1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
#include "common/ceph_argparse.h"
#include "common/config.h"
#include "common/debug.h"
#include "common/errno.h"
#include "common/Cond.h"
#include "include/rados/librados.hpp"
#include "include/rbd/librbd.hpp"
#include "global/global_init.h"
#include <string>
#include <vector>
#define dout_context g_ceph_context
#define dout_subsys ceph_subsys_rbd_mirror
#undef dout_prefix
#define dout_prefix *_dout << "random-write: "
namespace {
const uint32_t NUM_THREADS = 8;
const uint32_t MAX_IO_SIZE = 24576;
const uint32_t MIN_IO_SIZE = 4;
void usage() {
std::cout << "usage: ceph_test_rbd_mirror_random_write [options...] \\" << std::endl;
std::cout << " <pool> <image>" << std::endl;
std::cout << std::endl;
std::cout << " pool image pool" << std::endl;
std::cout << " image image to write" << std::endl;
std::cout << std::endl;
std::cout << "options:\n";
std::cout << " -m monaddress[:port] connect to specified monitor\n";
std::cout << " --keyring=<path> path to keyring for local cluster\n";
std::cout << " --log-file=<logfile> file to log debug output\n";
std::cout << " --debug-rbd-mirror=<log-level>/<memory-level> set rbd-mirror debug level\n";
generic_server_usage();
}
void rbd_bencher_completion(void *c, void *pc);
struct rbd_bencher {
librbd::Image *image;
ceph::mutex lock = ceph::make_mutex("rbd_bencher::lock");
ceph::condition_variable cond;
int in_flight;
explicit rbd_bencher(librbd::Image *i)
: image(i),
in_flight(0) {
}
bool start_write(int max, uint64_t off, uint64_t len, bufferlist& bl,
int op_flags) {
{
std::lock_guard l{lock};
if (in_flight >= max)
return false;
in_flight++;
}
librbd::RBD::AioCompletion *c =
new librbd::RBD::AioCompletion((void *)this, rbd_bencher_completion);
image->aio_write2(off, len, bl, c, op_flags);
//cout << "start " << c << " at " << off << "~" << len << std::endl;
return true;
}
void wait_for(int max) {
using namespace std::chrono_literals;
std::unique_lock l{lock};
while (in_flight > max) {
cond.wait_for(l, 200ms);
}
}
};
void rbd_bencher_completion(void *vc, void *pc) {
librbd::RBD::AioCompletion *c = (librbd::RBD::AioCompletion *)vc;
rbd_bencher *b = static_cast<rbd_bencher *>(pc);
//cout << "complete " << c << std::endl;
int ret = c->get_return_value();
if (ret != 0) {
std::cout << "write error: " << cpp_strerror(ret) << std::endl;
exit(ret < 0 ? -ret : ret);
}
b->lock.lock();
b->in_flight--;
b->cond.notify_all();
b->lock.unlock();
c->release();
}
void write_image(librbd::Image &image) {
srand(time(NULL) % (unsigned long) -1);
uint64_t max_io_bytes = MAX_IO_SIZE * 1024;
bufferptr bp(max_io_bytes);
memset(bp.c_str(), rand() & 0xff, bp.length());
bufferlist bl;
bl.push_back(bp);
uint64_t size = 0;
image.size(&size);
ceph_assert(size != 0);
std::vector<uint64_t> thread_offset;
uint64_t i;
uint64_t start_pos;
// disturb all thread's offset, used by seq write
for (i = 0; i < NUM_THREADS; i++) {
start_pos = (rand() % (size / max_io_bytes)) * max_io_bytes;
thread_offset.push_back(start_pos);
}
uint64_t total_ios = 0;
uint64_t total_bytes = 0;
rbd_bencher b(&image);
while (true) {
b.wait_for(NUM_THREADS - 1);
for (uint32_t i = 0; i < NUM_THREADS; ++i) {
// mostly small writes with a small chance of large writes
uint32_t io_modulo = MIN_IO_SIZE + 1;
if (rand() % 30 == 0) {
io_modulo += MAX_IO_SIZE;
}
uint32_t io_size = (((rand() % io_modulo) + MIN_IO_SIZE) * 1024);
thread_offset[i] = (rand() % (size / io_size)) * io_size;
if (!b.start_write(NUM_THREADS, thread_offset[i], io_size, bl,
LIBRADOS_OP_FLAG_FADVISE_RANDOM)) {
break;
}
++i;
++total_ios;
total_bytes += io_size;
if (total_ios % 100 == 0) {
std::cout << total_ios << " IOs, " << total_bytes << " bytes"
<< std::endl;
}
}
}
b.wait_for(0);
}
} // anonymous namespace
int main(int argc, const char **argv)
{
auto args = argv_to_vec(argc, argv);
if (args.empty()) {
std::cerr << argv[0] << ": -h or --help for usage" << std::endl;
exit(1);
}
if (ceph_argparse_need_usage(args)) {
usage();
exit(0);
}
auto cct = global_init(nullptr, args, CEPH_ENTITY_TYPE_CLIENT,
CODE_ENVIRONMENT_UTILITY,
CINIT_FLAG_NO_MON_CONFIG);
if (args.size() < 2) {
usage();
return EXIT_FAILURE;
}
std::string pool_name = args[0];
std::string image_name = args[1];
common_init_finish(g_ceph_context);
dout(5) << "connecting to cluster" << dendl;
librados::Rados rados;
librados::IoCtx io_ctx;
librbd::RBD rbd;
librbd::Image image;
int r = rados.init_with_context(g_ceph_context);
if (r < 0) {
derr << "could not initialize RADOS handle" << dendl;
return EXIT_FAILURE;
}
r = rados.connect();
if (r < 0) {
derr << "error connecting to local cluster" << dendl;
return EXIT_FAILURE;
}
r = rados.ioctx_create(pool_name.c_str(), io_ctx);
if (r < 0) {
derr << "error finding local pool " << pool_name << ": "
<< cpp_strerror(r) << dendl;
return EXIT_FAILURE;
}
r = rbd.open(io_ctx, image, image_name.c_str());
if (r < 0) {
derr << "error opening image " << image_name << ": "
<< cpp_strerror(r) << dendl;
return EXIT_FAILURE;
}
write_image(image);
return EXIT_SUCCESS;
}
|