1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
# (c) 2014 James Cammarata, <jcammarata@ansible.com>
#
# This file is part of Ansible
#
# Ansible is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Ansible is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Ansible. If not, see <http://www.gnu.org/licenses/>.
from __future__ import annotations
import codecs
import re
from ansible.errors import AnsibleParserError
from ansible.module_utils.common.text.converters import to_text
from ansible.parsing.quoting import unquote
# Decode escapes adapted from rspeer's answer here:
# http://stackoverflow.com/questions/4020539/process-escape-sequences-in-a-string-in-python
_HEXCHAR = '[a-fA-F0-9]'
_ESCAPE_SEQUENCE_RE = re.compile(r'''
( \\U{0} # 8-digit hex escapes
| \\u{1} # 4-digit hex escapes
| \\x{2} # 2-digit hex escapes
| \\N\{{[^}}]+\}} # Unicode characters by name
| \\[\\'"abfnrtv] # Single-character escapes
)'''.format(_HEXCHAR * 8, _HEXCHAR * 4, _HEXCHAR * 2), re.UNICODE | re.VERBOSE)
def _decode_escapes(s):
def decode_match(match):
return codecs.decode(match.group(0), 'unicode-escape')
return _ESCAPE_SEQUENCE_RE.sub(decode_match, s)
def parse_kv(args, check_raw=False):
'''
Convert a string of key/value items to a dict. If any free-form params
are found and the check_raw option is set to True, they will be added
to a new parameter called '_raw_params'. If check_raw is not enabled,
they will simply be ignored.
'''
args = to_text(args, nonstring='passthru')
options = {}
if args is not None:
vargs = split_args(args)
raw_params = []
for orig_x in vargs:
x = _decode_escapes(orig_x)
if "=" in x:
pos = 0
try:
while True:
pos = x.index('=', pos + 1)
if pos > 0 and x[pos - 1] != '\\':
break
except ValueError:
# ran out of string, but we must have some escaped equals,
# so replace those and append this to the list of raw params
raw_params.append(x.replace('\\=', '='))
continue
k = x[:pos]
v = x[pos + 1:]
# FIXME: make the retrieval of this list of shell/command options a function, so the list is centralized
if check_raw and k not in ('creates', 'removes', 'chdir', 'executable', 'warn', 'stdin', 'stdin_add_newline', 'strip_empty_ends'):
raw_params.append(orig_x)
else:
options[k.strip()] = unquote(v.strip())
else:
raw_params.append(orig_x)
# recombine the free-form params, if any were found, and assign
# them to a special option for use later by the shell/command module
if len(raw_params) > 0:
options[u'_raw_params'] = join_args(raw_params)
return options
def _get_quote_state(token, quote_char):
'''
the goal of this block is to determine if the quoted string
is unterminated in which case it needs to be put back together
'''
# the char before the current one, used to see if
# the current character is escaped
prev_char = None
for idx, cur_char in enumerate(token):
if idx > 0:
prev_char = token[idx - 1]
if cur_char in '"\'' and prev_char != '\\':
if quote_char:
if cur_char == quote_char:
quote_char = None
else:
quote_char = cur_char
return quote_char
def _count_jinja2_blocks(token, cur_depth, open_token, close_token):
'''
this function counts the number of opening/closing blocks for a
given opening/closing type and adjusts the current depth for that
block based on the difference
'''
num_open = token.count(open_token)
num_close = token.count(close_token)
if num_open != num_close:
cur_depth += (num_open - num_close)
if cur_depth < 0:
cur_depth = 0
return cur_depth
def join_args(s):
'''
Join the original cmd based on manipulations by split_args().
This retains the original newlines and whitespaces.
'''
result = ''
for p in s:
if len(result) == 0 or result.endswith('\n'):
result += p
else:
result += ' ' + p
return result
def split_args(args):
'''
Splits args on whitespace, but intelligently reassembles
those that may have been split over a jinja2 block or quotes.
When used in a remote module, we won't ever have to be concerned about
jinja2 blocks, however this function is/will be used in the
core portions as well before the args are templated.
example input: a=b c="foo bar"
example output: ['a=b', 'c="foo bar"']
Basically this is a variation shlex that has some more intelligence for
how Ansible needs to use it.
'''
if not args:
return []
# the list of params parsed out of the arg string
# this is going to be the result value when we are done
params = []
# Initial split on newlines
items = args.split('\n')
# iterate over the tokens, and reassemble any that may have been
# split on a space inside a jinja2 block.
# ex if tokens are "{{", "foo", "}}" these go together
# These variables are used
# to keep track of the state of the parsing, since blocks and quotes
# may be nested within each other.
quote_char = None
inside_quotes = False
print_depth = 0 # used to count nested jinja2 {{ }} blocks
block_depth = 0 # used to count nested jinja2 {% %} blocks
comment_depth = 0 # used to count nested jinja2 {# #} blocks
# now we loop over each split chunk, coalescing tokens if the white space
# split occurred within quotes or a jinja2 block of some kind
for (itemidx, item) in enumerate(items):
# we split on spaces and newlines separately, so that we
# can tell which character we split on for reassembly
# inside quotation characters
tokens = item.split(' ')
line_continuation = False
for (idx, token) in enumerate(tokens):
# Empty entries means we have subsequent spaces
# We want to hold onto them so we can reconstruct them later
if len(token) == 0 and idx != 0:
# Make sure there is a params item to store result in.
if not params:
params.append('')
params[-1] += ' '
continue
# if we hit a line continuation character, but
# we're not inside quotes, ignore it and continue
# on to the next token while setting a flag
if token == '\\' and not inside_quotes:
line_continuation = True
continue
# store the previous quoting state for checking later
was_inside_quotes = inside_quotes
quote_char = _get_quote_state(token, quote_char)
inside_quotes = quote_char is not None
# multiple conditions may append a token to the list of params,
# so we keep track with this flag to make sure it only happens once
# append means add to the end of the list, don't append means concatenate
# it to the end of the last token
appended = False
# if we're inside quotes now, but weren't before, append the token
# to the end of the list, since we'll tack on more to it later
# otherwise, if we're inside any jinja2 block, inside quotes, or we were
# inside quotes (but aren't now) concat this token to the last param
if inside_quotes and not was_inside_quotes and not (print_depth or block_depth or comment_depth):
params.append(token)
appended = True
elif print_depth or block_depth or comment_depth or inside_quotes or was_inside_quotes:
if idx == 0 and was_inside_quotes:
params[-1] = "%s%s" % (params[-1], token)
else:
spacer = ''
if idx > 0:
spacer = ' '
params[-1] = "%s%s%s" % (params[-1], spacer, token)
appended = True
# if the number of paired block tags is not the same, the depth has changed, so we calculate that here
# and may append the current token to the params (if we haven't previously done so)
prev_print_depth = print_depth
print_depth = _count_jinja2_blocks(token, print_depth, "{{", "}}")
if print_depth != prev_print_depth and not appended:
params.append(token)
appended = True
prev_block_depth = block_depth
block_depth = _count_jinja2_blocks(token, block_depth, "{%", "%}")
if block_depth != prev_block_depth and not appended:
params.append(token)
appended = True
prev_comment_depth = comment_depth
comment_depth = _count_jinja2_blocks(token, comment_depth, "{#", "#}")
if comment_depth != prev_comment_depth and not appended:
params.append(token)
appended = True
# finally, if we're at zero depth for all blocks and not inside quotes, and have not
# yet appended anything to the list of params, we do so now
if not (print_depth or block_depth or comment_depth) and not inside_quotes and not appended and token != '':
params.append(token)
# if this was the last token in the list, and we have more than
# one item (meaning we split on newlines), add a newline back here
# to preserve the original structure
if len(items) > 1 and itemidx != len(items) - 1 and not line_continuation:
# Make sure there is a params item to store result in.
if not params:
params.append('')
params[-1] += '\n'
# If we're done and things are not at zero depth or we're still inside quotes,
# raise an error to indicate that the args were unbalanced
if print_depth or block_depth or comment_depth or inside_quotes:
raise AnsibleParserError(u"failed at splitting arguments, either an unbalanced jinja2 block or quotes: {0}".format(args))
return params
|