = 0;
dev->pci.id.vendor_id = dev->header->common.vendor_id;
dev->pci.id.device_id = dev->header->common.device_id;
dev->pci.type = "vmd";
dev->pci.map_bar = vmd_dev_map_bar;
dev->pci.unmap_bar = vmd_dev_unmap_bar;
dev->pci.cfg_read = vmd_dev_cfg_read;
dev->pci.cfg_write = vmd_dev_cfg_write;
dev->hotplug_capable = false;
if (dev->pcie_cap != NULL) {
dev->cached_slot_control = dev->pcie_cap->slot_control;
}
if (vmd_is_supported_device(dev)) {
spdk_pci_addr_fmt(bdf, sizeof(bdf), &dev->pci.addr);
SPDK_DEBUGLOG(SPDK_LOG_VMD, "Initalizing NVMe device at %s\n", bdf);
dev->pci.parent = dev->bus->vmd->pci;
spdk_pci_hook_device(spdk_pci_nvme_get_driver(), &dev->pci);
}
}
/*
* Scans a single bus for all devices attached and return a count of
* how many devices found. In the VMD topology, it is assume there are no multi-
* function devices. Hence a bus(bridge) will not have multi function with both type
* 0 and 1 header.
*
* The other option for implementing this function is the bus is an int and
* create a new device PciBridge. PciBridge would inherit from PciDevice with extra fields,
* sub/pri/sec bus. The input becomes PciPort, bus number and parent_bridge.
*
* The bus number is scanned and if a device is found, based on the header_type, create
* either PciBridge(1) or PciDevice(0).
*
* If a PciBridge, assign bus numbers and rescan new bus. The currenty PciBridge being
* scanned becomes the passed in parent_bridge with the new bus number.
*
* The linked list becomes list of pciBridges with PciDevices attached.
*
* Return count of how many devices found(type1 + type 0 header devices)
*/
static uint8_t
vmd_scan_single_bus(struct vmd_pci_bus *bus, struct vmd_pci_device *parent_bridge)
{
/* assuming only single function devices are on the bus */
struct vmd_pci_device *new_dev;
struct vmd_adapter *vmd;
union express_slot_capabilities_register slot_cap;
struct vmd_pci_bus *new_bus;
uint8_t device_number, dev_cnt = 0;
uint8_t new_bus_num;
for (device_number = 0; device_number < 32; device_number++) {
new_dev = vmd_alloc_dev(bus, device_number);
if (new_dev == NULL) {
continue;
}
dev_cnt++;
if (new_dev->header->common.header_type & PCI_HEADER_TYPE_BRIDGE) {
slot_cap.as_uint32_t = 0;
if (new_dev->pcie_cap != NULL) {
slot_cap.as_uint32_t = new_dev->pcie_cap->slot_cap.as_uint32_t;
}
new_bus_num = vmd_get_next_bus_number(bus->vmd->is_hotplug_scan ? new_dev : NULL, bus->vmd);
if (new_bus_num == 0xff) {
free(new_dev);
return dev_cnt;
}
new_bus = vmd_create_new_bus(bus, new_dev, new_bus_num);
if (!new_bus) {
free(new_dev);
return dev_cnt;
}
new_bus->primary_bus = bus->secondary_bus;
new_bus->self = new_dev;
new_dev->bus_object = new_bus;
if (slot_cap.bit_field.hotplug_capable && new_dev->pcie_cap != NULL &&
new_dev->pcie_cap->express_cap_register.bit_field.slot_implemented) {
new_bus->hotplug_buses = vmd_get_hotplug_bus_numbers(new_dev);
new_bus->subordinate_bus += new_bus->hotplug_buses;
/* Attach hot plug instance if HP is supported */
/* Hot inserted SSDs can be assigned port bus of sub-ordinate + 1 */
SPDK_DEBUGLOG(SPDK_LOG_VMD, "hotplug_capable/slot_implemented = "
"%x:%x\n", slot_cap.bit_field.hotplug_capable,
new_dev->pcie_cap->express_cap_register.bit_field.slot_implemented);
}
new_dev->parent_bridge = parent_bridge;
new_dev->header->one.primary = new_bus->primary_bus;
new_dev->header->one.secondary = new_bus->secondary_bus;
new_dev->header->one.subordinate = new_bus->subordinate_bus;
vmd_bus_update_bridge_info(new_dev);
TAILQ_INSERT_TAIL(&bus->vmd->bus_list, new_bus, tailq);
vmd_dev_init(new_dev);
if (slot_cap.bit_field.hotplug_capable && new_dev->pcie_cap != NULL &&
new_dev->pcie_cap->express_cap_register.bit_field.slot_implemented) {
vmd_init_hotplug(new_dev, new_bus);
}
dev_cnt += vmd_scan_single_bus(new_bus, new_dev);
if (new_dev->pcie_cap != NULL) {
if (new_dev->pcie_cap->express_cap_register.bit_field.device_type == SwitchUpstreamPort) {
return dev_cnt;
}
}
} else {
/* Attach the device to the current bus and assign base addresses */
TAILQ_INSERT_TAIL(&bus->dev_list, new_dev, tailq);
g_end_device_count++;
if (vmd_assign_base_addrs(new_dev)) {
vmd_setup_msix(new_dev, &bus->vmd->msix_table[0]);
vmd_dev_init(new_dev);
if (vmd_is_supported_device(new_dev)) {
vmd = bus->vmd;
vmd->target[vmd->nvme_count] = new_dev;
vmd->nvme_count++;
}
} else {
SPDK_DEBUGLOG(SPDK_LOG_VMD, "Removing failed device:%p\n", new_dev);
TAILQ_REMOVE(&bus->dev_list, new_dev, tailq);
free(new_dev);
if (dev_cnt) {
dev_cnt--;
}
}
}
}
return dev_cnt;
}
static void
vmd_print_pci_info(struct vmd_pci_device *dev)
{
if (!dev) {
return;
}
if (dev->pcie_cap != NULL) {
SPDK_INFOLOG(SPDK_LOG_VMD, "PCI DEVICE: [%04X:%04X] type(%x) : %s\n",
dev->header->common.vendor_id, dev->header->common.device_id,
dev->pcie_cap->express_cap_register.bit_field.device_type,
device_type[dev->pcie_cap->express_cap_register.bit_field.device_type]);
} else {
SPDK_INFOLOG(SPDK_LOG_VMD, "PCI DEVICE: [%04X:%04X]\n",
dev->header->common.vendor_id, dev->header->common.device_id);
}
SPDK_INFOLOG(SPDK_LOG_VMD, "\tDOMAIN:BDF: %04x:%02x:%02x:%x\n", dev->pci.addr.domain,
dev->pci.addr.bus, dev->pci.addr.dev, dev->pci.addr.func);
if (!(dev->header_type & PCI_HEADER_TYPE_BRIDGE) && dev->bus) {
SPDK_INFOLOG(SPDK_LOG_VMD, "\tbase addr: %x : %p\n",
dev->header->zero.BAR[0], (void *)dev->bar[0].vaddr);
}
if ((dev->header_type & PCI_HEADER_TYPE_BRIDGE)) {
SPDK_INFOLOG(SPDK_LOG_VMD, "\tPrimary = %d, Secondary = %d, Subordinate = %d\n",
dev->header->one.primary, dev->header->one.secondary, dev->header->one.subordinate);
if (dev->pcie_cap && dev->pcie_cap->express_cap_register.bit_field.slot_implemented) {
SPDK_INFOLOG(SPDK_LOG_VMD, "\tSlot implemented on this device.\n");
if (dev->pcie_cap->slot_cap.bit_field.hotplug_capable) {
SPDK_INFOLOG(SPDK_LOG_VMD, "Device has HOT-PLUG capable slot.\n");
}
}
}
if (dev->sn_cap != NULL) {
uint8_t *snLow = (uint8_t *)&dev->sn_cap->sn_low;
uint8_t *snHi = (uint8_t *)&dev->sn_cap->sn_hi;
SPDK_INFOLOG(SPDK_LOG_VMD, "\tSN: %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x\n",
snHi[3], snHi[2], snHi[1], snHi[0], snLow[3], snLow[2], snLow[1], snLow[0]);
}
}
static void
vmd_cache_scan_info(struct vmd_pci_device *dev)
{
uint32_t reg __attribute__((unused));
if (dev->header_type == PCI_HEADER_TYPE_NORMAL) {
return;
}
SPDK_DEBUGLOG(SPDK_LOG_VMD, "vendor/device id:%x:%x\n", dev->header->common.vendor_id,
dev->header->common.device_id);
if (vmd_device_is_root_port(dev)) {
dev->header->one.prefetch_base_upper = VMD_UPPER_BASE_SIGNATURE;
reg = dev->header->one.prefetch_base_upper;
dev->header->one.prefetch_limit_upper = VMD_UPPER_LIMIT_SIGNATURE;
reg = dev->header->one.prefetch_limit_upper;
SPDK_DEBUGLOG(SPDK_LOG_VMD, "prefetch: %x:%x\n",
dev->header->one.prefetch_base_upper,
dev->header->one.prefetch_limit_upper);
}
}
static uint8_t
vmd_scan_pcibus(struct vmd_pci_bus *bus)
{
struct vmd_pci_bus *bus_entry;
struct vmd_pci_device *dev;
uint8_t dev_cnt;
g_end_device_count = 0;
TAILQ_INSERT_TAIL(&bus->vmd->bus_list, bus, tailq);
bus->vmd->next_bus_number = bus->bus_number + 1;
dev_cnt = vmd_scan_single_bus(bus, NULL);
SPDK_DEBUGLOG(SPDK_LOG_VMD, "VMD scan found %u devices\n", dev_cnt);
SPDK_DEBUGLOG(SPDK_LOG_VMD, "VMD scan found %u END DEVICES\n", g_end_device_count);
SPDK_INFOLOG(SPDK_LOG_VMD, "PCIe devices attached to VMD %04x:%02x:%02x:%x...\n",
bus->vmd->pci->addr.domain, bus->vmd->pci->addr.bus,
bus->vmd->pci->addr.dev, bus->vmd->pci->addr.func);
TAILQ_FOREACH(bus_entry, &bus->vmd->bus_list, tailq) {
if (bus_entry->self != NULL) {
vmd_print_pci_info(bus_entry->self);
vmd_cache_scan_info(bus_entry->self);
}
TAILQ_FOREACH(dev, &bus_entry->dev_list, tailq) {
vmd_print_pci_info(dev);
}
}
return dev_cnt;
}
static int
vmd_map_bars(struct vmd_adapter *vmd, struct spdk_pci_device *dev)
{
int rc;
rc = spdk_pci_device_map_bar(dev, 0, (void **)&vmd->cfg_vaddr,
&vmd->cfgbar, &vmd->cfgbar_size);
if (rc == 0) {
rc = spdk_pci_device_map_bar(dev, 2, (void **)&vmd->mem_vaddr,
&vmd->membar, &vmd->membar_size);
}
if (rc == 0) {
rc = spdk_pci_device_map_bar(dev, 4, (void **)&vmd->msix_vaddr,
&vmd->msixbar, &vmd->msixbar_size);
}
if (rc == 0) {
vmd->physical_addr = vmd->membar;
vmd->current_addr_size = vmd->membar_size;
}
return rc;
}
static int
vmd_enumerate_devices(struct vmd_adapter *vmd)
{
vmd->vmd_bus.vmd = vmd;
vmd->vmd_bus.secondary_bus = vmd->vmd_bus.subordinate_bus = 0;
vmd->vmd_bus.primary_bus = vmd->vmd_bus.bus_number = 0;
vmd->vmd_bus.domain = vmd->pci->addr.domain;
return vmd_scan_pcibus(&vmd->vmd_bus);
}
struct vmd_pci_device *
vmd_find_device(const struct spdk_pci_addr *addr)
{
struct vmd_pci_bus *bus;
struct vmd_pci_device *dev;
int i;
for (i = 0; i < MAX_VMD_TARGET; ++i) {
TAILQ_FOREACH(bus, &g_vmd_container.vmd[i].bus_list, tailq) {
if (bus->self) {
if (spdk_pci_addr_compare(&bus->self->pci.addr, addr) == 0) {
return bus->self;
}
}
TAILQ_FOREACH(dev, &bus->dev_list, tailq) {
if (spdk_pci_addr_compare(&dev->pci.addr, addr) == 0) {
return dev;
}
}
}
}
return NULL;
}
static int
vmd_enum_cb(void *ctx, struct spdk_pci_device *pci_dev)
{
uint32_t cmd_reg = 0;
char bdf[32] = {0};
struct vmd_container *vmd_c = ctx;
size_t i;
spdk_pci_device_cfg_read32(pci_dev, &cmd_reg, 4);
cmd_reg |= 0x6; /* PCI bus master/memory enable. */
spdk_pci_device_cfg_write32(pci_dev, cmd_reg, 4);
spdk_pci_addr_fmt(bdf, sizeof(bdf), &pci_dev->addr);
SPDK_DEBUGLOG(SPDK_LOG_VMD, "Found a VMD[ %d ] at %s\n", vmd_c->count, bdf);
/* map vmd bars */
i = vmd_c->count;
vmd_c->vmd[i].pci = pci_dev;
vmd_c->vmd[i].vmd_index = i;
vmd_c->vmd[i].domain =
(pci_dev->addr.bus << 16) | (pci_dev->addr.dev << 8) | pci_dev->addr.func;
vmd_c->vmd[i].max_pci_bus = PCI_MAX_BUS_NUMBER;
TAILQ_INIT(&vmd_c->vmd[i].bus_list);
if (vmd_map_bars(&vmd_c->vmd[i], pci_dev) == -1) {
return -1;
}
SPDK_DEBUGLOG(SPDK_LOG_VMD, "vmd config bar(%p) vaddr(%p) size(%x)\n",
(void *)vmd_c->vmd[i].cfgbar, (void *)vmd_c->vmd[i].cfg_vaddr,
(uint32_t)vmd_c->vmd[i].cfgbar_size);
SPDK_DEBUGLOG(SPDK_LOG_VMD, "vmd mem bar(%p) vaddr(%p) size(%x)\n",
(void *)vmd_c->vmd[i].membar, (void *)vmd_c->vmd[i].mem_vaddr,
(uint32_t)vmd_c->vmd[i].membar_size);
SPDK_DEBUGLOG(SPDK_LOG_VMD, "vmd msix bar(%p) vaddr(%p) size(%x)\n\n",
(void *)vmd_c->vmd[i].msixbar, (void *)vmd_c->vmd[i].msix_vaddr,
(uint32_t)vmd_c->vmd[i].msixbar_size);
vmd_c->count = i + 1;
vmd_enumerate_devices(&vmd_c->vmd[i]);
return 0;
}
int
spdk_vmd_pci_device_list(struct spdk_pci_addr vmd_addr, struct spdk_pci_device *nvme_list)
{
int cnt = 0;
struct vmd_pci_bus *bus;
struct vmd_pci_device *dev;
if (!nvme_list) {
return -1;
}
for (int i = 0; i < MAX_VMD_TARGET; ++i) {
if (spdk_pci_addr_compare(&vmd_addr, &g_vmd_container.vmd[i].pci->addr) == 0) {
TAILQ_FOREACH(bus, &g_vmd_container.vmd[i].bus_list, tailq) {
TAILQ_FOREACH(dev, &bus->dev_list, tailq) {
nvme_list[cnt++] = dev->pci;
if (!dev->is_hooked) {
vmd_dev_init(dev);
dev->is_hooked = 1;
}
}
}
}
}
return cnt;
}
static void
vmd_clear_hotplug_status(struct vmd_pci_bus *bus)
{
struct vmd_pci_device *device = bus->self;
uint16_t status __attribute__((unused));
status = device->pcie_cap->slot_status.as_uint16_t;
device->pcie_cap->slot_status.as_uint16_t = status;
status = device->pcie_cap->slot_status.as_uint16_t;
status = device->pcie_cap->link_status.as_uint16_t;
device->pcie_cap->link_status.as_uint16_t = status;
status = device->pcie_cap->link_status.as_uint16_t;
}
static void
vmd_bus_handle_hotplug(struct vmd_pci_bus *bus)
{
uint8_t num_devices, sleep_count;
for (sleep_count = 0; sleep_count < 20; ++sleep_count) {
/* Scan until a new device is found */
num_devices = vmd_scan_single_bus(bus, bus->self);
if (num_devices > 0) {
break;
}
spdk_delay_us(200000);
}
if (num_devices == 0) {
SPDK_ERRLOG("Timed out while scanning for hotplugged devices\n");
}
}
static void
vmd_bus_handle_hotremove(struct vmd_pci_bus *bus)
{
struct vmd_pci_device *device, *tmpdev;
TAILQ_FOREACH_SAFE(device, &bus->dev_list, tailq, tmpdev) {
if (!vmd_bus_device_present(bus, device->devfn)) {
device->pci.internal.pending_removal = true;
/* If the device isn't attached, remove it immediately */
if (!device->pci.internal.attached) {
vmd_dev_detach(&device->pci);
}
}
}
}
int
spdk_vmd_hotplug_monitor(void)
{
struct vmd_pci_bus *bus;
struct vmd_pci_device *device;
int num_hotplugs = 0;
uint32_t i;
for (i = 0; i < g_vmd_container.count; ++i) {
TAILQ_FOREACH(bus, &g_vmd_container.vmd[i].bus_list, tailq) {
device = bus->self;
if (device == NULL || !device->hotplug_capable) {
continue;
}
if (device->pcie_cap->slot_status.bit_field.datalink_state_changed != 1) {
continue;
}
if (device->pcie_cap->link_status.bit_field.datalink_layer_active == 1) {
SPDK_DEBUGLOG(SPDK_LOG_VMD, "Device hotplug detected on bus "
"%"PRIu32"\n", bus->bus_number);
vmd_bus_handle_hotplug(bus);
} else {
SPDK_DEBUGLOG(SPDK_LOG_VMD, "Device hotremove detected on bus "
"%"PRIu32"\n", bus->bus_number);
vmd_bus_handle_hotremove(bus);
}
vmd_clear_hotplug_status(bus);
num_hotplugs++;
}
}
return num_hotplugs;
}
int
spdk_vmd_init(void)
{
return spdk_pci_enumerate(spdk_pci_vmd_get_driver(), vmd_enum_cb, &g_vmd_container);
}
void
spdk_vmd_fini(void)
{
uint32_t i;
for (i = 0; i < g_vmd_container.count; ++i) {
spdk_pci_device_detach(g_vmd_container.vmd[i].pci);
}
}
SPDK_LOG_REGISTER_COMPONENT("vmd", SPDK_LOG_VMD)
|