diff options
Diffstat (limited to 'docs/design_documents/cmake_framework.rst')
-rw-r--r-- | docs/design_documents/cmake_framework.rst | 165 |
1 files changed, 165 insertions, 0 deletions
diff --git a/docs/design_documents/cmake_framework.rst b/docs/design_documents/cmake_framework.rst new file mode 100644 index 0000000..d88942e --- /dev/null +++ b/docs/design_documents/cmake_framework.rst @@ -0,0 +1,165 @@ +TF-A CMake buildsystem +====================== + +:Author: Balint Dobszay +:Organization: Arm Limited +:Contact: Balint Dobszay <balint.dobszay@arm.com> +:Status: Accepted + +.. contents:: Table of Contents + +Abstract +-------- +This document presents a proposal for a new buildsystem for TF-A using CMake, +and as part of this a reusable CMake framework for embedded projects. For a +summary about the proposal, please see the `Phabricator wiki page +<https://developer.trustedfirmware.org/w/tf_a/cmake-buildsystem-proposal/>`_. As +mentioned there, the proposal consists of two phases. The subject of this +document is the first phase only. + +Introduction +------------ +The current Makefile based buildsystem of TF-A has become complicated and hard +to maintain, there is a need for a new, more flexible solution. The proposal is +to use CMake language for the new buildsystem. The main reasons of this decision +are the following: + +* It is a well-established, mature tool, widely accepted by open-source + projects. +* TF-M is already using CMake, reducing fragmentation for tf.org projects can be + beneficial. +* CMake has various advantages over Make, e.g.: + + * Host and target system agnostic project. + * CMake project is scalable, supports project modularization. + * Supports software integration. + * Out-of-the-box support for integration with several tools (e.g. project + generation for various IDEs, integration with cppcheck, etc). + +Of course there are drawbacks too: + +* Language is problematic (e.g. variable scope). +* Not embedded approach. + +To overcome these and other problems, we need to create workarounds for some +tasks, wrap CMake functions, etc. Since this functionality can be useful in +other embedded projects too, it is beneficial to collect the new code into a +reusable framework and store this in a separate repository. The following +diagram provides an overview of the framework structure: + +|Framework structure| + +Main features +------------- + +Structured configuration description +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +In the current Makefile system the build configuration description, validation, +processing, and the target creation, source file description are mixed and +spread across several files. One of the goals of the framework is to organize +this. + +The framework provides a solution to describe the input build parameters, flags, +macros, etc. in a structured way. It contains two utilities for this purpose: + +* Map: simple key-value pair implementation. +* Group: collection of related maps. + +The related parameters shall be packed into a group (or "setting group"). The +setting groups shall be defined and filled with content in config files. +Currently the config files are created and edited manually, but later a +configuration management tool (e.g. Kconfig) shall be used to generate these +files. Therefore, the framework does not contain parameter validation and +conflict checking, these shall be handled by the configuration tool. + +Target description +^^^^^^^^^^^^^^^^^^ +The framework provides an API called STGT ('simple target') to describe the +targets, i.e. what is the build output, what source files are used, what +libraries are linked, etc. The API wraps the CMake target functions, and also +extends the built-in functionality, it can use the setting groups described in +the previous section. A group can be applied onto a target, i.e. a collection of +macros, flags, etc. can be applied onto the given output executable/library. +This provides a more granular way than the current Makefile system where most of +these are global and applied onto each target. + +Compiler abstraction +^^^^^^^^^^^^^^^^^^^^ +Apart from the built-in CMake usage of the compiler, there are some common tasks +that CMake does not solve (e.g. preprocessing a file). For these tasks the +framework uses wrapper functions instead of direct calls to the compiler. This +way it is not tied to one specific compiler. + +External tools +^^^^^^^^^^^^^^ +In the TF-A buildsystem some external tools are used, e.g. fiptool for image +generation or dtc for device tree compilation. These tools have to be found +and/or built by the framework. For this, the CMake find_package functionality is +used, any other necessary tools can be added later. + +Workflow +-------- +The following diagram demonstrates the development workflow using the framework: + +|Framework workflow| + +The process can be split into two main phases: + +In the provisioning phase, first we have to obtain the necessary resources, i.e. +clone the code repository and other dependencies. Next we have to do the +configuration, preferably using a config tool like KConfig. + +In the development phase first we run CMake, which will generate the buildsystem +using the selected generator backend (currently only the Makefile generator is +supported). After this we run the selected build tool which in turn calls the +compiler, linker, packaging tool, etc. Finally we can run and debug the output +executables. + +Usually during development only the steps in this second phase have to be +repeated, while the provisioning phase needs to be done only once (or rarely). + +Example +------- +This is a short example for the basic framework usage. + +First, we create a setting group called *mem_conf* and fill it with several +parameters. It is worth noting the difference between *CONFIG* and *DEFINE* +types: the former is only a CMake domain option, the latter is only a C language +macro. + +Next, we create a target called *fw1* and add the *mem_conf* setting group to +it. This means that all source and header files used by the target will have all +the parameters declared in the setting group. Then we set the target type to +executable, and add some source files. Since the target has the parameters from +the settings group, we can use it for conditionally adding source files. E.g. +*dram_controller.c* will only be added if MEM_TYPE equals dram. + +.. code-block:: cmake + + group_new(NAME mem_conf) + group_add(NAME mem_conf TYPE DEFINE KEY MEM_SIZE VAL 1024) + group_add(NAME mem_conf TYPE CONFIG DEFINE KEY MEM_TYPE VAL dram) + group_add(NAME mem_conf TYPE CFLAG KEY -Os) + + stgt_create(NAME fw1) + stgt_add_setting(NAME fw1 GROUPS mem_conf) + stgt_set_target(NAME fw1 TYPE exe) + + stgt_add_src(NAME fw1 SRC + ${CMAKE_SOURCE_DIR}/main.c + ) + + stgt_add_src_cond(NAME fw1 KEY MEM_TYPE VAL dram SRC + ${CMAKE_SOURCE_DIR}/dram_controller.c + ) + +.. |Framework structure| image:: + ../resources/diagrams/cmake_framework_structure.png + :width: 75 % + +.. |Framework workflow| image:: + ../resources/diagrams/cmake_framework_workflow.png + +-------------- + +*Copyright (c) 2019-2020, Arm Limited and Contributors. All rights reserved.* |