1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* The exported function:
*
* apr_sha1_base64(const char *clear, int len, char *out);
*
* provides a means to SHA1 crypt/encode a plaintext password in
* a way which makes password files compatible with those commonly
* used in netscape web and ldap installations. It was put together
* by Clinton Wong <clintdw@netcom.com>, who also notes that:
*
* Note: SHA1 support is useful for migration purposes, but is less
* secure than Apache's password format, since Apache's (MD5)
* password format uses a random eight character salt to generate
* one of many possible hashes for the same password. Netscape
* uses plain SHA1 without a salt, so the same password
* will always generate the same hash, making it easier
* to break since the search space is smaller.
*
* See also the documentation in support/SHA1 as to hints on how to
* migrate an existing netscape installation and other supplied utitlites.
*
* This software also makes use of the following component:
*
* NIST Secure Hash Algorithm
* heavily modified by Uwe Hollerbach uh@alumni.caltech edu
* from Peter C. Gutmann's implementation as found in
* Applied Cryptography by Bruce Schneier
* This code is hereby placed in the public domain
*/
#include "apr_sha1.h"
#include "apr_base64.h"
#include "apr_strings.h"
#include "apr_lib.h"
#if APR_CHARSET_EBCDIC
#include "apr_xlate.h"
#endif /*APR_CHARSET_EBCDIC*/
#include <string.h>
/* a bit faster & bigger, if defined */
#define UNROLL_LOOPS
/* NIST's proposed modification to SHA, 7/11/94 */
#define USE_MODIFIED_SHA
/* SHA f()-functions */
#define f1(x,y,z) ((x & y) | (~x & z))
#define f2(x,y,z) (x ^ y ^ z)
#define f3(x,y,z) ((x & y) | (x & z) | (y & z))
#define f4(x,y,z) (x ^ y ^ z)
/* SHA constants */
#define CONST1 0x5a827999L
#define CONST2 0x6ed9eba1L
#define CONST3 0x8f1bbcdcL
#define CONST4 0xca62c1d6L
/* 32-bit rotate */
#define ROT32(x,n) ((x << n) | (x >> (32 - n)))
#define FUNC(n,i) \
temp = ROT32(A,5) + f##n(B,C,D) + E + W[i] + CONST##n; \
E = D; D = C; C = ROT32(B,30); B = A; A = temp
#define SHA_BLOCKSIZE 64
#if APR_CHARSET_EBCDIC
static apr_xlate_t *ebcdic2ascii_xlate;
APU_DECLARE(apr_status_t) apr_SHA1InitEBCDIC(apr_xlate_t *x)
{
apr_status_t rv;
int onoff;
/* Only single-byte conversion is supported.
*/
rv = apr_xlate_sb_get(x, &onoff);
if (rv) {
return rv;
}
if (!onoff) { /* If conversion is not single-byte-only */
return APR_EINVAL;
}
ebcdic2ascii_xlate = x;
return APR_SUCCESS;
}
#endif
/* do SHA transformation */
static void sha_transform(apr_sha1_ctx_t *sha_info)
{
int i;
apr_uint32_t temp, A, B, C, D, E, W[80];
for (i = 0; i < 16; ++i) {
W[i] = sha_info->data[i];
}
for (i = 16; i < 80; ++i) {
W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16];
#ifdef USE_MODIFIED_SHA
W[i] = ROT32(W[i], 1);
#endif /* USE_MODIFIED_SHA */
}
A = sha_info->digest[0];
B = sha_info->digest[1];
C = sha_info->digest[2];
D = sha_info->digest[3];
E = sha_info->digest[4];
#ifdef UNROLL_LOOPS
FUNC(1, 0); FUNC(1, 1); FUNC(1, 2); FUNC(1, 3); FUNC(1, 4);
FUNC(1, 5); FUNC(1, 6); FUNC(1, 7); FUNC(1, 8); FUNC(1, 9);
FUNC(1,10); FUNC(1,11); FUNC(1,12); FUNC(1,13); FUNC(1,14);
FUNC(1,15); FUNC(1,16); FUNC(1,17); FUNC(1,18); FUNC(1,19);
FUNC(2,20); FUNC(2,21); FUNC(2,22); FUNC(2,23); FUNC(2,24);
FUNC(2,25); FUNC(2,26); FUNC(2,27); FUNC(2,28); FUNC(2,29);
FUNC(2,30); FUNC(2,31); FUNC(2,32); FUNC(2,33); FUNC(2,34);
FUNC(2,35); FUNC(2,36); FUNC(2,37); FUNC(2,38); FUNC(2,39);
FUNC(3,40); FUNC(3,41); FUNC(3,42); FUNC(3,43); FUNC(3,44);
FUNC(3,45); FUNC(3,46); FUNC(3,47); FUNC(3,48); FUNC(3,49);
FUNC(3,50); FUNC(3,51); FUNC(3,52); FUNC(3,53); FUNC(3,54);
FUNC(3,55); FUNC(3,56); FUNC(3,57); FUNC(3,58); FUNC(3,59);
FUNC(4,60); FUNC(4,61); FUNC(4,62); FUNC(4,63); FUNC(4,64);
FUNC(4,65); FUNC(4,66); FUNC(4,67); FUNC(4,68); FUNC(4,69);
FUNC(4,70); FUNC(4,71); FUNC(4,72); FUNC(4,73); FUNC(4,74);
FUNC(4,75); FUNC(4,76); FUNC(4,77); FUNC(4,78); FUNC(4,79);
#else /* !UNROLL_LOOPS */
for (i = 0; i < 20; ++i) {
FUNC(1,i);
}
for (i = 20; i < 40; ++i) {
FUNC(2,i);
}
for (i = 40; i < 60; ++i) {
FUNC(3,i);
}
for (i = 60; i < 80; ++i) {
FUNC(4,i);
}
#endif /* !UNROLL_LOOPS */
sha_info->digest[0] += A;
sha_info->digest[1] += B;
sha_info->digest[2] += C;
sha_info->digest[3] += D;
sha_info->digest[4] += E;
}
union endianTest {
long Long;
char Char[sizeof(long)];
};
static char isLittleEndian(void)
{
static union endianTest u;
u.Long = 1;
return (u.Char[0] == 1);
}
/* change endianness of data */
/* count is the number of bytes to do an endian flip */
static void maybe_byte_reverse(apr_uint32_t *buffer, int count)
{
int i;
apr_byte_t ct[4], *cp;
if (isLittleEndian()) { /* do the swap only if it is little endian */
count /= sizeof(apr_uint32_t);
cp = (apr_byte_t *) buffer;
for (i = 0; i < count; ++i) {
ct[0] = cp[0];
ct[1] = cp[1];
ct[2] = cp[2];
ct[3] = cp[3];
cp[0] = ct[3];
cp[1] = ct[2];
cp[2] = ct[1];
cp[3] = ct[0];
cp += sizeof(apr_uint32_t);
}
}
}
/* initialize the SHA digest */
APU_DECLARE(void) apr_sha1_init(apr_sha1_ctx_t *sha_info)
{
sha_info->digest[0] = 0x67452301L;
sha_info->digest[1] = 0xefcdab89L;
sha_info->digest[2] = 0x98badcfeL;
sha_info->digest[3] = 0x10325476L;
sha_info->digest[4] = 0xc3d2e1f0L;
sha_info->count_lo = 0L;
sha_info->count_hi = 0L;
sha_info->local = 0;
}
/* update the SHA digest */
APU_DECLARE(void) apr_sha1_update_binary(apr_sha1_ctx_t *sha_info,
const unsigned char *buffer,
unsigned int count)
{
unsigned int i;
if ((sha_info->count_lo + ((apr_uint32_t) count << 3)) < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo += (apr_uint32_t) count << 3;
sha_info->count_hi += (apr_uint32_t) count >> 29;
if (sha_info->local) {
i = SHA_BLOCKSIZE - sha_info->local;
if (i > count) {
i = count;
}
memcpy(((apr_byte_t *) sha_info->data) + sha_info->local, buffer, i);
count -= i;
buffer += i;
sha_info->local += i;
if (sha_info->local == SHA_BLOCKSIZE) {
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
}
else {
return;
}
}
while (count >= SHA_BLOCKSIZE) {
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
}
memcpy(sha_info->data, buffer, count);
sha_info->local = count;
}
APU_DECLARE(void) apr_sha1_update(apr_sha1_ctx_t *sha_info, const char *buf,
unsigned int count)
{
#if APR_CHARSET_EBCDIC
int i;
const apr_byte_t *buffer = (const apr_byte_t *) buf;
apr_size_t inbytes_left, outbytes_left;
if ((sha_info->count_lo + ((apr_uint32_t) count << 3)) < sha_info->count_lo) {
++sha_info->count_hi;
}
sha_info->count_lo += (apr_uint32_t) count << 3;
sha_info->count_hi += (apr_uint32_t) count >> 29;
/* Is there a remainder of the previous Update operation? */
if (sha_info->local) {
i = SHA_BLOCKSIZE - sha_info->local;
if (i > count) {
i = count;
}
inbytes_left = outbytes_left = i;
apr_xlate_conv_buffer(ebcdic2ascii_xlate, buffer, &inbytes_left,
((apr_byte_t *) sha_info->data) + sha_info->local,
&outbytes_left);
count -= i;
buffer += i;
sha_info->local += i;
if (sha_info->local == SHA_BLOCKSIZE) {
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
}
else {
return;
}
}
while (count >= SHA_BLOCKSIZE) {
inbytes_left = outbytes_left = SHA_BLOCKSIZE;
apr_xlate_conv_buffer(ebcdic2ascii_xlate, buffer, &inbytes_left,
(apr_byte_t *) sha_info->data, &outbytes_left);
buffer += SHA_BLOCKSIZE;
count -= SHA_BLOCKSIZE;
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
}
inbytes_left = outbytes_left = count;
apr_xlate_conv_buffer(ebcdic2ascii_xlate, buffer, &inbytes_left,
(apr_byte_t *) sha_info->data, &outbytes_left);
sha_info->local = count;
#else
apr_sha1_update_binary(sha_info, (const unsigned char *) buf, count);
#endif
}
/* finish computing the SHA digest */
APU_DECLARE(void) apr_sha1_final(unsigned char digest[APR_SHA1_DIGESTSIZE],
apr_sha1_ctx_t *sha_info)
{
int count, i, j;
apr_uint32_t lo_bit_count, hi_bit_count, k;
lo_bit_count = sha_info->count_lo;
hi_bit_count = sha_info->count_hi;
count = (int) ((lo_bit_count >> 3) & 0x3f);
((apr_byte_t *) sha_info->data)[count++] = 0x80;
if (count > SHA_BLOCKSIZE - 8) {
memset(((apr_byte_t *) sha_info->data) + count, 0, SHA_BLOCKSIZE - count);
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_transform(sha_info);
memset((apr_byte_t *) sha_info->data, 0, SHA_BLOCKSIZE - 8);
}
else {
memset(((apr_byte_t *) sha_info->data) + count, 0,
SHA_BLOCKSIZE - 8 - count);
}
maybe_byte_reverse(sha_info->data, SHA_BLOCKSIZE);
sha_info->data[14] = hi_bit_count;
sha_info->data[15] = lo_bit_count;
sha_transform(sha_info);
for (i = 0, j = 0; j < APR_SHA1_DIGESTSIZE; i++) {
k = sha_info->digest[i];
digest[j++] = (unsigned char) ((k >> 24) & 0xff);
digest[j++] = (unsigned char) ((k >> 16) & 0xff);
digest[j++] = (unsigned char) ((k >> 8) & 0xff);
digest[j++] = (unsigned char) (k & 0xff);
}
}
APU_DECLARE(void) apr_sha1_base64(const char *clear, int len, char *out)
{
int l;
apr_sha1_ctx_t context;
apr_byte_t digest[APR_SHA1_DIGESTSIZE];
apr_sha1_init(&context);
apr_sha1_update(&context, clear, len);
apr_sha1_final(digest, &context);
/* private marker. */
apr_cpystrn(out, APR_SHA1PW_ID, APR_SHA1PW_IDLEN + 1);
/* SHA1 hash is always 20 chars */
l = apr_base64_encode_binary(out + APR_SHA1PW_IDLEN, digest, sizeof(digest));
out[l + APR_SHA1PW_IDLEN] = '\0';
/*
* output of base64 encoded SHA1 is always 28 chars + APR_SHA1PW_IDLEN
*/
}
|