summaryrefslogtreecommitdiffstats
path: root/src/zstd/lib/compress/zstd_opt.c
blob: 36fff050cf5a8b24e63264c51a94864a4817dbbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
/*
 * Copyright (c) 2016-2020, Przemyslaw Skibinski, Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */

#include "zstd_compress_internal.h"
#include "hist.h"
#include "zstd_opt.h"


#define ZSTD_LITFREQ_ADD    2   /* scaling factor for litFreq, so that frequencies adapt faster to new stats */
#define ZSTD_FREQ_DIV       4   /* log factor when using previous stats to init next stats */
#define ZSTD_MAX_PRICE     (1<<30)

#define ZSTD_PREDEF_THRESHOLD 1024   /* if srcSize < ZSTD_PREDEF_THRESHOLD, symbols' cost is assumed static, directly determined by pre-defined distributions */


/*-*************************************
*  Price functions for optimal parser
***************************************/

#if 0    /* approximation at bit level */
#  define BITCOST_ACCURACY 0
#  define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
#  define WEIGHT(stat)  ((void)opt, ZSTD_bitWeight(stat))
#elif 0  /* fractional bit accuracy */
#  define BITCOST_ACCURACY 8
#  define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
#  define WEIGHT(stat,opt) ((void)opt, ZSTD_fracWeight(stat))
#else    /* opt==approx, ultra==accurate */
#  define BITCOST_ACCURACY 8
#  define BITCOST_MULTIPLIER (1 << BITCOST_ACCURACY)
#  define WEIGHT(stat,opt) (opt ? ZSTD_fracWeight(stat) : ZSTD_bitWeight(stat))
#endif

MEM_STATIC U32 ZSTD_bitWeight(U32 stat)
{
    return (ZSTD_highbit32(stat+1) * BITCOST_MULTIPLIER);
}

MEM_STATIC U32 ZSTD_fracWeight(U32 rawStat)
{
    U32 const stat = rawStat + 1;
    U32 const hb = ZSTD_highbit32(stat);
    U32 const BWeight = hb * BITCOST_MULTIPLIER;
    U32 const FWeight = (stat << BITCOST_ACCURACY) >> hb;
    U32 const weight = BWeight + FWeight;
    assert(hb + BITCOST_ACCURACY < 31);
    return weight;
}

#if (DEBUGLEVEL>=2)
/* debugging function,
 * @return price in bytes as fractional value
 * for debug messages only */
MEM_STATIC double ZSTD_fCost(U32 price)
{
    return (double)price / (BITCOST_MULTIPLIER*8);
}
#endif

static int ZSTD_compressedLiterals(optState_t const* const optPtr)
{
    return optPtr->literalCompressionMode != ZSTD_lcm_uncompressed;
}

static void ZSTD_setBasePrices(optState_t* optPtr, int optLevel)
{
    if (ZSTD_compressedLiterals(optPtr))
        optPtr->litSumBasePrice = WEIGHT(optPtr->litSum, optLevel);
    optPtr->litLengthSumBasePrice = WEIGHT(optPtr->litLengthSum, optLevel);
    optPtr->matchLengthSumBasePrice = WEIGHT(optPtr->matchLengthSum, optLevel);
    optPtr->offCodeSumBasePrice = WEIGHT(optPtr->offCodeSum, optLevel);
}


/* ZSTD_downscaleStat() :
 * reduce all elements in table by a factor 2^(ZSTD_FREQ_DIV+malus)
 * return the resulting sum of elements */
static U32 ZSTD_downscaleStat(unsigned* table, U32 lastEltIndex, int malus)
{
    U32 s, sum=0;
    DEBUGLOG(5, "ZSTD_downscaleStat (nbElts=%u)", (unsigned)lastEltIndex+1);
    assert(ZSTD_FREQ_DIV+malus > 0 && ZSTD_FREQ_DIV+malus < 31);
    for (s=0; s<lastEltIndex+1; s++) {
        table[s] = 1 + (table[s] >> (ZSTD_FREQ_DIV+malus));
        sum += table[s];
    }
    return sum;
}

/* ZSTD_rescaleFreqs() :
 * if first block (detected by optPtr->litLengthSum == 0) : init statistics
 *    take hints from dictionary if there is one
 *    or init from zero, using src for literals stats, or flat 1 for match symbols
 * otherwise downscale existing stats, to be used as seed for next block.
 */
static void
ZSTD_rescaleFreqs(optState_t* const optPtr,
            const BYTE* const src, size_t const srcSize,
                  int const optLevel)
{
    int const compressedLiterals = ZSTD_compressedLiterals(optPtr);
    DEBUGLOG(5, "ZSTD_rescaleFreqs (srcSize=%u)", (unsigned)srcSize);
    optPtr->priceType = zop_dynamic;

    if (optPtr->litLengthSum == 0) {  /* first block : init */
        if (srcSize <= ZSTD_PREDEF_THRESHOLD) {  /* heuristic */
            DEBUGLOG(5, "(srcSize <= ZSTD_PREDEF_THRESHOLD) => zop_predef");
            optPtr->priceType = zop_predef;
        }

        assert(optPtr->symbolCosts != NULL);
        if (optPtr->symbolCosts->huf.repeatMode == HUF_repeat_valid) {
            /* huffman table presumed generated by dictionary */
            optPtr->priceType = zop_dynamic;

            if (compressedLiterals) {
                unsigned lit;
                assert(optPtr->litFreq != NULL);
                optPtr->litSum = 0;
                for (lit=0; lit<=MaxLit; lit++) {
                    U32 const scaleLog = 11;   /* scale to 2K */
                    U32 const bitCost = HUF_getNbBits(optPtr->symbolCosts->huf.CTable, lit);
                    assert(bitCost <= scaleLog);
                    optPtr->litFreq[lit] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
                    optPtr->litSum += optPtr->litFreq[lit];
            }   }

            {   unsigned ll;
                FSE_CState_t llstate;
                FSE_initCState(&llstate, optPtr->symbolCosts->fse.litlengthCTable);
                optPtr->litLengthSum = 0;
                for (ll=0; ll<=MaxLL; ll++) {
                    U32 const scaleLog = 10;   /* scale to 1K */
                    U32 const bitCost = FSE_getMaxNbBits(llstate.symbolTT, ll);
                    assert(bitCost < scaleLog);
                    optPtr->litLengthFreq[ll] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
                    optPtr->litLengthSum += optPtr->litLengthFreq[ll];
            }   }

            {   unsigned ml;
                FSE_CState_t mlstate;
                FSE_initCState(&mlstate, optPtr->symbolCosts->fse.matchlengthCTable);
                optPtr->matchLengthSum = 0;
                for (ml=0; ml<=MaxML; ml++) {
                    U32 const scaleLog = 10;
                    U32 const bitCost = FSE_getMaxNbBits(mlstate.symbolTT, ml);
                    assert(bitCost < scaleLog);
                    optPtr->matchLengthFreq[ml] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
                    optPtr->matchLengthSum += optPtr->matchLengthFreq[ml];
            }   }

            {   unsigned of;
                FSE_CState_t ofstate;
                FSE_initCState(&ofstate, optPtr->symbolCosts->fse.offcodeCTable);
                optPtr->offCodeSum = 0;
                for (of=0; of<=MaxOff; of++) {
                    U32 const scaleLog = 10;
                    U32 const bitCost = FSE_getMaxNbBits(ofstate.symbolTT, of);
                    assert(bitCost < scaleLog);
                    optPtr->offCodeFreq[of] = bitCost ? 1 << (scaleLog-bitCost) : 1 /*minimum to calculate cost*/;
                    optPtr->offCodeSum += optPtr->offCodeFreq[of];
            }   }

        } else {  /* not a dictionary */

            assert(optPtr->litFreq != NULL);
            if (compressedLiterals) {
                unsigned lit = MaxLit;
                HIST_count_simple(optPtr->litFreq, &lit, src, srcSize);   /* use raw first block to init statistics */
                optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
            }

            {   unsigned ll;
                for (ll=0; ll<=MaxLL; ll++)
                    optPtr->litLengthFreq[ll] = 1;
            }
            optPtr->litLengthSum = MaxLL+1;

            {   unsigned ml;
                for (ml=0; ml<=MaxML; ml++)
                    optPtr->matchLengthFreq[ml] = 1;
            }
            optPtr->matchLengthSum = MaxML+1;

            {   unsigned of;
                for (of=0; of<=MaxOff; of++)
                    optPtr->offCodeFreq[of] = 1;
            }
            optPtr->offCodeSum = MaxOff+1;

        }

    } else {   /* new block : re-use previous statistics, scaled down */

        if (compressedLiterals)
            optPtr->litSum = ZSTD_downscaleStat(optPtr->litFreq, MaxLit, 1);
        optPtr->litLengthSum = ZSTD_downscaleStat(optPtr->litLengthFreq, MaxLL, 0);
        optPtr->matchLengthSum = ZSTD_downscaleStat(optPtr->matchLengthFreq, MaxML, 0);
        optPtr->offCodeSum = ZSTD_downscaleStat(optPtr->offCodeFreq, MaxOff, 0);
    }

    ZSTD_setBasePrices(optPtr, optLevel);
}

/* ZSTD_rawLiteralsCost() :
 * price of literals (only) in specified segment (which length can be 0).
 * does not include price of literalLength symbol */
static U32 ZSTD_rawLiteralsCost(const BYTE* const literals, U32 const litLength,
                                const optState_t* const optPtr,
                                int optLevel)
{
    if (litLength == 0) return 0;

    if (!ZSTD_compressedLiterals(optPtr))
        return (litLength << 3) * BITCOST_MULTIPLIER;  /* Uncompressed - 8 bytes per literal. */

    if (optPtr->priceType == zop_predef)
        return (litLength*6) * BITCOST_MULTIPLIER;  /* 6 bit per literal - no statistic used */

    /* dynamic statistics */
    {   U32 price = litLength * optPtr->litSumBasePrice;
        U32 u;
        for (u=0; u < litLength; u++) {
            assert(WEIGHT(optPtr->litFreq[literals[u]], optLevel) <= optPtr->litSumBasePrice);   /* literal cost should never be negative */
            price -= WEIGHT(optPtr->litFreq[literals[u]], optLevel);
        }
        return price;
    }
}

/* ZSTD_litLengthPrice() :
 * cost of literalLength symbol */
static U32 ZSTD_litLengthPrice(U32 const litLength, const optState_t* const optPtr, int optLevel)
{
    if (optPtr->priceType == zop_predef) return WEIGHT(litLength, optLevel);

    /* dynamic statistics */
    {   U32 const llCode = ZSTD_LLcode(litLength);
        return (LL_bits[llCode] * BITCOST_MULTIPLIER)
             + optPtr->litLengthSumBasePrice
             - WEIGHT(optPtr->litLengthFreq[llCode], optLevel);
    }
}

/* ZSTD_getMatchPrice() :
 * Provides the cost of the match part (offset + matchLength) of a sequence
 * Must be combined with ZSTD_fullLiteralsCost() to get the full cost of a sequence.
 * optLevel: when <2, favors small offset for decompression speed (improved cache efficiency) */
FORCE_INLINE_TEMPLATE U32
ZSTD_getMatchPrice(U32 const offset,
                   U32 const matchLength,
             const optState_t* const optPtr,
                   int const optLevel)
{
    U32 price;
    U32 const offCode = ZSTD_highbit32(offset+1);
    U32 const mlBase = matchLength - MINMATCH;
    assert(matchLength >= MINMATCH);

    if (optPtr->priceType == zop_predef)  /* fixed scheme, do not use statistics */
        return WEIGHT(mlBase, optLevel) + ((16 + offCode) * BITCOST_MULTIPLIER);

    /* dynamic statistics */
    price = (offCode * BITCOST_MULTIPLIER) + (optPtr->offCodeSumBasePrice - WEIGHT(optPtr->offCodeFreq[offCode], optLevel));
    if ((optLevel<2) /*static*/ && offCode >= 20)
        price += (offCode-19)*2 * BITCOST_MULTIPLIER; /* handicap for long distance offsets, favor decompression speed */

    /* match Length */
    {   U32 const mlCode = ZSTD_MLcode(mlBase);
        price += (ML_bits[mlCode] * BITCOST_MULTIPLIER) + (optPtr->matchLengthSumBasePrice - WEIGHT(optPtr->matchLengthFreq[mlCode], optLevel));
    }

    price += BITCOST_MULTIPLIER / 5;   /* heuristic : make matches a bit more costly to favor less sequences -> faster decompression speed */

    DEBUGLOG(8, "ZSTD_getMatchPrice(ml:%u) = %u", matchLength, price);
    return price;
}

/* ZSTD_updateStats() :
 * assumption : literals + litLengtn <= iend */
static void ZSTD_updateStats(optState_t* const optPtr,
                             U32 litLength, const BYTE* literals,
                             U32 offsetCode, U32 matchLength)
{
    /* literals */
    if (ZSTD_compressedLiterals(optPtr)) {
        U32 u;
        for (u=0; u < litLength; u++)
            optPtr->litFreq[literals[u]] += ZSTD_LITFREQ_ADD;
        optPtr->litSum += litLength*ZSTD_LITFREQ_ADD;
    }

    /* literal Length */
    {   U32 const llCode = ZSTD_LLcode(litLength);
        optPtr->litLengthFreq[llCode]++;
        optPtr->litLengthSum++;
    }

    /* match offset code (0-2=>repCode; 3+=>offset+2) */
    {   U32 const offCode = ZSTD_highbit32(offsetCode+1);
        assert(offCode <= MaxOff);
        optPtr->offCodeFreq[offCode]++;
        optPtr->offCodeSum++;
    }

    /* match Length */
    {   U32 const mlBase = matchLength - MINMATCH;
        U32 const mlCode = ZSTD_MLcode(mlBase);
        optPtr->matchLengthFreq[mlCode]++;
        optPtr->matchLengthSum++;
    }
}


/* ZSTD_readMINMATCH() :
 * function safe only for comparisons
 * assumption : memPtr must be at least 4 bytes before end of buffer */
MEM_STATIC U32 ZSTD_readMINMATCH(const void* memPtr, U32 length)
{
    switch (length)
    {
    default :
    case 4 : return MEM_read32(memPtr);
    case 3 : if (MEM_isLittleEndian())
                return MEM_read32(memPtr)<<8;
             else
                return MEM_read32(memPtr)>>8;
    }
}


/* Update hashTable3 up to ip (excluded)
   Assumption : always within prefix (i.e. not within extDict) */
static U32 ZSTD_insertAndFindFirstIndexHash3 (ZSTD_matchState_t* ms,
                                              U32* nextToUpdate3,
                                              const BYTE* const ip)
{
    U32* const hashTable3 = ms->hashTable3;
    U32 const hashLog3 = ms->hashLog3;
    const BYTE* const base = ms->window.base;
    U32 idx = *nextToUpdate3;
    U32 const target = (U32)(ip - base);
    size_t const hash3 = ZSTD_hash3Ptr(ip, hashLog3);
    assert(hashLog3 > 0);

    while(idx < target) {
        hashTable3[ZSTD_hash3Ptr(base+idx, hashLog3)] = idx;
        idx++;
    }

    *nextToUpdate3 = target;
    return hashTable3[hash3];
}


/*-*************************************
*  Binary Tree search
***************************************/
/** ZSTD_insertBt1() : add one or multiple positions to tree.
 *  ip : assumed <= iend-8 .
 * @return : nb of positions added */
static U32 ZSTD_insertBt1(
                ZSTD_matchState_t* ms,
                const BYTE* const ip, const BYTE* const iend,
                U32 const mls, const int extDict)
{
    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    U32*   const hashTable = ms->hashTable;
    U32    const hashLog = cParams->hashLog;
    size_t const h  = ZSTD_hashPtr(ip, hashLog, mls);
    U32*   const bt = ms->chainTable;
    U32    const btLog  = cParams->chainLog - 1;
    U32    const btMask = (1 << btLog) - 1;
    U32 matchIndex = hashTable[h];
    size_t commonLengthSmaller=0, commonLengthLarger=0;
    const BYTE* const base = ms->window.base;
    const BYTE* const dictBase = ms->window.dictBase;
    const U32 dictLimit = ms->window.dictLimit;
    const BYTE* const dictEnd = dictBase + dictLimit;
    const BYTE* const prefixStart = base + dictLimit;
    const BYTE* match;
    const U32 current = (U32)(ip-base);
    const U32 btLow = btMask >= current ? 0 : current - btMask;
    U32* smallerPtr = bt + 2*(current&btMask);
    U32* largerPtr  = smallerPtr + 1;
    U32 dummy32;   /* to be nullified at the end */
    U32 const windowLow = ms->window.lowLimit;
    U32 matchEndIdx = current+8+1;
    size_t bestLength = 8;
    U32 nbCompares = 1U << cParams->searchLog;
#ifdef ZSTD_C_PREDICT
    U32 predictedSmall = *(bt + 2*((current-1)&btMask) + 0);
    U32 predictedLarge = *(bt + 2*((current-1)&btMask) + 1);
    predictedSmall += (predictedSmall>0);
    predictedLarge += (predictedLarge>0);
#endif /* ZSTD_C_PREDICT */

    DEBUGLOG(8, "ZSTD_insertBt1 (%u)", current);

    assert(ip <= iend-8);   /* required for h calculation */
    hashTable[h] = current;   /* Update Hash Table */

    assert(windowLow > 0);
    while (nbCompares-- && (matchIndex >= windowLow)) {
        U32* const nextPtr = bt + 2*(matchIndex & btMask);
        size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
        assert(matchIndex < current);

#ifdef ZSTD_C_PREDICT   /* note : can create issues when hlog small <= 11 */
        const U32* predictPtr = bt + 2*((matchIndex-1) & btMask);   /* written this way, as bt is a roll buffer */
        if (matchIndex == predictedSmall) {
            /* no need to check length, result known */
            *smallerPtr = matchIndex;
            if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
            smallerPtr = nextPtr+1;               /* new "smaller" => larger of match */
            matchIndex = nextPtr[1];              /* new matchIndex larger than previous (closer to current) */
            predictedSmall = predictPtr[1] + (predictPtr[1]>0);
            continue;
        }
        if (matchIndex == predictedLarge) {
            *largerPtr = matchIndex;
            if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
            largerPtr = nextPtr;
            matchIndex = nextPtr[0];
            predictedLarge = predictPtr[0] + (predictPtr[0]>0);
            continue;
        }
#endif

        if (!extDict || (matchIndex+matchLength >= dictLimit)) {
            assert(matchIndex+matchLength >= dictLimit);   /* might be wrong if actually extDict */
            match = base + matchIndex;
            matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
        } else {
            match = dictBase + matchIndex;
            matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
            if (matchIndex+matchLength >= dictLimit)
                match = base + matchIndex;   /* to prepare for next usage of match[matchLength] */
        }

        if (matchLength > bestLength) {
            bestLength = matchLength;
            if (matchLength > matchEndIdx - matchIndex)
                matchEndIdx = matchIndex + (U32)matchLength;
        }

        if (ip+matchLength == iend) {   /* equal : no way to know if inf or sup */
            break;   /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
        }

        if (match[matchLength] < ip[matchLength]) {  /* necessarily within buffer */
            /* match is smaller than current */
            *smallerPtr = matchIndex;             /* update smaller idx */
            commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
            if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop searching */
            smallerPtr = nextPtr+1;               /* new "candidate" => larger than match, which was smaller than target */
            matchIndex = nextPtr[1];              /* new matchIndex, larger than previous and closer to current */
        } else {
            /* match is larger than current */
            *largerPtr = matchIndex;
            commonLengthLarger = matchLength;
            if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop searching */
            largerPtr = nextPtr;
            matchIndex = nextPtr[0];
    }   }

    *smallerPtr = *largerPtr = 0;
    {   U32 positions = 0;
        if (bestLength > 384) positions = MIN(192, (U32)(bestLength - 384));   /* speed optimization */
        assert(matchEndIdx > current + 8);
        return MAX(positions, matchEndIdx - (current + 8));
    }
}

FORCE_INLINE_TEMPLATE
void ZSTD_updateTree_internal(
                ZSTD_matchState_t* ms,
                const BYTE* const ip, const BYTE* const iend,
                const U32 mls, const ZSTD_dictMode_e dictMode)
{
    const BYTE* const base = ms->window.base;
    U32 const target = (U32)(ip - base);
    U32 idx = ms->nextToUpdate;
    DEBUGLOG(6, "ZSTD_updateTree_internal, from %u to %u  (dictMode:%u)",
                idx, target, dictMode);

    while(idx < target) {
        U32 const forward = ZSTD_insertBt1(ms, base+idx, iend, mls, dictMode == ZSTD_extDict);
        assert(idx < (U32)(idx + forward));
        idx += forward;
    }
    assert((size_t)(ip - base) <= (size_t)(U32)(-1));
    assert((size_t)(iend - base) <= (size_t)(U32)(-1));
    ms->nextToUpdate = target;
}

void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend) {
    ZSTD_updateTree_internal(ms, ip, iend, ms->cParams.minMatch, ZSTD_noDict);
}

FORCE_INLINE_TEMPLATE
U32 ZSTD_insertBtAndGetAllMatches (
                    ZSTD_match_t* matches,   /* store result (found matches) in this table (presumed large enough) */
                    ZSTD_matchState_t* ms,
                    U32* nextToUpdate3,
                    const BYTE* const ip, const BYTE* const iLimit, const ZSTD_dictMode_e dictMode,
                    const U32 rep[ZSTD_REP_NUM],
                    U32 const ll0,   /* tells if associated literal length is 0 or not. This value must be 0 or 1 */
                    const U32 lengthToBeat,
                    U32 const mls /* template */)
{
    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
    const BYTE* const base = ms->window.base;
    U32 const current = (U32)(ip-base);
    U32 const hashLog = cParams->hashLog;
    U32 const minMatch = (mls==3) ? 3 : 4;
    U32* const hashTable = ms->hashTable;
    size_t const h  = ZSTD_hashPtr(ip, hashLog, mls);
    U32 matchIndex  = hashTable[h];
    U32* const bt   = ms->chainTable;
    U32 const btLog = cParams->chainLog - 1;
    U32 const btMask= (1U << btLog) - 1;
    size_t commonLengthSmaller=0, commonLengthLarger=0;
    const BYTE* const dictBase = ms->window.dictBase;
    U32 const dictLimit = ms->window.dictLimit;
    const BYTE* const dictEnd = dictBase + dictLimit;
    const BYTE* const prefixStart = base + dictLimit;
    U32 const btLow = (btMask >= current) ? 0 : current - btMask;
    U32 const windowLow = ZSTD_getLowestMatchIndex(ms, current, cParams->windowLog);
    U32 const matchLow = windowLow ? windowLow : 1;
    U32* smallerPtr = bt + 2*(current&btMask);
    U32* largerPtr  = bt + 2*(current&btMask) + 1;
    U32 matchEndIdx = current+8+1;   /* farthest referenced position of any match => detects repetitive patterns */
    U32 dummy32;   /* to be nullified at the end */
    U32 mnum = 0;
    U32 nbCompares = 1U << cParams->searchLog;

    const ZSTD_matchState_t* dms    = dictMode == ZSTD_dictMatchState ? ms->dictMatchState : NULL;
    const ZSTD_compressionParameters* const dmsCParams =
                                      dictMode == ZSTD_dictMatchState ? &dms->cParams : NULL;
    const BYTE* const dmsBase       = dictMode == ZSTD_dictMatchState ? dms->window.base : NULL;
    const BYTE* const dmsEnd        = dictMode == ZSTD_dictMatchState ? dms->window.nextSrc : NULL;
    U32         const dmsHighLimit  = dictMode == ZSTD_dictMatchState ? (U32)(dmsEnd - dmsBase) : 0;
    U32         const dmsLowLimit   = dictMode == ZSTD_dictMatchState ? dms->window.lowLimit : 0;
    U32         const dmsIndexDelta = dictMode == ZSTD_dictMatchState ? windowLow - dmsHighLimit : 0;
    U32         const dmsHashLog    = dictMode == ZSTD_dictMatchState ? dmsCParams->hashLog : hashLog;
    U32         const dmsBtLog      = dictMode == ZSTD_dictMatchState ? dmsCParams->chainLog - 1 : btLog;
    U32         const dmsBtMask     = dictMode == ZSTD_dictMatchState ? (1U << dmsBtLog) - 1 : 0;
    U32         const dmsBtLow      = dictMode == ZSTD_dictMatchState && dmsBtMask < dmsHighLimit - dmsLowLimit ? dmsHighLimit - dmsBtMask : dmsLowLimit;

    size_t bestLength = lengthToBeat-1;
    DEBUGLOG(8, "ZSTD_insertBtAndGetAllMatches: current=%u", current);

    /* check repCode */
    assert(ll0 <= 1);   /* necessarily 1 or 0 */
    {   U32 const lastR = ZSTD_REP_NUM + ll0;
        U32 repCode;
        for (repCode = ll0; repCode < lastR; repCode++) {
            U32 const repOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
            U32 const repIndex = current - repOffset;
            U32 repLen = 0;
            assert(current >= dictLimit);
            if (repOffset-1 /* intentional overflow, discards 0 and -1 */ < current-dictLimit) {  /* equivalent to `current > repIndex >= dictLimit` */
                /* We must validate the repcode offset because when we're using a dictionary the
                 * valid offset range shrinks when the dictionary goes out of bounds.
                 */
                if ((repIndex >= windowLow) & (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(ip - repOffset, minMatch))) {
                    repLen = (U32)ZSTD_count(ip+minMatch, ip+minMatch-repOffset, iLimit) + minMatch;
                }
            } else {  /* repIndex < dictLimit || repIndex >= current */
                const BYTE* const repMatch = dictMode == ZSTD_dictMatchState ?
                                             dmsBase + repIndex - dmsIndexDelta :
                                             dictBase + repIndex;
                assert(current >= windowLow);
                if ( dictMode == ZSTD_extDict
                  && ( ((repOffset-1) /*intentional overflow*/ < current - windowLow)  /* equivalent to `current > repIndex >= windowLow` */
                     & (((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */)
                  && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
                    repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dictEnd, prefixStart) + minMatch;
                }
                if (dictMode == ZSTD_dictMatchState
                  && ( ((repOffset-1) /*intentional overflow*/ < current - (dmsLowLimit + dmsIndexDelta))  /* equivalent to `current > repIndex >= dmsLowLimit` */
                     & ((U32)((dictLimit-1) - repIndex) >= 3) ) /* intentional overflow : do not test positions overlapping 2 memory segments */
                  && (ZSTD_readMINMATCH(ip, minMatch) == ZSTD_readMINMATCH(repMatch, minMatch)) ) {
                    repLen = (U32)ZSTD_count_2segments(ip+minMatch, repMatch+minMatch, iLimit, dmsEnd, prefixStart) + minMatch;
            }   }
            /* save longer solution */
            if (repLen > bestLength) {
                DEBUGLOG(8, "found repCode %u (ll0:%u, offset:%u) of length %u",
                            repCode, ll0, repOffset, repLen);
                bestLength = repLen;
                matches[mnum].off = repCode - ll0;
                matches[mnum].len = (U32)repLen;
                mnum++;
                if ( (repLen > sufficient_len)
                   | (ip+repLen == iLimit) ) {  /* best possible */
                    return mnum;
    }   }   }   }

    /* HC3 match finder */
    if ((mls == 3) /*static*/ && (bestLength < mls)) {
        U32 const matchIndex3 = ZSTD_insertAndFindFirstIndexHash3(ms, nextToUpdate3, ip);
        if ((matchIndex3 >= matchLow)
          & (current - matchIndex3 < (1<<18)) /*heuristic : longer distance likely too expensive*/ ) {
            size_t mlen;
            if ((dictMode == ZSTD_noDict) /*static*/ || (dictMode == ZSTD_dictMatchState) /*static*/ || (matchIndex3 >= dictLimit)) {
                const BYTE* const match = base + matchIndex3;
                mlen = ZSTD_count(ip, match, iLimit);
            } else {
                const BYTE* const match = dictBase + matchIndex3;
                mlen = ZSTD_count_2segments(ip, match, iLimit, dictEnd, prefixStart);
            }

            /* save best solution */
            if (mlen >= mls /* == 3 > bestLength */) {
                DEBUGLOG(8, "found small match with hlog3, of length %u",
                            (U32)mlen);
                bestLength = mlen;
                assert(current > matchIndex3);
                assert(mnum==0);  /* no prior solution */
                matches[0].off = (current - matchIndex3) + ZSTD_REP_MOVE;
                matches[0].len = (U32)mlen;
                mnum = 1;
                if ( (mlen > sufficient_len) |
                     (ip+mlen == iLimit) ) {  /* best possible length */
                    ms->nextToUpdate = current+1;  /* skip insertion */
                    return 1;
        }   }   }
        /* no dictMatchState lookup: dicts don't have a populated HC3 table */
    }

    hashTable[h] = current;   /* Update Hash Table */

    while (nbCompares-- && (matchIndex >= matchLow)) {
        U32* const nextPtr = bt + 2*(matchIndex & btMask);
        const BYTE* match;
        size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
        assert(current > matchIndex);

        if ((dictMode == ZSTD_noDict) || (dictMode == ZSTD_dictMatchState) || (matchIndex+matchLength >= dictLimit)) {
            assert(matchIndex+matchLength >= dictLimit);  /* ensure the condition is correct when !extDict */
            match = base + matchIndex;
            if (matchIndex >= dictLimit) assert(memcmp(match, ip, matchLength) == 0);  /* ensure early section of match is equal as expected */
            matchLength += ZSTD_count(ip+matchLength, match+matchLength, iLimit);
        } else {
            match = dictBase + matchIndex;
            assert(memcmp(match, ip, matchLength) == 0);  /* ensure early section of match is equal as expected */
            matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dictEnd, prefixStart);
            if (matchIndex+matchLength >= dictLimit)
                match = base + matchIndex;   /* prepare for match[matchLength] read */
        }

        if (matchLength > bestLength) {
            DEBUGLOG(8, "found match of length %u at distance %u (offCode=%u)",
                    (U32)matchLength, current - matchIndex, current - matchIndex + ZSTD_REP_MOVE);
            assert(matchEndIdx > matchIndex);
            if (matchLength > matchEndIdx - matchIndex)
                matchEndIdx = matchIndex + (U32)matchLength;
            bestLength = matchLength;
            matches[mnum].off = (current - matchIndex) + ZSTD_REP_MOVE;
            matches[mnum].len = (U32)matchLength;
            mnum++;
            if ( (matchLength > ZSTD_OPT_NUM)
               | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) {
                if (dictMode == ZSTD_dictMatchState) nbCompares = 0; /* break should also skip searching dms */
                break; /* drop, to preserve bt consistency (miss a little bit of compression) */
            }
        }

        if (match[matchLength] < ip[matchLength]) {
            /* match smaller than current */
            *smallerPtr = matchIndex;             /* update smaller idx */
            commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
            if (matchIndex <= btLow) { smallerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
            smallerPtr = nextPtr+1;               /* new candidate => larger than match, which was smaller than current */
            matchIndex = nextPtr[1];              /* new matchIndex, larger than previous, closer to current */
        } else {
            *largerPtr = matchIndex;
            commonLengthLarger = matchLength;
            if (matchIndex <= btLow) { largerPtr=&dummy32; break; }   /* beyond tree size, stop the search */
            largerPtr = nextPtr;
            matchIndex = nextPtr[0];
    }   }

    *smallerPtr = *largerPtr = 0;

    if (dictMode == ZSTD_dictMatchState && nbCompares) {
        size_t const dmsH = ZSTD_hashPtr(ip, dmsHashLog, mls);
        U32 dictMatchIndex = dms->hashTable[dmsH];
        const U32* const dmsBt = dms->chainTable;
        commonLengthSmaller = commonLengthLarger = 0;
        while (nbCompares-- && (dictMatchIndex > dmsLowLimit)) {
            const U32* const nextPtr = dmsBt + 2*(dictMatchIndex & dmsBtMask);
            size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger);   /* guaranteed minimum nb of common bytes */
            const BYTE* match = dmsBase + dictMatchIndex;
            matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iLimit, dmsEnd, prefixStart);
            if (dictMatchIndex+matchLength >= dmsHighLimit)
                match = base + dictMatchIndex + dmsIndexDelta;   /* to prepare for next usage of match[matchLength] */

            if (matchLength > bestLength) {
                matchIndex = dictMatchIndex + dmsIndexDelta;
                DEBUGLOG(8, "found dms match of length %u at distance %u (offCode=%u)",
                        (U32)matchLength, current - matchIndex, current - matchIndex + ZSTD_REP_MOVE);
                if (matchLength > matchEndIdx - matchIndex)
                    matchEndIdx = matchIndex + (U32)matchLength;
                bestLength = matchLength;
                matches[mnum].off = (current - matchIndex) + ZSTD_REP_MOVE;
                matches[mnum].len = (U32)matchLength;
                mnum++;
                if ( (matchLength > ZSTD_OPT_NUM)
                   | (ip+matchLength == iLimit) /* equal : no way to know if inf or sup */) {
                    break;   /* drop, to guarantee consistency (miss a little bit of compression) */
                }
            }

            if (dictMatchIndex <= dmsBtLow) { break; }   /* beyond tree size, stop the search */
            if (match[matchLength] < ip[matchLength]) {
                commonLengthSmaller = matchLength;    /* all smaller will now have at least this guaranteed common length */
                dictMatchIndex = nextPtr[1];              /* new matchIndex larger than previous (closer to current) */
            } else {
                /* match is larger than current */
                commonLengthLarger = matchLength;
                dictMatchIndex = nextPtr[0];
            }
        }
    }

    assert(matchEndIdx > current+8);
    ms->nextToUpdate = matchEndIdx - 8;  /* skip repetitive patterns */
    return mnum;
}


FORCE_INLINE_TEMPLATE U32 ZSTD_BtGetAllMatches (
                        ZSTD_match_t* matches,   /* store result (match found, increasing size) in this table */
                        ZSTD_matchState_t* ms,
                        U32* nextToUpdate3,
                        const BYTE* ip, const BYTE* const iHighLimit, const ZSTD_dictMode_e dictMode,
                        const U32 rep[ZSTD_REP_NUM],
                        U32 const ll0,
                        U32 const lengthToBeat)
{
    const ZSTD_compressionParameters* const cParams = &ms->cParams;
    U32 const matchLengthSearch = cParams->minMatch;
    DEBUGLOG(8, "ZSTD_BtGetAllMatches");
    if (ip < ms->window.base + ms->nextToUpdate) return 0;   /* skipped area */
    ZSTD_updateTree_internal(ms, ip, iHighLimit, matchLengthSearch, dictMode);
    switch(matchLengthSearch)
    {
    case 3 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 3);
    default :
    case 4 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 4);
    case 5 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 5);
    case 7 :
    case 6 : return ZSTD_insertBtAndGetAllMatches(matches, ms, nextToUpdate3, ip, iHighLimit, dictMode, rep, ll0, lengthToBeat, 6);
    }
}


/*-*******************************
*  Optimal parser
*********************************/


static U32 ZSTD_totalLen(ZSTD_optimal_t sol)
{
    return sol.litlen + sol.mlen;
}

#if 0 /* debug */

static void
listStats(const U32* table, int lastEltID)
{
    int const nbElts = lastEltID + 1;
    int enb;
    for (enb=0; enb < nbElts; enb++) {
        (void)table;
        /* RAWLOG(2, "%3i:%3i,  ", enb, table[enb]); */
        RAWLOG(2, "%4i,", table[enb]);
    }
    RAWLOG(2, " \n");
}

#endif

FORCE_INLINE_TEMPLATE size_t
ZSTD_compressBlock_opt_generic(ZSTD_matchState_t* ms,
                               seqStore_t* seqStore,
                               U32 rep[ZSTD_REP_NUM],
                         const void* src, size_t srcSize,
                         const int optLevel,
                         const ZSTD_dictMode_e dictMode)
{
    optState_t* const optStatePtr = &ms->opt;
    const BYTE* const istart = (const BYTE*)src;
    const BYTE* ip = istart;
    const BYTE* anchor = istart;
    const BYTE* const iend = istart + srcSize;
    const BYTE* const ilimit = iend - 8;
    const BYTE* const base = ms->window.base;
    const BYTE* const prefixStart = base + ms->window.dictLimit;
    const ZSTD_compressionParameters* const cParams = &ms->cParams;

    U32 const sufficient_len = MIN(cParams->targetLength, ZSTD_OPT_NUM -1);
    U32 const minMatch = (cParams->minMatch == 3) ? 3 : 4;
    U32 nextToUpdate3 = ms->nextToUpdate;

    ZSTD_optimal_t* const opt = optStatePtr->priceTable;
    ZSTD_match_t* const matches = optStatePtr->matchTable;
    ZSTD_optimal_t lastSequence;

    /* init */
    DEBUGLOG(5, "ZSTD_compressBlock_opt_generic: current=%u, prefix=%u, nextToUpdate=%u",
                (U32)(ip - base), ms->window.dictLimit, ms->nextToUpdate);
    assert(optLevel <= 2);
    ZSTD_rescaleFreqs(optStatePtr, (const BYTE*)src, srcSize, optLevel);
    ip += (ip==prefixStart);

    /* Match Loop */
    while (ip < ilimit) {
        U32 cur, last_pos = 0;

        /* find first match */
        {   U32 const litlen = (U32)(ip - anchor);
            U32 const ll0 = !litlen;
            U32 const nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, ip, iend, dictMode, rep, ll0, minMatch);
            if (!nbMatches) { ip++; continue; }

            /* initialize opt[0] */
            { U32 i ; for (i=0; i<ZSTD_REP_NUM; i++) opt[0].rep[i] = rep[i]; }
            opt[0].mlen = 0;  /* means is_a_literal */
            opt[0].litlen = litlen;
            /* We don't need to include the actual price of the literals because
             * it is static for the duration of the forward pass, and is included
             * in every price. We include the literal length to avoid negative
             * prices when we subtract the previous literal length.
             */
            opt[0].price = ZSTD_litLengthPrice(litlen, optStatePtr, optLevel);

            /* large match -> immediate encoding */
            {   U32 const maxML = matches[nbMatches-1].len;
                U32 const maxOffset = matches[nbMatches-1].off;
                DEBUGLOG(6, "found %u matches of maxLength=%u and maxOffCode=%u at cPos=%u => start new series",
                            nbMatches, maxML, maxOffset, (U32)(ip-prefixStart));

                if (maxML > sufficient_len) {
                    lastSequence.litlen = litlen;
                    lastSequence.mlen = maxML;
                    lastSequence.off = maxOffset;
                    DEBUGLOG(6, "large match (%u>%u), immediate encoding",
                                maxML, sufficient_len);
                    cur = 0;
                    last_pos = ZSTD_totalLen(lastSequence);
                    goto _shortestPath;
            }   }

            /* set prices for first matches starting position == 0 */
            {   U32 const literalsPrice = opt[0].price + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
                U32 pos;
                U32 matchNb;
                for (pos = 1; pos < minMatch; pos++) {
                    opt[pos].price = ZSTD_MAX_PRICE;   /* mlen, litlen and price will be fixed during forward scanning */
                }
                for (matchNb = 0; matchNb < nbMatches; matchNb++) {
                    U32 const offset = matches[matchNb].off;
                    U32 const end = matches[matchNb].len;
                    for ( ; pos <= end ; pos++ ) {
                        U32 const matchPrice = ZSTD_getMatchPrice(offset, pos, optStatePtr, optLevel);
                        U32 const sequencePrice = literalsPrice + matchPrice;
                        DEBUGLOG(7, "rPos:%u => set initial price : %.2f",
                                    pos, ZSTD_fCost(sequencePrice));
                        opt[pos].mlen = pos;
                        opt[pos].off = offset;
                        opt[pos].litlen = litlen;
                        opt[pos].price = sequencePrice;
                }   }
                last_pos = pos-1;
            }
        }

        /* check further positions */
        for (cur = 1; cur <= last_pos; cur++) {
            const BYTE* const inr = ip + cur;
            assert(cur < ZSTD_OPT_NUM);
            DEBUGLOG(7, "cPos:%zi==rPos:%u", inr-istart, cur)

            /* Fix current position with one literal if cheaper */
            {   U32 const litlen = (opt[cur-1].mlen == 0) ? opt[cur-1].litlen + 1 : 1;
                int const price = opt[cur-1].price
                                + ZSTD_rawLiteralsCost(ip+cur-1, 1, optStatePtr, optLevel)
                                + ZSTD_litLengthPrice(litlen, optStatePtr, optLevel)
                                - ZSTD_litLengthPrice(litlen-1, optStatePtr, optLevel);
                assert(price < 1000000000); /* overflow check */
                if (price <= opt[cur].price) {
                    DEBUGLOG(7, "cPos:%zi==rPos:%u : better price (%.2f<=%.2f) using literal (ll==%u) (hist:%u,%u,%u)",
                                inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price), litlen,
                                opt[cur-1].rep[0], opt[cur-1].rep[1], opt[cur-1].rep[2]);
                    opt[cur].mlen = 0;
                    opt[cur].off = 0;
                    opt[cur].litlen = litlen;
                    opt[cur].price = price;
                } else {
                    DEBUGLOG(7, "cPos:%zi==rPos:%u : literal would cost more (%.2f>%.2f) (hist:%u,%u,%u)",
                                inr-istart, cur, ZSTD_fCost(price), ZSTD_fCost(opt[cur].price),
                                opt[cur].rep[0], opt[cur].rep[1], opt[cur].rep[2]);
                }
            }

            /* Set the repcodes of the current position. We must do it here
             * because we rely on the repcodes of the 2nd to last sequence being
             * correct to set the next chunks repcodes during the backward
             * traversal.
             */
            ZSTD_STATIC_ASSERT(sizeof(opt[cur].rep) == sizeof(repcodes_t));
            assert(cur >= opt[cur].mlen);
            if (opt[cur].mlen != 0) {
                U32 const prev = cur - opt[cur].mlen;
                repcodes_t newReps = ZSTD_updateRep(opt[prev].rep, opt[cur].off, opt[cur].litlen==0);
                memcpy(opt[cur].rep, &newReps, sizeof(repcodes_t));
            } else {
                memcpy(opt[cur].rep, opt[cur - 1].rep, sizeof(repcodes_t));
            }

            /* last match must start at a minimum distance of 8 from oend */
            if (inr > ilimit) continue;

            if (cur == last_pos) break;

            if ( (optLevel==0) /*static_test*/
              && (opt[cur+1].price <= opt[cur].price + (BITCOST_MULTIPLIER/2)) ) {
                DEBUGLOG(7, "move to next rPos:%u : price is <=", cur+1);
                continue;  /* skip unpromising positions; about ~+6% speed, -0.01 ratio */
            }

            {   U32 const ll0 = (opt[cur].mlen != 0);
                U32 const litlen = (opt[cur].mlen == 0) ? opt[cur].litlen : 0;
                U32 const previousPrice = opt[cur].price;
                U32 const basePrice = previousPrice + ZSTD_litLengthPrice(0, optStatePtr, optLevel);
                U32 const nbMatches = ZSTD_BtGetAllMatches(matches, ms, &nextToUpdate3, inr, iend, dictMode, opt[cur].rep, ll0, minMatch);
                U32 matchNb;
                if (!nbMatches) {
                    DEBUGLOG(7, "rPos:%u : no match found", cur);
                    continue;
                }

                {   U32 const maxML = matches[nbMatches-1].len;
                    DEBUGLOG(7, "cPos:%zi==rPos:%u, found %u matches, of maxLength=%u",
                                inr-istart, cur, nbMatches, maxML);

                    if ( (maxML > sufficient_len)
                      || (cur + maxML >= ZSTD_OPT_NUM) ) {
                        lastSequence.mlen = maxML;
                        lastSequence.off = matches[nbMatches-1].off;
                        lastSequence.litlen = litlen;
                        cur -= (opt[cur].mlen==0) ? opt[cur].litlen : 0;  /* last sequence is actually only literals, fix cur to last match - note : may underflow, in which case, it's first sequence, and it's okay */
                        last_pos = cur + ZSTD_totalLen(lastSequence);
                        if (cur > ZSTD_OPT_NUM) cur = 0;   /* underflow => first match */
                        goto _shortestPath;
                }   }

                /* set prices using matches found at position == cur */
                for (matchNb = 0; matchNb < nbMatches; matchNb++) {
                    U32 const offset = matches[matchNb].off;
                    U32 const lastML = matches[matchNb].len;
                    U32 const startML = (matchNb>0) ? matches[matchNb-1].len+1 : minMatch;
                    U32 mlen;

                    DEBUGLOG(7, "testing match %u => offCode=%4u, mlen=%2u, llen=%2u",
                                matchNb, matches[matchNb].off, lastML, litlen);

                    for (mlen = lastML; mlen >= startML; mlen--) {  /* scan downward */
                        U32 const pos = cur + mlen;
                        int const price = basePrice + ZSTD_getMatchPrice(offset, mlen, optStatePtr, optLevel);

                        if ((pos > last_pos) || (price < opt[pos].price)) {
                            DEBUGLOG(7, "rPos:%u (ml=%2u) => new better price (%.2f<%.2f)",
                                        pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
                            while (last_pos < pos) { opt[last_pos+1].price = ZSTD_MAX_PRICE; last_pos++; }   /* fill empty positions */
                            opt[pos].mlen = mlen;
                            opt[pos].off = offset;
                            opt[pos].litlen = litlen;
                            opt[pos].price = price;
                        } else {
                            DEBUGLOG(7, "rPos:%u (ml=%2u) => new price is worse (%.2f>=%.2f)",
                                        pos, mlen, ZSTD_fCost(price), ZSTD_fCost(opt[pos].price));
                            if (optLevel==0) break;  /* early update abort; gets ~+10% speed for about -0.01 ratio loss */
                        }
            }   }   }
        }  /* for (cur = 1; cur <= last_pos; cur++) */

        lastSequence = opt[last_pos];
        cur = last_pos > ZSTD_totalLen(lastSequence) ? last_pos - ZSTD_totalLen(lastSequence) : 0;  /* single sequence, and it starts before `ip` */
        assert(cur < ZSTD_OPT_NUM);  /* control overflow*/

_shortestPath:   /* cur, last_pos, best_mlen, best_off have to be set */
        assert(opt[0].mlen == 0);

        /* Set the next chunk's repcodes based on the repcodes of the beginning
         * of the last match, and the last sequence. This avoids us having to
         * update them while traversing the sequences.
         */
        if (lastSequence.mlen != 0) {
            repcodes_t reps = ZSTD_updateRep(opt[cur].rep, lastSequence.off, lastSequence.litlen==0);
            memcpy(rep, &reps, sizeof(reps));
        } else {
            memcpy(rep, opt[cur].rep, sizeof(repcodes_t));
        }

        {   U32 const storeEnd = cur + 1;
            U32 storeStart = storeEnd;
            U32 seqPos = cur;

            DEBUGLOG(6, "start reverse traversal (last_pos:%u, cur:%u)",
                        last_pos, cur); (void)last_pos;
            assert(storeEnd < ZSTD_OPT_NUM);
            DEBUGLOG(6, "last sequence copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
                        storeEnd, lastSequence.litlen, lastSequence.mlen, lastSequence.off);
            opt[storeEnd] = lastSequence;
            while (seqPos > 0) {
                U32 const backDist = ZSTD_totalLen(opt[seqPos]);
                storeStart--;
                DEBUGLOG(6, "sequence from rPos=%u copied into pos=%u (llen=%u,mlen=%u,ofc=%u)",
                            seqPos, storeStart, opt[seqPos].litlen, opt[seqPos].mlen, opt[seqPos].off);
                opt[storeStart] = opt[seqPos];
                seqPos = (seqPos > backDist) ? seqPos - backDist : 0;
            }

            /* save sequences */
            DEBUGLOG(6, "sending selected sequences into seqStore")
            {   U32 storePos;
                for (storePos=storeStart; storePos <= storeEnd; storePos++) {
                    U32 const llen = opt[storePos].litlen;
                    U32 const mlen = opt[storePos].mlen;
                    U32 const offCode = opt[storePos].off;
                    U32 const advance = llen + mlen;
                    DEBUGLOG(6, "considering seq starting at %zi, llen=%u, mlen=%u",
                                anchor - istart, (unsigned)llen, (unsigned)mlen);

                    if (mlen==0) {  /* only literals => must be last "sequence", actually starting a new stream of sequences */
                        assert(storePos == storeEnd);   /* must be last sequence */
                        ip = anchor + llen;     /* last "sequence" is a bunch of literals => don't progress anchor */
                        continue;   /* will finish */
                    }

                    assert(anchor + llen <= iend);
                    ZSTD_updateStats(optStatePtr, llen, anchor, offCode, mlen);
                    ZSTD_storeSeq(seqStore, llen, anchor, iend, offCode, mlen-MINMATCH);
                    anchor += advance;
                    ip = anchor;
            }   }
            ZSTD_setBasePrices(optStatePtr, optLevel);
        }
    }   /* while (ip < ilimit) */

    /* Return the last literals size */
    return (size_t)(iend - anchor);
}


size_t ZSTD_compressBlock_btopt(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        const void* src, size_t srcSize)
{
    DEBUGLOG(5, "ZSTD_compressBlock_btopt");
    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_noDict);
}


/* used in 2-pass strategy */
static U32 ZSTD_upscaleStat(unsigned* table, U32 lastEltIndex, int bonus)
{
    U32 s, sum=0;
    assert(ZSTD_FREQ_DIV+bonus >= 0);
    for (s=0; s<lastEltIndex+1; s++) {
        table[s] <<= ZSTD_FREQ_DIV+bonus;
        table[s]--;
        sum += table[s];
    }
    return sum;
}

/* used in 2-pass strategy */
MEM_STATIC void ZSTD_upscaleStats(optState_t* optPtr)
{
    if (ZSTD_compressedLiterals(optPtr))
        optPtr->litSum = ZSTD_upscaleStat(optPtr->litFreq, MaxLit, 0);
    optPtr->litLengthSum = ZSTD_upscaleStat(optPtr->litLengthFreq, MaxLL, 0);
    optPtr->matchLengthSum = ZSTD_upscaleStat(optPtr->matchLengthFreq, MaxML, 0);
    optPtr->offCodeSum = ZSTD_upscaleStat(optPtr->offCodeFreq, MaxOff, 0);
}

/* ZSTD_initStats_ultra():
 * make a first compression pass, just to seed stats with more accurate starting values.
 * only works on first block, with no dictionary and no ldm.
 * this function cannot error, hence its contract must be respected.
 */
static void
ZSTD_initStats_ultra(ZSTD_matchState_t* ms,
                     seqStore_t* seqStore,
                     U32 rep[ZSTD_REP_NUM],
               const void* src, size_t srcSize)
{
    U32 tmpRep[ZSTD_REP_NUM];  /* updated rep codes will sink here */
    memcpy(tmpRep, rep, sizeof(tmpRep));

    DEBUGLOG(4, "ZSTD_initStats_ultra (srcSize=%zu)", srcSize);
    assert(ms->opt.litLengthSum == 0);    /* first block */
    assert(seqStore->sequences == seqStore->sequencesStart);   /* no ldm */
    assert(ms->window.dictLimit == ms->window.lowLimit);   /* no dictionary */
    assert(ms->window.dictLimit - ms->nextToUpdate <= 1);  /* no prefix (note: intentional overflow, defined as 2-complement) */

    ZSTD_compressBlock_opt_generic(ms, seqStore, tmpRep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict);   /* generate stats into ms->opt*/

    /* invalidate first scan from history */
    ZSTD_resetSeqStore(seqStore);
    ms->window.base -= srcSize;
    ms->window.dictLimit += (U32)srcSize;
    ms->window.lowLimit = ms->window.dictLimit;
    ms->nextToUpdate = ms->window.dictLimit;

    /* re-inforce weight of collected statistics */
    ZSTD_upscaleStats(&ms->opt);
}

size_t ZSTD_compressBlock_btultra(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        const void* src, size_t srcSize)
{
    DEBUGLOG(5, "ZSTD_compressBlock_btultra (srcSize=%zu)", srcSize);
    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict);
}

size_t ZSTD_compressBlock_btultra2(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        const void* src, size_t srcSize)
{
    U32 const current = (U32)((const BYTE*)src - ms->window.base);
    DEBUGLOG(5, "ZSTD_compressBlock_btultra2 (srcSize=%zu)", srcSize);

    /* 2-pass strategy:
     * this strategy makes a first pass over first block to collect statistics
     * and seed next round's statistics with it.
     * After 1st pass, function forgets everything, and starts a new block.
     * Consequently, this can only work if no data has been previously loaded in tables,
     * aka, no dictionary, no prefix, no ldm preprocessing.
     * The compression ratio gain is generally small (~0.5% on first block),
     * the cost is 2x cpu time on first block. */
    assert(srcSize <= ZSTD_BLOCKSIZE_MAX);
    if ( (ms->opt.litLengthSum==0)   /* first block */
      && (seqStore->sequences == seqStore->sequencesStart)  /* no ldm */
      && (ms->window.dictLimit == ms->window.lowLimit)   /* no dictionary */
      && (current == ms->window.dictLimit)   /* start of frame, nothing already loaded nor skipped */
      && (srcSize > ZSTD_PREDEF_THRESHOLD)
      ) {
        ZSTD_initStats_ultra(ms, seqStore, rep, src, srcSize);
    }

    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_noDict);
}

size_t ZSTD_compressBlock_btopt_dictMatchState(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        const void* src, size_t srcSize)
{
    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_dictMatchState);
}

size_t ZSTD_compressBlock_btultra_dictMatchState(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        const void* src, size_t srcSize)
{
    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_dictMatchState);
}

size_t ZSTD_compressBlock_btopt_extDict(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        const void* src, size_t srcSize)
{
    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 0 /*optLevel*/, ZSTD_extDict);
}

size_t ZSTD_compressBlock_btultra_extDict(
        ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
        const void* src, size_t srcSize)
{
    return ZSTD_compressBlock_opt_generic(ms, seqStore, rep, src, srcSize, 2 /*optLevel*/, ZSTD_extDict);
}

/* note : no btultra2 variant for extDict nor dictMatchState,
 * because btultra2 is not meant to work with dictionaries
 * and is only specific for the first block (no prefix) */