summaryrefslogtreecommitdiffstats
path: root/lib/gpt_rme/gpt_rme.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 17:43:51 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 17:43:51 +0000
commitbe58c81aff4cd4c0ccf43dbd7998da4a6a08c03b (patch)
tree779c248fb61c83f65d1f0dc867f2053d76b4e03a /lib/gpt_rme/gpt_rme.c
parentInitial commit. (diff)
downloadarm-trusted-firmware-be58c81aff4cd4c0ccf43dbd7998da4a6a08c03b.tar.xz
arm-trusted-firmware-be58c81aff4cd4c0ccf43dbd7998da4a6a08c03b.zip
Adding upstream version 2.10.0+dfsg.upstream/2.10.0+dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'lib/gpt_rme/gpt_rme.c')
-rw-r--r--lib/gpt_rme/gpt_rme.c1260
1 files changed, 1260 insertions, 0 deletions
diff --git a/lib/gpt_rme/gpt_rme.c b/lib/gpt_rme/gpt_rme.c
new file mode 100644
index 0000000..f5353cb
--- /dev/null
+++ b/lib/gpt_rme/gpt_rme.c
@@ -0,0 +1,1260 @@
+/*
+ * Copyright (c) 2022, Arm Limited. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <assert.h>
+#include <errno.h>
+#include <inttypes.h>
+#include <limits.h>
+#include <stdint.h>
+
+#include <arch.h>
+#include <arch_helpers.h>
+#include <common/debug.h>
+#include "gpt_rme_private.h"
+#include <lib/gpt_rme/gpt_rme.h>
+#include <lib/smccc.h>
+#include <lib/spinlock.h>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+
+#if !ENABLE_RME
+#error "ENABLE_RME must be enabled to use the GPT library."
+#endif
+
+/*
+ * Lookup T from PPS
+ *
+ * PPS Size T
+ * 0b000 4GB 32
+ * 0b001 64GB 36
+ * 0b010 1TB 40
+ * 0b011 4TB 42
+ * 0b100 16TB 44
+ * 0b101 256TB 48
+ * 0b110 4PB 52
+ *
+ * See section 15.1.27 of the RME specification.
+ */
+static const gpt_t_val_e gpt_t_lookup[] = {PPS_4GB_T, PPS_64GB_T,
+ PPS_1TB_T, PPS_4TB_T,
+ PPS_16TB_T, PPS_256TB_T,
+ PPS_4PB_T};
+
+/*
+ * Lookup P from PGS
+ *
+ * PGS Size P
+ * 0b00 4KB 12
+ * 0b10 16KB 14
+ * 0b01 64KB 16
+ *
+ * Note that pgs=0b10 is 16KB and pgs=0b01 is 64KB, this is not a typo.
+ *
+ * See section 15.1.27 of the RME specification.
+ */
+static const gpt_p_val_e gpt_p_lookup[] = {PGS_4KB_P, PGS_64KB_P, PGS_16KB_P};
+
+/*
+ * This structure contains GPT configuration data.
+ */
+typedef struct {
+ uintptr_t plat_gpt_l0_base;
+ gpccr_pps_e pps;
+ gpt_t_val_e t;
+ gpccr_pgs_e pgs;
+ gpt_p_val_e p;
+} gpt_config_t;
+
+static gpt_config_t gpt_config;
+
+/* These variables are used during initialization of the L1 tables. */
+static unsigned int gpt_next_l1_tbl_idx;
+static uintptr_t gpt_l1_tbl;
+
+/*
+ * This function checks to see if a GPI value is valid.
+ *
+ * These are valid GPI values.
+ * GPT_GPI_NO_ACCESS U(0x0)
+ * GPT_GPI_SECURE U(0x8)
+ * GPT_GPI_NS U(0x9)
+ * GPT_GPI_ROOT U(0xA)
+ * GPT_GPI_REALM U(0xB)
+ * GPT_GPI_ANY U(0xF)
+ *
+ * Parameters
+ * gpi GPI to check for validity.
+ *
+ * Return
+ * true for a valid GPI, false for an invalid one.
+ */
+static bool gpt_is_gpi_valid(unsigned int gpi)
+{
+ if ((gpi == GPT_GPI_NO_ACCESS) || (gpi == GPT_GPI_ANY) ||
+ ((gpi >= GPT_GPI_SECURE) && (gpi <= GPT_GPI_REALM))) {
+ return true;
+ }
+ return false;
+}
+
+/*
+ * This function checks to see if two PAS regions overlap.
+ *
+ * Parameters
+ * base_1: base address of first PAS
+ * size_1: size of first PAS
+ * base_2: base address of second PAS
+ * size_2: size of second PAS
+ *
+ * Return
+ * True if PAS regions overlap, false if they do not.
+ */
+static bool gpt_check_pas_overlap(uintptr_t base_1, size_t size_1,
+ uintptr_t base_2, size_t size_2)
+{
+ if (((base_1 + size_1) > base_2) && ((base_2 + size_2) > base_1)) {
+ return true;
+ }
+ return false;
+}
+
+/*
+ * This helper function checks to see if a PAS region from index 0 to
+ * (pas_idx - 1) occupies the L0 region at index l0_idx in the L0 table.
+ *
+ * Parameters
+ * l0_idx: Index of the L0 entry to check
+ * pas_regions: PAS region array
+ * pas_idx: Upper bound of the PAS array index.
+ *
+ * Return
+ * True if a PAS region occupies the L0 region in question, false if not.
+ */
+static bool gpt_does_previous_pas_exist_here(unsigned int l0_idx,
+ pas_region_t *pas_regions,
+ unsigned int pas_idx)
+{
+ /* Iterate over PAS regions up to pas_idx. */
+ for (unsigned int i = 0U; i < pas_idx; i++) {
+ if (gpt_check_pas_overlap((GPT_L0GPTSZ_ACTUAL_SIZE * l0_idx),
+ GPT_L0GPTSZ_ACTUAL_SIZE,
+ pas_regions[i].base_pa, pas_regions[i].size)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+/*
+ * This function iterates over all of the PAS regions and checks them to ensure
+ * proper alignment of base and size, that the GPI is valid, and that no regions
+ * overlap. As a part of the overlap checks, this function checks existing L0
+ * mappings against the new PAS regions in the event that gpt_init_pas_l1_tables
+ * is called multiple times to place L1 tables in different areas of memory. It
+ * also counts the number of L1 tables needed and returns it on success.
+ *
+ * Parameters
+ * *pas_regions Pointer to array of PAS region structures.
+ * pas_region_cnt Total number of PAS regions in the array.
+ *
+ * Return
+ * Negative Linux error code in the event of a failure, number of L1 regions
+ * required when successful.
+ */
+static int gpt_validate_pas_mappings(pas_region_t *pas_regions,
+ unsigned int pas_region_cnt)
+{
+ unsigned int idx;
+ unsigned int l1_cnt = 0U;
+ unsigned int pas_l1_cnt;
+ uint64_t *l0_desc = (uint64_t *)gpt_config.plat_gpt_l0_base;
+
+ assert(pas_regions != NULL);
+ assert(pas_region_cnt != 0U);
+
+ for (idx = 0U; idx < pas_region_cnt; idx++) {
+ /* Check for arithmetic overflow in region. */
+ if ((ULONG_MAX - pas_regions[idx].base_pa) <
+ pas_regions[idx].size) {
+ ERROR("[GPT] Address overflow in PAS[%u]!\n", idx);
+ return -EOVERFLOW;
+ }
+
+ /* Initial checks for PAS validity. */
+ if (((pas_regions[idx].base_pa + pas_regions[idx].size) >
+ GPT_PPS_ACTUAL_SIZE(gpt_config.t)) ||
+ !gpt_is_gpi_valid(GPT_PAS_ATTR_GPI(pas_regions[idx].attrs))) {
+ ERROR("[GPT] PAS[%u] is invalid!\n", idx);
+ return -EFAULT;
+ }
+
+ /*
+ * Make sure this PAS does not overlap with another one. We
+ * start from idx + 1 instead of 0 since prior PAS mappings will
+ * have already checked themselves against this one.
+ */
+ for (unsigned int i = idx + 1; i < pas_region_cnt; i++) {
+ if (gpt_check_pas_overlap(pas_regions[idx].base_pa,
+ pas_regions[idx].size,
+ pas_regions[i].base_pa,
+ pas_regions[i].size)) {
+ ERROR("[GPT] PAS[%u] overlaps with PAS[%u]\n",
+ i, idx);
+ return -EFAULT;
+ }
+ }
+
+ /*
+ * Since this function can be called multiple times with
+ * separate L1 tables we need to check the existing L0 mapping
+ * to see if this PAS would fall into one that has already been
+ * initialized.
+ */
+ for (unsigned int i = GPT_L0_IDX(pas_regions[idx].base_pa);
+ i <= GPT_L0_IDX(pas_regions[idx].base_pa + pas_regions[idx].size - 1);
+ i++) {
+ if ((GPT_L0_TYPE(l0_desc[i]) == GPT_L0_TYPE_BLK_DESC) &&
+ (GPT_L0_BLKD_GPI(l0_desc[i]) == GPT_GPI_ANY)) {
+ /* This descriptor is unused so continue. */
+ continue;
+ }
+
+ /*
+ * This descriptor has been initialized in a previous
+ * call to this function so cannot be initialized again.
+ */
+ ERROR("[GPT] PAS[%u] overlaps with previous L0[%d]!\n",
+ idx, i);
+ return -EFAULT;
+ }
+
+ /* Check for block mapping (L0) type. */
+ if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
+ GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
+ /* Make sure base and size are block-aligned. */
+ if (!GPT_IS_L0_ALIGNED(pas_regions[idx].base_pa) ||
+ !GPT_IS_L0_ALIGNED(pas_regions[idx].size)) {
+ ERROR("[GPT] PAS[%u] is not block-aligned!\n",
+ idx);
+ return -EFAULT;
+ }
+
+ continue;
+ }
+
+ /* Check for granule mapping (L1) type. */
+ if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
+ GPT_PAS_ATTR_MAP_TYPE_GRANULE) {
+ /* Make sure base and size are granule-aligned. */
+ if (!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].base_pa) ||
+ !GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].size)) {
+ ERROR("[GPT] PAS[%u] is not granule-aligned!\n",
+ idx);
+ return -EFAULT;
+ }
+
+ /* Find how many L1 tables this PAS occupies. */
+ pas_l1_cnt = (GPT_L0_IDX(pas_regions[idx].base_pa +
+ pas_regions[idx].size - 1) -
+ GPT_L0_IDX(pas_regions[idx].base_pa) + 1);
+
+ /*
+ * This creates a situation where, if multiple PAS
+ * regions occupy the same table descriptor, we can get
+ * an artificially high total L1 table count. The way we
+ * handle this is by checking each PAS against those
+ * before it in the array, and if they both occupy the
+ * same PAS we subtract from pas_l1_cnt and only the
+ * first PAS in the array gets to count it.
+ */
+
+ /*
+ * If L1 count is greater than 1 we know the start and
+ * end PAs are in different L0 regions so we must check
+ * both for overlap against other PAS.
+ */
+ if (pas_l1_cnt > 1) {
+ if (gpt_does_previous_pas_exist_here(
+ GPT_L0_IDX(pas_regions[idx].base_pa +
+ pas_regions[idx].size - 1),
+ pas_regions, idx)) {
+ pas_l1_cnt = pas_l1_cnt - 1;
+ }
+ }
+
+ if (gpt_does_previous_pas_exist_here(
+ GPT_L0_IDX(pas_regions[idx].base_pa),
+ pas_regions, idx)) {
+ pas_l1_cnt = pas_l1_cnt - 1;
+ }
+
+ l1_cnt += pas_l1_cnt;
+ continue;
+ }
+
+ /* If execution reaches this point, mapping type is invalid. */
+ ERROR("[GPT] PAS[%u] has invalid mapping type 0x%x.\n", idx,
+ GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
+ return -EINVAL;
+ }
+
+ return l1_cnt;
+}
+
+/*
+ * This function validates L0 initialization parameters.
+ *
+ * Parameters
+ * l0_mem_base Base address of memory used for L0 tables.
+ * l1_mem_size Size of memory available for L0 tables.
+ *
+ * Return
+ * Negative Linux error code in the event of a failure, 0 for success.
+ */
+static int gpt_validate_l0_params(gpccr_pps_e pps, uintptr_t l0_mem_base,
+ size_t l0_mem_size)
+{
+ size_t l0_alignment;
+
+ /*
+ * Make sure PPS is valid and then store it since macros need this value
+ * to work.
+ */
+ if (pps > GPT_PPS_MAX) {
+ ERROR("[GPT] Invalid PPS: 0x%x\n", pps);
+ return -EINVAL;
+ }
+ gpt_config.pps = pps;
+ gpt_config.t = gpt_t_lookup[pps];
+
+ /* Alignment must be the greater of 4k or l0 table size. */
+ l0_alignment = PAGE_SIZE_4KB;
+ if (l0_alignment < GPT_L0_TABLE_SIZE(gpt_config.t)) {
+ l0_alignment = GPT_L0_TABLE_SIZE(gpt_config.t);
+ }
+
+ /* Check base address. */
+ if ((l0_mem_base == 0U) || ((l0_mem_base & (l0_alignment - 1)) != 0U)) {
+ ERROR("[GPT] Invalid L0 base address: 0x%lx\n", l0_mem_base);
+ return -EFAULT;
+ }
+
+ /* Check size. */
+ if (l0_mem_size < GPT_L0_TABLE_SIZE(gpt_config.t)) {
+ ERROR("[GPT] Inadequate L0 memory: need 0x%lx, have 0x%lx)\n",
+ GPT_L0_TABLE_SIZE(gpt_config.t),
+ l0_mem_size);
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+/*
+ * In the event that L1 tables are needed, this function validates
+ * the L1 table generation parameters.
+ *
+ * Parameters
+ * l1_mem_base Base address of memory used for L1 table allocation.
+ * l1_mem_size Total size of memory available for L1 tables.
+ * l1_gpt_cnt Number of L1 tables needed.
+ *
+ * Return
+ * Negative Linux error code in the event of a failure, 0 for success.
+ */
+static int gpt_validate_l1_params(uintptr_t l1_mem_base, size_t l1_mem_size,
+ unsigned int l1_gpt_cnt)
+{
+ size_t l1_gpt_mem_sz;
+
+ /* Check if the granularity is supported */
+ if (!xlat_arch_is_granule_size_supported(
+ GPT_PGS_ACTUAL_SIZE(gpt_config.p))) {
+ return -EPERM;
+ }
+
+ /* Make sure L1 tables are aligned to their size. */
+ if ((l1_mem_base & (GPT_L1_TABLE_SIZE(gpt_config.p) - 1)) != 0U) {
+ ERROR("[GPT] Unaligned L1 GPT base address: 0x%lx\n",
+ l1_mem_base);
+ return -EFAULT;
+ }
+
+ /* Get total memory needed for L1 tables. */
+ l1_gpt_mem_sz = l1_gpt_cnt * GPT_L1_TABLE_SIZE(gpt_config.p);
+
+ /* Check for overflow. */
+ if ((l1_gpt_mem_sz / GPT_L1_TABLE_SIZE(gpt_config.p)) != l1_gpt_cnt) {
+ ERROR("[GPT] Overflow calculating L1 memory size.\n");
+ return -ENOMEM;
+ }
+
+ /* Make sure enough space was supplied. */
+ if (l1_mem_size < l1_gpt_mem_sz) {
+ ERROR("[GPT] Inadequate memory for L1 GPTs. ");
+ ERROR(" Expected 0x%lx bytes. Got 0x%lx bytes\n",
+ l1_gpt_mem_sz, l1_mem_size);
+ return -ENOMEM;
+ }
+
+ VERBOSE("[GPT] Requested 0x%lx bytes for L1 GPTs.\n", l1_gpt_mem_sz);
+ return 0;
+}
+
+/*
+ * This function initializes L0 block descriptors (regions that cannot be
+ * transitioned at the granule level) according to the provided PAS.
+ *
+ * Parameters
+ * *pas Pointer to the structure defining the PAS region to
+ * initialize.
+ */
+static void gpt_generate_l0_blk_desc(pas_region_t *pas)
+{
+ uint64_t gpt_desc;
+ unsigned int end_idx;
+ unsigned int idx;
+ uint64_t *l0_gpt_arr;
+
+ assert(gpt_config.plat_gpt_l0_base != 0U);
+ assert(pas != NULL);
+
+ /*
+ * Checking of PAS parameters has already been done in
+ * gpt_validate_pas_mappings so no need to check the same things again.
+ */
+
+ l0_gpt_arr = (uint64_t *)gpt_config.plat_gpt_l0_base;
+
+ /* Create the GPT Block descriptor for this PAS region */
+ gpt_desc = GPT_L0_BLK_DESC(GPT_PAS_ATTR_GPI(pas->attrs));
+
+ /* Start index of this region in L0 GPTs */
+ idx = GPT_L0_IDX(pas->base_pa);
+
+ /*
+ * Determine number of L0 GPT descriptors covered by
+ * this PAS region and use the count to populate these
+ * descriptors.
+ */
+ end_idx = GPT_L0_IDX(pas->base_pa + pas->size);
+
+ /* Generate the needed block descriptors. */
+ for (; idx < end_idx; idx++) {
+ l0_gpt_arr[idx] = gpt_desc;
+ VERBOSE("[GPT] L0 entry (BLOCK) index %u [%p]: GPI = 0x%" PRIx64 " (0x%" PRIx64 ")\n",
+ idx, &l0_gpt_arr[idx],
+ (gpt_desc >> GPT_L0_BLK_DESC_GPI_SHIFT) &
+ GPT_L0_BLK_DESC_GPI_MASK, l0_gpt_arr[idx]);
+ }
+}
+
+/*
+ * Helper function to determine if the end physical address lies in the same L0
+ * region as the current physical address. If true, the end physical address is
+ * returned else, the start address of the next region is returned.
+ *
+ * Parameters
+ * cur_pa Physical address of the current PA in the loop through
+ * the range.
+ * end_pa Physical address of the end PA in a PAS range.
+ *
+ * Return
+ * The PA of the end of the current range.
+ */
+static uintptr_t gpt_get_l1_end_pa(uintptr_t cur_pa, uintptr_t end_pa)
+{
+ uintptr_t cur_idx;
+ uintptr_t end_idx;
+
+ cur_idx = GPT_L0_IDX(cur_pa);
+ end_idx = GPT_L0_IDX(end_pa);
+
+ assert(cur_idx <= end_idx);
+
+ if (cur_idx == end_idx) {
+ return end_pa;
+ }
+
+ return (cur_idx + 1U) << GPT_L0_IDX_SHIFT;
+}
+
+/*
+ * Helper function to fill out GPI entries in a single L1 table. This function
+ * fills out entire L1 descriptors at a time to save memory writes.
+ *
+ * Parameters
+ * gpi GPI to set this range to
+ * l1 Pointer to L1 table to fill out
+ * first Address of first granule in range.
+ * last Address of last granule in range (inclusive).
+ */
+static void gpt_fill_l1_tbl(uint64_t gpi, uint64_t *l1, uintptr_t first,
+ uintptr_t last)
+{
+ uint64_t gpi_field = GPT_BUILD_L1_DESC(gpi);
+ uint64_t gpi_mask = 0xFFFFFFFFFFFFFFFF;
+
+ assert(first <= last);
+ assert((first & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U);
+ assert((last & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U);
+ assert(GPT_L0_IDX(first) == GPT_L0_IDX(last));
+ assert(l1 != NULL);
+
+ /* Shift the mask if we're starting in the middle of an L1 entry. */
+ gpi_mask = gpi_mask << (GPT_L1_GPI_IDX(gpt_config.p, first) << 2);
+
+ /* Fill out each L1 entry for this region. */
+ for (unsigned int i = GPT_L1_IDX(gpt_config.p, first);
+ i <= GPT_L1_IDX(gpt_config.p, last); i++) {
+ /* Account for stopping in the middle of an L1 entry. */
+ if (i == GPT_L1_IDX(gpt_config.p, last)) {
+ gpi_mask &= (gpi_mask >> ((15 -
+ GPT_L1_GPI_IDX(gpt_config.p, last)) << 2));
+ }
+
+ /* Write GPI values. */
+ assert((l1[i] & gpi_mask) ==
+ (GPT_BUILD_L1_DESC(GPT_GPI_ANY) & gpi_mask));
+ l1[i] = (l1[i] & ~gpi_mask) | (gpi_mask & gpi_field);
+
+ /* Reset mask. */
+ gpi_mask = 0xFFFFFFFFFFFFFFFF;
+ }
+}
+
+/*
+ * This function finds the next available unused L1 table and initializes all
+ * granules descriptor entries to GPI_ANY. This ensures that there are no chunks
+ * of GPI_NO_ACCESS (0b0000) memory floating around in the system in the
+ * event that a PAS region stops midway through an L1 table, thus guaranteeing
+ * that all memory not explicitly assigned is GPI_ANY. This function does not
+ * check for overflow conditions, that should be done by the caller.
+ *
+ * Return
+ * Pointer to the next available L1 table.
+ */
+static uint64_t *gpt_get_new_l1_tbl(void)
+{
+ /* Retrieve the next L1 table. */
+ uint64_t *l1 = (uint64_t *)((uint64_t)(gpt_l1_tbl) +
+ (GPT_L1_TABLE_SIZE(gpt_config.p) *
+ gpt_next_l1_tbl_idx));
+
+ /* Increment L1 counter. */
+ gpt_next_l1_tbl_idx++;
+
+ /* Initialize all GPIs to GPT_GPI_ANY */
+ for (unsigned int i = 0U; i < GPT_L1_ENTRY_COUNT(gpt_config.p); i++) {
+ l1[i] = GPT_BUILD_L1_DESC(GPT_GPI_ANY);
+ }
+
+ return l1;
+}
+
+/*
+ * When L1 tables are needed, this function creates the necessary L0 table
+ * descriptors and fills out the L1 table entries according to the supplied
+ * PAS range.
+ *
+ * Parameters
+ * *pas Pointer to the structure defining the PAS region.
+ */
+static void gpt_generate_l0_tbl_desc(pas_region_t *pas)
+{
+ uintptr_t end_pa;
+ uintptr_t cur_pa;
+ uintptr_t last_gran_pa;
+ uint64_t *l0_gpt_base;
+ uint64_t *l1_gpt_arr;
+ unsigned int l0_idx;
+
+ assert(gpt_config.plat_gpt_l0_base != 0U);
+ assert(pas != NULL);
+
+ /*
+ * Checking of PAS parameters has already been done in
+ * gpt_validate_pas_mappings so no need to check the same things again.
+ */
+
+ end_pa = pas->base_pa + pas->size;
+ l0_gpt_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
+
+ /* We start working from the granule at base PA */
+ cur_pa = pas->base_pa;
+
+ /* Iterate over each L0 region in this memory range. */
+ for (l0_idx = GPT_L0_IDX(pas->base_pa);
+ l0_idx <= GPT_L0_IDX(end_pa - 1U);
+ l0_idx++) {
+
+ /*
+ * See if the L0 entry is already a table descriptor or if we
+ * need to create one.
+ */
+ if (GPT_L0_TYPE(l0_gpt_base[l0_idx]) == GPT_L0_TYPE_TBL_DESC) {
+ /* Get the L1 array from the L0 entry. */
+ l1_gpt_arr = GPT_L0_TBLD_ADDR(l0_gpt_base[l0_idx]);
+ } else {
+ /* Get a new L1 table from the L1 memory space. */
+ l1_gpt_arr = gpt_get_new_l1_tbl();
+
+ /* Fill out the L0 descriptor and flush it. */
+ l0_gpt_base[l0_idx] = GPT_L0_TBL_DESC(l1_gpt_arr);
+ }
+
+ VERBOSE("[GPT] L0 entry (TABLE) index %u [%p] ==> L1 Addr 0x%llx (0x%" PRIx64 ")\n",
+ l0_idx, &l0_gpt_base[l0_idx],
+ (unsigned long long)(l1_gpt_arr),
+ l0_gpt_base[l0_idx]);
+
+ /*
+ * Determine the PA of the last granule in this L0 descriptor.
+ */
+ last_gran_pa = gpt_get_l1_end_pa(cur_pa, end_pa) -
+ GPT_PGS_ACTUAL_SIZE(gpt_config.p);
+
+ /*
+ * Fill up L1 GPT entries between these two addresses. This
+ * function needs the addresses of the first granule and last
+ * granule in the range.
+ */
+ gpt_fill_l1_tbl(GPT_PAS_ATTR_GPI(pas->attrs), l1_gpt_arr,
+ cur_pa, last_gran_pa);
+
+ /* Advance cur_pa to first granule in next L0 region. */
+ cur_pa = gpt_get_l1_end_pa(cur_pa, end_pa);
+ }
+}
+
+/*
+ * This function flushes a range of L0 descriptors used by a given PAS region
+ * array. There is a chance that some unmodified L0 descriptors would be flushed
+ * in the case that there are "holes" in an array of PAS regions but overall
+ * this should be faster than individually flushing each modified L0 descriptor
+ * as they are created.
+ *
+ * Parameters
+ * *pas Pointer to an array of PAS regions.
+ * pas_count Number of entries in the PAS array.
+ */
+static void flush_l0_for_pas_array(pas_region_t *pas, unsigned int pas_count)
+{
+ unsigned int idx;
+ unsigned int start_idx;
+ unsigned int end_idx;
+ uint64_t *l0 = (uint64_t *)gpt_config.plat_gpt_l0_base;
+
+ assert(pas != NULL);
+ assert(pas_count > 0);
+
+ /* Initial start and end values. */
+ start_idx = GPT_L0_IDX(pas[0].base_pa);
+ end_idx = GPT_L0_IDX(pas[0].base_pa + pas[0].size - 1);
+
+ /* Find lowest and highest L0 indices used in this PAS array. */
+ for (idx = 1; idx < pas_count; idx++) {
+ if (GPT_L0_IDX(pas[idx].base_pa) < start_idx) {
+ start_idx = GPT_L0_IDX(pas[idx].base_pa);
+ }
+ if (GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1) > end_idx) {
+ end_idx = GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1);
+ }
+ }
+
+ /*
+ * Flush all covered L0 descriptors, add 1 because we need to include
+ * the end index value.
+ */
+ flush_dcache_range((uintptr_t)&l0[start_idx],
+ ((end_idx + 1) - start_idx) * sizeof(uint64_t));
+}
+
+/*
+ * Public API to enable granule protection checks once the tables have all been
+ * initialized. This function is called at first initialization and then again
+ * later during warm boots of CPU cores.
+ *
+ * Return
+ * Negative Linux error code in the event of a failure, 0 for success.
+ */
+int gpt_enable(void)
+{
+ u_register_t gpccr_el3;
+
+ /*
+ * Granule tables must be initialised before enabling
+ * granule protection.
+ */
+ if (gpt_config.plat_gpt_l0_base == 0U) {
+ ERROR("[GPT] Tables have not been initialized!\n");
+ return -EPERM;
+ }
+
+ /* Write the base address of the L0 tables into GPTBR */
+ write_gptbr_el3(((gpt_config.plat_gpt_l0_base >> GPTBR_BADDR_VAL_SHIFT)
+ >> GPTBR_BADDR_SHIFT) & GPTBR_BADDR_MASK);
+
+ /* GPCCR_EL3.PPS */
+ gpccr_el3 = SET_GPCCR_PPS(gpt_config.pps);
+
+ /* GPCCR_EL3.PGS */
+ gpccr_el3 |= SET_GPCCR_PGS(gpt_config.pgs);
+
+ /*
+ * Since EL3 maps the L1 region as Inner shareable, use the same
+ * shareability attribute for GPC as well so that
+ * GPC fetches are visible to PEs
+ */
+ gpccr_el3 |= SET_GPCCR_SH(GPCCR_SH_IS);
+
+ /* Outer and Inner cacheability set to Normal memory, WB, RA, WA. */
+ gpccr_el3 |= SET_GPCCR_ORGN(GPCCR_ORGN_WB_RA_WA);
+ gpccr_el3 |= SET_GPCCR_IRGN(GPCCR_IRGN_WB_RA_WA);
+
+ /* Prepopulate GPCCR_EL3 but don't enable GPC yet */
+ write_gpccr_el3(gpccr_el3);
+ isb();
+
+ /* Invalidate any stale TLB entries and any cached register fields */
+ tlbipaallos();
+ dsb();
+ isb();
+
+ /* Enable GPT */
+ gpccr_el3 |= GPCCR_GPC_BIT;
+
+ /* TODO: Configure GPCCR_EL3_GPCP for Fault control. */
+ write_gpccr_el3(gpccr_el3);
+ isb();
+ tlbipaallos();
+ dsb();
+ isb();
+
+ return 0;
+}
+
+/*
+ * Public API to disable granule protection checks.
+ */
+void gpt_disable(void)
+{
+ u_register_t gpccr_el3 = read_gpccr_el3();
+
+ write_gpccr_el3(gpccr_el3 & ~GPCCR_GPC_BIT);
+ dsbsy();
+ isb();
+}
+
+/*
+ * Public API that initializes the entire protected space to GPT_GPI_ANY using
+ * the L0 tables (block descriptors). Ideally, this function is invoked prior
+ * to DDR discovery and initialization. The MMU must be initialized before
+ * calling this function.
+ *
+ * Parameters
+ * pps PPS value to use for table generation
+ * l0_mem_base Base address of L0 tables in memory.
+ * l0_mem_size Total size of memory available for L0 tables.
+ *
+ * Return
+ * Negative Linux error code in the event of a failure, 0 for success.
+ */
+int gpt_init_l0_tables(gpccr_pps_e pps, uintptr_t l0_mem_base,
+ size_t l0_mem_size)
+{
+ int ret;
+ uint64_t gpt_desc;
+
+ /* Ensure that MMU and Data caches are enabled. */
+ assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
+
+ /* Validate other parameters. */
+ ret = gpt_validate_l0_params(pps, l0_mem_base, l0_mem_size);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* Create the descriptor to initialize L0 entries with. */
+ gpt_desc = GPT_L0_BLK_DESC(GPT_GPI_ANY);
+
+ /* Iterate through all L0 entries */
+ for (unsigned int i = 0U; i < GPT_L0_REGION_COUNT(gpt_config.t); i++) {
+ ((uint64_t *)l0_mem_base)[i] = gpt_desc;
+ }
+
+ /* Flush updated L0 tables to memory. */
+ flush_dcache_range((uintptr_t)l0_mem_base,
+ (size_t)GPT_L0_TABLE_SIZE(gpt_config.t));
+
+ /* Stash the L0 base address once initial setup is complete. */
+ gpt_config.plat_gpt_l0_base = l0_mem_base;
+
+ return 0;
+}
+
+/*
+ * Public API that carves out PAS regions from the L0 tables and builds any L1
+ * tables that are needed. This function ideally is run after DDR discovery and
+ * initialization. The L0 tables must have already been initialized to GPI_ANY
+ * when this function is called.
+ *
+ * This function can be called multiple times with different L1 memory ranges
+ * and PAS regions if it is desirable to place L1 tables in different locations
+ * in memory. (ex: you have multiple DDR banks and want to place the L1 tables
+ * in the DDR bank that they control)
+ *
+ * Parameters
+ * pgs PGS value to use for table generation.
+ * l1_mem_base Base address of memory used for L1 tables.
+ * l1_mem_size Total size of memory available for L1 tables.
+ * *pas_regions Pointer to PAS regions structure array.
+ * pas_count Total number of PAS regions.
+ *
+ * Return
+ * Negative Linux error code in the event of a failure, 0 for success.
+ */
+int gpt_init_pas_l1_tables(gpccr_pgs_e pgs, uintptr_t l1_mem_base,
+ size_t l1_mem_size, pas_region_t *pas_regions,
+ unsigned int pas_count)
+{
+ int ret;
+ int l1_gpt_cnt;
+
+ /* Ensure that MMU and Data caches are enabled. */
+ assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
+
+ /* PGS is needed for gpt_validate_pas_mappings so check it now. */
+ if (pgs > GPT_PGS_MAX) {
+ ERROR("[GPT] Invalid PGS: 0x%x\n", pgs);
+ return -EINVAL;
+ }
+ gpt_config.pgs = pgs;
+ gpt_config.p = gpt_p_lookup[pgs];
+
+ /* Make sure L0 tables have been initialized. */
+ if (gpt_config.plat_gpt_l0_base == 0U) {
+ ERROR("[GPT] L0 tables must be initialized first!\n");
+ return -EPERM;
+ }
+
+ /* Check if L1 GPTs are required and how many. */
+ l1_gpt_cnt = gpt_validate_pas_mappings(pas_regions, pas_count);
+ if (l1_gpt_cnt < 0) {
+ return l1_gpt_cnt;
+ }
+
+ VERBOSE("[GPT] %u L1 GPTs requested.\n", l1_gpt_cnt);
+
+ /* If L1 tables are needed then validate the L1 parameters. */
+ if (l1_gpt_cnt > 0) {
+ ret = gpt_validate_l1_params(l1_mem_base, l1_mem_size,
+ l1_gpt_cnt);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* Set up parameters for L1 table generation. */
+ gpt_l1_tbl = l1_mem_base;
+ gpt_next_l1_tbl_idx = 0U;
+ }
+
+ INFO("[GPT] Boot Configuration\n");
+ INFO(" PPS/T: 0x%x/%u\n", gpt_config.pps, gpt_config.t);
+ INFO(" PGS/P: 0x%x/%u\n", gpt_config.pgs, gpt_config.p);
+ INFO(" L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
+ INFO(" PAS count: 0x%x\n", pas_count);
+ INFO(" L0 base: 0x%lx\n", gpt_config.plat_gpt_l0_base);
+
+ /* Generate the tables in memory. */
+ for (unsigned int idx = 0U; idx < pas_count; idx++) {
+ INFO("[GPT] PAS[%u]: base 0x%lx, size 0x%lx, GPI 0x%x, type 0x%x\n",
+ idx, pas_regions[idx].base_pa, pas_regions[idx].size,
+ GPT_PAS_ATTR_GPI(pas_regions[idx].attrs),
+ GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
+
+ /* Check if a block or table descriptor is required */
+ if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
+ GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
+ gpt_generate_l0_blk_desc(&pas_regions[idx]);
+
+ } else {
+ gpt_generate_l0_tbl_desc(&pas_regions[idx]);
+ }
+ }
+
+ /* Flush modified L0 tables. */
+ flush_l0_for_pas_array(pas_regions, pas_count);
+
+ /* Flush L1 tables if needed. */
+ if (l1_gpt_cnt > 0) {
+ flush_dcache_range(l1_mem_base,
+ GPT_L1_TABLE_SIZE(gpt_config.p) *
+ l1_gpt_cnt);
+ }
+
+ /* Make sure that all the entries are written to the memory. */
+ dsbishst();
+ tlbipaallos();
+ dsb();
+ isb();
+
+ return 0;
+}
+
+/*
+ * Public API to initialize the runtime gpt_config structure based on the values
+ * present in the GPTBR_EL3 and GPCCR_EL3 registers. GPT initialization
+ * typically happens in a bootloader stage prior to setting up the EL3 runtime
+ * environment for the granule transition service so this function detects the
+ * initialization from a previous stage. Granule protection checks must be
+ * enabled already or this function will return an error.
+ *
+ * Return
+ * Negative Linux error code in the event of a failure, 0 for success.
+ */
+int gpt_runtime_init(void)
+{
+ u_register_t reg;
+
+ /* Ensure that MMU and Data caches are enabled. */
+ assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);
+
+ /* Ensure GPC are already enabled. */
+ if ((read_gpccr_el3() & GPCCR_GPC_BIT) == 0U) {
+ ERROR("[GPT] Granule protection checks are not enabled!\n");
+ return -EPERM;
+ }
+
+ /*
+ * Read the L0 table address from GPTBR, we don't need the L1 base
+ * address since those are included in the L0 tables as needed.
+ */
+ reg = read_gptbr_el3();
+ gpt_config.plat_gpt_l0_base = ((reg >> GPTBR_BADDR_SHIFT) &
+ GPTBR_BADDR_MASK) <<
+ GPTBR_BADDR_VAL_SHIFT;
+
+ /* Read GPCCR to get PGS and PPS values. */
+ reg = read_gpccr_el3();
+ gpt_config.pps = (reg >> GPCCR_PPS_SHIFT) & GPCCR_PPS_MASK;
+ gpt_config.t = gpt_t_lookup[gpt_config.pps];
+ gpt_config.pgs = (reg >> GPCCR_PGS_SHIFT) & GPCCR_PGS_MASK;
+ gpt_config.p = gpt_p_lookup[gpt_config.pgs];
+
+ VERBOSE("[GPT] Runtime Configuration\n");
+ VERBOSE(" PPS/T: 0x%x/%u\n", gpt_config.pps, gpt_config.t);
+ VERBOSE(" PGS/P: 0x%x/%u\n", gpt_config.pgs, gpt_config.p);
+ VERBOSE(" L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
+ VERBOSE(" L0 base: 0x%lx\n", gpt_config.plat_gpt_l0_base);
+
+ return 0;
+}
+
+/*
+ * The L1 descriptors are protected by a spinlock to ensure that multiple
+ * CPUs do not attempt to change the descriptors at once. In the future it
+ * would be better to have separate spinlocks for each L1 descriptor.
+ */
+static spinlock_t gpt_lock;
+
+/*
+ * A helper to write the value (target_pas << gpi_shift) to the index of
+ * the gpt_l1_addr
+ */
+static inline void write_gpt(uint64_t *gpt_l1_desc, uint64_t *gpt_l1_addr,
+ unsigned int gpi_shift, unsigned int idx,
+ unsigned int target_pas)
+{
+ *gpt_l1_desc &= ~(GPT_L1_GRAN_DESC_GPI_MASK << gpi_shift);
+ *gpt_l1_desc |= ((uint64_t)target_pas << gpi_shift);
+ gpt_l1_addr[idx] = *gpt_l1_desc;
+}
+
+/*
+ * Helper to retrieve the gpt_l1_* information from the base address
+ * returned in gpi_info
+ */
+static int get_gpi_params(uint64_t base, gpi_info_t *gpi_info)
+{
+ uint64_t gpt_l0_desc, *gpt_l0_base;
+
+ gpt_l0_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
+ gpt_l0_desc = gpt_l0_base[GPT_L0_IDX(base)];
+ if (GPT_L0_TYPE(gpt_l0_desc) != GPT_L0_TYPE_TBL_DESC) {
+ VERBOSE("[GPT] Granule is not covered by a table descriptor!\n");
+ VERBOSE(" Base=0x%" PRIx64 "\n", base);
+ return -EINVAL;
+ }
+
+ /* Get the table index and GPI shift from PA. */
+ gpi_info->gpt_l1_addr = GPT_L0_TBLD_ADDR(gpt_l0_desc);
+ gpi_info->idx = GPT_L1_IDX(gpt_config.p, base);
+ gpi_info->gpi_shift = GPT_L1_GPI_IDX(gpt_config.p, base) << 2;
+
+ gpi_info->gpt_l1_desc = (gpi_info->gpt_l1_addr)[gpi_info->idx];
+ gpi_info->gpi = (gpi_info->gpt_l1_desc >> gpi_info->gpi_shift) &
+ GPT_L1_GRAN_DESC_GPI_MASK;
+ return 0;
+}
+
+/*
+ * This function is the granule transition delegate service. When a granule
+ * transition request occurs it is routed to this function to have the request,
+ * if valid, fulfilled following A1.1.1 Delegate of RME supplement
+ *
+ * TODO: implement support for transitioning multiple granules at once.
+ *
+ * Parameters
+ * base Base address of the region to transition, must be
+ * aligned to granule size.
+ * size Size of region to transition, must be aligned to granule
+ * size.
+ * src_sec_state Security state of the caller.
+ *
+ * Return
+ * Negative Linux error code in the event of a failure, 0 for success.
+ */
+int gpt_delegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
+{
+ gpi_info_t gpi_info;
+ uint64_t nse;
+ int res;
+ unsigned int target_pas;
+
+ /* Ensure that the tables have been set up before taking requests. */
+ assert(gpt_config.plat_gpt_l0_base != 0UL);
+
+ /* Ensure that caches are enabled. */
+ assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
+
+ /* Delegate request can only come from REALM or SECURE */
+ assert(src_sec_state == SMC_FROM_REALM ||
+ src_sec_state == SMC_FROM_SECURE);
+
+ /* See if this is a single or a range of granule transition. */
+ if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
+ return -EINVAL;
+ }
+
+ /* Check that base and size are valid */
+ if ((ULONG_MAX - base) < size) {
+ VERBOSE("[GPT] Transition request address overflow!\n");
+ VERBOSE(" Base=0x%" PRIx64 "\n", base);
+ VERBOSE(" Size=0x%lx\n", size);
+ return -EINVAL;
+ }
+
+ /* Make sure base and size are valid. */
+ if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
+ ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
+ (size == 0UL) ||
+ ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
+ VERBOSE("[GPT] Invalid granule transition address range!\n");
+ VERBOSE(" Base=0x%" PRIx64 "\n", base);
+ VERBOSE(" Size=0x%lx\n", size);
+ return -EINVAL;
+ }
+
+ target_pas = GPT_GPI_REALM;
+ if (src_sec_state == SMC_FROM_SECURE) {
+ target_pas = GPT_GPI_SECURE;
+ }
+
+ /*
+ * Access to L1 tables is controlled by a global lock to ensure
+ * that no more than one CPU is allowed to make changes at any
+ * given time.
+ */
+ spin_lock(&gpt_lock);
+ res = get_gpi_params(base, &gpi_info);
+ if (res != 0) {
+ spin_unlock(&gpt_lock);
+ return res;
+ }
+
+ /* Check that the current address is in NS state */
+ if (gpi_info.gpi != GPT_GPI_NS) {
+ VERBOSE("[GPT] Only Granule in NS state can be delegated.\n");
+ VERBOSE(" Caller: %u, Current GPI: %u\n", src_sec_state,
+ gpi_info.gpi);
+ spin_unlock(&gpt_lock);
+ return -EPERM;
+ }
+
+ if (src_sec_state == SMC_FROM_SECURE) {
+ nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
+ } else {
+ nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
+ }
+
+ /*
+ * In order to maintain mutual distrust between Realm and Secure
+ * states, remove any data speculatively fetched into the target
+ * physical address space. Issue DC CIPAPA over address range
+ */
+ flush_dcache_to_popa_range(nse | base,
+ GPT_PGS_ACTUAL_SIZE(gpt_config.p));
+
+ write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
+ gpi_info.gpi_shift, gpi_info.idx, target_pas);
+ dsboshst();
+
+ gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
+ dsbosh();
+
+ nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
+
+ flush_dcache_to_popa_range(nse | base,
+ GPT_PGS_ACTUAL_SIZE(gpt_config.p));
+
+ /* Unlock access to the L1 tables. */
+ spin_unlock(&gpt_lock);
+
+ /*
+ * The isb() will be done as part of context
+ * synchronization when returning to lower EL
+ */
+ VERBOSE("[GPT] Granule 0x%" PRIx64 ", GPI 0x%x->0x%x\n",
+ base, gpi_info.gpi, target_pas);
+
+ return 0;
+}
+
+/*
+ * This function is the granule transition undelegate service. When a granule
+ * transition request occurs it is routed to this function where the request is
+ * validated then fulfilled if possible.
+ *
+ * TODO: implement support for transitioning multiple granules at once.
+ *
+ * Parameters
+ * base Base address of the region to transition, must be
+ * aligned to granule size.
+ * size Size of region to transition, must be aligned to granule
+ * size.
+ * src_sec_state Security state of the caller.
+ *
+ * Return
+ * Negative Linux error code in the event of a failure, 0 for success.
+ */
+int gpt_undelegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
+{
+ gpi_info_t gpi_info;
+ uint64_t nse;
+ int res;
+
+ /* Ensure that the tables have been set up before taking requests. */
+ assert(gpt_config.plat_gpt_l0_base != 0UL);
+
+ /* Ensure that MMU and caches are enabled. */
+ assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);
+
+ /* Delegate request can only come from REALM or SECURE */
+ assert(src_sec_state == SMC_FROM_REALM ||
+ src_sec_state == SMC_FROM_SECURE);
+
+ /* See if this is a single or a range of granule transition. */
+ if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
+ return -EINVAL;
+ }
+
+ /* Check that base and size are valid */
+ if ((ULONG_MAX - base) < size) {
+ VERBOSE("[GPT] Transition request address overflow!\n");
+ VERBOSE(" Base=0x%" PRIx64 "\n", base);
+ VERBOSE(" Size=0x%lx\n", size);
+ return -EINVAL;
+ }
+
+ /* Make sure base and size are valid. */
+ if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
+ ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
+ (size == 0UL) ||
+ ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
+ VERBOSE("[GPT] Invalid granule transition address range!\n");
+ VERBOSE(" Base=0x%" PRIx64 "\n", base);
+ VERBOSE(" Size=0x%lx\n", size);
+ return -EINVAL;
+ }
+
+ /*
+ * Access to L1 tables is controlled by a global lock to ensure
+ * that no more than one CPU is allowed to make changes at any
+ * given time.
+ */
+ spin_lock(&gpt_lock);
+
+ res = get_gpi_params(base, &gpi_info);
+ if (res != 0) {
+ spin_unlock(&gpt_lock);
+ return res;
+ }
+
+ /* Check that the current address is in the delegated state */
+ if ((src_sec_state == SMC_FROM_REALM &&
+ gpi_info.gpi != GPT_GPI_REALM) ||
+ (src_sec_state == SMC_FROM_SECURE &&
+ gpi_info.gpi != GPT_GPI_SECURE)) {
+ VERBOSE("[GPT] Only Granule in REALM or SECURE state can be undelegated.\n");
+ VERBOSE(" Caller: %u, Current GPI: %u\n", src_sec_state,
+ gpi_info.gpi);
+ spin_unlock(&gpt_lock);
+ return -EPERM;
+ }
+
+
+ /* In order to maintain mutual distrust between Realm and Secure
+ * states, remove access now, in order to guarantee that writes
+ * to the currently-accessible physical address space will not
+ * later become observable.
+ */
+ write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
+ gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NO_ACCESS);
+ dsboshst();
+
+ gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
+ dsbosh();
+
+ if (src_sec_state == SMC_FROM_SECURE) {
+ nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
+ } else {
+ nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
+ }
+
+ /* Ensure that the scrubbed data has made it past the PoPA */
+ flush_dcache_to_popa_range(nse | base,
+ GPT_PGS_ACTUAL_SIZE(gpt_config.p));
+
+ /*
+ * Remove any data loaded speculatively
+ * in NS space from before the scrubbing
+ */
+ nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;
+
+ flush_dcache_to_popa_range(nse | base,
+ GPT_PGS_ACTUAL_SIZE(gpt_config.p));
+
+ /* Clear existing GPI encoding and transition granule. */
+ write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
+ gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NS);
+ dsboshst();
+
+ /* Ensure that all agents observe the new NS configuration */
+ gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
+ dsbosh();
+
+ /* Unlock access to the L1 tables. */
+ spin_unlock(&gpt_lock);
+
+ /*
+ * The isb() will be done as part of context
+ * synchronization when returning to lower EL
+ */
+ VERBOSE("[GPT] Granule 0x%" PRIx64 ", GPI 0x%x->0x%x\n",
+ base, gpi_info.gpi, GPT_GPI_NS);
+
+ return 0;
+}