diff options
Diffstat (limited to 'drivers/nxp/ddr/phy-gen2/phy.c')
-rw-r--r-- | drivers/nxp/ddr/phy-gen2/phy.c | 2719 |
1 files changed, 2719 insertions, 0 deletions
diff --git a/drivers/nxp/ddr/phy-gen2/phy.c b/drivers/nxp/ddr/phy-gen2/phy.c new file mode 100644 index 0000000..2006c04 --- /dev/null +++ b/drivers/nxp/ddr/phy-gen2/phy.c @@ -0,0 +1,2719 @@ +/* + * Copyright 2021-2022 NXP + * SPDX-License-Identifier: BSD-3-Clause + * + */ + +#include <errno.h> +#include <stdint.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> + +#include <common/debug.h> +#include "csr.h" +#include <ddr.h> +#include "ddr4fw.h" +#include <drivers/delay_timer.h> +#ifdef NXP_WARM_BOOT +#include <fspi_api.h> +#endif +#include "input.h" +#include <lib/mmio.h> +#include <lib/utils.h> +#include <lib/xlat_tables/xlat_tables_v2.h> +#ifdef DDR_PHY_DEBUG +#include "messages.h" +#endif +#ifdef NXP_WARM_BOOT +#include "phy.h" +#endif +#include "pie.h" + +#define TIMEOUTDEFAULT 500 +#define MAP_PHY_ADDR(pstate, n, instance, offset, c) \ + ((((pstate * n) + instance + c) << 12) + offset) + +static uint32_t map_phy_addr_space(uint32_t addr) +{ + /* 23 bit addressing */ + uint32_t pstate = (addr & U(0x700000)) >> 20U; /* bit 22:20 */ + uint32_t block_type = (addr & U(0x0f0000)) >> 16U; /* bit 19:16 */ + uint32_t instance = (addr & U(0x00f000)) >> 12U; /* bit 15:12 */ + uint32_t offset = (addr & U(0x000fff)); /* bit 11:0 */ + + switch (block_type) { + case 0x0: /* 0x0 : ANIB */ + return MAP_PHY_ADDR(pstate, 12, instance, offset, 0); + case 0x1: /* 0x1 : DBYTE */ + return MAP_PHY_ADDR(pstate, 10, instance, offset, 0x30); + case 0x2: /* 0x2 : MASTER */ + return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x58); + case 0x4: /* 0x4 : ACSM */ + return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x5c); + case 0x5: /* 0x5 : μCTL Memory */ + return MAP_PHY_ADDR(pstate, 0, instance, offset, 0x60); + case 0x7: /* 0x7 : PPGC */ + return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x68); + case 0x9: /* 0x9 : INITENG */ + return MAP_PHY_ADDR(pstate, 1, 0, offset, 0x69); + case 0xc: /* 0xC : DRTUB */ + return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6d); + case 0xd: /* 0xD : APB Only */ + return MAP_PHY_ADDR(pstate, 0, 0, offset, 0x6e); + default: + printf("ERR: Invalid block_type = 0x%x\n", block_type); + return 0; + } +} + +static inline uint16_t *phy_io_addr(void *phy, uint32_t addr) +{ + return phy + (map_phy_addr_space(addr) << 2); +} + +static inline void phy_io_write16(uint16_t *phy, uint32_t addr, uint16_t data) +{ + mmio_write_16((uintptr_t)phy_io_addr(phy, addr), data); +#ifdef DEBUG_PHY_IO + printf("0x%06x,0x%x\n", addr, data); +#endif +} + +static inline uint16_t phy_io_read16(uint16_t *phy, uint32_t addr) +{ + uint16_t reg = mmio_read_16((uintptr_t) phy_io_addr(phy, addr)); + +#ifdef DEBUG_PHY_IO + printf("R: 0x%06x,0x%x\n", addr, reg); +#endif + + return reg; +} + +#ifdef NXP_APPLY_MAX_CDD + +#define CDD_VAL_READ_ADDR (0x054012) +#define CDD_DATA_LEN (60) + +static void read_phy_reg(uint16_t *phy, uint32_t addr, + uint16_t *buf, uint32_t len) +{ + uint32_t i = 0U; + + for (i = 0U; i < len/2; i++) { + buf[i] = phy_io_read16(phy, (addr + i)); + } +} + +static uint32_t findrank(uint32_t cs_in_use) +{ + uint32_t val = 0U; + + switch (cs_in_use) { + case U(0xf): + val = 4U; + break; + case U(0x3): + val = 2U; + break; + case U(0x1): + val = 1U; + break; + default: + printf("Error - Invalid cs_in_use value\n"); + } + return val; +} + +static uint8_t findmax(uint8_t *buf, uint32_t len) +{ + uint8_t max = 0U; + uint32_t i = 0U; + + for (i = 0U; i < len; i++) { + if (buf[i] > max) { + max = buf[i]; + } + } + + return max; +} + +static void get_cdd_val(uint16_t **phy_ptr, uint32_t rank, uint32_t freq, + uint32_t *tcfg0, uint32_t *tcfg4) +{ + uint8_t cdd[CDD_DATA_LEN+4] = {0U}; + uint32_t i, val = 0U; + uint16_t *phy; + uint8_t buf[16] = {U(0x0)}; + uint8_t trr = 0U, tww = 0U, trw = 0U, twr = 0U; + uint8_t rrmax = 0U, wwmax = 0U, rwmax = 0U, wrmax = 0U; + uint8_t tmp = U(0x0); + uint8_t *c = NULL; + + for (i = 0U; i < NUM_OF_DDRC; i++) { + + phy = phy_ptr[i]; + if (phy == NULL) { + continue; + } + + phy_io_write16(phy, t_apbonly | + csr_micro_cont_mux_sel_addr, U(0x0)); + + read_phy_reg(phy, CDD_VAL_READ_ADDR, + (uint16_t *)&cdd, CDD_DATA_LEN); + + phy_io_write16(phy, t_apbonly | + csr_micro_cont_mux_sel_addr, U(0x1)); + + /* CDD values and address + * + * 0x054012 0x24 cdd[0] CDD[X][X] + * 0x054012 0x25 cdd[1] RR[3][2] + * 0x054013 0x26 cdd[2] RR[3][1] + * 0x054013 0x27 cdd[3] RR[3][0] + * 0x054014 0x28 cdd[4] RR[2][3] + * 0x054014 0x29 cdd[5] RR[2][1] + * 0x054015 0x2a cdd[6] RR[2][0] + * 0x054015 0x2b cdd[7] RR[1][3] + * 0x054016 0x2c cdd[8] RR[1][2] + * 0x054016 0x2d cdd[9] RR[1][0] + * 0x054017 0x2e cdd[10] RR[0][3] + * 0x054017 0x2f cdd[11] RR[0][2] + * 0x054018 0x30 cdd[12] RR[0][1] + + * 0x054018 0x31 cdd[13] WW[3][2] + * 0x054019 0x32 cdd[14] WW[3][1] + * 0x054019 0x33 cdd[15] WW[3][0] + * 0x05401a 0x34 cdd[16] WW[2][3] + * 0x05401a 0x35 cdd[17] WW[2][1] + * 0x05401b 0x36 cdd[18] WW[2][0] + * 0x05401b 0x37 cdd[19] WW[1][3] + * 0x05401c 0x38 cdd[20] WW[1][2] + * 0x05401c 0x39 cdd[21] WW[1][0] + * 0x05401d 0x3a cdd[22] WW[0][3] + * 0x05401d 0x3b cdd[23] WW[0][2] + * 0x05401e 0x3c cdd[24] WW[0][1] + + * 0x05401e 0x3d cdd[25] RW[3][3] + * 0x05401f 0x3e cdd[26] RW[3][2] + * 0x05401f 0x3f cdd[27] RW[3][1] + * 0x054020 0x40 cdd[28] RW[3][0] + * 0x054020 0x41 cdd[29] RW[2][3] + * 0x054021 0x42 cdd[30] RW[2][2] + * 0x054021 0x43 cdd[31] RW[2][1] + * 0x054022 0x44 cdd[32] RW[2][0] + * 0x054022 0x45 cdd[33] RW[1][3] + * 0x054023 0x46 cdd[34] RW[1][2] + * 0x054023 0x47 cdd[35] RW[1][1] + * 0x054024 0x48 cdd[36] RW[1][0] + * 0x054024 0x49 cdd[37] RW[0][3] + * 0x054025 0x4a cdd[38] RW[0][2] + * 0x054025 0x4b cdd[39] RW[0][1] + * 0x054026 0x4c cdd[40] RW[0][0] + + * 0x054026 0x4d cdd[41] WR[3][3] + * 0x054027 0x4e cdd[42] WR[3][2] + * 0x054027 0x4f cdd[43] WR[3][1] + * 0x054028 0x50 cdd[44] WR[3][0] + * 0x054028 0x51 cdd[45] WR[2][3] + * 0x054029 0x52 cdd[46] WR[2][2] + * 0x054029 0x53 cdd[47] WR[2][1] + * 0x05402a 0x54 cdd[48] WR[2][0] + * 0x05402a 0x55 cdd[49] WR[1][3] + * 0x05402b 0x56 cdd[50] WR[1][2] + * 0x05402b 0x57 cdd[51] WR[1][1] + * 0x05402c 0x58 cdd[52] WR[1][0] + * 0x05402c 0x59 cdd[53] WR[0][3] + * 0x05402d 0x5a cdd[54] WR[0][2] + * 0x05402d 0x5b cdd[55] WR[0][1] + * 0x05402e 0x5c cdd[56] WR[0][0] + * 0x05402e 0x5d cdd[57] CDD[Y][Y] + */ + + switch (rank) { + case 1U: + tmp = rwmax; + rwmax = cdd[40]; + if (tmp > rwmax) { + rwmax = tmp; + } + + break; + + case 2U: + buf[0] = cdd[12]; + buf[1] = cdd[9]; + tmp = rrmax; + rrmax = findmax(buf, 2U); + if (tmp > rrmax) { + rrmax = tmp; + } + + buf[0] = cdd[24]; + buf[1] = cdd[21]; + tmp = wwmax; + wwmax = findmax(buf, 2U); + if (tmp > wwmax) { + wwmax = tmp; + } + + buf[0] = cdd[40]; + buf[1] = cdd[39]; + buf[2] = cdd[36]; + buf[3] = cdd[35]; + tmp = rwmax; + rwmax = findmax(buf, 4U); + if (tmp > rwmax) { + rwmax = tmp; + } + + wrmax = wwmax; + + break; + + case 4U: + tmp = rrmax; + c = &cdd[1]; + rrmax = findmax(c, 12U); + if (tmp > rrmax) { + rrmax = tmp; + } + + tmp = wwmax; + c = &cdd[13]; + wwmax = findmax(c, 12U); + if (tmp > wwmax) { + wwmax = tmp; + } + + tmp = rwmax; + c = &cdd[25]; + rwmax = findmax(c, 16U); + if (tmp > rwmax) { + rwmax = tmp; + } + + wrmax = wwmax; + + break; + + } + } + + rrmax += 3U; + wwmax += 4U; + + if (wwmax > 7U) { + wwmax = 7U; + } + + if (rrmax > 7U) { + rrmax = 7U; + } + + if (wrmax > U(0xf)) { + wrmax = 0U; + } + + if (rwmax > U(0x7)) { + rwmax = U(0x7); + } + + val = *tcfg0; + tww = (val >> 24U) & U(0x3); + trr = (val >> 26U) & U(0x3); + twr = (val >> 28U) & U(0x3); + trw = (val >> 30U) & U(0x3); + + val = *tcfg4; + tww = tww | (((val >> 8U) & U(0x1)) << 2U); + trr = trr | (((val >> 10U) & U(0x1)) << 2U); + twr = twr | (((val >> 12U) & U(0x1)) << 2U); + trw = trw | (((val >> 14U) & U(0x3)) << 2U); + + if (trr > rrmax) { + rrmax = trr; + } + + if (tww > wwmax) { + wwmax = tww; + } + + if (trw > rwmax) { + rwmax = trw; + } + + if (twr > wrmax) { + wrmax = twr; + } + + debug("CDD rrmax %x wwmax %x rwmax %x wrmax %x\n", + rrmax, wwmax, rwmax, wrmax); + + val = ((wwmax & U(0x3)) << 24U) + | ((rrmax & U(0x3)) << 26U) + | ((wrmax & U(0x3)) << 28U) + | ((rwmax & U(0x3)) << 30U); + + *tcfg0 = (*tcfg0 & U(0x00FFFFFF)) | (val); + + val = (((wwmax >> 2U) & U(0x1)) << 8U) + | (((rrmax >> 2U) & U(0x1)) << 10U) + | (((wrmax >> 2U) & U(0x1)) << 12U) + | (((rwmax >> 2U) & U(0x3)) << 14U); + + *tcfg4 = (*tcfg4 & U(0xffff00ff)) | val; +} +#endif + +#ifdef NXP_WARM_BOOT +int save_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_store, + uint32_t num_of_phy, int train2d +#ifdef NXP_APPLY_MAX_CDD + , struct ddr_ctrl_reg_values *ddrctrl_regs +#endif + ) + +{ + uint16_t *phy = NULL, value = 0x0; + uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U; + int i = 0, j = 0, ret = -EINVAL; + + ret = xspi_sector_erase(address_to_store, PHY_ERASE_SIZE); + if (ret != 0) { + return -EINVAL; + } + + for (j = 0; j < num_of_phy; j++) { + /* Save training values of all PHYs */ + phy = phy_ptr[j]; + size = sizeof(training_1D_values); + num_of_regs = ARRAY_SIZE(training_1D_values); + + /* Enable access to the internal CSRs */ + phy_io_write16(phy, t_apbonly | + csr_micro_cont_mux_sel_addr, 0x0); + /* Enable clocks in case they were disabled. */ + phy_io_write16(phy, t_drtub | + csr_ucclk_hclk_enables_addr, 0x3); + if (train2d != 0) { + /* Address to store training values is + * to be appended for next PHY + */ + phy_store = address_to_store + (j * + (sizeof(training_1D_values) + + sizeof(training_2D_values))); + } else { + phy_store = address_to_store + (j * + (sizeof(training_1D_values))); + } + debug("Saving 1D Training reg val at: %d\n", phy_store); + for (i = 0; i < num_of_regs; i++) { + value = phy_io_read16(phy, training_1D_values[i].addr); +#ifdef DEBUG_WARM_RESET + debug("%d. Reg: %x, value: %x PHY: %p\n", i, + training_1D_values[i].addr, value, + phy_io_addr(phy, + training_1D_values[i].addr)); +#endif + training_1D_values[i].data = value; + } + /* Storing 1D training values on flash */ + ret = xspi_write(phy_store, (void *)training_1D_values, size); + if (train2d != 0) { + phy_store = phy_store+size; + size = sizeof(training_2D_values); + num_of_regs = ARRAY_SIZE(training_2D_values); + debug("Saving 2D Training reg val at:%d\n", phy_store); + for (i = 0; i < num_of_regs; i++) { + value = phy_io_read16(phy, + training_2D_values[i].addr); + training_2D_values[i].data = value; +#ifdef DEBUG_WARM_RESET + debug("%d.2D addr:0x%x,val:0x%x,PHY:0x%p\n", + i, training_2D_values[i].addr, + value, phy_io_addr(phy, + training_2D_values[i].addr)); +#endif + } + /* Storing 2D training values on flash */ + ret = xspi_write(phy_store, training_2D_values, + size); + } + +#ifdef NXP_APPLY_MAX_CDD + /* Save DDR control register Timing CFG 0 and 4 */ + phy_store += size; + size = sizeof(ddrctrl_regs); + if (ret != 0) { + ret = xspi_write(phy_store, ddrctrl_regs, size); + } +#endif + /* Disable clocks in case they were disabled. */ + phy_io_write16(phy, t_drtub | + csr_ucclk_hclk_enables_addr, 0x0); + /* Disable access to the internal CSRs */ + phy_io_write16(phy, t_apbonly | + csr_micro_cont_mux_sel_addr, 0x1); + } + if (ret != 0) { + return -EINVAL; + } + + return 0; +} + +int restore_phy_training_values(uint16_t **phy_ptr, uint32_t address_to_restore, + uint32_t num_of_phy, int train2d +#ifdef NXP_APPLY_MAX_CDD + , struct ddr_ctrl_reg_values *ddrctrl_regs +#endif + ) +{ + uint16_t *phy = NULL; + uint32_t size = 1U, num_of_regs = 1U, phy_store = 0U; + int i = 0, j = 0, ret = -EINVAL; + + debug("Restoring Training register values\n"); + for (j = 0; j < num_of_phy; j++) { + phy = phy_ptr[j]; + size = sizeof(training_1D_values); + num_of_regs = ARRAY_SIZE(training_1D_values); + if (train2d != 0) { + /* The address to restore training values is + * to be appended for next PHY + */ + phy_store = address_to_restore + (j * + (sizeof(training_1D_values) + + sizeof(training_2D_values))); + } else { + phy_store = address_to_restore + (j * + (sizeof(training_1D_values))); + } + /* Enable access to the internal CSRs */ + phy_io_write16(phy, t_apbonly | + csr_micro_cont_mux_sel_addr, 0x0); + /* Enable clocks in case they were disabled. */ + phy_io_write16(phy, t_drtub | + csr_ucclk_hclk_enables_addr, 0x3); + + /* Reading 1D training values from flash*/ + ret = xspi_read(phy_store, (uint32_t *)training_1D_values, + size); + if (ret != 0) { +#ifdef DEBUG_WARM_RESET + debug("Unable to Read 1D training values %d\n", + ret); +#endif + return -EINVAL; + } + + debug("Restoring 1D Training reg val at:%08x\n", phy_store); + for (i = 0; i < num_of_regs; i++) { + phy_io_write16(phy, training_1D_values[i].addr, + training_1D_values[i].data); +#ifdef DEBUG_WARM_RESET + debug("%d. Reg: %x, value: %x PHY: %p\n", i, + training_1D_values[i].addr, + training_1D_values[i].data, + phy_io_addr(phy, + training_1D_values[i].addr)); +#endif + } + if (train2d != 0) { + phy_store = phy_store + size; + size = sizeof(training_2D_values); + num_of_regs = ARRAY_SIZE(training_2D_values); + /* Reading 2D training values from flash */ + ret = xspi_read(phy_store, + (uint32_t *)training_2D_values, size); + + if (ret != 0) { +#ifdef DEBUG_WARM_RESET + debug("Unable to Read 2D training values %d\n", + ret); +#endif + return -EINVAL; + } + + debug("Restoring 2D Training reg val at:%08x\n", + phy_store); + for (i = 0; i < num_of_regs; i++) { + phy_io_write16(phy, training_2D_values[i].addr, + training_2D_values[i].data); +#ifdef DEBUG_WARM_RESET + debug("%d. Reg: %x, value: %x PHY: %p\n", i, + training_2D_values[i].addr, + training_2D_values[i].data, + phy_io_addr(phy, + training_1D_values[i].addr)); +#endif + } + } +#ifdef NXP_APPLY_MAX_CDD + phy_store = phy_store + size; + size = sizeof(ddrctrl_regs); + ret = xspi_read(phy_store, (uint32_t *)ddrctrl_regs, size); +#endif + /* Disable clocks in case they were disabled. */ + phy_io_write16(phy, t_drtub | + csr_ucclk_hclk_enables_addr, 0x0); + /* Disable access to the internal CSRs */ + phy_io_write16(phy, t_apbonly | + csr_micro_cont_mux_sel_addr, 0x1); + } + if (ret != 0) { + return -EINVAL; + } + return 0; +} +#endif + +static void load_pieimage(uint16_t *phy, + enum dimm_types dimm_type) +{ + int i; + int size; + const struct pie *image = NULL; + + switch (dimm_type) { + case UDIMM: + case SODIMM: + case NODIMM: + image = pie_udimm; + size = ARRAY_SIZE(pie_udimm); + break; + case RDIMM: + image = pie_rdimm; + size = ARRAY_SIZE(pie_rdimm); + break; + case LRDIMM: + image = pie_lrdimm; + size = ARRAY_SIZE(pie_lrdimm); + break; + default: + printf("Unsupported DIMM type\n"); + break; + } + + if (image != NULL) { + for (i = 0; i < size; i++) + phy_io_write16(phy, image[i].addr, image[i].data); + } +} + +static void prog_acsm_playback(uint16_t *phy, + const struct input *input, const void *msg) +{ + int vec; + const struct ddr4r1d *msg_blk; + uint16_t acsmplayback[2][3]; + uint32_t f0rc0a; + uint32_t f0rc3x; + uint32_t f0rc5x; + + if (input->basic.dimm_type != RDIMM) { + return; + } + + msg_blk = msg; + f0rc0a = (msg_blk->f0rc0a_d0 & U(0xf)) | U(0xa0); + f0rc3x = (msg_blk->f0rc3x_d0 & U(0xff)) | U(0x300); + f0rc5x = (input->adv.phy_gen2_umctl_f0rc5x & U(0xff)) | U(0x500); + + acsmplayback[0][0] = U(0x3ff) & f0rc0a; + acsmplayback[1][0] = (U(0x1c00) & f0rc0a) >> 10U; + acsmplayback[0][1] = U(0x3ff) & f0rc3x; + acsmplayback[1][1] = (U(0x1c00) & f0rc3x) >> 10U; + acsmplayback[0][2] = U(0x3ff) & f0rc5x; + acsmplayback[1][2] = (U(0x1c00) & f0rc5x) >> 10U; + for (vec = 0; vec < 3; vec++) { + phy_io_write16(phy, t_acsm | (csr_acsm_playback0x0_addr + + (vec << 1)), acsmplayback[0][vec]); + phy_io_write16(phy, t_acsm | (csr_acsm_playback1x0_addr + + (vec << 1)), acsmplayback[1][vec]); + } +} + +static void prog_acsm_ctr(uint16_t *phy, + const struct input *input) +{ + if (input->basic.dimm_type != RDIMM) { + return; + } + + phy_io_write16(phy, t_acsm | csr_acsm_ctrl13_addr, + 0xf << csr_acsm_cke_enb_lsb); + + phy_io_write16(phy, t_acsm | csr_acsm_ctrl0_addr, + csr_acsm_par_mode_mask | csr_acsm_2t_mode_mask); +} + +static void prog_cal_rate_run(uint16_t *phy, + const struct input *input) +{ + int cal_rate; + int cal_interval; + int cal_once; + uint32_t addr; + + cal_interval = input->adv.cal_interval; + cal_once = input->adv.cal_once; + cal_rate = 0x1 << csr_cal_run_lsb | + cal_once << csr_cal_once_lsb | + cal_interval << csr_cal_interval_lsb; + addr = t_master | csr_cal_rate_addr; + phy_io_write16(phy, addr, cal_rate); +} + +static void prog_seq0bdly0(uint16_t *phy, + const struct input *input) +{ + int ps_count[4]; + int frq; + uint32_t addr; + int lower_freq_opt = 0; + + __unused const soc_info_t *soc_info; + + frq = input->basic.frequency >> 1; + ps_count[0] = frq >> 3; /* 0.5 * frq / 4*/ + if (input->basic.frequency < 400) { + lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 7 : 3; + } else if (input->basic.frequency < 533) { + lower_freq_opt = (input->basic.dimm_type == RDIMM) ? 14 : 11; + } + + /* 1.0 * frq / 4 - lower_freq */ + ps_count[1] = (frq >> 2) - lower_freq_opt; + ps_count[2] = (frq << 1) + (frq >> 1); /* 10.0 * frq / 4 */ + +#ifdef DDR_PLL_FIX + soc_info = get_soc_info(); + if (soc_info->svr_reg.bf.maj_ver == 1) { + ps_count[0] = 0x520; /* seq0bdly0 */ + ps_count[1] = 0xa41; /* seq0bdly1 */ + ps_count[2] = 0x668a; /* seq0bdly2 */ + } +#endif + if (frq > 266) { + ps_count[3] = 44; + } else if (frq > 200) { + ps_count[3] = 33; + } else { + ps_count[3] = 16; + } + + addr = t_master | csr_seq0bdly0_addr; + phy_io_write16(phy, addr, ps_count[0]); + + debug("seq0bdly0 = 0x%x\n", phy_io_read16(phy, addr)); + + addr = t_master | csr_seq0bdly1_addr; + phy_io_write16(phy, addr, ps_count[1]); + + debug("seq0bdly1 = 0x%x\n", phy_io_read16(phy, addr)); + + addr = t_master | csr_seq0bdly2_addr; + phy_io_write16(phy, addr, ps_count[2]); + + debug("seq0bdly2 = 0x%x\n", phy_io_read16(phy, addr)); + + addr = t_master | csr_seq0bdly3_addr; + phy_io_write16(phy, addr, ps_count[3]); + + debug("seq0bdly3 = 0x%x\n", phy_io_read16(phy, addr)); +} + +/* Only RDIMM requires msg_blk */ +static void i_load_pie(uint16_t **phy_ptr, + const struct input *input, + const void *msg) +{ + int i; + uint16_t *phy; + + for (i = 0; i < NUM_OF_DDRC; i++) { + phy = phy_ptr[i]; + if (phy == NULL) { + continue; + } + + phy_io_write16(phy, + t_apbonly | csr_micro_cont_mux_sel_addr, + 0U); + + load_pieimage(phy, input->basic.dimm_type); + + prog_seq0bdly0(phy, input); + phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag0_addr, + U(0x0000)); + phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag1_addr, + U(0x0173)); + phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag2_addr, + U(0x0060)); + phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag3_addr, + U(0x6110)); + phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag4_addr, + U(0x2152)); + phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag5_addr, + U(0xdfbd)); + phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag6_addr, + input->basic.dimm_type == RDIMM && + input->adv.phy_gen2_umctl_opt == 1U ? + U(0x6000) : U(0xffff)); + phy_io_write16(phy, t_initeng | csr_seq0bdisable_flag7_addr, + U(0x6152)); + prog_acsm_playback(phy, input, msg); /* rdimm */ + prog_acsm_ctr(phy, input); /* rdimm */ + + phy_io_write16(phy, t_master | csr_cal_zap_addr, U(0x1)); + prog_cal_rate_run(phy, input); + + phy_io_write16(phy, t_drtub | csr_ucclk_hclk_enables_addr, + input->basic.dimm_type == RDIMM ? U(0x2) : 0U); + + phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 1U); + } +} + +static void phy_gen2_init_input(struct input *input) +{ + int i; + + input->adv.dram_byte_swap = 0; + input->adv.ext_cal_res_val = 0; + input->adv.tx_slew_rise_dq = 0xf; + input->adv.tx_slew_fall_dq = 0xf; + input->adv.tx_slew_rise_ac = 0xf; + input->adv.tx_slew_fall_ac = 0xf; + input->adv.mem_alert_en = 0; + input->adv.mem_alert_puimp = 5; + input->adv.mem_alert_vref_level = 0x29; + input->adv.mem_alert_sync_bypass = 0; + input->adv.cal_interval = 0x9; + input->adv.cal_once = 0; + input->adv.dis_dyn_adr_tri = 0; + input->adv.is2ttiming = 0; + input->adv.d4rx_preamble_length = 0; + input->adv.d4tx_preamble_length = 0; + + for (i = 0; i < 7; i++) { + debug("mr[%d] = 0x%x\n", i, input->mr[i]); + } + + debug("input->cs_d0 = 0x%x\n", input->cs_d0); + debug("input->cs_d1 = 0x%x\n", input->cs_d1); + debug("input->mirror = 0x%x\n", input->mirror); + debug("PHY ODT impedance = %d ohm\n", input->adv.odtimpedance); + debug("PHY DQ driver impedance = %d ohm\n", input->adv.tx_impedance); + debug("PHY Addr driver impedance = %d ohm\n", input->adv.atx_impedance); + + for (i = 0; i < 4; i++) { + debug("odt[%d] = 0x%x\n", i, input->odt[i]); + } + + if (input->basic.dimm_type == RDIMM) { + for (i = 0; i < 16; i++) { + debug("input->rcw[%d] = 0x%x\n", i, input->rcw[i]); + } + debug("input->rcw3x = 0x%x\n", input->rcw3x); + } +} + +/* + * All protocols share the same base structure of message block. + * RDIMM and LRDIMM have more entries defined than UDIMM. + * Create message blocks for 1D and 2D training. + * Update len with message block size. + */ +static int phy_gen2_msg_init(void *msg_1d, + void *msg_2d, + const struct input *input) +{ + struct ddr4u1d *msg_blk = msg_1d; + struct ddr4u2d *msg_blk_2d = msg_2d; + struct ddr4r1d *msg_blk_r; + struct ddr4lr1d *msg_blk_lr; + + switch (input->basic.dimm_type) { + case UDIMM: + case SODIMM: + case NODIMM: + msg_blk->dram_type = U(0x2); + break; + case RDIMM: + msg_blk->dram_type = U(0x4); + break; + case LRDIMM: + msg_blk->dram_type = U(0x5); + break; + default: + ERROR("Unsupported DIMM type\n"); + return -EINVAL; + } + msg_blk->pstate = 0U; + + /*Enable quickRd2D, a substage of read deskew, to 1D training.*/ + msg_blk->reserved00 = U(0x20); + + /*Enable High-Effort WrDQ1D.*/ + msg_blk->reserved00 |= U(0x40); + + /* Enable 1D extra effort training.*/ + msg_blk->reserved1c[3] = U(0x3); + + if (input->basic.dimm_type == LRDIMM) { + msg_blk->sequence_ctrl = U(0x3f1f); + } else { + msg_blk->sequence_ctrl = U(0x031f); + } + msg_blk->phy_config_override = 0U; +#ifdef DDR_PHY_DEBUG + msg_blk->hdt_ctrl = U(0x5); +#else + msg_blk->hdt_ctrl = U(0xc9); +#endif + msg_blk->msg_misc = U(0x0); + msg_blk->dfimrlmargin = U(0x1); + msg_blk->phy_vref = input->vref ? input->vref : U(0x61); + msg_blk->cs_present = input->cs_d0 | input->cs_d1; + msg_blk->cs_present_d0 = input->cs_d0; + msg_blk->cs_present_d1 = input->cs_d1; + if (input->mirror != 0) { + msg_blk->addr_mirror = U(0x0a); /* odd CS are mirrored */ + } + msg_blk->share2dvref_result = 1U; + + msg_blk->acsm_odt_ctrl0 = input->odt[0]; + msg_blk->acsm_odt_ctrl1 = input->odt[1]; + msg_blk->acsm_odt_ctrl2 = input->odt[2]; + msg_blk->acsm_odt_ctrl3 = input->odt[3]; + msg_blk->enabled_dqs = (input->basic.num_active_dbyte_dfi0 + + input->basic.num_active_dbyte_dfi1) * 8; + msg_blk->x16present = input->basic.dram_data_width == 0x10 ? + msg_blk->cs_present : 0; + msg_blk->d4misc = U(0x1); + msg_blk->cs_setup_gddec = U(0x1); + msg_blk->rtt_nom_wr_park0 = 0U; + msg_blk->rtt_nom_wr_park1 = 0U; + msg_blk->rtt_nom_wr_park2 = 0U; + msg_blk->rtt_nom_wr_park3 = 0U; + msg_blk->rtt_nom_wr_park4 = 0U; + msg_blk->rtt_nom_wr_park5 = 0U; + msg_blk->rtt_nom_wr_park6 = 0U; + msg_blk->rtt_nom_wr_park7 = 0U; + msg_blk->mr0 = input->mr[0]; + msg_blk->mr1 = input->mr[1]; + msg_blk->mr2 = input->mr[2]; + msg_blk->mr3 = input->mr[3]; + msg_blk->mr4 = input->mr[4]; + msg_blk->mr5 = input->mr[5]; + msg_blk->mr6 = input->mr[6]; + if ((msg_blk->mr4 & U(0x1c0)) != 0U) { + ERROR("Setting DRAM CAL mode is not supported\n"); + } + + msg_blk->alt_cas_l = 0U; + msg_blk->alt_wcas_l = 0U; + + msg_blk->dramfreq = input->basic.frequency * 2U; + msg_blk->pll_bypass_en = input->basic.pll_bypass; + msg_blk->dfi_freq_ratio = input->basic.dfi_freq_ratio == 0U ? 1U : + input->basic.dfi_freq_ratio == 1U ? 2U : + 4U; + msg_blk->bpznres_val = input->adv.ext_cal_res_val; + msg_blk->disabled_dbyte = 0U; + + debug("msg_blk->dram_type = 0x%x\n", msg_blk->dram_type); + debug("msg_blk->sequence_ctrl = 0x%x\n", msg_blk->sequence_ctrl); + debug("msg_blk->phy_cfg = 0x%x\n", msg_blk->phy_cfg); + debug("msg_blk->x16present = 0x%x\n", msg_blk->x16present); + debug("msg_blk->dramfreq = 0x%x\n", msg_blk->dramfreq); + debug("msg_blk->pll_bypass_en = 0x%x\n", msg_blk->pll_bypass_en); + debug("msg_blk->dfi_freq_ratio = 0x%x\n", msg_blk->dfi_freq_ratio); + debug("msg_blk->phy_odt_impedance = 0x%x\n", + msg_blk->phy_odt_impedance); + debug("msg_blk->phy_drv_impedance = 0x%x\n", + msg_blk->phy_drv_impedance); + debug("msg_blk->bpznres_val = 0x%x\n", msg_blk->bpznres_val); + debug("msg_blk->enabled_dqs = 0x%x\n", msg_blk->enabled_dqs); + debug("msg_blk->acsm_odt_ctrl0 = 0x%x\n", msg_blk->acsm_odt_ctrl0); + debug("msg_blk->acsm_odt_ctrl1 = 0x%x\n", msg_blk->acsm_odt_ctrl1); + debug("msg_blk->acsm_odt_ctrl2 = 0x%x\n", msg_blk->acsm_odt_ctrl2); + debug("msg_blk->acsm_odt_ctrl3 = 0x%x\n", msg_blk->acsm_odt_ctrl3); + + /* RDIMM only */ + if (input->basic.dimm_type == RDIMM || + input->basic.dimm_type == LRDIMM) { + msg_blk_r = (struct ddr4r1d *)msg_blk; + if (msg_blk_r->cs_present_d0 != 0U) { + msg_blk_r->f0rc00_d0 = input->rcw[0]; + msg_blk_r->f0rc01_d0 = input->rcw[1]; + msg_blk_r->f0rc02_d0 = input->rcw[2]; + msg_blk_r->f0rc03_d0 = input->rcw[3]; + msg_blk_r->f0rc04_d0 = input->rcw[4]; + msg_blk_r->f0rc05_d0 = input->rcw[5]; + msg_blk_r->f0rc06_d0 = input->rcw[6]; + msg_blk_r->f0rc07_d0 = input->rcw[7]; + msg_blk_r->f0rc08_d0 = input->rcw[8]; + msg_blk_r->f0rc09_d0 = input->rcw[9]; + msg_blk_r->f0rc0a_d0 = input->rcw[10]; + msg_blk_r->f0rc0b_d0 = input->rcw[11]; + msg_blk_r->f0rc0c_d0 = input->rcw[12]; + msg_blk_r->f0rc0d_d0 = input->rcw[13]; + msg_blk_r->f0rc0e_d0 = input->rcw[14]; + msg_blk_r->f0rc0f_d0 = input->rcw[15]; + msg_blk_r->f0rc3x_d0 = input->rcw3x; + } + if (msg_blk_r->cs_present_d1 != 0) { + msg_blk_r->f0rc00_d1 = input->rcw[0]; + msg_blk_r->f0rc01_d1 = input->rcw[1]; + msg_blk_r->f0rc02_d1 = input->rcw[2]; + msg_blk_r->f0rc03_d1 = input->rcw[3]; + msg_blk_r->f0rc04_d1 = input->rcw[4]; + msg_blk_r->f0rc05_d1 = input->rcw[5]; + msg_blk_r->f0rc06_d1 = input->rcw[6]; + msg_blk_r->f0rc07_d1 = input->rcw[7]; + msg_blk_r->f0rc08_d1 = input->rcw[8]; + msg_blk_r->f0rc09_d1 = input->rcw[9]; + msg_blk_r->f0rc0a_d1 = input->rcw[10]; + msg_blk_r->f0rc0b_d1 = input->rcw[11]; + msg_blk_r->f0rc0c_d1 = input->rcw[12]; + msg_blk_r->f0rc0d_d1 = input->rcw[13]; + msg_blk_r->f0rc0e_d1 = input->rcw[14]; + msg_blk_r->f0rc0f_d1 = input->rcw[15]; + msg_blk_r->f0rc3x_d1 = input->rcw3x; + } + if (input->basic.dimm_type == LRDIMM) { + msg_blk_lr = (struct ddr4lr1d *)msg_blk; + msg_blk_lr->bc0a_d0 = msg_blk_lr->f0rc0a_d0; + msg_blk_lr->bc0a_d1 = msg_blk_lr->f0rc0a_d1; + msg_blk_lr->f0bc6x_d0 = msg_blk_lr->f0rc3x_d0; + msg_blk_lr->f0bc6x_d1 = msg_blk_lr->f0rc3x_d1; + } + } + + /* below is different for 1D and 2D message block */ + if (input->basic.train2d != 0) { + memcpy(msg_blk_2d, msg_blk, sizeof(struct ddr4u1d)); + /*High-Effort WrDQ1D is applicable to 2D traning also*/ + msg_blk_2d->reserved00 |= U(0x40); + msg_blk_2d->sequence_ctrl = U(0x0061); + msg_blk_2d->rx2d_train_opt = 0U; + msg_blk_2d->tx2d_train_opt = 0U; + msg_blk_2d->share2dvref_result = 1U; + msg_blk_2d->delay_weight2d = U(0x20); + msg_blk_2d->voltage_weight2d = U(0x80); + debug("rx2d_train_opt %d, tx2d_train_opt %d\n", + msg_blk_2d->rx2d_train_opt, + msg_blk_2d->tx2d_train_opt); + } + + msg_blk->phy_cfg = (((msg_blk->mr3 & U(0x8)) != 0U) || + ((msg_blk_2d->mr3 & 0x8) != 0U)) ? 0U + : input->adv.is2ttiming; + + return 0; +} + +static void prog_tx_pre_drv_mode(uint16_t *phy, + const struct input *input) +{ + int lane, byte, b_addr, c_addr, p_addr; + int tx_slew_rate, tx_pre_p, tx_pre_n; + int tx_pre_drv_mode = 0x2; + uint32_t addr; + + /* Program TxPreDrvMode with 0x2 */ + /* FIXME: TxPreDrvMode depends on DramType? */ + tx_pre_p = input->adv.tx_slew_rise_dq; + tx_pre_n = input->adv.tx_slew_fall_dq; + tx_slew_rate = tx_pre_drv_mode << csr_tx_pre_drv_mode_lsb | + tx_pre_p << csr_tx_pre_p_lsb | + tx_pre_n << csr_tx_pre_n_lsb; + p_addr = 0; + for (byte = 0; byte < input->basic.num_dbyte; byte++) { + c_addr = byte << 12; + for (lane = 0; lane <= 1; lane++) { + b_addr = lane << 8; + addr = p_addr | t_dbyte | c_addr | b_addr | + csr_tx_slew_rate_addr; + phy_io_write16(phy, addr, tx_slew_rate); + } + } +} + +static void prog_atx_pre_drv_mode(uint16_t *phy, + const struct input *input) +{ + int anib, c_addr; + int atx_slew_rate, atx_pre_p, atx_pre_n, atx_pre_drv_mode, + ck_anib_inst[2]; + uint32_t addr; + + atx_pre_n = input->adv.tx_slew_fall_ac; + atx_pre_p = input->adv.tx_slew_rise_ac; + + if (input->basic.num_anib == 8) { + ck_anib_inst[0] = 1; + ck_anib_inst[1] = 1; + } else if (input->basic.num_anib == 10 || input->basic.num_anib == 12 || + input->basic.num_anib == 13) { + ck_anib_inst[0] = 4; + ck_anib_inst[1] = 5; + } else { + ERROR("Invalid number of aNIBs: %d\n", input->basic.num_anib); + return; + } + + for (anib = 0; anib < input->basic.num_anib; anib++) { + c_addr = anib << 12; + if (anib == ck_anib_inst[0] || anib == ck_anib_inst[1]) { + atx_pre_drv_mode = 0; + } else { + atx_pre_drv_mode = 3; + } + atx_slew_rate = atx_pre_drv_mode << csr_atx_pre_drv_mode_lsb | + atx_pre_n << csr_atx_pre_n_lsb | + atx_pre_p << csr_atx_pre_p_lsb; + addr = t_anib | c_addr | csr_atx_slew_rate_addr; + phy_io_write16(phy, addr, atx_slew_rate); + } +} + +static void prog_enable_cs_multicast(uint16_t *phy, + const struct input *input) +{ + uint32_t addr = t_master | csr_enable_cs_multicast_addr; + + if (input->basic.dimm_type != RDIMM && + input->basic.dimm_type != LRDIMM) { + return; + } + + phy_io_write16(phy, addr, input->adv.cast_cs_to_cid); +} + +static void prog_dfi_rd_data_cs_dest_map(uint16_t *phy, + unsigned int ip_rev, + const struct input *input, + const struct ddr4lr1d *msg) +{ + const struct ddr4lr1d *msg_blk; + uint16_t dfi_xxdestm0 = 0U; + uint16_t dfi_xxdestm1 = 0U; + uint16_t dfi_xxdestm2 = 0U; + uint16_t dfi_xxdestm3 = 0U; + uint16_t dfi_rd_data_cs_dest_map; + uint16_t dfi_wr_data_cs_dest_map; + __unused const soc_info_t *soc_info; + +#ifdef ERRATA_DDR_A011396 + /* Only apply to DDRC 5.05.00 */ + soc_info = get_soc_info(); + if ((soc_info->svr_reg.bf.maj_ver == 1U) && (ip_rev == U(0x50500))) { + phy_io_write16(phy, + t_master | csr_dfi_rd_data_cs_dest_map_addr, + 0U); + return; + } +#endif + + msg_blk = msg; + + switch (input->basic.dimm_type) { + case UDIMM: + case SODIMM: + case NODIMM: + if ((msg_blk->msg_misc & U(0x40)) != 0U) { + dfi_rd_data_cs_dest_map = U(0xa0); + dfi_wr_data_cs_dest_map = U(0xa0); + + phy_io_write16(phy, + t_master | csr_dfi_rd_data_cs_dest_map_addr, + dfi_rd_data_cs_dest_map); + phy_io_write16(phy, + t_master | csr_dfi_wr_data_cs_dest_map_addr, + dfi_wr_data_cs_dest_map); + } + break; + case LRDIMM: + if (msg->cs_present_d1 != 0U) { + dfi_xxdestm2 = 1U; + dfi_xxdestm3 = 1U; + } + + dfi_rd_data_cs_dest_map = + dfi_xxdestm0 << csr_dfi_rd_destm0_lsb | + dfi_xxdestm1 << csr_dfi_rd_destm1_lsb | + dfi_xxdestm2 << csr_dfi_rd_destm2_lsb | + dfi_xxdestm3 << csr_dfi_rd_destm3_lsb; + dfi_wr_data_cs_dest_map = + dfi_xxdestm0 << csr_dfi_wr_destm0_lsb | + dfi_xxdestm1 << csr_dfi_wr_destm1_lsb | + dfi_xxdestm2 << csr_dfi_wr_destm2_lsb | + dfi_xxdestm3 << csr_dfi_wr_destm3_lsb; + phy_io_write16(phy, t_master | csr_dfi_rd_data_cs_dest_map_addr, + dfi_rd_data_cs_dest_map); + phy_io_write16(phy, t_master | csr_dfi_wr_data_cs_dest_map_addr, + dfi_wr_data_cs_dest_map); + + break; + default: + break; + } +} + +static void prog_pll_ctrl(uint16_t *phy, + const struct input *input) +{ + uint32_t addr; + int pll_ctrl1 = 0x21; /* 000100001b */ + int pll_ctrl4 = 0x17f; /* 101111111b */ + int pll_test_mode = 0x24; /* 00100100b */ + + addr = t_master | csr_pll_ctrl1_addr; + phy_io_write16(phy, addr, pll_ctrl1); + + debug("pll_ctrl1 = 0x%x\n", phy_io_read16(phy, addr)); + + addr = t_master | csr_pll_test_mode_addr; + phy_io_write16(phy, addr, pll_test_mode); + + debug("pll_test_mode = 0x%x\n", phy_io_read16(phy, addr)); + + addr = t_master | csr_pll_ctrl4_addr; + phy_io_write16(phy, addr, pll_ctrl4); + + debug("pll_ctrl4 = 0x%x\n", phy_io_read16(phy, addr)); +} + +static void prog_pll_ctrl2(uint16_t *phy, + const struct input *input) +{ + int pll_ctrl2; + uint32_t addr = t_master | csr_pll_ctrl2_addr; + + if (input->basic.frequency / 2 < 235) { + pll_ctrl2 = 0x7; + } else if (input->basic.frequency / 2 < 313) { + pll_ctrl2 = 0x6; + } else if (input->basic.frequency / 2 < 469) { + pll_ctrl2 = 0xb; + } else if (input->basic.frequency / 2 < 625) { + pll_ctrl2 = 0xa; + } else if (input->basic.frequency / 2 < 938) { + pll_ctrl2 = 0x19; + } else if (input->basic.frequency / 2 < 1067) { + pll_ctrl2 = 0x18; + } else { + pll_ctrl2 = 0x19; + } + + phy_io_write16(phy, addr, pll_ctrl2); + + debug("pll_ctrl2 = 0x%x\n", phy_io_read16(phy, addr)); +} + +static void prog_dll_lck_param(uint16_t *phy, const struct input *input) +{ + uint32_t addr = t_master | csr_dll_lockparam_addr; + + phy_io_write16(phy, addr, U(0x212)); + debug("dll_lck_param = 0x%x\n", phy_io_read16(phy, addr)); +} + +static void prog_dll_gain_ctl(uint16_t *phy, const struct input *input) +{ + uint32_t addr = t_master | csr_dll_gain_ctl_addr; + + phy_io_write16(phy, addr, U(0x61)); + debug("dll_gain_ctl = 0x%x\n", phy_io_read16(phy, addr)); +} + +static void prog_pll_pwr_dn(uint16_t *phy, + const struct input *input) +{ + uint32_t addr; + + addr = t_master | csr_pll_pwr_dn_addr; + phy_io_write16(phy, addr, 0U); + + debug("pll_pwrdn = 0x%x\n", phy_io_read16(phy, addr)); +} + +static void prog_ard_ptr_init_val(uint16_t *phy, + const struct input *input) +{ + int ard_ptr_init_val; + uint32_t addr = t_master | csr_ard_ptr_init_val_addr; + + if (input->basic.frequency >= 933) { + ard_ptr_init_val = 0x2; + } else { + ard_ptr_init_val = 0x1; + } + + phy_io_write16(phy, addr, ard_ptr_init_val); +} + +static void prog_dqs_preamble_control(uint16_t *phy, + const struct input *input) +{ + int data; + uint32_t addr = t_master | csr_dqs_preamble_control_addr; + const int wdqsextension = 0; + const int lp4sttc_pre_bridge_rx_en = 0; + const int lp4postamble_ext = 0; + const int lp4tgl_two_tck_tx_dqs_pre = 0; + const int position_dfe_init = 2; + const int dll_rx_preamble_mode = 1; + int two_tck_tx_dqs_pre = input->adv.d4tx_preamble_length; + int two_tck_rx_dqs_pre = input->adv.d4rx_preamble_length; + + data = wdqsextension << csr_wdqsextension_lsb | + lp4sttc_pre_bridge_rx_en << csr_lp4sttc_pre_bridge_rx_en_lsb | + lp4postamble_ext << csr_lp4postamble_ext_lsb | + lp4tgl_two_tck_tx_dqs_pre << csr_lp4tgl_two_tck_tx_dqs_pre_lsb | + position_dfe_init << csr_position_dfe_init_lsb | + two_tck_tx_dqs_pre << csr_two_tck_tx_dqs_pre_lsb | + two_tck_rx_dqs_pre << csr_two_tck_rx_dqs_pre_lsb; + phy_io_write16(phy, addr, data); + + data = dll_rx_preamble_mode << csr_dll_rx_preamble_mode_lsb; + addr = t_master | csr_dbyte_dll_mode_cntrl_addr; + phy_io_write16(phy, addr, data); +} + +static void prog_proc_odt_time_ctl(uint16_t *phy, + const struct input *input) +{ + int proc_odt_time_ctl; + uint32_t addr = t_master | csr_proc_odt_time_ctl_addr; + + if (input->adv.wdqsext != 0) { + proc_odt_time_ctl = 0x3; + } else if (input->basic.frequency <= 933) { + proc_odt_time_ctl = 0xa; + } else if (input->basic.frequency <= 1200) { + if (input->adv.d4rx_preamble_length == 1) { + proc_odt_time_ctl = 0x2; + } else { + proc_odt_time_ctl = 0x6; + } + } else { + if (input->adv.d4rx_preamble_length == 1) { + proc_odt_time_ctl = 0x3; + } else { + proc_odt_time_ctl = 0x7; + } + } + phy_io_write16(phy, addr, proc_odt_time_ctl); +} + +static const struct impedance_mapping map[] = { + { 29, 0x3f }, + { 31, 0x3e }, + { 33, 0x3b }, + { 36, 0x3a }, + { 39, 0x39 }, + { 42, 0x38 }, + { 46, 0x1b }, + { 51, 0x1a }, + { 57, 0x19 }, + { 64, 0x18 }, + { 74, 0x0b }, + { 88, 0x0a }, + { 108, 0x09 }, + { 140, 0x08 }, + { 200, 0x03 }, + { 360, 0x02 }, + { 481, 0x01 }, + {} +}; + +static int map_impedance(int strength) +{ + const struct impedance_mapping *tbl = map; + int val = 0; + + if (strength == 0) { + return 0; + } + + while (tbl->ohm != 0U) { + if (strength < tbl->ohm) { + val = tbl->code; + break; + } + tbl++; + } + + return val; +} + +static int map_odtstren_p(int strength, int hard_macro_ver) +{ + int val = -1; + + if (hard_macro_ver == 4) { + if (strength == 0) { + val = 0; + } else if (strength == 120) { + val = 0x8; + } else if (strength == 60) { + val = 0x18; + } else if (strength == 40) { + val = 0x38; + } else { + printf("error: unsupported ODTStrenP %d\n", strength); + } + } else { + val = map_impedance(strength); + } + + return val; +} + +static void prog_tx_odt_drv_stren(uint16_t *phy, + const struct input *input) +{ + int lane, byte, b_addr, c_addr; + int tx_odt_drv_stren; + int odtstren_p, odtstren_n; + uint32_t addr; + + odtstren_p = map_odtstren_p(input->adv.odtimpedance, + input->basic.hard_macro_ver); + if (odtstren_p < 0) { + return; + } + + odtstren_n = 0; /* always high-z */ + tx_odt_drv_stren = odtstren_n << csr_odtstren_n_lsb | odtstren_p; + for (byte = 0; byte < input->basic.num_dbyte; byte++) { + c_addr = byte << 12; + for (lane = 0; lane <= 1; lane++) { + b_addr = lane << 8; + addr = t_dbyte | c_addr | b_addr | + csr_tx_odt_drv_stren_addr; + phy_io_write16(phy, addr, tx_odt_drv_stren); + } + } +} + +static int map_drvstren_fsdq_p(int strength, int hard_macro_ver) +{ + int val = -1; + + if (hard_macro_ver == 4) { + if (strength == 0) { + val = 0x07; + } else if (strength == 120) { + val = 0x0F; + } else if (strength == 60) { + val = 0x1F; + } else if (strength == 40) { + val = 0x3F; + } else { + printf("error: unsupported drv_stren_fSDq_p %d\n", + strength); + } + } else { + val = map_impedance(strength); + } + + return val; +} + +static int map_drvstren_fsdq_n(int strength, int hard_macro_ver) +{ + int val = -1; + + if (hard_macro_ver == 4) { + if (strength == 0) { + val = 0x00; + } else if (strength == 120) { + val = 0x08; + } else if (strength == 60) { + val = 0x18; + } else if (strength == 40) { + val = 0x38; + } else { + printf("error: unsupported drvStrenFSDqN %d\n", + strength); + } + } else { + val = map_impedance(strength); + } + + return val; +} + +static void prog_tx_impedance_ctrl1(uint16_t *phy, + const struct input *input) +{ + int lane, byte, b_addr, c_addr; + int tx_impedance_ctrl1; + int drv_stren_fsdq_p, drv_stren_fsdq_n; + uint32_t addr; + + drv_stren_fsdq_p = map_drvstren_fsdq_p(input->adv.tx_impedance, + input->basic.hard_macro_ver); + drv_stren_fsdq_n = map_drvstren_fsdq_n(input->adv.tx_impedance, + input->basic.hard_macro_ver); + tx_impedance_ctrl1 = drv_stren_fsdq_n << csr_drv_stren_fsdq_n_lsb | + drv_stren_fsdq_p << csr_drv_stren_fsdq_p_lsb; + + for (byte = 0; byte < input->basic.num_dbyte; byte++) { + c_addr = byte << 12; + for (lane = 0; lane <= 1; lane++) { + b_addr = lane << 8; + addr = t_dbyte | c_addr | b_addr | + csr_tx_impedance_ctrl1_addr; + phy_io_write16(phy, addr, tx_impedance_ctrl1); + } + } +} + +static int map_adrv_stren_p(int strength, int hard_macro_ver) +{ + int val = -1; + + if (hard_macro_ver == 4) { + if (strength == 120) { + val = 0x1c; + } else if (strength == 60) { + val = 0x1d; + } else if (strength == 40) { + val = 0x1f; + } else { + printf("error: unsupported aDrv_stren_p %d\n", + strength); + } + } else { + if (strength == 120) { + val = 0x00; + } else if (strength == 60) { + val = 0x01; + } else if (strength == 40) { + val = 0x03; + } else if (strength == 30) { + val = 0x07; + } else if (strength == 24) { + val = 0x0f; + } else if (strength == 20) { + val = 0x1f; + } else { + printf("error: unsupported aDrv_stren_p %d\n", + strength); + } + } + + return val; +} + +static int map_adrv_stren_n(int strength, int hard_macro_ver) +{ + int val = -1; + + if (hard_macro_ver == 4) { + if (strength == 120) { + val = 0x00; + } else if (strength == 60) { + val = 0x01; + } else if (strength == 40) { + val = 0x03; + } else { + printf("Error: unsupported ADrvStrenP %d\n", strength); + } + } else { + if (strength == 120) { + val = 0x00; + } else if (strength == 60) { + val = 0x01; + } else if (strength == 40) { + val = 0x03; + } else if (strength == 30) { + val = 0x07; + } else if (strength == 24) { + val = 0x0f; + } else if (strength == 20) { + val = 0x1f; + } else { + printf("Error: unsupported ADrvStrenP %d\n", strength); + } + } + + return val; +} + +static void prog_atx_impedance(uint16_t *phy, + const struct input *input) +{ + int anib, c_addr; + int atx_impedance; + int adrv_stren_p; + int adrv_stren_n; + uint32_t addr; + + if (input->basic.hard_macro_ver == 4 && + input->adv.atx_impedance == 20) { + printf("Error:ATxImpedance has to be 40 for HardMacroVer 4\n"); + return; + } + + adrv_stren_p = map_adrv_stren_p(input->adv.atx_impedance, + input->basic.hard_macro_ver); + adrv_stren_n = map_adrv_stren_n(input->adv.atx_impedance, + input->basic.hard_macro_ver); + atx_impedance = adrv_stren_n << csr_adrv_stren_n_lsb | + adrv_stren_p << csr_adrv_stren_p_lsb; + for (anib = 0; anib < input->basic.num_anib; anib++) { + c_addr = anib << 12; + addr = t_anib | c_addr | csr_atx_impedance_addr; + phy_io_write16(phy, addr, atx_impedance); + } +} + +static void prog_dfi_mode(uint16_t *phy, + const struct input *input) +{ + int dfi_mode; + uint32_t addr; + + if (input->basic.dfi1exists == 1) { + dfi_mode = 0x5; /* DFI1 exists but disabled */ + } else { + dfi_mode = 0x1; /* DFI1 does not physically exists */ + } + addr = t_master | csr_dfi_mode_addr; + phy_io_write16(phy, addr, dfi_mode); +} + +static void prog_acx4_anib_dis(uint16_t *phy, const struct input *input) +{ + uint32_t addr; + + addr = t_master | csr_acx4_anib_dis_addr; + phy_io_write16(phy, addr, 0x0); + debug("%s 0x%x\n", __func__, phy_io_read16(phy, addr)); +} + +static void prog_dfi_camode(uint16_t *phy, + const struct input *input) +{ + int dfi_camode = 2; + uint32_t addr = t_master | csr_dfi_camode_addr; + + phy_io_write16(phy, addr, dfi_camode); +} + +static void prog_cal_drv_str0(uint16_t *phy, + const struct input *input) +{ + int cal_drv_str0; + int cal_drv_str_pd50; + int cal_drv_str_pu50; + uint32_t addr; + + cal_drv_str_pu50 = input->adv.ext_cal_res_val; + cal_drv_str_pd50 = cal_drv_str_pu50; + cal_drv_str0 = cal_drv_str_pu50 << csr_cal_drv_str_pu50_lsb | + cal_drv_str_pd50; + addr = t_master | csr_cal_drv_str0_addr; + phy_io_write16(phy, addr, cal_drv_str0); +} + +static void prog_cal_uclk_info(uint16_t *phy, + const struct input *input) +{ + int cal_uclk_ticks_per1u_s; + uint32_t addr; + + cal_uclk_ticks_per1u_s = input->basic.frequency >> 1; + if (cal_uclk_ticks_per1u_s < 24) { + cal_uclk_ticks_per1u_s = 24; + } + + addr = t_master | csr_cal_uclk_info_addr; + phy_io_write16(phy, addr, cal_uclk_ticks_per1u_s); +} + +static void prog_cal_rate(uint16_t *phy, + const struct input *input) +{ + int cal_rate; + int cal_interval; + int cal_once; + uint32_t addr; + + cal_interval = input->adv.cal_interval; + cal_once = input->adv.cal_once; + cal_rate = cal_once << csr_cal_once_lsb | + cal_interval << csr_cal_interval_lsb; + addr = t_master | csr_cal_rate_addr; + phy_io_write16(phy, addr, cal_rate); +} + +static void prog_vref_in_global(uint16_t *phy, + const struct input *input, + const struct ddr4u1d *msg) +{ + int vref_in_global; + int global_vref_in_dac = 0; + int global_vref_in_sel = 0; + uint32_t addr; + + /* + * phy_vref_prcnt = msg->phy_vref / 128.0 + * global_vref_in_dac = (phy_vref_prcnt - 0.345) / 0.005; + */ + global_vref_in_dac = (msg->phy_vref * 1000 - 345 * 128 + 320) / + (5 * 128); + + vref_in_global = global_vref_in_dac << csr_global_vref_in_dac_lsb | + global_vref_in_sel; + addr = t_master | csr_vref_in_global_addr; + phy_io_write16(phy, addr, vref_in_global); +} + +static void prog_dq_dqs_rcv_cntrl(uint16_t *phy, + const struct input *input) +{ + int lane, byte, b_addr, c_addr; + int dq_dqs_rcv_cntrl; + int gain_curr_adj_defval = 0xb; + int major_mode_dbyte = 3; + int dfe_ctrl_defval = 0; + int ext_vref_range_defval = 0; + int sel_analog_vref = 1; + uint32_t addr; + +#ifdef ERRATA_DDR_A050958 + gain_curr_adj_defval = 0x1f; +#endif + + dq_dqs_rcv_cntrl = gain_curr_adj_defval << csr_gain_curr_adj_lsb | + major_mode_dbyte << csr_major_mode_dbyte_lsb | + dfe_ctrl_defval << csr_dfe_ctrl_lsb | + ext_vref_range_defval << csr_ext_vref_range_lsb | + sel_analog_vref << csr_sel_analog_vref_lsb; + for (byte = 0; byte < input->basic.num_dbyte; byte++) { + c_addr = byte << 12; + for (lane = 0; lane <= 1; lane++) { + b_addr = lane << 8; + addr = t_dbyte | c_addr | b_addr | + csr_dq_dqs_rcv_cntrl_addr; + phy_io_write16(phy, addr, dq_dqs_rcv_cntrl); + } + } +} + +static void prog_mem_alert_control(uint16_t *phy, + const struct input *input) +{ + int mem_alert_control; + int mem_alert_control2; + int malertpu_en; + int malertrx_en; + int malertvref_level; + int malertpu_stren; + int malertsync_bypass; + int malertdisable_val_defval = 1; + uint32_t addr; + + if (input->basic.dram_type == DDR4 && input->adv.mem_alert_en == 1) { + malertpu_en = 1; + malertrx_en = 1; + malertpu_stren = input->adv.mem_alert_puimp; + malertvref_level = input->adv.mem_alert_vref_level; + malertsync_bypass = input->adv.mem_alert_sync_bypass; + mem_alert_control = malertdisable_val_defval << 14 | + malertrx_en << 13 | + malertpu_en << 12 | + malertpu_stren << 8 | + malertvref_level; + mem_alert_control2 = malertsync_bypass << + csr_malertsync_bypass_lsb; + addr = t_master | csr_mem_alert_control_addr; + phy_io_write16(phy, addr, mem_alert_control); + addr = t_master | csr_mem_alert_control2_addr; + phy_io_write16(phy, addr, mem_alert_control2); + } +} + +static void prog_dfi_freq_ratio(uint16_t *phy, + const struct input *input) +{ + int dfi_freq_ratio; + uint32_t addr = t_master | csr_dfi_freq_ratio_addr; + + dfi_freq_ratio = input->basic.dfi_freq_ratio; + phy_io_write16(phy, addr, dfi_freq_ratio); +} + +static void prog_tristate_mode_ca(uint16_t *phy, + const struct input *input) +{ + int tristate_mode_ca; + int dis_dyn_adr_tri; + int ddr2tmode; + int ck_dis_val_def = 1; + uint32_t addr = t_master | csr_tristate_mode_ca_addr; + + dis_dyn_adr_tri = input->adv.dis_dyn_adr_tri; + ddr2tmode = input->adv.is2ttiming; + tristate_mode_ca = ck_dis_val_def << csr_ck_dis_val_lsb | + ddr2tmode << csr_ddr2tmode_lsb | + dis_dyn_adr_tri << csr_dis_dyn_adr_tri_lsb; + phy_io_write16(phy, addr, tristate_mode_ca); +} + +static void prog_dfi_xlat(uint16_t *phy, + const struct input *input) +{ + uint16_t loop_vector; + int dfifreqxlat_dat; + int pllbypass_dat; + uint32_t addr; + + /* fIXME: Shall unused P1, P2, P3 be bypassed? */ + pllbypass_dat = input->basic.pll_bypass; /* only [0] is used */ + for (loop_vector = 0; loop_vector < 8; loop_vector++) { + if (loop_vector == 0) { + dfifreqxlat_dat = pllbypass_dat + 0x5555; + } else if (loop_vector == 7) { + dfifreqxlat_dat = 0xf000; + } else { + dfifreqxlat_dat = 0x5555; + } + addr = t_master | (csr_dfi_freq_xlat0_addr + loop_vector); + phy_io_write16(phy, addr, dfifreqxlat_dat); + } +} + +static void prog_dbyte_misc_mode(uint16_t *phy, + const struct input *input, + const struct ddr4u1d *msg) +{ + int dbyte_misc_mode; + int dq_dqs_rcv_cntrl1; + int dq_dqs_rcv_cntrl1_1; + int byte, c_addr; + uint32_t addr; + + dbyte_misc_mode = 0x1 << csr_dbyte_disable_lsb; + dq_dqs_rcv_cntrl1 = 0x1ff << csr_power_down_rcvr_lsb | + 0x1 << csr_power_down_rcvr_dqs_lsb | + 0x1 << csr_rx_pad_standby_en_lsb; + dq_dqs_rcv_cntrl1_1 = (0x100 << csr_power_down_rcvr_lsb | + csr_rx_pad_standby_en_mask); + for (byte = 0; byte < input->basic.num_dbyte; byte++) { + c_addr = byte << 12; + if (byte <= input->basic.num_active_dbyte_dfi0 - 1) { + /* disable RDBI lane if not used. */ + if ((input->basic.dram_data_width != 4) && + (((msg->mr5 >> 12) & 0x1) == 0)) { + addr = t_dbyte + | c_addr + | csr_dq_dqs_rcv_cntrl1_addr; + phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1_1); + } + } else { + addr = t_dbyte | c_addr | csr_dbyte_misc_mode_addr; + phy_io_write16(phy, addr, dbyte_misc_mode); + addr = t_dbyte | c_addr | csr_dq_dqs_rcv_cntrl1_addr; + phy_io_write16(phy, addr, dq_dqs_rcv_cntrl1); + } + } +} + +static void prog_master_x4config(uint16_t *phy, + const struct input *input) +{ + int master_x4config; + int x4tg; + uint32_t addr = t_master | csr_master_x4config_addr; + + x4tg = input->basic.dram_data_width == 4 ? 0xf : 0; + master_x4config = x4tg << csr_x4tg_lsb; + phy_io_write16(phy, addr, master_x4config); +} + +static void prog_dmipin_present(uint16_t *phy, + const struct input *input, + const struct ddr4u1d *msg) +{ + int dmipin_present; + uint32_t addr = t_master | csr_dmipin_present_addr; + + dmipin_present = (msg->mr5 >> 12) & 0x1; + phy_io_write16(phy, addr, dmipin_present); +} + +static void prog_dfi_phyupd(uint16_t *phy, + const struct input *input) +{ + int dfiphyupd_dat; + uint32_t addr; + + addr = t_master | (csr_dfiphyupd_addr); + dfiphyupd_dat = phy_io_read16(phy, addr) & + ~csr_dfiphyupd_threshold_mask; + + phy_io_write16(phy, addr, dfiphyupd_dat); +} + +static void prog_cal_misc2(uint16_t *phy, + const struct input *input) +{ + int cal_misc2_dat, cal_drv_pdth_data, cal_offsets_dat; + uint32_t addr; + + addr = t_master | (csr_cal_misc2_addr); + cal_misc2_dat = phy_io_read16(phy, addr) | + (1 << csr_cal_misc2_err_dis); + + phy_io_write16(phy, addr, cal_misc2_dat); + + addr = t_master | (csr_cal_offsets_addr); + + cal_drv_pdth_data = 0x9 << 6; + cal_offsets_dat = (phy_io_read16(phy, addr) & ~csr_cal_drv_pdth_mask) + | cal_drv_pdth_data; + + phy_io_write16(phy, addr, cal_offsets_dat); +} + +static int c_init_phy_config(uint16_t **phy_ptr, + unsigned int ip_rev, + const struct input *input, + const void *msg) +{ + int i; + uint16_t *phy; + __unused const soc_info_t *soc_info; + + for (i = 0; i < NUM_OF_DDRC; i++) { + phy = phy_ptr[i]; + if (phy == NULL) { + continue; + } + + debug("Initialize PHY %d config\n", i); + prog_dfi_phyupd(phy, input); + prog_cal_misc2(phy, input); + prog_tx_pre_drv_mode(phy, input); + prog_atx_pre_drv_mode(phy, input); + prog_enable_cs_multicast(phy, input); /* rdimm and lrdimm */ + prog_dfi_rd_data_cs_dest_map(phy, ip_rev, input, msg); + prog_pll_ctrl2(phy, input); +#ifdef DDR_PLL_FIX + soc_info = get_soc_info(); + debug("SOC_SI_REV = %x\n", soc_info->svr_reg.bf.maj_ver); + if (soc_info->svr_reg.bf.maj_ver == 1) { + prog_pll_pwr_dn(phy, input); + + /*Enable FFE aka TxEqualizationMode for rev1 SI*/ + phy_io_write16(phy, 0x010048, 0x1); + } +#endif + prog_ard_ptr_init_val(phy, input); + prog_dqs_preamble_control(phy, input); + prog_dll_lck_param(phy, input); + prog_dll_gain_ctl(phy, input); + prog_proc_odt_time_ctl(phy, input); + prog_tx_odt_drv_stren(phy, input); + prog_tx_impedance_ctrl1(phy, input); + prog_atx_impedance(phy, input); + prog_dfi_mode(phy, input); + prog_dfi_camode(phy, input); + prog_cal_drv_str0(phy, input); + prog_cal_uclk_info(phy, input); + prog_cal_rate(phy, input); + prog_vref_in_global(phy, input, msg); + prog_dq_dqs_rcv_cntrl(phy, input); + prog_mem_alert_control(phy, input); + prog_dfi_freq_ratio(phy, input); + prog_tristate_mode_ca(phy, input); + prog_dfi_xlat(phy, input); + prog_dbyte_misc_mode(phy, input, msg); + prog_master_x4config(phy, input); + prog_dmipin_present(phy, input, msg); + prog_acx4_anib_dis(phy, input); + } + + return 0; +} + +static uint32_t get_mail(uint16_t *phy, int stream) +{ + int timeout; + uint32_t mail = 0U; + + timeout = TIMEOUTDEFAULT; + while (((--timeout) != 0) && + ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs) + & uct_write_prot_shadow_mask) != 0)) { + mdelay(10); + } + if (timeout == 0) { + ERROR("Timeout getting mail from PHY\n"); + return 0xFFFF; + } + + mail = phy_io_read16(phy, t_apbonly | + csr_uct_write_only_shadow); + if (stream != 0) { + mail |= phy_io_read16(phy, t_apbonly | + csr_uct_dat_write_only_shadow) << 16; + } + + /* Ack */ + phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 0); + + timeout = TIMEOUTDEFAULT; + while (((--timeout) != 0) && + ((phy_io_read16(phy, t_apbonly | csr_uct_shadow_regs) + & uct_write_prot_shadow_mask) == 0)) { + mdelay(1); + } + if (timeout == 0) { + ERROR("Timeout ack PHY mail\n"); + } + + /* completed */ + phy_io_write16(phy, t_apbonly | csr_dct_write_prot, 1U); + + return mail; +} + +#ifdef DDR_PHY_DEBUG +static const char *lookup_msg(uint32_t index, int train2d) +{ + int i; + int size; + const struct phy_msg *messages; + const char *ptr = NULL; + + if (train2d != 0) { + messages = messages_2d; + size = ARRAY_SIZE(messages_2d); + } else { + messages = messages_1d; + size = ARRAY_SIZE(messages_1d); + } + for (i = 0; i < size; i++) { + if (messages[i].index == index) { + ptr = messages[i].msg; + break; + } + } + + return ptr; +} +#endif + +#define MAX_ARGS 32 +static void decode_stream_message(uint16_t *phy, int train2d) +{ + uint32_t index __unused; + + __unused const char *format; + __unused uint32_t args[MAX_ARGS]; + __unused int i; + +#ifdef DDR_PHY_DEBUG + index = get_mail(phy, 1); + if ((index & 0xffff) > MAX_ARGS) { /* up to MAX_ARGS args so far */ + printf("Program error in %s\n", __func__); + } + for (i = 0; i < (index & 0xffff) && i < MAX_ARGS; i++) { + args[i] = get_mail(phy, 1); + } + + format = lookup_msg(index, train2d); + if (format != NULL) { + printf("0x%08x: ", index); + printf(format, args[0], args[1], args[2], args[3], args[4], + args[5], args[6], args[7], args[8], args[9], args[10], + args[11], args[12], args[13], args[14], args[15], + args[16], args[17], args[18], args[19], args[20], + args[21], args[22], args[23], args[24], args[25], + args[26], args[27], args[28], args[29], args[30], + args[31]); + } +#endif +} + +static int wait_fw_done(uint16_t *phy, int train2d) +{ + uint32_t mail = 0U; + + while (mail == U(0x0)) { + mail = get_mail(phy, 0); + switch (mail) { + case U(0x7): + debug("%s Training completed\n", train2d ? "2D" : "1D"); + break; + case U(0xff): + debug("%s Training failure\n", train2d ? "2D" : "1D"); + break; + case U(0x0): + debug("End of initialization\n"); + mail = 0U; + break; + case U(0x1): + debug("End of fine write leveling\n"); + mail = 0U; + break; + case U(0x2): + debug("End of read enable training\n"); + mail = 0U; + break; + case U(0x3): + debug("End of read delay center optimization\n"); + mail = 0U; + break; + case U(0x4): + debug("End of write delay center optimization\n"); + mail = 0U; + break; + case U(0x5): + debug("End of 2D read delay/voltage center optimztn\n"); + mail = 0U; + break; + case U(0x6): + debug("End of 2D write delay/voltage center optmztn\n"); + mail = 0U; + break; + case U(0x8): + decode_stream_message(phy, train2d); + mail = 0U; + break; + case U(0x9): + debug("End of max read latency training\n"); + mail = 0U; + break; + case U(0xa): + debug("End of read dq deskew training\n"); + mail = 0U; + break; + case U(0xc): + debug("End of LRDIMM Specific training, including:\n"); + debug("/tDWL, MREP, MRD and MWD\n"); + mail = 0U; + break; + case U(0xd): + debug("End of CA training\n"); + mail = 0U; + break; + case U(0xfd): + debug("End of MPR read delay center optimization\n"); + mail = 0U; + break; + case U(0xfe): + debug("End of Write leveling coarse delay\n"); + mail = 0U; + break; + case U(0xffff): + debug("Timed out\n"); + break; + default: + mail = 0U; + break; + } + } + + if (mail == U(0x7)) { + return 0; + } else if (mail == U(0xff)) { + return -EIO; + } else if (mail == U(0xffff)) { + return -ETIMEDOUT; + } + + debug("PHY_GEN2 FW: Unxpected mail = 0x%x\n", mail); + + return -EINVAL; +} + +static int g_exec_fw(uint16_t **phy_ptr, int train2d, struct input *input) +{ + int ret = -EINVAL; + int i; + uint16_t *phy; + + for (i = 0; i < NUM_OF_DDRC; i++) { + phy = phy_ptr[i]; + if (phy == NULL) { + continue; + } + debug("Applying PLL optimal settings\n"); + prog_pll_ctrl2(phy, input); + prog_pll_ctrl(phy, input); + phy_io_write16(phy, + t_apbonly | csr_micro_cont_mux_sel_addr, + 0x1); + phy_io_write16(phy, + t_apbonly | csr_micro_reset_addr, + csr_reset_to_micro_mask | + csr_stall_to_micro_mask); + phy_io_write16(phy, + t_apbonly | csr_micro_reset_addr, + csr_stall_to_micro_mask); + phy_io_write16(phy, + t_apbonly | csr_micro_reset_addr, + 0); + + ret = wait_fw_done(phy, train2d); + if (ret == -ETIMEDOUT) { + ERROR("Wait timed out: Firmware execution on PHY %d\n", + i); + } + } + return ret; +} + +static inline int send_fw(uint16_t *phy, + uint32_t dst, + uint16_t *img, + uint32_t size) +{ + uint32_t i; + + if ((size % 2U) != 0U) { + ERROR("Wrong image size 0x%x\n", size); + return -EINVAL; + } + + for (i = 0U; i < size / 2; i++) { + phy_io_write16(phy, dst + i, *(img + i)); + } + + return 0; +} + +static int load_fw(uint16_t **phy_ptr, + struct input *input, + int train2d, + void *msg, + size_t len, + uintptr_t phy_gen2_fw_img_buf, + int (*img_loadr)(unsigned int, uintptr_t *, uint32_t *), + uint32_t warm_boot_flag) +{ + uint32_t imem_id, dmem_id; + uintptr_t image_buf; + uint32_t size; + int ret; + int i; + uint16_t *phy; + + switch (input->basic.dimm_type) { + case UDIMM: + case SODIMM: + case NODIMM: + imem_id = train2d ? DDR_IMEM_UDIMM_2D_IMAGE_ID : + DDR_IMEM_UDIMM_1D_IMAGE_ID; + dmem_id = train2d ? DDR_DMEM_UDIMM_2D_IMAGE_ID : + DDR_DMEM_UDIMM_1D_IMAGE_ID; + break; + case RDIMM: + imem_id = train2d ? DDR_IMEM_RDIMM_2D_IMAGE_ID : + DDR_IMEM_RDIMM_1D_IMAGE_ID; + dmem_id = train2d ? DDR_DMEM_RDIMM_2D_IMAGE_ID : + DDR_DMEM_RDIMM_1D_IMAGE_ID; + break; + default: + ERROR("Unsupported DIMM type\n"); + return -EINVAL; + } + + size = PHY_GEN2_MAX_IMAGE_SIZE; + image_buf = (uintptr_t)phy_gen2_fw_img_buf; + ret = img_loadr(imem_id, &image_buf, &size); + if (ret != 0) { + ERROR("Failed to load %d firmware.\n", imem_id); + return ret; + } + debug("Loaded Imaged id %d of size %x at address %lx\n", + imem_id, size, image_buf); + + for (i = 0; i < NUM_OF_DDRC; i++) { + phy = phy_ptr[i]; + if (phy == NULL) { + continue; + } + + if (warm_boot_flag != DDR_WARM_BOOT) { + if (train2d == 0) { + phy_io_write16(phy, t_master | + csr_mem_reset_l_addr, + csr_protect_mem_reset_mask); + } + } + /* Enable access to the internal CSRs */ + phy_io_write16(phy, t_apbonly | csr_micro_cont_mux_sel_addr, 0); + + ret = send_fw(phy, PHY_GEN2_IMEM_ADDR, + (uint16_t *)image_buf, size); + if (ret != 0) { + return ret; + } + } + + size = PHY_GEN2_MAX_IMAGE_SIZE; + image_buf = (uintptr_t)phy_gen2_fw_img_buf; + ret = img_loadr(dmem_id, &image_buf, &size); + if (ret != 0) { + ERROR("Failed to load %d firmware.\n", dmem_id); + return ret; + } + debug("Loaded Imaged id %d of size %x at address %lx\n", + dmem_id, size, image_buf); + image_buf += len; + size -= len; + + for (i = 0; i < NUM_OF_DDRC; i++) { + phy = phy_ptr[i]; + if (phy == NULL) { + continue; + } + + ret = send_fw(phy, PHY_GEN2_DMEM_ADDR, msg, len); + if (ret != 0) { + return ret; + } + + ret = send_fw(phy, PHY_GEN2_DMEM_ADDR + len / 2, + (uint16_t *)image_buf, size); + if (ret != 0) { + return ret; + } + } + + return ret; +} + +static void parse_odt(const unsigned int val, + const int read, + const int i, + const unsigned int cs_d0, + const unsigned int cs_d1, + unsigned int *odt) +{ + int shift = read ? 4 : 0; + int j; + + if (i < 0 || i > 3) { + printf("Error: invalid chip-select value\n"); + return; + } + switch (val) { + case DDR_ODT_CS: + odt[i] |= (1 << i) << shift; + break; + case DDR_ODT_ALL_OTHER_CS: + for (j = 0; j < DDRC_NUM_CS; j++) { + if (i == j) { + continue; + } + if (((cs_d0 | cs_d1) & (1 << j)) == 0) { + continue; + } + odt[j] |= (1 << i) << shift; + } + break; + case DDR_ODT_CS_AND_OTHER_DIMM: + odt[i] |= (1 << i) << 4; + /* fallthrough */ + case DDR_ODT_OTHER_DIMM: + for (j = 0; j < DDRC_NUM_CS; j++) { + if ((((cs_d0 & (1 << i)) != 0) && + ((cs_d1 & (1 << j)) != 0)) || + (((cs_d1 & (1 << i)) != 0) && + ((cs_d0 & (1 << j)) != 0))) { + odt[j] |= (1 << i) << shift; + } + } + break; + case DDR_ODT_ALL: + for (j = 0; j < DDRC_NUM_CS; j++) { + if (((cs_d0 | cs_d1) & (1 << j)) == 0) { + continue; + } + odt[j] |= (1 << i) << shift; + } + break; + case DDR_ODT_SAME_DIMM: + for (j = 0; j < DDRC_NUM_CS; j++) { + if ((((cs_d0 & (1 << i)) != 0) && + ((cs_d0 & (1 << j)) != 0)) || + (((cs_d1 & (1 << i)) != 0) && + ((cs_d1 & (1 << j)) != 0))) { + odt[j] |= (1 << i) << shift; + } + } + break; + case DDR_ODT_OTHER_CS_ONSAMEDIMM: + for (j = 0; j < DDRC_NUM_CS; j++) { + if (i == j) { + continue; + } + if ((((cs_d0 & (1 << i)) != 0) && + ((cs_d0 & (1 << j)) != 0)) || + (((cs_d1 & (1 << i)) != 0) && + ((cs_d1 & (1 << j)) != 0))) { + odt[j] |= (1 << i) << shift; + } + } + break; + case DDR_ODT_NEVER: + break; + default: + break; + } +} + +#ifdef DEBUG_DDR_INPUT_CONFIG +char *dram_types_str[] = { + "DDR4", + "DDR3", + "LDDDR4", + "LPDDR3", + "LPDDR2", + "DDR5" +}; + +char *dimm_types_str[] = { + "UDIMM", + "SODIMM", + "RDIMM", + "LRDIMM", + "NODIMM", +}; + + +static void print_jason_format(struct input *input, + struct ddr4u1d *msg_1d, + struct ddr4u2d *msg_2d) +{ + + printf("\n{"); + printf("\n \"dram_type\": \"%s\",", dram_types_str[input->basic.dram_type]); + printf("\n \"dimm_type\": \"%s\",", dimm_types_str[input->basic.dimm_type]); + printf("\n \"hard_macro_ver\": \"%d\",", input->basic.hard_macro_ver); + printf("\n \"num_dbyte\": \"0x%04x\",", (unsigned int)input->basic.num_dbyte); + printf("\n \"num_active_dbyte_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_active_dbyte_dfi0); + printf("\n \"num_anib\": \"0x%04x\",", (unsigned int)input->basic.num_anib); + printf("\n \"num_rank_dfi0\": \"0x%04x\",", (unsigned int)input->basic.num_rank_dfi0); + printf("\n \"num_pstates\": \"0x%04x\",", (unsigned int)input->basic.num_pstates); + printf("\n \"frequency\": \"%d\",", input->basic.frequency); + printf("\n \"pll_bypass\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio); + printf("\n \"dfi_freq_ratio\": \"0x%04x\",", (unsigned int)input->basic.dfi_freq_ratio); + printf("\n \"dfi1_exists\": \"0x%04x\",", (unsigned int)input->basic.dfi1exists); + printf("\n \"dram_data_width\": \"0x%04x\",", (unsigned int)input->basic.dram_data_width); + printf("\n \"dram_byte_swap\": \"0x%04x\",", (unsigned int)input->adv.dram_byte_swap); + printf("\n \"ext_cal_res_val\": \"0x%04x\",", (unsigned int)input->adv.ext_cal_res_val); + printf("\n \"tx_slew_rise_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_dq); + printf("\n \"tx_slew_fall_dq\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_dq); + printf("\n \"tx_slew_rise_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_rise_ac); + printf("\n \"tx_slew_fall_ac\": \"0x%04x\",", (unsigned int)input->adv.tx_slew_fall_ac); + printf("\n \"odt_impedance\": \"%d\",", input->adv.odtimpedance); + printf("\n \"tx_impedance\": \"%d\",", input->adv.tx_impedance); + printf("\n \"atx_impedance\": \"%d\",", input->adv.atx_impedance); + printf("\n \"mem_alert_en\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_en); + printf("\n \"mem_alert_pu_imp\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_puimp); + printf("\n \"mem_alert_vref_level\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_vref_level); + printf("\n \"mem_alert_sync_bypass\": \"0x%04x\",", (unsigned int)input->adv.mem_alert_sync_bypass); + printf("\n \"cal_interval\": \"0x%04x\",", (unsigned int)input->adv.cal_interval); + printf("\n \"cal_once\": \"0x%04x\",", (unsigned int)input->adv.cal_once); + printf("\n \"dis_dyn_adr_tri\": \"0x%04x\",", (unsigned int)input->adv.dis_dyn_adr_tri); + printf("\n \"is2t_timing\": \"0x%04x\",", (unsigned int)input->adv.is2ttiming); + printf("\n \"d4rx_preabmle_length\": \"0x%04x\",", (unsigned int)input->adv.d4rx_preamble_length); + printf("\n \"d4tx_preamble_length\": \"0x%04x\",", (unsigned int)input->adv.d4tx_preamble_length); + printf("\n \"msg_misc\": \"0x%02x\",", (unsigned int)msg_1d->msg_misc); + printf("\n \"reserved00\": \"0x%01x\",", (unsigned int)msg_1d->reserved00); + printf("\n \"hdt_ctrl\": \"0x%02x\",", (unsigned int)msg_1d->hdt_ctrl); + printf("\n \"cs_present\": \"0x%02x\",", (unsigned int)msg_1d->cs_present); + printf("\n \"phy_vref\": \"0x%02x\",", (unsigned int)msg_1d->phy_vref); + printf("\n \"dfi_mrl_margin\": \"0x%02x\",", (unsigned int)msg_1d->dfimrlmargin); + printf("\n \"addr_mirror\": \"0x%02x\",", (unsigned int)msg_1d->addr_mirror); + printf("\n \"wr_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0x0f)); + printf("\n \"wr_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0x0f)); + printf("\n \"wr_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0x0f)); + printf("\n \"wr_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0x0f)); + printf("\n \"rd_odt_pat_rank0\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl0 & 0xf0)); + printf("\n \"rd_odt_pat_rank1\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl1 & 0xf0)); + printf("\n \"rd_odt_pat_rank2\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl2 & 0xf0)); + printf("\n \"rd_odt_pat_rank3\": \"0x%02x\",", (unsigned int)(msg_1d->acsm_odt_ctrl3 & 0xf0)); + printf("\n \"d4_misc\": \"0x%01x\",", (unsigned int)msg_1d->d4misc); + printf("\n \"share_2d_vref_results\": \"0x%01x\",", (unsigned int)msg_1d->share2dvref_result); + printf("\n \"sequence_ctrl\": \"0x%04x\",", (unsigned int)msg_1d->sequence_ctrl); + printf("\n \"mr0\": \"0x%04x\",", (unsigned int)msg_1d->mr0); + printf("\n \"mr1\": \"0x%04x\",", (unsigned int)msg_1d->mr1); + printf("\n \"mr2\": \"0x%04x\",", (unsigned int)msg_1d->mr2); + printf("\n \"mr3\": \"0x%04x\",", (unsigned int)msg_1d->mr3); + printf("\n \"mr4\": \"0x%04x\",", (unsigned int)msg_1d->mr4); + printf("\n \"mr5\": \"0x%04x\",", (unsigned int)msg_1d->mr5); + printf("\n \"mr6\": \"0x%04x\",", (unsigned int)msg_1d->mr6); + printf("\n \"alt_cal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_cas_l); + printf("\n \"alt_wcal_l\": \"0x%04x\",", (unsigned int)msg_1d->alt_wcas_l); + printf("\n \"sequence_ctrl_2d\": \"0x%04x\",", (unsigned int)msg_2d->sequence_ctrl); + printf("\n \"rtt_nom_wr_park0\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park0); + printf("\n \"rtt_nom_wr_park1\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park1); + printf("\n \"rtt_nom_wr_park2\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park2); + printf("\n \"rtt_nom_wr_park3\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park3); + printf("\n \"rtt_nom_wr_park4\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park4); + printf("\n \"rtt_nom_wr_park5\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park5); + printf("\n \"rtt_nom_wr_park6\": \"0x%01x\",", (unsigned int)msg_1d->rtt_nom_wr_park6); + printf("\n \"rtt_nom_wr_park7\": \"0x%01x\"", (unsigned int)msg_1d->rtt_nom_wr_park7); + printf("\n}"); + printf("\n"); +} +#endif + +int compute_ddr_phy(struct ddr_info *priv) +{ + const unsigned long clk = priv->clk; + const struct memctl_opt *popts = &priv->opt; + const struct ddr_conf *conf = &priv->conf; + const struct dimm_params *dimm_param = &priv->dimm; + struct ddr_cfg_regs *regs = &priv->ddr_reg; + int ret; + static struct input input; + static struct ddr4u1d msg_1d; + static struct ddr4u2d msg_2d; + unsigned int i; + unsigned int odt_rd, odt_wr; + __unused const soc_info_t *soc_info; +#ifdef NXP_APPLY_MAX_CDD + unsigned int tcfg0, tcfg4, rank; +#ifdef NXP_WARM_BOOT + struct ddr_ctrl_reg_values ddrctrl_regs; +#endif +#endif + + if (dimm_param == NULL) { + ERROR("Empty DIMM parameters.\n"); + return -EINVAL; + } + + zeromem(&input, sizeof(input)); + zeromem(&msg_1d, sizeof(msg_1d)); + zeromem(&msg_2d, sizeof(msg_2d)); + + input.basic.dram_type = DDR4; + /* FIXME: Add condition for LRDIMM */ + input.basic.dimm_type = (dimm_param->rdimm != 0) ? RDIMM : UDIMM; + input.basic.num_dbyte = dimm_param->primary_sdram_width / 8 + + dimm_param->ec_sdram_width / 8; + input.basic.num_active_dbyte_dfi0 = input.basic.num_dbyte; + input.basic.num_rank_dfi0 = dimm_param->n_ranks; + input.basic.dram_data_width = dimm_param->device_width; + input.basic.hard_macro_ver = 0xa; + input.basic.num_pstates = 1; + input.basic.dfi_freq_ratio = 1; + input.basic.num_anib = 0xc; + input.basic.train2d = popts->skip2d ? 0 : 1; + input.basic.frequency = (int) (clk / 2000000ul); + debug("frequency = %dMHz\n", input.basic.frequency); + input.cs_d0 = conf->cs_on_dimm[0]; +#if DDRC_NUM_DIMM > 1 + input.cs_d1 = conf->cs_on_dimm[1]; +#endif + input.mirror = dimm_param->mirrored_dimm; + input.mr[0] = regs->sdram_mode[0] & U(0xffff); + input.mr[1] = regs->sdram_mode[0] >> 16U; + input.mr[2] = regs->sdram_mode[1] >> 16U; + input.mr[3] = regs->sdram_mode[1] & U(0xffff); + input.mr[4] = regs->sdram_mode[8] >> 16U; + input.mr[5] = regs->sdram_mode[8] & U(0xffff); + input.mr[6] = regs->sdram_mode[9] >> 16U; + input.vref = popts->vref_phy; + debug("Vref_phy = %d percent\n", (input.vref * 100U) >> 7U); + for (i = 0U; i < DDRC_NUM_CS; i++) { + if ((regs->cs[i].config & SDRAM_CS_CONFIG_EN) == 0U) { + continue; + } + odt_rd = (regs->cs[i].config >> 20U) & U(0x7); + odt_wr = (regs->cs[i].config >> 16U) & U(0x7); + parse_odt(odt_rd, true, i, input.cs_d0, input.cs_d1, + input.odt); + parse_odt(odt_wr, false, i, input.cs_d0, input.cs_d1, + input.odt); + } + + /* Do not set sdram_cfg[RD_EN] or sdram_cfg2[RCW_EN] for RDIMM */ + if (dimm_param->rdimm != 0U) { + regs->sdram_cfg[0] &= ~(1 << 28U); + regs->sdram_cfg[1] &= ~(1 << 2U); + input.rcw[0] = (regs->sdram_rcw[0] >> 28U) & U(0xf); + input.rcw[1] = (regs->sdram_rcw[0] >> 24U) & U(0xf); + input.rcw[2] = (regs->sdram_rcw[0] >> 20U) & U(0xf); + input.rcw[3] = (regs->sdram_rcw[0] >> 16U) & U(0xf); + input.rcw[4] = (regs->sdram_rcw[0] >> 12U) & U(0xf); + input.rcw[5] = (regs->sdram_rcw[0] >> 8U) & U(0xf); + input.rcw[6] = (regs->sdram_rcw[0] >> 4U) & U(0xf); + input.rcw[7] = (regs->sdram_rcw[0] >> 0U) & U(0xf); + input.rcw[8] = (regs->sdram_rcw[1] >> 28U) & U(0xf); + input.rcw[9] = (regs->sdram_rcw[1] >> 24U) & U(0xf); + input.rcw[10] = (regs->sdram_rcw[1] >> 20U) & U(0xf); + input.rcw[11] = (regs->sdram_rcw[1] >> 16U) & U(0xf); + input.rcw[12] = (regs->sdram_rcw[1] >> 12U) & U(0xf); + input.rcw[13] = (regs->sdram_rcw[1] >> 8U) & U(0xf); + input.rcw[14] = (regs->sdram_rcw[1] >> 4U) & U(0xf); + input.rcw[15] = (regs->sdram_rcw[1] >> 0U) & U(0xf); + input.rcw3x = (regs->sdram_rcw[2] >> 8U) & U(0xff); + } + + input.adv.odtimpedance = popts->odt ? popts->odt : 60; + input.adv.tx_impedance = popts->phy_tx_impedance ? + popts->phy_tx_impedance : 28; + input.adv.atx_impedance = popts->phy_atx_impedance ? + popts->phy_atx_impedance : 30; + + debug("Initializing input adv data structure\n"); + phy_gen2_init_input(&input); + + debug("Initializing message block\n"); + ret = phy_gen2_msg_init(&msg_1d, &msg_2d, &input); + if (ret != 0) { + ERROR("Init msg failed (error code %d)\n", ret); + return ret; + } + + ret = c_init_phy_config(priv->phy, priv->ip_rev, &input, &msg_1d); + if (ret != 0) { + ERROR("Init PHY failed (error code %d)\n", ret); + return ret; + } +#ifdef NXP_WARM_BOOT + debug("Warm boot flag value %0x\n", priv->warm_boot_flag); + if (priv->warm_boot_flag == DDR_WARM_BOOT) { + debug("Restoring the Phy training data\n"); + // Restore the training data + ret = restore_phy_training_values(priv->phy, + PHY_TRAINING_REGS_ON_FLASH, + priv->num_ctlrs, + input.basic.train2d +#ifdef NXP_APPLY_MAX_CDD + , &ddrctrl_regs +#endif + ); + if (ret != 0) { + ERROR("Restoring of training data failed %d\n", ret); + return ret; + } +#ifdef NXP_APPLY_MAX_CDD + regs->timing_cfg[0] = ddrctrl_regs.timing_cfg0; + regs->timing_cfg[4] = ddrctrl_regs.timing_cfg4; +#endif + } else { +#endif + /* Mapping IMG buffer firstly */ + ret = mmap_add_dynamic_region(priv->phy_gen2_fw_img_buf, + priv->phy_gen2_fw_img_buf, + PHY_GEN2_MAX_IMAGE_SIZE, + MT_MEMORY | MT_RW | MT_SECURE); + if (ret != 0) { + ERROR("Failed to add dynamic memory region.\n"); + return ret; + } + + debug("Load 1D firmware\n"); + ret = load_fw(priv->phy, &input, 0, &msg_1d, + sizeof(struct ddr4u1d), priv->phy_gen2_fw_img_buf, + priv->img_loadr, priv->warm_boot_flag); + if (ret != 0) { + ERROR("Loading firmware failed (error code %d)\n", ret); + return ret; + } + + debug("Execute firmware\n"); + ret = g_exec_fw(priv->phy, 0, &input); + if (ret != 0) { + ERROR("Execution FW failed (error code %d)\n", ret); + } + +#ifdef NXP_APPLY_MAX_CDD + soc_info = get_soc_info(); + if (soc_info->svr_reg.bf.maj_ver == 2) { + tcfg0 = regs->timing_cfg[0]; + tcfg4 = regs->timing_cfg[4]; + rank = findrank(conf->cs_in_use); + get_cdd_val(priv->phy, rank, input.basic.frequency, + &tcfg0, &tcfg4); + regs->timing_cfg[0] = tcfg0; + regs->timing_cfg[4] = tcfg4; + } +#endif + + if ((ret == 0) && (input.basic.train2d != 0)) { + /* 2D training starts here */ + debug("Load 2D firmware\n"); + ret = load_fw(priv->phy, &input, 1, &msg_2d, + sizeof(struct ddr4u2d), + priv->phy_gen2_fw_img_buf, + priv->img_loadr, + priv->warm_boot_flag); + if (ret != 0) { + ERROR("Loading fw failed (err code %d)\n", ret); + } else { + debug("Execute 2D firmware\n"); + ret = g_exec_fw(priv->phy, 1, &input); + if (ret != 0) { + ERROR("Execution FW failed (err %d)\n", + ret); + } + } + } +#ifdef NXP_WARM_BOOT + if (priv->warm_boot_flag != DDR_WRM_BOOT_NT_SUPPORTED && + ret == 0) { +#ifdef NXP_APPLY_MAX_CDD + ddrctrl_regs.timing_cfg0 = regs->timing_cfg[0]; + ddrctrl_regs.timing_cfg4 = regs->timing_cfg[4]; +#endif + debug("save the phy training data\n"); + //Save training data TBD + ret = save_phy_training_values(priv->phy, + PHY_TRAINING_REGS_ON_FLASH, + priv->num_ctlrs, + input.basic.train2d +#ifdef NXP_APPLY_MAX_CDD + , &ddrctrl_regs +#endif + ); + if (ret != 0) { + ERROR("Saving training data failed."); + ERROR("Warm boot will fail. Error=%d.\n", ret); + } + } + } /* else */ +#endif + + if (ret == 0) { + debug("Load PIE\n"); + i_load_pie(priv->phy, &input, &msg_1d); + + NOTICE("DDR4 %s with %d-rank %d-bit bus (x%d)\n", + input.basic.dimm_type == RDIMM ? "RDIMM" : + input.basic.dimm_type == LRDIMM ? "LRDIMM" : + "UDIMM", + dimm_param->n_ranks, + dimm_param->primary_sdram_width, + dimm_param->device_width); + } +#ifdef DEBUG_DDR_INPUT_CONFIG + print_jason_format(&input, &msg_1d, &msg_2d); +#endif + + return ret; +} |