diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 17:43:51 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 17:43:51 +0000 |
commit | be58c81aff4cd4c0ccf43dbd7998da4a6a08c03b (patch) | |
tree | 779c248fb61c83f65d1f0dc867f2053d76b4e03a /docs/perf/psci-performance-juno.rst | |
parent | Initial commit. (diff) | |
download | arm-trusted-firmware-upstream.tar.xz arm-trusted-firmware-upstream.zip |
Adding upstream version 2.10.0+dfsg.upstream/2.10.0+dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'docs/perf/psci-performance-juno.rst')
-rw-r--r-- | docs/perf/psci-performance-juno.rst | 533 |
1 files changed, 533 insertions, 0 deletions
diff --git a/docs/perf/psci-performance-juno.rst b/docs/perf/psci-performance-juno.rst new file mode 100644 index 0000000..bab1086 --- /dev/null +++ b/docs/perf/psci-performance-juno.rst @@ -0,0 +1,533 @@ +PSCI Performance Measurements on Arm Juno Development Platform +============================================================== + +This document summarises the findings of performance measurements of key +operations in the Trusted Firmware-A Power State Coordination Interface (PSCI) +implementation, using the in-built Performance Measurement Framework (PMF) and +runtime instrumentation timestamps. + +Method +------ + +We used the `Juno R1 platform`_ for these tests, which has 4 x Cortex-A53 and 2 +x Cortex-A57 clusters running at the following frequencies: + ++-----------------+--------------------+ +| Domain | Frequency (MHz) | ++=================+====================+ +| Cortex-A57 | 900 (nominal) | ++-----------------+--------------------+ +| Cortex-A53 | 650 (underdrive) | ++-----------------+--------------------+ +| AXI subsystem | 533 | ++-----------------+--------------------+ + +Juno supports CPU, cluster and system power down states, corresponding to power +levels 0, 1 and 2 respectively. It does not support any retention states. + +Given that runtime instrumentation using PMF is invasive, there is a small +(unquantified) overhead on the results. PMF uses the generic counter for +timestamps, which runs at 50MHz on Juno. + +The following source trees and binaries were used: + +- TF-A [`v2.9-rc0`_] +- TFTF [`v2.9-rc0`_] + +Please see the Runtime Instrumentation :ref:`Testing Methodology +<Runtime Instrumentation Methodology>` +page for more details. + +Procedure +--------- + +#. Build TFTF with runtime instrumentation enabled: + + .. code:: shell + + make CROSS_COMPILE=aarch64-none-elf- PLAT=juno \ + TESTS=runtime-instrumentation all + +#. Fetch Juno's SCP binary from TF-A's archive: + + .. code:: shell + + curl --fail --connect-timeout 5 --retry 5 -sLS -o scp_bl2.bin \ + https://downloads.trustedfirmware.org/tf-a/css_scp_2.12.0/juno/release/juno-bl2.bin + +#. Build TF-A with the following build options: + + .. code:: shell + + make CROSS_COMPILE=aarch64-none-elf- PLAT=juno \ + BL33="/path/to/tftf.bin" SCP_BL2="scp_bl2.bin" \ + ENABLE_RUNTIME_INSTRUMENTATION=1 fiptool all fip + +#. Load the following images onto the development board: ``fip.bin``, + ``scp_bl2.bin``. + +Results +------- + +``CPU_SUSPEND`` to deepest power level +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in + parallel (v2.9) + + +---------+------+-----------+--------+-------------+ + | Cluster | Core | Powerdown | Wakeup | Cache Flush | + +---------+------+-----------+--------+-------------+ + | 0 | 0 | 104.58 | 241.20 | 5.26 | + +---------+------+-----------+--------+-------------+ + | 0 | 1 | 384.24 | 22.50 | 138.76 | + +---------+------+-----------+--------+-------------+ + | 1 | 0 | 244.56 | 22.18 | 5.16 | + +---------+------+-----------+--------+-------------+ + | 1 | 1 | 670.56 | 18.58 | 4.44 | + +---------+------+-----------+--------+-------------+ + | 1 | 2 | 809.36 | 269.28 | 4.44 | + +---------+------+-----------+--------+-------------+ + | 1 | 3 | 984.96 | 219.70 | 79.62 | + +---------+------+-----------+--------+-------------+ + +.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in + parallel (v2.10) + + +---------+------+-------------------+--------+-------------+ + | Cluster | Core | Powerdown | Wakeup | Cache Flush | + +---------+------+-------------------+--------+-------------+ + | 0 | 0 | 242.66 (+132.03%) | 245.1 | 5.4 | + +---------+------+-------------------+--------+-------------+ + | 0 | 1 | 522.08 (+35.87%) | 26.24 | 138.32 | + +---------+------+-------------------+--------+-------------+ + | 1 | 0 | 104.36 (-57.33%) | 27.1 | 5.32 | + +---------+------+-------------------+--------+-------------+ + | 1 | 1 | 382.56 (-42.95%) | 23.34 | 4.42 | + +---------+------+-------------------+--------+-------------+ + | 1 | 2 | 807.74 | 271.54 | 4.64 | + +---------+------+-------------------+--------+-------------+ + | 1 | 3 | 981.36 | 221.8 | 79.48 | + +---------+------+-------------------+--------+-------------+ + +.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in + serial (v2.9) + + +---------+------+-----------+--------+-------------+ + | Cluster | Core | Powerdown | Wakeup | Cache Flush | + +---------+------+-----------+--------+-------------+ + | 0 | 0 | 236.56 | 23.24 | 138.18 | + +---------+------+-----------+--------+-------------+ + | 0 | 1 | 236.86 | 23.28 | 138.10 | + +---------+------+-----------+--------+-------------+ + | 1 | 0 | 281.04 | 22.80 | 77.24 | + +---------+------+-----------+--------+-------------+ + | 1 | 1 | 100.28 | 18.52 | 4.54 | + +---------+------+-----------+--------+-------------+ + | 1 | 2 | 100.12 | 18.78 | 4.50 | + +---------+------+-----------+--------+-------------+ + | 1 | 3 | 100.36 | 18.94 | 4.44 | + +---------+------+-----------+--------+-------------+ + +.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in + serial (v2.10) + + +---------+------+-----------+--------+-------------+ + | Cluster | Core | Powerdown | Wakeup | Cache Flush | + +---------+------+-----------+--------+-------------+ + | 0 | 0 | 236.84 | 27.1 | 138.36 | + +---------+------+-----------+--------+-------------+ + | 0 | 1 | 236.96 | 27.1 | 138.32 | + +---------+------+-----------+--------+-------------+ + | 1 | 0 | 280.06 | 26.94 | 77.5 | + +---------+------+-----------+--------+-------------+ + | 1 | 1 | 100.76 | 23.42 | 4.36 | + +---------+------+-----------+--------+-------------+ + | 1 | 2 | 100.02 | 23.42 | 4.44 | + +---------+------+-----------+--------+-------------+ + | 1 | 3 | 100.08 | 23.2 | 4.4 | + +---------+------+-----------+--------+-------------+ + +``CPU_SUSPEND`` to power level 0 +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in + parallel (v2.9) + + +---------+------+-----------+--------+-------------+ + | Cluster | Core | Powerdown | Wakeup | Cache Flush | + +---------+------+-----------+--------+-------------+ + | 0 | 0 | 662.34 | 15.22 | 8.08 | + +---------+------+-----------+--------+-------------+ + | 0 | 1 | 802.00 | 15.50 | 8.16 | + +---------+------+-----------+--------+-------------+ + | 1 | 0 | 385.22 | 15.74 | 7.88 | + +---------+------+-----------+--------+-------------+ + | 1 | 1 | 106.16 | 16.06 | 7.44 | + +---------+------+-----------+--------+-------------+ + | 1 | 2 | 524.38 | 15.64 | 7.34 | + +---------+------+-----------+--------+-------------+ + | 1 | 3 | 246.00 | 15.78 | 7.72 | + +---------+------+-----------+--------+-------------+ + +.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in + parallel (v2.10) + + +---------+------+-------------------+--------+-------------+ + | Cluster | Core | Powerdown | Wakeup | Cache Flush | + +---------+------+-------------------+--------+-------------+ + | 0 | 0 | 801.04 | 18.66 | 8.22 | + +---------+------+-------------------+--------+-------------+ + | 0 | 1 | 661.28 | 19.08 | 7.88 | + +---------+------+-------------------+--------+-------------+ + | 1 | 0 | 105.9 (-72.51%) | 20.3 | 7.58 | + +---------+------+-------------------+--------+-------------+ + | 1 | 1 | 383.58 (+261.32%) | 20.4 | 7.42 | + +---------+------+-------------------+--------+-------------+ + | 1 | 2 | 523.52 | 20.1 | 7.74 | + +---------+------+-------------------+--------+-------------+ + | 1 | 3 | 244.5 | 20.16 | 7.56 | + +---------+------+-------------------+--------+-------------+ + +.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in serial (v2.9) + + +---------+------+-----------+--------+-------------+ + | Cluster | Core | Powerdown | Wakeup | Cache Flush | + +---------+------+-----------+--------+-------------+ + | 0 | 0 | 99.80 | 15.94 | 5.42 | + +---------+------+-----------+--------+-------------+ + | 0 | 1 | 99.76 | 15.80 | 5.24 | + +---------+------+-----------+--------+-------------+ + | 1 | 0 | 278.26 | 16.16 | 4.58 | + +---------+------+-----------+--------+-------------+ + | 1 | 1 | 96.88 | 16.00 | 4.52 | + +---------+------+-----------+--------+-------------+ + | 1 | 2 | 96.80 | 16.12 | 4.54 | + +---------+------+-----------+--------+-------------+ + | 1 | 3 | 96.88 | 16.12 | 4.54 | + +---------+------+-----------+--------+-------------+ + +.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in serial (v2.10) + + +---------+------+-----------+--------+-------------+ + | Cluster | Core | Powerdown | Wakeup | Cache Flush | + +---------+------+-----------+--------+-------------+ + | 0 | 0 | 99.84 | 18.86 | 5.54 | + +---------+------+-----------+--------+-------------+ + | 0 | 1 | 100.2 | 18.82 | 5.66 | + +---------+------+-----------+--------+-------------+ + | 1 | 0 | 278.12 | 20.56 | 4.48 | + +---------+------+-----------+--------+-------------+ + | 1 | 1 | 96.68 | 20.62 | 4.3 | + +---------+------+-----------+--------+-------------+ + | 1 | 2 | 96.94 | 20.14 | 4.42 | + +---------+------+-----------+--------+-------------+ + | 1 | 3 | 96.68 | 20.46 | 4.32 | + +---------+------+-----------+--------+-------------+ + +``CPU_OFF`` on all non-lead CPUs +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +``CPU_OFF`` on all non-lead CPUs in sequence then, ``CPU_SUSPEND`` on the lead +core to the deepest power level. + +.. table:: ``CPU_OFF`` latencies (µs) on all non-lead CPUs (v2.9) + + +---------+------+-----------+--------+-------------+ + | Cluster | Core | Powerdown | Wakeup | Cache Flush | + +---------+------+-----------+--------+-------------+ + | 0 | 0 | 235.76 | 26.14 | 137.80 | + +---------+------+-----------+--------+-------------+ + | 0 | 1 | 235.40 | 25.72 | 137.62 | + +---------+------+-----------+--------+-------------+ + | 1 | 0 | 174.70 | 22.40 | 77.26 | + +---------+------+-----------+--------+-------------+ + | 1 | 1 | 100.92 | 24.04 | 4.52 | + +---------+------+-----------+--------+-------------+ + | 1 | 2 | 100.68 | 22.44 | 4.36 | + +---------+------+-----------+--------+-------------+ + | 1 | 3 | 101.36 | 22.70 | 4.52 | + +---------+------+-----------+--------+-------------+ + +.. table:: ``CPU_OFF`` latencies (µs) on all non-lead CPUs (v2.10) + + +---------------------------------------------------+ + | test_rt_instr_cpu_off_serial (latest) | + +---------+------+-----------+--------+-------------+ + | Cluster | Core | Powerdown | Wakeup | Cache Flush | + +---------+------+-----------+--------+-------------+ + | 0 | 0 | 236.04 | 30.02 | 137.9 | + +---------+------+-----------+--------+-------------+ + | 0 | 1 | 235.38 | 29.7 | 137.72 | + +---------+------+-----------+--------+-------------+ + | 1 | 0 | 175.18 | 26.96 | 77.26 | + +---------+------+-----------+--------+-------------+ + | 1 | 1 | 100.56 | 28.34 | 4.32 | + +---------+------+-----------+--------+-------------+ + | 1 | 2 | 100.38 | 26.82 | 4.3 | + +---------+------+-----------+--------+-------------+ + | 1 | 3 | 100.86 | 26.98 | 4.42 | + +---------+------+-----------+--------+-------------+ + +``CPU_VERSION`` in parallel +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +.. table:: ``CPU_VERSION`` latency (µs) in parallel on all cores (2.9) + + +-------------+--------+-------------+ + | Cluster | Core | Latency | + +-------------+--------+-------------+ + | 0 | 0 | 1.48 | + +-------------+--------+-------------+ + | 0 | 1 | 1.04 | + +-------------+--------+-------------+ + | 1 | 0 | 0.56 | + +-------------+--------+-------------+ + | 1 | 1 | 0.92 | + +-------------+--------+-------------+ + | 1 | 2 | 0.96 | + +-------------+--------+-------------+ + | 1 | 3 | 0.96 | + +-------------+--------+-------------+ + +.. table:: ``CPU_VERSION`` latency (µs) in parallel on all cores (2.10) + + +-------------+--------+----------------------+ + | Cluster | Core | Latency | + +-------------+--------+----------------------+ + | 0 | 0 | 1.1 (-25.68%) | + +-------------+--------+----------------------+ + | 0 | 1 | 1.06 | + +-------------+--------+----------------------+ + | 1 | 0 | 0.58 | + +-------------+--------+----------------------+ + | 1 | 1 | 0.88 | + +-------------+--------+----------------------+ + | 1 | 2 | 0.92 | + +-------------+--------+----------------------+ + | 1 | 3 | 0.9 | + +-------------+--------+----------------------+ + +Annotated Historic Results +-------------------------- + +The following results are based on the upstream `TF master as of 31/01/2017`_. +TF-A was built using the same build instructions as detailed in the procedure +above. + +In the results below, CPUs 0-3 refer to CPUs in the little cluster (A53) and +CPUs 4-5 refer to CPUs in the big cluster (A57). In all cases CPU 4 is the lead +CPU. + +``PSCI_ENTRY`` corresponds to the powerdown latency, ``PSCI_EXIT`` the wakeup latency, and +``CFLUSH_OVERHEAD`` the latency of the cache flush operation. + +``CPU_SUSPEND`` to deepest power level on all CPUs in parallel +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + ++-------+---------------------+--------------------+--------------------------+ +| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) | ++=======+=====================+====================+==========================+ +| 0 | 27 | 20 | 5 | ++-------+---------------------+--------------------+--------------------------+ +| 1 | 114 | 86 | 5 | ++-------+---------------------+--------------------+--------------------------+ +| 2 | 202 | 58 | 5 | ++-------+---------------------+--------------------+--------------------------+ +| 3 | 375 | 29 | 94 | ++-------+---------------------+--------------------+--------------------------+ +| 4 | 20 | 22 | 6 | ++-------+---------------------+--------------------+--------------------------+ +| 5 | 290 | 18 | 206 | ++-------+---------------------+--------------------+--------------------------+ + +A large variance in ``PSCI_ENTRY`` and ``PSCI_EXIT`` times across CPUs is +observed due to TF PSCI lock contention. In the worst case, CPU 3 has to wait +for the 3 other CPUs in the cluster (0-2) to complete ``PSCI_ENTRY`` and release +the lock before proceeding. + +The ``CFLUSH_OVERHEAD`` times for CPUs 3 and 5 are higher because they are the +last CPUs in their respective clusters to power down, therefore both the L1 and +L2 caches are flushed. + +The ``CFLUSH_OVERHEAD`` time for CPU 5 is a lot larger than that for CPU 3 +because the L2 cache size for the big cluster is lot larger (2MB) compared to +the little cluster (1MB). + +``CPU_SUSPEND`` to power level 0 on all CPUs in parallel +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + ++-------+---------------------+--------------------+--------------------------+ +| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) | ++=======+=====================+====================+==========================+ +| 0 | 116 | 14 | 8 | ++-------+---------------------+--------------------+--------------------------+ +| 1 | 204 | 14 | 8 | ++-------+---------------------+--------------------+--------------------------+ +| 2 | 287 | 13 | 8 | ++-------+---------------------+--------------------+--------------------------+ +| 3 | 376 | 13 | 9 | ++-------+---------------------+--------------------+--------------------------+ +| 4 | 29 | 15 | 7 | ++-------+---------------------+--------------------+--------------------------+ +| 5 | 21 | 15 | 8 | ++-------+---------------------+--------------------+--------------------------+ + +There is no lock contention in TF generic code at power level 0 but the large +variance in ``PSCI_ENTRY`` times across CPUs is due to lock contention in Juno +platform code. The platform lock is used to mediate access to a single SCP +communication channel. This is compounded by the SCP firmware waiting for each +AP CPU to enter WFI before making the channel available to other CPUs, which +effectively serializes the SCP power down commands from all CPUs. + +On platforms with a more efficient CPU power down mechanism, it should be +possible to make the ``PSCI_ENTRY`` times smaller and consistent. + +The ``PSCI_EXIT`` times are consistent across all CPUs because TF does not +require locks at power level 0. + +The ``CFLUSH_OVERHEAD`` times for all CPUs are small and consistent since only +the cache associated with power level 0 is flushed (L1). + +``CPU_SUSPEND`` to deepest power level on all CPUs in sequence +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + ++-------+---------------------+--------------------+--------------------------+ +| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) | ++=======+=====================+====================+==========================+ +| 0 | 114 | 20 | 94 | ++-------+---------------------+--------------------+--------------------------+ +| 1 | 114 | 20 | 94 | ++-------+---------------------+--------------------+--------------------------+ +| 2 | 114 | 20 | 94 | ++-------+---------------------+--------------------+--------------------------+ +| 3 | 114 | 20 | 94 | ++-------+---------------------+--------------------+--------------------------+ +| 4 | 195 | 22 | 180 | ++-------+---------------------+--------------------+--------------------------+ +| 5 | 21 | 17 | 6 | ++-------+---------------------+--------------------+--------------------------+ + +The ``CFLUSH_OVERHEAD`` times for lead CPU 4 and all CPUs in the non-lead cluster +are large because all other CPUs in the cluster are powered down during the +test. The ``CPU_SUSPEND`` call powers down to the cluster level, requiring a +flush of both L1 and L2 caches. + +The ``CFLUSH_OVERHEAD`` time for CPU 4 is a lot larger than those for the little +CPUs because the L2 cache size for the big cluster is lot larger (2MB) compared +to the little cluster (1MB). + +The ``PSCI_ENTRY`` and ``CFLUSH_OVERHEAD`` times for CPU 5 are low because lead +CPU 4 continues to run while CPU 5 is suspended. Hence CPU 5 only powers down to +level 0, which only requires L1 cache flush. + +``CPU_SUSPEND`` to power level 0 on all CPUs in sequence +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + ++-------+---------------------+--------------------+--------------------------+ +| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) | ++=======+=====================+====================+==========================+ +| 0 | 22 | 14 | 5 | ++-------+---------------------+--------------------+--------------------------+ +| 1 | 22 | 14 | 5 | ++-------+---------------------+--------------------+--------------------------+ +| 2 | 21 | 14 | 5 | ++-------+---------------------+--------------------+--------------------------+ +| 3 | 22 | 14 | 5 | ++-------+---------------------+--------------------+--------------------------+ +| 4 | 17 | 14 | 6 | ++-------+---------------------+--------------------+--------------------------+ +| 5 | 18 | 15 | 6 | ++-------+---------------------+--------------------+--------------------------+ + +Here the times are small and consistent since there is no contention and it is +only necessary to flush the cache to power level 0 (L1). This is the best case +scenario. + +The ``PSCI_ENTRY`` times for CPUs in the big cluster are slightly smaller than +for the CPUs in little cluster due to greater CPU performance. + +The ``PSCI_EXIT`` times are generally lower than in the last test because the +cluster remains powered on throughout the test and there is less code to execute +on power on (for example, no need to enter CCI coherency) + +``CPU_OFF`` on all non-lead CPUs in sequence then ``CPU_SUSPEND`` on lead CPU to deepest power level +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The test sequence here is as follows: + +1. Call ``CPU_ON`` and ``CPU_OFF`` on each non-lead CPU in sequence. + +2. Program wake up timer and suspend the lead CPU to the deepest power level. + +3. Call ``CPU_ON`` on non-lead CPU to get the timestamps from each CPU. + ++-------+---------------------+--------------------+--------------------------+ +| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) | ++=======+=====================+====================+==========================+ +| 0 | 110 | 28 | 93 | ++-------+---------------------+--------------------+--------------------------+ +| 1 | 110 | 28 | 93 | ++-------+---------------------+--------------------+--------------------------+ +| 2 | 110 | 28 | 93 | ++-------+---------------------+--------------------+--------------------------+ +| 3 | 111 | 28 | 93 | ++-------+---------------------+--------------------+--------------------------+ +| 4 | 195 | 22 | 181 | ++-------+---------------------+--------------------+--------------------------+ +| 5 | 20 | 23 | 6 | ++-------+---------------------+--------------------+--------------------------+ + +The ``CFLUSH_OVERHEAD`` times for all little CPUs are large because all other +CPUs in that cluster are powerered down during the test. The ``CPU_OFF`` call +powers down to the cluster level, requiring a flush of both L1 and L2 caches. + +The ``PSCI_ENTRY`` and ``CFLUSH_OVERHEAD`` times for CPU 5 are small because +lead CPU 4 is running and CPU 5 only powers down to level 0, which only requires +an L1 cache flush. + +The ``CFLUSH_OVERHEAD`` time for CPU 4 is a lot larger than those for the little +CPUs because the L2 cache size for the big cluster is lot larger (2MB) compared +to the little cluster (1MB). + +The ``PSCI_EXIT`` times for CPUs in the big cluster are slightly smaller than +for CPUs in the little cluster due to greater CPU performance. These times +generally are greater than the ``PSCI_EXIT`` times in the ``CPU_SUSPEND`` tests +because there is more code to execute in the "on finisher" compared to the +"suspend finisher" (for example, GIC redistributor register programming). + +``PSCI_VERSION`` on all CPUs in parallel +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Since very little code is associated with ``PSCI_VERSION``, this test +approximates the round trip latency for handling a fast SMC at EL3 in TF. + ++-------+-------------------+ +| CPU | TOTAL TIME (ns) | ++=======+===================+ +| 0 | 3020 | ++-------+-------------------+ +| 1 | 2940 | ++-------+-------------------+ +| 2 | 2980 | ++-------+-------------------+ +| 3 | 3060 | ++-------+-------------------+ +| 4 | 520 | ++-------+-------------------+ +| 5 | 720 | ++-------+-------------------+ + +The times for the big CPUs are less than the little CPUs due to greater CPU +performance. + +We suspect the time for lead CPU 4 is shorter than CPU 5 due to subtle cache +effects, given that these measurements are at the nano-second level. + +-------------- + +*Copyright (c) 2019-2023, Arm Limited and Contributors. All rights reserved.* + +.. _Juno R1 platform: https://developer.arm.com/documentation/100122/latest/ +.. _TF master as of 31/01/2017: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?id=c38b36d +.. _v2.9-rc0: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?h=v2.9-rc0 |