summaryrefslogtreecommitdiffstats
path: root/drivers/st/crypto/stm32_saes.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/st/crypto/stm32_saes.c')
-rw-r--r--drivers/st/crypto/stm32_saes.c903
1 files changed, 903 insertions, 0 deletions
diff --git a/drivers/st/crypto/stm32_saes.c b/drivers/st/crypto/stm32_saes.c
new file mode 100644
index 0000000..f4da571
--- /dev/null
+++ b/drivers/st/crypto/stm32_saes.c
@@ -0,0 +1,903 @@
+/*
+ * Copyright (c) 2022, STMicroelectronics - All Rights Reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+#include <assert.h>
+#include <endian.h>
+#include <errno.h>
+#include <stdint.h>
+
+#include <drivers/clk.h>
+#include <drivers/delay_timer.h>
+#include <drivers/st/stm32_saes.h>
+#include <drivers/st/stm32mp_reset.h>
+#include <lib/mmio.h>
+#include <lib/utils_def.h>
+#include <libfdt.h>
+
+#include <platform_def.h>
+
+#define UINT8_BIT 8U
+#define AES_BLOCK_SIZE_BIT 128U
+#define AES_BLOCK_SIZE (AES_BLOCK_SIZE_BIT / UINT8_BIT)
+
+#define AES_KEYSIZE_128 16U
+#define AES_KEYSIZE_256 32U
+#define AES_IVSIZE 16U
+
+/* SAES control register */
+#define _SAES_CR 0x0U
+/* SAES status register */
+#define _SAES_SR 0x04U
+/* SAES data input register */
+#define _SAES_DINR 0x08U
+/* SAES data output register */
+#define _SAES_DOUTR 0x0CU
+/* SAES key registers [0-3] */
+#define _SAES_KEYR0 0x10U
+#define _SAES_KEYR1 0x14U
+#define _SAES_KEYR2 0x18U
+#define _SAES_KEYR3 0x1CU
+/* SAES initialization vector registers [0-3] */
+#define _SAES_IVR0 0x20U
+#define _SAES_IVR1 0x24U
+#define _SAES_IVR2 0x28U
+#define _SAES_IVR3 0x2CU
+/* SAES key registers [4-7] */
+#define _SAES_KEYR4 0x30U
+#define _SAES_KEYR5 0x34U
+#define _SAES_KEYR6 0x38U
+#define _SAES_KEYR7 0x3CU
+/* SAES suspend registers [0-7] */
+#define _SAES_SUSPR0 0x40U
+#define _SAES_SUSPR1 0x44U
+#define _SAES_SUSPR2 0x48U
+#define _SAES_SUSPR3 0x4CU
+#define _SAES_SUSPR4 0x50U
+#define _SAES_SUSPR5 0x54U
+#define _SAES_SUSPR6 0x58U
+#define _SAES_SUSPR7 0x5CU
+/* SAES Interrupt Enable Register */
+#define _SAES_IER 0x300U
+/* SAES Interrupt Status Register */
+#define _SAES_ISR 0x304U
+/* SAES Interrupt Clear Register */
+#define _SAES_ICR 0x308U
+
+/* SAES control register fields */
+#define _SAES_CR_RESET_VALUE 0x0U
+#define _SAES_CR_IPRST BIT(31)
+#define _SAES_CR_KEYSEL_MASK GENMASK(30, 28)
+#define _SAES_CR_KEYSEL_SHIFT 28U
+#define _SAES_CR_KEYSEL_SOFT 0x0U
+#define _SAES_CR_KEYSEL_DHUK 0x1U
+#define _SAES_CR_KEYSEL_BHK 0x2U
+#define _SAES_CR_KEYSEL_BHU_XOR_BH_K 0x4U
+#define _SAES_CR_KEYSEL_TEST 0x7U
+#define _SAES_CR_KSHAREID_MASK GENMASK(27, 26)
+#define _SAES_CR_KSHAREID_SHIFT 26U
+#define _SAES_CR_KSHAREID_CRYP 0x0U
+#define _SAES_CR_KEYMOD_MASK GENMASK(25, 24)
+#define _SAES_CR_KEYMOD_SHIFT 24U
+#define _SAES_CR_KEYMOD_NORMAL 0x0U
+#define _SAES_CR_KEYMOD_WRAPPED 0x1U
+#define _SAES_CR_KEYMOD_SHARED 0x2U
+#define _SAES_CR_NPBLB_MASK GENMASK(23, 20)
+#define _SAES_CR_NPBLB_SHIFT 20U
+#define _SAES_CR_KEYPROT BIT(19)
+#define _SAES_CR_KEYSIZE BIT(18)
+#define _SAES_CR_GCMPH_MASK GENMASK(14, 13)
+#define _SAES_CR_GCMPH_SHIFT 13U
+#define _SAES_CR_GCMPH_INIT 0U
+#define _SAES_CR_GCMPH_HEADER 1U
+#define _SAES_CR_GCMPH_PAYLOAD 2U
+#define _SAES_CR_GCMPH_FINAL 3U
+#define _SAES_CR_DMAOUTEN BIT(12)
+#define _SAES_CR_DMAINEN BIT(11)
+#define _SAES_CR_CHMOD_MASK (BIT(16) | GENMASK(6, 5))
+#define _SAES_CR_CHMOD_SHIFT 5U
+#define _SAES_CR_CHMOD_ECB 0x0U
+#define _SAES_CR_CHMOD_CBC 0x1U
+#define _SAES_CR_CHMOD_CTR 0x2U
+#define _SAES_CR_CHMOD_GCM 0x3U
+#define _SAES_CR_CHMOD_GMAC 0x3U
+#define _SAES_CR_CHMOD_CCM 0x800U
+#define _SAES_CR_MODE_MASK GENMASK(4, 3)
+#define _SAES_CR_MODE_SHIFT 3U
+#define _SAES_CR_MODE_ENC 0U
+#define _SAES_CR_MODE_KEYPREP 1U
+#define _SAES_CR_MODE_DEC 2U
+#define _SAES_CR_DATATYPE_MASK GENMASK(2, 1)
+#define _SAES_CR_DATATYPE_SHIFT 1U
+#define _SAES_CR_DATATYPE_NONE 0U
+#define _SAES_CR_DATATYPE_HALF_WORD 1U
+#define _SAES_CR_DATATYPE_BYTE 2U
+#define _SAES_CR_DATATYPE_BIT 3U
+#define _SAES_CR_EN BIT(0)
+
+/* SAES status register fields */
+#define _SAES_SR_KEYVALID BIT(7)
+#define _SAES_SR_BUSY BIT(3)
+#define _SAES_SR_WRERR BIT(2)
+#define _SAES_SR_RDERR BIT(1)
+#define _SAES_SR_CCF BIT(0)
+
+/* SAES interrupt registers fields */
+#define _SAES_I_RNG_ERR BIT(3)
+#define _SAES_I_KEY_ERR BIT(2)
+#define _SAES_I_RW_ERR BIT(1)
+#define _SAES_I_CC BIT(0)
+
+#define SAES_TIMEOUT_US 100000U
+#define TIMEOUT_US_1MS 1000U
+#define SAES_RESET_DELAY 20U
+
+#define IS_CHAINING_MODE(mod, cr) \
+ (((cr) & _SAES_CR_CHMOD_MASK) == (_SAES_CR_CHMOD_##mod << _SAES_CR_CHMOD_SHIFT))
+
+#define SET_CHAINING_MODE(mod, cr) \
+ mmio_clrsetbits_32((cr), _SAES_CR_CHMOD_MASK, _SAES_CR_CHMOD_##mod << _SAES_CR_CHMOD_SHIFT)
+
+static struct stm32_saes_platdata saes_pdata;
+
+static int stm32_saes_parse_fdt(struct stm32_saes_platdata *pdata)
+{
+ int node;
+ struct dt_node_info info;
+ void *fdt;
+
+ if (fdt_get_address(&fdt) == 0) {
+ return -FDT_ERR_NOTFOUND;
+ }
+
+ node = dt_get_node(&info, -1, DT_SAES_COMPAT);
+ if (node < 0) {
+ ERROR("No SAES entry in DT\n");
+ return -FDT_ERR_NOTFOUND;
+ }
+
+ if (info.status == DT_DISABLED) {
+ return -FDT_ERR_NOTFOUND;
+ }
+
+ if ((info.base == 0U) || (info.clock < 0) || (info.reset < 0)) {
+ return -FDT_ERR_BADVALUE;
+ }
+
+ pdata->base = (uintptr_t)info.base;
+ pdata->clock_id = (unsigned long)info.clock;
+ pdata->reset_id = (unsigned int)info.reset;
+
+ return 0;
+}
+
+static bool does_chaining_mode_need_iv(uint32_t cr)
+{
+ return !(IS_CHAINING_MODE(ECB, cr));
+}
+
+static bool is_encrypt(uint32_t cr)
+{
+ return (cr & _SAES_CR_MODE_MASK) == (_SAES_CR_MODE_ENC << _SAES_CR_MODE_SHIFT);
+}
+
+static bool is_decrypt(uint32_t cr)
+{
+ return (cr & _SAES_CR_MODE_MASK) == (_SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT);
+}
+
+static int wait_computation_completed(uintptr_t base)
+{
+ uint64_t timeout = timeout_init_us(SAES_TIMEOUT_US);
+
+ while ((mmio_read_32(base + _SAES_SR) & _SAES_SR_CCF) != _SAES_SR_CCF) {
+ if (timeout_elapsed(timeout)) {
+ WARN("%s: timeout\n", __func__);
+ return -ETIMEDOUT;
+ }
+ }
+
+ return 0;
+}
+
+static void clear_computation_completed(uintptr_t base)
+{
+ mmio_setbits_32(base + _SAES_ICR, _SAES_I_CC);
+}
+
+static int saes_start(struct stm32_saes_context *ctx)
+{
+ uint64_t timeout;
+
+ /* Reset IP */
+ mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
+ udelay(SAES_RESET_DELAY);
+ mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
+
+ timeout = timeout_init_us(SAES_TIMEOUT_US);
+ while ((mmio_read_32(ctx->base + _SAES_SR) & _SAES_SR_BUSY) == _SAES_SR_BUSY) {
+ if (timeout_elapsed(timeout)) {
+ WARN("%s: timeout\n", __func__);
+ return -ETIMEDOUT;
+ }
+ }
+
+ return 0;
+}
+
+static void saes_end(struct stm32_saes_context *ctx, int prev_error)
+{
+ if (prev_error != 0) {
+ /* Reset IP */
+ mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
+ udelay(SAES_RESET_DELAY);
+ mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
+ }
+
+ /* Disable the SAES peripheral */
+ mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
+}
+
+static void saes_write_iv(struct stm32_saes_context *ctx)
+{
+ /* If chaining mode need to restore IV */
+ if (does_chaining_mode_need_iv(ctx->cr)) {
+ uint8_t i;
+
+ /* Restore the _SAES_IVRx */
+ for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) {
+ mmio_write_32(ctx->base + _SAES_IVR0 + i * sizeof(uint32_t), ctx->iv[i]);
+ }
+ }
+
+}
+
+static void saes_write_key(struct stm32_saes_context *ctx)
+{
+ /* Restore the _SAES_KEYRx if SOFTWARE key */
+ if ((ctx->cr & _SAES_CR_KEYSEL_MASK) == (_SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT)) {
+ uint8_t i;
+
+ for (i = 0U; i < AES_KEYSIZE_128 / sizeof(uint32_t); i++) {
+ mmio_write_32(ctx->base + _SAES_KEYR0 + i * sizeof(uint32_t), ctx->key[i]);
+ }
+
+ if ((ctx->cr & _SAES_CR_KEYSIZE) == _SAES_CR_KEYSIZE) {
+ for (i = 0U; i < (AES_KEYSIZE_256 / 2U) / sizeof(uint32_t); i++) {
+ mmio_write_32(ctx->base + _SAES_KEYR4 + i * sizeof(uint32_t),
+ ctx->key[i + 4U]);
+ }
+ }
+ }
+}
+
+static int saes_prepare_key(struct stm32_saes_context *ctx)
+{
+ /* Disable the SAES peripheral */
+ mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
+
+ /* Set key size */
+ if ((ctx->cr & _SAES_CR_KEYSIZE) != 0U) {
+ mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_KEYSIZE);
+ } else {
+ mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_KEYSIZE);
+ }
+
+ saes_write_key(ctx);
+
+ /* For ECB/CBC decryption, key preparation mode must be selected to populate the key */
+ if ((IS_CHAINING_MODE(ECB, ctx->cr) || IS_CHAINING_MODE(CBC, ctx->cr)) &&
+ is_decrypt(ctx->cr)) {
+ int ret;
+
+ /* Select Mode 2 */
+ mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_MODE_MASK,
+ _SAES_CR_MODE_KEYPREP << _SAES_CR_MODE_SHIFT);
+
+ /* Enable SAES */
+ mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
+
+ /* Wait Computation completed */
+ ret = wait_computation_completed(ctx->base);
+ if (ret != 0) {
+ return ret;
+ }
+
+ clear_computation_completed(ctx->base);
+
+ /* Set Mode 3 */
+ mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_MODE_MASK,
+ _SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT);
+ }
+
+ return 0;
+}
+
+static int save_context(struct stm32_saes_context *ctx)
+{
+ if ((mmio_read_32(ctx->base + _SAES_SR) & _SAES_SR_CCF) != 0U) {
+ /* Device should not be in a processing phase */
+ return -EINVAL;
+ }
+
+ /* Save CR */
+ ctx->cr = mmio_read_32(ctx->base + _SAES_CR);
+
+ /* If chaining mode need to save current IV */
+ if (does_chaining_mode_need_iv(ctx->cr)) {
+ uint8_t i;
+
+ /* Save IV */
+ for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) {
+ ctx->iv[i] = mmio_read_32(ctx->base + _SAES_IVR0 + i * sizeof(uint32_t));
+ }
+ }
+
+ /* Disable the SAES peripheral */
+ mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
+
+ return 0;
+}
+
+/* To resume the processing of a message */
+static int restore_context(struct stm32_saes_context *ctx)
+{
+ int ret;
+
+ /* IP should be disabled */
+ if ((mmio_read_32(ctx->base + _SAES_CR) & _SAES_CR_EN) != 0U) {
+ VERBOSE("%s: Device is still enabled\n", __func__);
+ return -EINVAL;
+ }
+
+ /* Reset internal state */
+ mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
+
+ /* Restore the _SAES_CR */
+ mmio_write_32(ctx->base + _SAES_CR, ctx->cr);
+
+ /* Preparation decrypt key */
+ ret = saes_prepare_key(ctx);
+ if (ret != 0) {
+ return ret;
+ }
+
+ saes_write_iv(ctx);
+
+ /* Enable the SAES peripheral */
+ mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
+
+ return 0;
+}
+
+/**
+ * @brief Initialize SAES driver.
+ * @param None.
+ * @retval 0 if OK; negative value else.
+ */
+int stm32_saes_driver_init(void)
+{
+ int err;
+
+ err = stm32_saes_parse_fdt(&saes_pdata);
+ if (err != 0) {
+ return err;
+ }
+
+ clk_enable(saes_pdata.clock_id);
+ if (stm32mp_reset_assert(saes_pdata.reset_id, TIMEOUT_US_1MS) != 0) {
+ panic();
+ }
+
+ udelay(SAES_RESET_DELAY);
+ if (stm32mp_reset_deassert(saes_pdata.reset_id, TIMEOUT_US_1MS) != 0) {
+ panic();
+ }
+
+ return 0;
+}
+
+/**
+ * @brief Start a AES computation.
+ * @param ctx: SAES process context
+ * @param is_dec: true if decryption, false if encryption
+ * @param ch_mode: define the chaining mode
+ * @param key_select: define where the key comes from.
+ * @param key: pointer to key (if key_select is KEY_SOFT, else unused)
+ * @param key_size: key size
+ * @param iv: pointer to initialization vectore (unsed if ch_mode is ECB)
+ * @param iv_size: iv size
+ * @note this function doesn't access to hardware but store in ctx the values
+ *
+ * @retval 0 if OK; negative value else.
+ */
+int stm32_saes_init(struct stm32_saes_context *ctx, bool is_dec,
+ enum stm32_saes_chaining_mode ch_mode, enum stm32_saes_key_selection key_select,
+ const void *key, size_t key_size, const void *iv, size_t iv_size)
+{
+ unsigned int i;
+ const uint32_t *iv_u32;
+ const uint32_t *key_u32;
+
+ ctx->assoc_len = 0U;
+ ctx->load_len = 0U;
+
+ ctx->base = saes_pdata.base;
+ ctx->cr = _SAES_CR_RESET_VALUE;
+
+ /* We want buffer to be u32 aligned */
+ assert((uintptr_t)key % __alignof__(uint32_t) == 0);
+ assert((uintptr_t)iv % __alignof__(uint32_t) == 0);
+
+ iv_u32 = iv;
+ key_u32 = key;
+
+ if (is_dec) {
+ /* Save Mode 3 = decrypt */
+ mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_MODE_MASK,
+ _SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT);
+ } else {
+ /* Save Mode 1 = crypt */
+ mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_MODE_MASK,
+ _SAES_CR_MODE_ENC << _SAES_CR_MODE_SHIFT);
+ }
+
+ /* Save chaining mode */
+ switch (ch_mode) {
+ case STM32_SAES_MODE_ECB:
+ SET_CHAINING_MODE(ECB, (uintptr_t)&(ctx->cr));
+ break;
+ case STM32_SAES_MODE_CBC:
+ SET_CHAINING_MODE(CBC, (uintptr_t)&(ctx->cr));
+ break;
+ case STM32_SAES_MODE_CTR:
+ SET_CHAINING_MODE(CTR, (uintptr_t)&(ctx->cr));
+ break;
+ case STM32_SAES_MODE_GCM:
+ SET_CHAINING_MODE(GCM, (uintptr_t)&(ctx->cr));
+ break;
+ case STM32_SAES_MODE_CCM:
+ SET_CHAINING_MODE(CCM, (uintptr_t)&(ctx->cr));
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* We will use HW Byte swap (_SAES_CR_DATATYPE_BYTE) for data.
+ * so we won't need to
+ * htobe32(data) before write to DINR
+ * nor
+ * be32toh after reading from DOUTR
+ *
+ * But note that wrap key only accept _SAES_CR_DATATYPE_NONE
+ */
+ mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_DATATYPE_MASK,
+ _SAES_CR_DATATYPE_BYTE << _SAES_CR_DATATYPE_SHIFT);
+
+ /* Configure keysize */
+ switch (key_size) {
+ case AES_KEYSIZE_128:
+ mmio_clrbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSIZE);
+ break;
+ case AES_KEYSIZE_256:
+ mmio_setbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSIZE);
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ /* Configure key */
+ switch (key_select) {
+ case STM32_SAES_KEY_SOFT:
+ mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
+ _SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT);
+ /* Save key */
+ switch (key_size) {
+ case AES_KEYSIZE_128:
+ /* First 16 bytes == 4 u32 */
+ for (i = 0U; i < AES_KEYSIZE_128 / sizeof(uint32_t); i++) {
+ mmio_write_32((uintptr_t)(ctx->key + i), htobe32(key_u32[3 - i]));
+ /* /!\ we save the key in HW byte order
+ * and word order : key[i] is for _SAES_KEYRi
+ */
+ }
+ break;
+ case AES_KEYSIZE_256:
+ for (i = 0U; i < AES_KEYSIZE_256 / sizeof(uint32_t); i++) {
+ mmio_write_32((uintptr_t)(ctx->key + i), htobe32(key_u32[7 - i]));
+ /* /!\ we save the key in HW byte order
+ * and word order : key[i] is for _SAES_KEYRi
+ */
+ }
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ break;
+ case STM32_SAES_KEY_DHU:
+ mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
+ _SAES_CR_KEYSEL_DHUK << _SAES_CR_KEYSEL_SHIFT);
+ break;
+ case STM32_SAES_KEY_BH:
+ mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
+ _SAES_CR_KEYSEL_BHK << _SAES_CR_KEYSEL_SHIFT);
+ break;
+ case STM32_SAES_KEY_BHU_XOR_BH:
+ mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
+ _SAES_CR_KEYSEL_BHU_XOR_BH_K << _SAES_CR_KEYSEL_SHIFT);
+ break;
+ case STM32_SAES_KEY_WRAPPED:
+ mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
+ _SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ /* Save IV */
+ if (ch_mode != STM32_SAES_MODE_ECB) {
+ if ((iv == NULL) || (iv_size != AES_IVSIZE)) {
+ return -EINVAL;
+ }
+
+ for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) {
+ mmio_write_32((uintptr_t)(ctx->iv + i), htobe32(iv_u32[3 - i]));
+ /* /!\ We save the iv in HW byte order */
+ }
+ }
+
+ return saes_start(ctx);
+}
+
+/**
+ * @brief Update (or start) a AES authentificate process of associated data (CCM or GCM).
+ * @param ctx: SAES process context
+ * @param last_block: true if last assoc data block
+ * @param data: pointer to associated data
+ * @param data_size: data size
+ *
+ * @retval 0 if OK; negative value else.
+ */
+int stm32_saes_update_assodata(struct stm32_saes_context *ctx, bool last_block,
+ uint8_t *data, size_t data_size)
+{
+ int ret;
+ uint32_t *data_u32;
+ unsigned int i = 0U;
+
+ /* We want buffers to be u32 aligned */
+ assert((uintptr_t)data % __alignof__(uint32_t) == 0);
+ data_u32 = (uint32_t *)data;
+
+ /* Init phase */
+ ret = restore_context(ctx);
+ if (ret != 0) {
+ goto out;
+ }
+
+ ret = wait_computation_completed(ctx->base);
+ if (ret != 0) {
+ return ret;
+ }
+
+ clear_computation_completed(ctx->base);
+
+ if ((data == NULL) || (data_size == 0U)) {
+ /* No associated data */
+ /* ret already = 0 */
+ goto out;
+ }
+
+ /* There is an header/associated data phase */
+ mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK,
+ _SAES_CR_GCMPH_HEADER << _SAES_CR_GCMPH_SHIFT);
+
+ /* Enable the SAES peripheral */
+ mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
+
+ while (i < round_down(data_size, AES_BLOCK_SIZE)) {
+ unsigned int w; /* Word index */
+
+ w = i / sizeof(uint32_t);
+ /* No need to htobe() as we configure the HW to swap bytes */
+ mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 0U]);
+ mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 1U]);
+ mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 2U]);
+ mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 3U]);
+
+ ret = wait_computation_completed(ctx->base);
+ if (ret != 0) {
+ goto out;
+ }
+
+ clear_computation_completed(ctx->base);
+
+ /* Process next block */
+ i += AES_BLOCK_SIZE;
+ ctx->assoc_len += AES_BLOCK_SIZE_BIT;
+ }
+
+ /* Manage last block if not a block size multiple */
+ if ((last_block) && (i < data_size)) {
+ /* We don't manage unaligned last block yet */
+ ret = -ENODEV;
+ goto out;
+ }
+
+out:
+ if (ret != 0) {
+ saes_end(ctx, ret);
+ }
+
+ return ret;
+}
+
+/**
+ * @brief Update (or start) a AES authenticate and de/encrypt with payload data (CCM or GCM).
+ * @param ctx: SAES process context
+ * @param last_block: true if last payload data block
+ * @param data_in: pointer to payload
+ * @param data_out: pointer where to save de/encrypted payload
+ * @param data_size: payload size
+ *
+ * @retval 0 if OK; negative value else.
+ */
+int stm32_saes_update_load(struct stm32_saes_context *ctx, bool last_block,
+ uint8_t *data_in, uint8_t *data_out, size_t data_size)
+{
+ int ret = 0;
+ uint32_t *data_in_u32;
+ uint32_t *data_out_u32;
+ unsigned int i = 0U;
+ uint32_t prev_cr;
+
+ /* We want buffers to be u32 aligned */
+ assert((uintptr_t)data_in % __alignof__(uint32_t) == 0);
+ assert((uintptr_t)data_out % __alignof__(uint32_t) == 0);
+ data_in_u32 = (uint32_t *)data_in;
+ data_out_u32 = (uint32_t *)data_out;
+
+ prev_cr = mmio_read_32(ctx->base + _SAES_CR);
+
+ if ((data_in == NULL) || (data_size == 0U)) {
+ /* there is no data */
+ goto out;
+ }
+
+ /* There is a load phase */
+ mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK,
+ _SAES_CR_GCMPH_PAYLOAD << _SAES_CR_GCMPH_SHIFT);
+
+ if ((prev_cr & _SAES_CR_GCMPH_MASK) ==
+ (_SAES_CR_GCMPH_INIT << _SAES_CR_GCMPH_SHIFT)) {
+ /* Still in initialization phase, no header
+ * We need to enable the SAES peripheral
+ */
+ mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
+ }
+
+ while (i < round_down(data_size, AES_BLOCK_SIZE)) {
+ unsigned int w; /* Word index */
+
+ w = i / sizeof(uint32_t);
+ /* No need to htobe() as we configure the HW to swap bytes */
+ mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 0U]);
+ mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 1U]);
+ mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 2U]);
+ mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 3U]);
+
+ ret = wait_computation_completed(ctx->base);
+ if (ret != 0) {
+ goto out;
+ }
+
+ /* No need to htobe() as we configure the HW to swap bytes */
+ data_out_u32[w + 0U] = mmio_read_32(ctx->base + _SAES_DOUTR);
+ data_out_u32[w + 1U] = mmio_read_32(ctx->base + _SAES_DOUTR);
+ data_out_u32[w + 2U] = mmio_read_32(ctx->base + _SAES_DOUTR);
+ data_out_u32[w + 3U] = mmio_read_32(ctx->base + _SAES_DOUTR);
+
+ clear_computation_completed(ctx->base);
+
+ /* Process next block */
+ i += AES_BLOCK_SIZE;
+ ctx->load_len += AES_BLOCK_SIZE_BIT;
+ }
+ /* Manage last block if not a block size multiple */
+ if ((last_block) && (i < data_size)) {
+ uint32_t block_in[AES_BLOCK_SIZE / sizeof(uint32_t)] = {0};
+ uint32_t block_out[AES_BLOCK_SIZE / sizeof(uint32_t)] = {0};
+
+ memcpy(block_in, data_in + i, data_size - i);
+
+ /* No need to htobe() as we configure the HW to swap bytes */
+ mmio_write_32(ctx->base + _SAES_DINR, block_in[0U]);
+ mmio_write_32(ctx->base + _SAES_DINR, block_in[1U]);
+ mmio_write_32(ctx->base + _SAES_DINR, block_in[2U]);
+ mmio_write_32(ctx->base + _SAES_DINR, block_in[3U]);
+
+ ret = wait_computation_completed(ctx->base);
+ if (ret != 0) {
+ VERBOSE("%s %d\n", __func__, __LINE__);
+ goto out;
+ }
+
+ /* No need to htobe() as we configure the HW to swap bytes */
+ block_out[0U] = mmio_read_32(ctx->base + _SAES_DOUTR);
+ block_out[1U] = mmio_read_32(ctx->base + _SAES_DOUTR);
+ block_out[2U] = mmio_read_32(ctx->base + _SAES_DOUTR);
+ block_out[3U] = mmio_read_32(ctx->base + _SAES_DOUTR);
+
+ clear_computation_completed(ctx->base);
+
+ memcpy(data_out + i, block_out, data_size - i);
+
+ ctx->load_len += (data_size - i) * UINT8_BIT;
+ }
+
+out:
+ if (ret != 0) {
+ saes_end(ctx, ret);
+ }
+
+ return ret;
+}
+
+/**
+ * @brief Get authentication tag for AES authenticated algorithms (CCM or GCM).
+ * @param ctx: SAES process context
+ * @param tag: pointer where to save the tag
+ * @param data_size: tag size
+ *
+ * @retval 0 if OK; negative value else.
+ */
+int stm32_saes_final(struct stm32_saes_context *ctx, uint8_t *tag,
+ size_t tag_size)
+{
+ int ret;
+ uint32_t tag_u32[4];
+ uint32_t prev_cr;
+
+ prev_cr = mmio_read_32(ctx->base + _SAES_CR);
+
+ mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK,
+ _SAES_CR_GCMPH_FINAL << _SAES_CR_GCMPH_SHIFT);
+
+ if ((prev_cr & _SAES_CR_GCMPH_MASK) == (_SAES_CR_GCMPH_INIT << _SAES_CR_GCMPH_SHIFT)) {
+ /* Still in initialization phase, no header
+ * We need to enable the SAES peripheral
+ */
+ mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
+ }
+
+ /* No need to htobe() as we configure the HW to swap bytes */
+ mmio_write_32(ctx->base + _SAES_DINR, 0);
+ mmio_write_32(ctx->base + _SAES_DINR, ctx->assoc_len);
+ mmio_write_32(ctx->base + _SAES_DINR, 0);
+ mmio_write_32(ctx->base + _SAES_DINR, ctx->load_len);
+
+ ret = wait_computation_completed(ctx->base);
+ if (ret != 0) {
+ goto out;
+ }
+
+ /* No need to htobe() as we configure the HW to swap bytes */
+ tag_u32[0] = mmio_read_32(ctx->base + _SAES_DOUTR);
+ tag_u32[1] = mmio_read_32(ctx->base + _SAES_DOUTR);
+ tag_u32[2] = mmio_read_32(ctx->base + _SAES_DOUTR);
+ tag_u32[3] = mmio_read_32(ctx->base + _SAES_DOUTR);
+
+ clear_computation_completed(ctx->base);
+
+ memcpy(tag, tag_u32, MIN(sizeof(tag_u32), tag_size));
+
+out:
+ saes_end(ctx, ret);
+
+ return ret;
+}
+
+/**
+ * @brief Update (or start) a AES de/encrypt process (ECB, CBC or CTR).
+ * @param ctx: SAES process context
+ * @param last_block: true if last payload data block
+ * @param data_in: pointer to payload
+ * @param data_out: pointer where to save de/encrypted payload
+ * @param data_size: payload size
+ *
+ * @retval 0 if OK; negative value else.
+ */
+int stm32_saes_update(struct stm32_saes_context *ctx, bool last_block,
+ uint8_t *data_in, uint8_t *data_out, size_t data_size)
+{
+ int ret;
+ uint32_t *data_in_u32;
+ uint32_t *data_out_u32;
+ unsigned int i = 0U;
+
+ /* We want buffers to be u32 aligned */
+ assert((uintptr_t)data_in % __alignof__(uint32_t) == 0);
+ assert((uintptr_t)data_out % __alignof__(uint32_t) == 0);
+ data_in_u32 = (uint32_t *)data_in;
+ data_out_u32 = (uint32_t *)data_out;
+
+ if ((!last_block) &&
+ (round_down(data_size, AES_BLOCK_SIZE) != data_size)) {
+ ERROR("%s: non last block must be multiple of 128 bits\n",
+ __func__);
+ ret = -EINVAL;
+ goto out;
+ }
+
+ /* In CBC encryption we need to manage specifically last 2 128bits
+ * blocks if total size in not a block size aligned
+ * work TODO. Currently return ENODEV.
+ * Morevoer as we need to know last 2 block, if unaligned and
+ * call with less than two block, return -EINVAL.
+ */
+ if (last_block && IS_CHAINING_MODE(CBC, ctx->cr) && is_encrypt(ctx->cr) &&
+ (round_down(data_size, AES_BLOCK_SIZE) != data_size)) {
+ if (data_size < AES_BLOCK_SIZE * 2U) {
+ ERROR("if CBC, last part size should be at least 2 * AES_BLOCK_SIZE\n");
+ ret = -EINVAL;
+ goto out;
+ }
+ /* Moreover the CBC specific padding for encrypt is not yet implemented */
+ ret = -ENODEV;
+ goto out;
+ }
+
+ ret = restore_context(ctx);
+ if (ret != 0) {
+ goto out;
+ }
+
+ while (i < round_down(data_size, AES_BLOCK_SIZE)) {
+ unsigned int w; /* Word index */
+
+ w = i / sizeof(uint32_t);
+ /* No need to htobe() as we configure the HW to swap bytes */
+ mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 0U]);
+ mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 1U]);
+ mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 2U]);
+ mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 3U]);
+
+ ret = wait_computation_completed(ctx->base);
+ if (ret != 0) {
+ goto out;
+ }
+
+ /* No need to htobe() as we configure the HW to swap bytes */
+ data_out_u32[w + 0U] = mmio_read_32(ctx->base + _SAES_DOUTR);
+ data_out_u32[w + 1U] = mmio_read_32(ctx->base + _SAES_DOUTR);
+ data_out_u32[w + 2U] = mmio_read_32(ctx->base + _SAES_DOUTR);
+ data_out_u32[w + 3U] = mmio_read_32(ctx->base + _SAES_DOUTR);
+
+ clear_computation_completed(ctx->base);
+
+ /* Process next block */
+ i += AES_BLOCK_SIZE;
+ }
+ /* Manage last block if not a block size multiple */
+
+ if ((last_block) && (i < data_size)) {
+ /* In and out buffer have same size so should be AES_BLOCK_SIZE multiple */
+ ret = -ENODEV;
+ goto out;
+ }
+
+ if (!last_block) {
+ ret = save_context(ctx);
+ }
+
+out:
+ /* If last block or error, end of SAES process */
+ if (last_block || (ret != 0)) {
+ saes_end(ctx, ret);
+ }
+
+ return ret;
+}