summaryrefslogtreecommitdiffstats
path: root/lib/el3_runtime/aarch64/context_mgmt.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/el3_runtime/aarch64/context_mgmt.c')
-rw-r--r--lib/el3_runtime/aarch64/context_mgmt.c1531
1 files changed, 1531 insertions, 0 deletions
diff --git a/lib/el3_runtime/aarch64/context_mgmt.c b/lib/el3_runtime/aarch64/context_mgmt.c
new file mode 100644
index 0000000..fdd1388
--- /dev/null
+++ b/lib/el3_runtime/aarch64/context_mgmt.c
@@ -0,0 +1,1531 @@
+/*
+ * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
+ * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+#include <assert.h>
+#include <stdbool.h>
+#include <string.h>
+
+#include <platform_def.h>
+
+#include <arch.h>
+#include <arch_helpers.h>
+#include <arch_features.h>
+#include <bl31/interrupt_mgmt.h>
+#include <common/bl_common.h>
+#include <common/debug.h>
+#include <context.h>
+#include <drivers/arm/gicv3.h>
+#include <lib/el3_runtime/context_mgmt.h>
+#include <lib/el3_runtime/cpu_data.h>
+#include <lib/el3_runtime/pubsub_events.h>
+#include <lib/extensions/amu.h>
+#include <lib/extensions/brbe.h>
+#include <lib/extensions/mpam.h>
+#include <lib/extensions/pmuv3.h>
+#include <lib/extensions/sme.h>
+#include <lib/extensions/spe.h>
+#include <lib/extensions/sve.h>
+#include <lib/extensions/sys_reg_trace.h>
+#include <lib/extensions/trbe.h>
+#include <lib/extensions/trf.h>
+#include <lib/utils.h>
+
+#if ENABLE_FEAT_TWED
+/* Make sure delay value fits within the range(0-15) */
+CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
+#endif /* ENABLE_FEAT_TWED */
+
+per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
+static bool has_secure_perworld_init;
+
+static void manage_extensions_nonsecure(cpu_context_t *ctx);
+static void manage_extensions_secure(cpu_context_t *ctx);
+static void manage_extensions_secure_per_world(void);
+
+static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
+{
+ u_register_t sctlr_elx, actlr_elx;
+
+ /*
+ * Initialise SCTLR_EL1 to the reset value corresponding to the target
+ * execution state setting all fields rather than relying on the hw.
+ * Some fields have architecturally UNKNOWN reset values and these are
+ * set to zero.
+ *
+ * SCTLR.EE: Endianness is taken from the entrypoint attributes.
+ *
+ * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
+ * required by PSCI specification)
+ */
+ sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
+ if (GET_RW(ep->spsr) == MODE_RW_64) {
+ sctlr_elx |= SCTLR_EL1_RES1;
+ } else {
+ /*
+ * If the target execution state is AArch32 then the following
+ * fields need to be set.
+ *
+ * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
+ * instructions are not trapped to EL1.
+ *
+ * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
+ * instructions are not trapped to EL1.
+ *
+ * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
+ * CP15DMB, CP15DSB, and CP15ISB instructions.
+ */
+ sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
+ | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
+ }
+
+#if ERRATA_A75_764081
+ /*
+ * If workaround of errata 764081 for Cortex-A75 is used then set
+ * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
+ */
+ sctlr_elx |= SCTLR_IESB_BIT;
+#endif
+ /* Store the initialised SCTLR_EL1 value in the cpu_context */
+ write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
+
+ /*
+ * Base the context ACTLR_EL1 on the current value, as it is
+ * implementation defined. The context restore process will write
+ * the value from the context to the actual register and can cause
+ * problems for processor cores that don't expect certain bits to
+ * be zero.
+ */
+ actlr_elx = read_actlr_el1();
+ write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
+}
+
+/******************************************************************************
+ * This function performs initializations that are specific to SECURE state
+ * and updates the cpu context specified by 'ctx'.
+ *****************************************************************************/
+static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
+{
+ u_register_t scr_el3;
+ el3_state_t *state;
+
+ state = get_el3state_ctx(ctx);
+ scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
+
+#if defined(IMAGE_BL31) && !defined(SPD_spmd)
+ /*
+ * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
+ * indicated by the interrupt routing model for BL31.
+ */
+ scr_el3 |= get_scr_el3_from_routing_model(SECURE);
+#endif
+
+#if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
+ /* Get Memory Tagging Extension support level */
+ unsigned int mte = get_armv8_5_mte_support();
+#endif
+ /*
+ * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
+ * is set, or when MTE is only implemented at EL0.
+ */
+#if CTX_INCLUDE_MTE_REGS
+ assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
+ scr_el3 |= SCR_ATA_BIT;
+#else
+ if (mte == MTE_IMPLEMENTED_EL0) {
+ scr_el3 |= SCR_ATA_BIT;
+ }
+#endif /* CTX_INCLUDE_MTE_REGS */
+
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+
+ /*
+ * Initialize EL1 context registers unless SPMC is running
+ * at S-EL2.
+ */
+#if !SPMD_SPM_AT_SEL2
+ setup_el1_context(ctx, ep);
+#endif
+
+ manage_extensions_secure(ctx);
+
+ /**
+ * manage_extensions_secure_per_world api has to be executed once,
+ * as the registers getting initialised, maintain constant value across
+ * all the cpus for the secure world.
+ * Henceforth, this check ensures that the registers are initialised once
+ * and avoids re-initialization from multiple cores.
+ */
+ if (!has_secure_perworld_init) {
+ manage_extensions_secure_per_world();
+ }
+
+}
+
+#if ENABLE_RME
+/******************************************************************************
+ * This function performs initializations that are specific to REALM state
+ * and updates the cpu context specified by 'ctx'.
+ *****************************************************************************/
+static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
+{
+ u_register_t scr_el3;
+ el3_state_t *state;
+
+ state = get_el3state_ctx(ctx);
+ scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
+
+ scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
+
+ if (is_feat_csv2_2_supported()) {
+ /* Enable access to the SCXTNUM_ELx registers. */
+ scr_el3 |= SCR_EnSCXT_BIT;
+ }
+
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+}
+#endif /* ENABLE_RME */
+
+/******************************************************************************
+ * This function performs initializations that are specific to NON-SECURE state
+ * and updates the cpu context specified by 'ctx'.
+ *****************************************************************************/
+static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
+{
+ u_register_t scr_el3;
+ el3_state_t *state;
+
+ state = get_el3state_ctx(ctx);
+ scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
+
+ /* SCR_NS: Set the NS bit */
+ scr_el3 |= SCR_NS_BIT;
+
+ /* Allow access to Allocation Tags when MTE is implemented. */
+ scr_el3 |= SCR_ATA_BIT;
+
+#if !CTX_INCLUDE_PAUTH_REGS
+ /*
+ * Pointer Authentication feature, if present, is always enabled by default
+ * for Non secure lower exception levels. We do not have an explicit
+ * flag to set it.
+ * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
+ * exception levels of secure and realm worlds.
+ *
+ * To prevent the leakage between the worlds during world switch,
+ * we enable it only for the non-secure world.
+ *
+ * If the Secure/realm world wants to use pointer authentication,
+ * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
+ * it will be enabled globally for all the contexts.
+ *
+ * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
+ * other than EL3
+ *
+ * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
+ * than EL3
+ */
+ scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
+
+#endif /* CTX_INCLUDE_PAUTH_REGS */
+
+#if HANDLE_EA_EL3_FIRST_NS
+ /* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
+ scr_el3 |= SCR_EA_BIT;
+#endif
+
+#if RAS_TRAP_NS_ERR_REC_ACCESS
+ /*
+ * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
+ * and RAS ERX registers from EL1 and EL2(from any security state)
+ * are trapped to EL3.
+ * Set here to trap only for NS EL1/EL2
+ *
+ */
+ scr_el3 |= SCR_TERR_BIT;
+#endif
+
+ if (is_feat_csv2_2_supported()) {
+ /* Enable access to the SCXTNUM_ELx registers. */
+ scr_el3 |= SCR_EnSCXT_BIT;
+ }
+
+#ifdef IMAGE_BL31
+ /*
+ * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
+ * indicated by the interrupt routing model for BL31.
+ */
+ scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
+#endif
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+
+ /* Initialize EL1 context registers */
+ setup_el1_context(ctx, ep);
+
+ /* Initialize EL2 context registers */
+#if CTX_INCLUDE_EL2_REGS
+
+ /*
+ * Initialize SCTLR_EL2 context register using Endianness value
+ * taken from the entrypoint attribute.
+ */
+ u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
+ sctlr_el2 |= SCTLR_EL2_RES1;
+ write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
+ sctlr_el2);
+
+ if (is_feat_hcx_supported()) {
+ /*
+ * Initialize register HCRX_EL2 with its init value.
+ * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
+ * chance that this can lead to unexpected behavior in lower
+ * ELs that have not been updated since the introduction of
+ * this feature if not properly initialized, especially when
+ * it comes to those bits that enable/disable traps.
+ */
+ write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
+ HCRX_EL2_INIT_VAL);
+ }
+
+ if (is_feat_fgt_supported()) {
+ /*
+ * Initialize HFG*_EL2 registers with a default value so legacy
+ * systems unaware of FEAT_FGT do not get trapped due to their lack
+ * of initialization for this feature.
+ */
+ write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGITR_EL2,
+ HFGITR_EL2_INIT_VAL);
+ write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGRTR_EL2,
+ HFGRTR_EL2_INIT_VAL);
+ write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGWTR_EL2,
+ HFGWTR_EL2_INIT_VAL);
+ }
+#endif /* CTX_INCLUDE_EL2_REGS */
+
+ manage_extensions_nonsecure(ctx);
+}
+
+/*******************************************************************************
+ * The following function performs initialization of the cpu_context 'ctx'
+ * for first use that is common to all security states, and sets the
+ * initial entrypoint state as specified by the entry_point_info structure.
+ *
+ * The EE and ST attributes are used to configure the endianness and secure
+ * timer availability for the new execution context.
+ ******************************************************************************/
+static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
+{
+ u_register_t scr_el3;
+ el3_state_t *state;
+ gp_regs_t *gp_regs;
+
+ state = get_el3state_ctx(ctx);
+
+ /* Clear any residual register values from the context */
+ zeromem(ctx, sizeof(*ctx));
+
+ /*
+ * The lower-EL context is zeroed so that no stale values leak to a world.
+ * It is assumed that an all-zero lower-EL context is good enough for it
+ * to boot correctly. However, there are very few registers where this
+ * is not true and some values need to be recreated.
+ */
+#if CTX_INCLUDE_EL2_REGS
+ el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
+
+ /*
+ * These bits are set in the gicv3 driver. Losing them (especially the
+ * SRE bit) is problematic for all worlds. Henceforth recreate them.
+ */
+ u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
+ ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
+ write_ctx_reg(el2_ctx, CTX_ICC_SRE_EL2, icc_sre_el2);
+#endif /* CTX_INCLUDE_EL2_REGS */
+
+ /* Start with a clean SCR_EL3 copy as all relevant values are set */
+ scr_el3 = SCR_RESET_VAL;
+
+ /*
+ * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
+ * EL2, EL1 and EL0 are not trapped to EL3.
+ *
+ * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
+ * EL2, EL1 and EL0 are not trapped to EL3.
+ *
+ * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
+ * both Security states and both Execution states.
+ *
+ * SCR_EL3.SIF: Set to one to disable secure instruction execution from
+ * Non-secure memory.
+ */
+ scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
+
+ scr_el3 |= SCR_SIF_BIT;
+
+ /*
+ * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
+ * Exception level as specified by SPSR.
+ */
+ if (GET_RW(ep->spsr) == MODE_RW_64) {
+ scr_el3 |= SCR_RW_BIT;
+ }
+
+ /*
+ * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
+ * Secure timer registers to EL3, from AArch64 state only, if specified
+ * by the entrypoint attributes. If SEL2 is present and enabled, the ST
+ * bit always behaves as 1 (i.e. secure physical timer register access
+ * is not trapped)
+ */
+ if (EP_GET_ST(ep->h.attr) != 0U) {
+ scr_el3 |= SCR_ST_BIT;
+ }
+
+ /*
+ * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
+ * SCR_EL3.HXEn.
+ */
+ if (is_feat_hcx_supported()) {
+ scr_el3 |= SCR_HXEn_BIT;
+ }
+
+ /*
+ * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
+ * registers are trapped to EL3.
+ */
+#if ENABLE_FEAT_RNG_TRAP
+ scr_el3 |= SCR_TRNDR_BIT;
+#endif
+
+#if FAULT_INJECTION_SUPPORT
+ /* Enable fault injection from lower ELs */
+ scr_el3 |= SCR_FIEN_BIT;
+#endif
+
+#if CTX_INCLUDE_PAUTH_REGS
+ /*
+ * Enable Pointer Authentication globally for all the worlds.
+ *
+ * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
+ * other than EL3
+ *
+ * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
+ * than EL3
+ */
+ scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
+#endif /* CTX_INCLUDE_PAUTH_REGS */
+
+ /*
+ * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
+ */
+ if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
+ scr_el3 |= SCR_TCR2EN_BIT;
+ }
+
+ /*
+ * SCR_EL3.PIEN: Enable permission indirection and overlay
+ * registers for AArch64 if present.
+ */
+ if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
+ scr_el3 |= SCR_PIEN_BIT;
+ }
+
+ /*
+ * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
+ */
+ if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
+ scr_el3 |= SCR_GCSEn_BIT;
+ }
+
+ /*
+ * SCR_EL3.HCE: Enable HVC instructions if next execution state is
+ * AArch64 and next EL is EL2, or if next execution state is AArch32 and
+ * next mode is Hyp.
+ * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
+ * same conditions as HVC instructions and when the processor supports
+ * ARMv8.6-FGT.
+ * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
+ * CNTPOFF_EL2 register under the same conditions as HVC instructions
+ * and when the processor supports ECV.
+ */
+ if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
+ || ((GET_RW(ep->spsr) != MODE_RW_64)
+ && (GET_M32(ep->spsr) == MODE32_hyp))) {
+ scr_el3 |= SCR_HCE_BIT;
+
+ if (is_feat_fgt_supported()) {
+ scr_el3 |= SCR_FGTEN_BIT;
+ }
+
+ if (is_feat_ecv_supported()) {
+ scr_el3 |= SCR_ECVEN_BIT;
+ }
+ }
+
+ /* Enable WFE trap delay in SCR_EL3 if supported and configured */
+ if (is_feat_twed_supported()) {
+ /* Set delay in SCR_EL3 */
+ scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
+ scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
+ << SCR_TWEDEL_SHIFT);
+
+ /* Enable WFE delay */
+ scr_el3 |= SCR_TWEDEn_BIT;
+ }
+
+#if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
+ /* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
+ if (is_feat_sel2_supported()) {
+ scr_el3 |= SCR_EEL2_BIT;
+ }
+#endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
+
+ if (is_feat_mpam_supported()) {
+ write_ctx_reg(get_el3state_ctx(ctx), CTX_MPAM3_EL3, \
+ MPAM3_EL3_RESET_VAL);
+ }
+
+ /*
+ * Populate EL3 state so that we've the right context
+ * before doing ERET
+ */
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+ write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
+ write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
+
+ /*
+ * Store the X0-X7 value from the entrypoint into the context
+ * Use memcpy as we are in control of the layout of the structures
+ */
+ gp_regs = get_gpregs_ctx(ctx);
+ memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
+}
+
+/*******************************************************************************
+ * Context management library initialization routine. This library is used by
+ * runtime services to share pointers to 'cpu_context' structures for secure
+ * non-secure and realm states. Management of the structures and their associated
+ * memory is not done by the context management library e.g. the PSCI service
+ * manages the cpu context used for entry from and exit to the non-secure state.
+ * The Secure payload dispatcher service manages the context(s) corresponding to
+ * the secure state. It also uses this library to get access to the non-secure
+ * state cpu context pointers.
+ * Lastly, this library provides the API to make SP_EL3 point to the cpu context
+ * which will be used for programming an entry into a lower EL. The same context
+ * will be used to save state upon exception entry from that EL.
+ ******************************************************************************/
+void __init cm_init(void)
+{
+ /*
+ * The context management library has only global data to initialize, but
+ * that will be done when the BSS is zeroed out.
+ */
+}
+
+/*******************************************************************************
+ * This is the high-level function used to initialize the cpu_context 'ctx' for
+ * first use. It performs initializations that are common to all security states
+ * and initializations specific to the security state specified in 'ep'
+ ******************************************************************************/
+void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
+{
+ unsigned int security_state;
+
+ assert(ctx != NULL);
+
+ /*
+ * Perform initializations that are common
+ * to all security states
+ */
+ setup_context_common(ctx, ep);
+
+ security_state = GET_SECURITY_STATE(ep->h.attr);
+
+ /* Perform security state specific initializations */
+ switch (security_state) {
+ case SECURE:
+ setup_secure_context(ctx, ep);
+ break;
+#if ENABLE_RME
+ case REALM:
+ setup_realm_context(ctx, ep);
+ break;
+#endif
+ case NON_SECURE:
+ setup_ns_context(ctx, ep);
+ break;
+ default:
+ ERROR("Invalid security state\n");
+ panic();
+ break;
+ }
+}
+
+/*******************************************************************************
+ * Enable architecture extensions for EL3 execution. This function only updates
+ * registers in-place which are expected to either never change or be
+ * overwritten by el3_exit.
+ ******************************************************************************/
+#if IMAGE_BL31
+void cm_manage_extensions_el3(void)
+{
+ if (is_feat_spe_supported()) {
+ spe_init_el3();
+ }
+
+ if (is_feat_amu_supported()) {
+ amu_init_el3();
+ }
+
+ if (is_feat_sme_supported()) {
+ sme_init_el3();
+ }
+
+ if (is_feat_trbe_supported()) {
+ trbe_init_el3();
+ }
+
+ if (is_feat_brbe_supported()) {
+ brbe_init_el3();
+ }
+
+ if (is_feat_trf_supported()) {
+ trf_init_el3();
+ }
+
+ pmuv3_init_el3();
+}
+#endif /* IMAGE_BL31 */
+
+/*******************************************************************************
+ * Initialise per_world_context for Non-Secure world.
+ * This function enables the architecture extensions, which have same value
+ * across the cores for the non-secure world.
+ ******************************************************************************/
+#if IMAGE_BL31
+void manage_extensions_nonsecure_per_world(void)
+{
+ if (is_feat_sme_supported()) {
+ sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
+ }
+
+ if (is_feat_sve_supported()) {
+ sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
+ }
+
+ if (is_feat_amu_supported()) {
+ amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
+ }
+
+ if (is_feat_sys_reg_trace_supported()) {
+ sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
+ }
+}
+#endif /* IMAGE_BL31 */
+
+/*******************************************************************************
+ * Initialise per_world_context for Secure world.
+ * This function enables the architecture extensions, which have same value
+ * across the cores for the secure world.
+ ******************************************************************************/
+
+static void manage_extensions_secure_per_world(void)
+{
+#if IMAGE_BL31
+ if (is_feat_sme_supported()) {
+
+ if (ENABLE_SME_FOR_SWD) {
+ /*
+ * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
+ * SME, SVE, and FPU/SIMD context properly managed.
+ */
+ sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
+ } else {
+ /*
+ * Disable SME, SVE, FPU/SIMD in secure context so non-secure
+ * world can safely use the associated registers.
+ */
+ sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
+ }
+ }
+ if (is_feat_sve_supported()) {
+ if (ENABLE_SVE_FOR_SWD) {
+ /*
+ * Enable SVE and FPU in secure context, SPM must ensure
+ * that the SVE and FPU register contexts are properly managed.
+ */
+ sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
+ } else {
+ /*
+ * Disable SVE and FPU in secure context so non-secure world
+ * can safely use them.
+ */
+ sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
+ }
+ }
+
+ /* NS can access this but Secure shouldn't */
+ if (is_feat_sys_reg_trace_supported()) {
+ sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
+ }
+
+ has_secure_perworld_init = true;
+#endif /* IMAGE_BL31 */
+}
+
+/*******************************************************************************
+ * Enable architecture extensions on first entry to Non-secure world.
+ ******************************************************************************/
+static void manage_extensions_nonsecure(cpu_context_t *ctx)
+{
+#if IMAGE_BL31
+ if (is_feat_amu_supported()) {
+ amu_enable(ctx);
+ }
+
+ if (is_feat_sme_supported()) {
+ sme_enable(ctx);
+ }
+
+ if (is_feat_mpam_supported()) {
+ mpam_enable(ctx);
+ }
+ pmuv3_enable(ctx);
+#endif /* IMAGE_BL31 */
+}
+
+/* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
+static __unused void enable_pauth_el2(void)
+{
+ u_register_t hcr_el2 = read_hcr_el2();
+ /*
+ * For Armv8.3 pointer authentication feature, disable traps to EL2 when
+ * accessing key registers or using pointer authentication instructions
+ * from lower ELs.
+ */
+ hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
+
+ write_hcr_el2(hcr_el2);
+}
+
+#if INIT_UNUSED_NS_EL2
+/*******************************************************************************
+ * Enable architecture extensions in-place at EL2 on first entry to Non-secure
+ * world when EL2 is empty and unused.
+ ******************************************************************************/
+static void manage_extensions_nonsecure_el2_unused(void)
+{
+#if IMAGE_BL31
+ if (is_feat_spe_supported()) {
+ spe_init_el2_unused();
+ }
+
+ if (is_feat_amu_supported()) {
+ amu_init_el2_unused();
+ }
+
+ if (is_feat_mpam_supported()) {
+ mpam_init_el2_unused();
+ }
+
+ if (is_feat_trbe_supported()) {
+ trbe_init_el2_unused();
+ }
+
+ if (is_feat_sys_reg_trace_supported()) {
+ sys_reg_trace_init_el2_unused();
+ }
+
+ if (is_feat_trf_supported()) {
+ trf_init_el2_unused();
+ }
+
+ pmuv3_init_el2_unused();
+
+ if (is_feat_sve_supported()) {
+ sve_init_el2_unused();
+ }
+
+ if (is_feat_sme_supported()) {
+ sme_init_el2_unused();
+ }
+
+#if ENABLE_PAUTH
+ enable_pauth_el2();
+#endif /* ENABLE_PAUTH */
+#endif /* IMAGE_BL31 */
+}
+#endif /* INIT_UNUSED_NS_EL2 */
+
+/*******************************************************************************
+ * Enable architecture extensions on first entry to Secure world.
+ ******************************************************************************/
+static void manage_extensions_secure(cpu_context_t *ctx)
+{
+#if IMAGE_BL31
+ if (is_feat_sme_supported()) {
+ if (ENABLE_SME_FOR_SWD) {
+ /*
+ * Enable SME, SVE, FPU/SIMD in secure context, secure manager
+ * must ensure SME, SVE, and FPU/SIMD context properly managed.
+ */
+ sme_init_el3();
+ sme_enable(ctx);
+ } else {
+ /*
+ * Disable SME, SVE, FPU/SIMD in secure context so non-secure
+ * world can safely use the associated registers.
+ */
+ sme_disable(ctx);
+ }
+ }
+#endif /* IMAGE_BL31 */
+}
+
+/*******************************************************************************
+ * The following function initializes the cpu_context for a CPU specified by
+ * its `cpu_idx` for first use, and sets the initial entrypoint state as
+ * specified by the entry_point_info structure.
+ ******************************************************************************/
+void cm_init_context_by_index(unsigned int cpu_idx,
+ const entry_point_info_t *ep)
+{
+ cpu_context_t *ctx;
+ ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
+ cm_setup_context(ctx, ep);
+}
+
+/*******************************************************************************
+ * The following function initializes the cpu_context for the current CPU
+ * for first use, and sets the initial entrypoint state as specified by the
+ * entry_point_info structure.
+ ******************************************************************************/
+void cm_init_my_context(const entry_point_info_t *ep)
+{
+ cpu_context_t *ctx;
+ ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
+ cm_setup_context(ctx, ep);
+}
+
+/* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
+static void init_nonsecure_el2_unused(cpu_context_t *ctx)
+{
+#if INIT_UNUSED_NS_EL2
+ u_register_t hcr_el2 = HCR_RESET_VAL;
+ u_register_t mdcr_el2;
+ u_register_t scr_el3;
+
+ scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
+
+ /* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
+ if ((scr_el3 & SCR_RW_BIT) != 0U) {
+ hcr_el2 |= HCR_RW_BIT;
+ }
+
+ write_hcr_el2(hcr_el2);
+
+ /*
+ * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
+ * All fields have architecturally UNKNOWN reset values.
+ */
+ write_cptr_el2(CPTR_EL2_RESET_VAL);
+
+ /*
+ * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
+ * reset and are set to zero except for field(s) listed below.
+ *
+ * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
+ * Non-secure EL0 and EL1 accesses to the physical timer registers.
+ *
+ * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
+ * Non-secure EL0 and EL1 accesses to the physical counter registers.
+ */
+ write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
+
+ /*
+ * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
+ * UNKNOWN value.
+ */
+ write_cntvoff_el2(0);
+
+ /*
+ * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
+ * respectively.
+ */
+ write_vpidr_el2(read_midr_el1());
+ write_vmpidr_el2(read_mpidr_el1());
+
+ /*
+ * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
+ *
+ * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
+ * translation is disabled, cache maintenance operations depend on the
+ * VMID.
+ *
+ * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
+ * disabled.
+ */
+ write_vttbr_el2(VTTBR_RESET_VAL &
+ ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
+ (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
+
+ /*
+ * Initialise MDCR_EL2, setting all fields rather than relying on hw.
+ * Some fields are architecturally UNKNOWN on reset.
+ *
+ * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
+ * register accesses to the Debug ROM registers are not trapped to EL2.
+ *
+ * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
+ * accesses to the powerdown debug registers are not trapped to EL2.
+ *
+ * MDCR_EL2.TDA: Set to zero so that System register accesses to the
+ * debug registers do not trap to EL2.
+ *
+ * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
+ * EL2.
+ */
+ mdcr_el2 = MDCR_EL2_RESET_VAL &
+ ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
+ MDCR_EL2_TDE_BIT);
+
+ write_mdcr_el2(mdcr_el2);
+
+ /*
+ * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
+ *
+ * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
+ * EL1 accesses to System registers do not trap to EL2.
+ */
+ write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
+
+ /*
+ * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
+ * reset.
+ *
+ * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
+ * and prevent timer interrupts.
+ */
+ write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
+
+ manage_extensions_nonsecure_el2_unused();
+#endif /* INIT_UNUSED_NS_EL2 */
+}
+
+/*******************************************************************************
+ * Prepare the CPU system registers for first entry into realm, secure, or
+ * normal world.
+ *
+ * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
+ * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
+ * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
+ * For all entries, the EL1 registers are initialized from the cpu_context
+ ******************************************************************************/
+void cm_prepare_el3_exit(uint32_t security_state)
+{
+ u_register_t sctlr_elx, scr_el3;
+ cpu_context_t *ctx = cm_get_context(security_state);
+
+ assert(ctx != NULL);
+
+ if (security_state == NON_SECURE) {
+ uint64_t el2_implemented = el_implemented(2);
+
+ scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
+ CTX_SCR_EL3);
+
+ if (((scr_el3 & SCR_HCE_BIT) != 0U)
+ || (el2_implemented != EL_IMPL_NONE)) {
+ /*
+ * If context is not being used for EL2, initialize
+ * HCRX_EL2 with its init value here.
+ */
+ if (is_feat_hcx_supported()) {
+ write_hcrx_el2(HCRX_EL2_INIT_VAL);
+ }
+
+ /*
+ * Initialize Fine-grained trap registers introduced
+ * by FEAT_FGT so all traps are initially disabled when
+ * switching to EL2 or a lower EL, preventing undesired
+ * behavior.
+ */
+ if (is_feat_fgt_supported()) {
+ /*
+ * Initialize HFG*_EL2 registers with a default
+ * value so legacy systems unaware of FEAT_FGT
+ * do not get trapped due to their lack of
+ * initialization for this feature.
+ */
+ write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
+ write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
+ write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
+ }
+ }
+
+
+ if ((scr_el3 & SCR_HCE_BIT) != 0U) {
+ /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
+ sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
+ CTX_SCTLR_EL1);
+ sctlr_elx &= SCTLR_EE_BIT;
+ sctlr_elx |= SCTLR_EL2_RES1;
+#if ERRATA_A75_764081
+ /*
+ * If workaround of errata 764081 for Cortex-A75 is used
+ * then set SCTLR_EL2.IESB to enable Implicit Error
+ * Synchronization Barrier.
+ */
+ sctlr_elx |= SCTLR_IESB_BIT;
+#endif
+ write_sctlr_el2(sctlr_elx);
+ } else if (el2_implemented != EL_IMPL_NONE) {
+ init_nonsecure_el2_unused(ctx);
+ }
+ }
+
+ cm_el1_sysregs_context_restore(security_state);
+ cm_set_next_eret_context(security_state);
+}
+
+#if CTX_INCLUDE_EL2_REGS
+
+static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
+{
+ write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
+ if (is_feat_amu_supported()) {
+ write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
+ }
+ write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
+ write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
+ write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
+ write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
+}
+
+static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
+{
+ write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
+ if (is_feat_amu_supported()) {
+ write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
+ }
+ write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
+ write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
+ write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
+ write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
+}
+
+static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
+{
+ u_register_t mpam_idr = read_mpamidr_el1();
+
+ write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
+
+ /*
+ * The context registers that we intend to save would be part of the
+ * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
+ */
+ if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
+ return;
+ }
+
+ /*
+ * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
+ * MPAMIDR_HAS_HCR_BIT == 1.
+ */
+ write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
+ write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
+ write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
+
+ /*
+ * The number of MPAMVPM registers is implementation defined, their
+ * number is stored in the MPAMIDR_EL1 register.
+ */
+ switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
+ case 7:
+ write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
+ __fallthrough;
+ case 6:
+ write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
+ __fallthrough;
+ case 5:
+ write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
+ __fallthrough;
+ case 4:
+ write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
+ __fallthrough;
+ case 3:
+ write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
+ __fallthrough;
+ case 2:
+ write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
+ __fallthrough;
+ case 1:
+ write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
+ break;
+ }
+}
+
+static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
+{
+ u_register_t mpam_idr = read_mpamidr_el1();
+
+ write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
+
+ if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
+ return;
+ }
+
+ write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
+ write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
+ write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
+
+ switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
+ case 7:
+ write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
+ __fallthrough;
+ case 6:
+ write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
+ __fallthrough;
+ case 5:
+ write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
+ __fallthrough;
+ case 4:
+ write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
+ __fallthrough;
+ case 3:
+ write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
+ __fallthrough;
+ case 2:
+ write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
+ __fallthrough;
+ case 1:
+ write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
+ break;
+ }
+}
+
+/* -----------------------------------------------------
+ * The following registers are not added:
+ * AMEVCNTVOFF0<n>_EL2
+ * AMEVCNTVOFF1<n>_EL2
+ * ICH_AP0R<n>_EL2
+ * ICH_AP1R<n>_EL2
+ * ICH_LR<n>_EL2
+ * -----------------------------------------------------
+ */
+static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
+{
+ write_ctx_reg(ctx, CTX_ACTLR_EL2, read_actlr_el2());
+ write_ctx_reg(ctx, CTX_AFSR0_EL2, read_afsr0_el2());
+ write_ctx_reg(ctx, CTX_AFSR1_EL2, read_afsr1_el2());
+ write_ctx_reg(ctx, CTX_AMAIR_EL2, read_amair_el2());
+ write_ctx_reg(ctx, CTX_CNTHCTL_EL2, read_cnthctl_el2());
+ write_ctx_reg(ctx, CTX_CNTVOFF_EL2, read_cntvoff_el2());
+ write_ctx_reg(ctx, CTX_CPTR_EL2, read_cptr_el2());
+ if (CTX_INCLUDE_AARCH32_REGS) {
+ write_ctx_reg(ctx, CTX_DBGVCR32_EL2, read_dbgvcr32_el2());
+ }
+ write_ctx_reg(ctx, CTX_ELR_EL2, read_elr_el2());
+ write_ctx_reg(ctx, CTX_ESR_EL2, read_esr_el2());
+ write_ctx_reg(ctx, CTX_FAR_EL2, read_far_el2());
+ write_ctx_reg(ctx, CTX_HACR_EL2, read_hacr_el2());
+ write_ctx_reg(ctx, CTX_HCR_EL2, read_hcr_el2());
+ write_ctx_reg(ctx, CTX_HPFAR_EL2, read_hpfar_el2());
+ write_ctx_reg(ctx, CTX_HSTR_EL2, read_hstr_el2());
+
+ /*
+ * Set the NS bit to be able to access the ICC_SRE_EL2 register
+ * TODO: remove with root context
+ */
+ u_register_t scr_el3 = read_scr_el3();
+
+ write_scr_el3(scr_el3 | SCR_NS_BIT);
+ isb();
+ write_ctx_reg(ctx, CTX_ICC_SRE_EL2, read_icc_sre_el2());
+
+ write_scr_el3(scr_el3);
+ isb();
+
+ write_ctx_reg(ctx, CTX_ICH_HCR_EL2, read_ich_hcr_el2());
+ write_ctx_reg(ctx, CTX_ICH_VMCR_EL2, read_ich_vmcr_el2());
+ write_ctx_reg(ctx, CTX_MAIR_EL2, read_mair_el2());
+ write_ctx_reg(ctx, CTX_MDCR_EL2, read_mdcr_el2());
+ write_ctx_reg(ctx, CTX_SCTLR_EL2, read_sctlr_el2());
+ write_ctx_reg(ctx, CTX_SPSR_EL2, read_spsr_el2());
+ write_ctx_reg(ctx, CTX_SP_EL2, read_sp_el2());
+ write_ctx_reg(ctx, CTX_TCR_EL2, read_tcr_el2());
+ write_ctx_reg(ctx, CTX_TPIDR_EL2, read_tpidr_el2());
+ write_ctx_reg(ctx, CTX_TTBR0_EL2, read_ttbr0_el2());
+ write_ctx_reg(ctx, CTX_VBAR_EL2, read_vbar_el2());
+ write_ctx_reg(ctx, CTX_VMPIDR_EL2, read_vmpidr_el2());
+ write_ctx_reg(ctx, CTX_VPIDR_EL2, read_vpidr_el2());
+ write_ctx_reg(ctx, CTX_VTCR_EL2, read_vtcr_el2());
+ write_ctx_reg(ctx, CTX_VTTBR_EL2, read_vttbr_el2());
+}
+
+static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
+{
+ write_actlr_el2(read_ctx_reg(ctx, CTX_ACTLR_EL2));
+ write_afsr0_el2(read_ctx_reg(ctx, CTX_AFSR0_EL2));
+ write_afsr1_el2(read_ctx_reg(ctx, CTX_AFSR1_EL2));
+ write_amair_el2(read_ctx_reg(ctx, CTX_AMAIR_EL2));
+ write_cnthctl_el2(read_ctx_reg(ctx, CTX_CNTHCTL_EL2));
+ write_cntvoff_el2(read_ctx_reg(ctx, CTX_CNTVOFF_EL2));
+ write_cptr_el2(read_ctx_reg(ctx, CTX_CPTR_EL2));
+ if (CTX_INCLUDE_AARCH32_REGS) {
+ write_dbgvcr32_el2(read_ctx_reg(ctx, CTX_DBGVCR32_EL2));
+ }
+ write_elr_el2(read_ctx_reg(ctx, CTX_ELR_EL2));
+ write_esr_el2(read_ctx_reg(ctx, CTX_ESR_EL2));
+ write_far_el2(read_ctx_reg(ctx, CTX_FAR_EL2));
+ write_hacr_el2(read_ctx_reg(ctx, CTX_HACR_EL2));
+ write_hcr_el2(read_ctx_reg(ctx, CTX_HCR_EL2));
+ write_hpfar_el2(read_ctx_reg(ctx, CTX_HPFAR_EL2));
+ write_hstr_el2(read_ctx_reg(ctx, CTX_HSTR_EL2));
+
+ /*
+ * Set the NS bit to be able to access the ICC_SRE_EL2 register
+ * TODO: remove with root context
+ */
+ u_register_t scr_el3 = read_scr_el3();
+
+ write_scr_el3(scr_el3 | SCR_NS_BIT);
+ isb();
+ write_icc_sre_el2(read_ctx_reg(ctx, CTX_ICC_SRE_EL2));
+
+ write_scr_el3(scr_el3);
+ isb();
+
+ write_ich_hcr_el2(read_ctx_reg(ctx, CTX_ICH_HCR_EL2));
+ write_ich_vmcr_el2(read_ctx_reg(ctx, CTX_ICH_VMCR_EL2));
+ write_mair_el2(read_ctx_reg(ctx, CTX_MAIR_EL2));
+ write_mdcr_el2(read_ctx_reg(ctx, CTX_MDCR_EL2));
+ write_sctlr_el2(read_ctx_reg(ctx, CTX_SCTLR_EL2));
+ write_spsr_el2(read_ctx_reg(ctx, CTX_SPSR_EL2));
+ write_sp_el2(read_ctx_reg(ctx, CTX_SP_EL2));
+ write_tcr_el2(read_ctx_reg(ctx, CTX_TCR_EL2));
+ write_tpidr_el2(read_ctx_reg(ctx, CTX_TPIDR_EL2));
+ write_ttbr0_el2(read_ctx_reg(ctx, CTX_TTBR0_EL2));
+ write_vbar_el2(read_ctx_reg(ctx, CTX_VBAR_EL2));
+ write_vmpidr_el2(read_ctx_reg(ctx, CTX_VMPIDR_EL2));
+ write_vpidr_el2(read_ctx_reg(ctx, CTX_VPIDR_EL2));
+ write_vtcr_el2(read_ctx_reg(ctx, CTX_VTCR_EL2));
+ write_vttbr_el2(read_ctx_reg(ctx, CTX_VTTBR_EL2));
+}
+
+/*******************************************************************************
+ * Save EL2 sysreg context
+ ******************************************************************************/
+void cm_el2_sysregs_context_save(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+ el2_sysregs_t *el2_sysregs_ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
+
+ el2_sysregs_context_save_common(el2_sysregs_ctx);
+#if CTX_INCLUDE_MTE_REGS
+ write_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2, read_tfsr_el2());
+#endif
+ if (is_feat_mpam_supported()) {
+ el2_sysregs_context_save_mpam(el2_sysregs_ctx);
+ }
+
+ if (is_feat_fgt_supported()) {
+ el2_sysregs_context_save_fgt(el2_sysregs_ctx);
+ }
+
+ if (is_feat_ecv_v2_supported()) {
+ write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2, read_cntpoff_el2());
+ }
+
+ if (is_feat_vhe_supported()) {
+ write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2, read_contextidr_el2());
+ write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2, read_ttbr1_el2());
+ }
+
+ if (is_feat_ras_supported()) {
+ write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2, read_vdisr_el2());
+ write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2, read_vsesr_el2());
+ }
+
+ if (is_feat_nv2_supported()) {
+ write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2, read_vncr_el2());
+ }
+
+ if (is_feat_trf_supported()) {
+ write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
+ }
+
+ if (is_feat_csv2_2_supported()) {
+ write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2, read_scxtnum_el2());
+ }
+
+ if (is_feat_hcx_supported()) {
+ write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
+ }
+ if (is_feat_tcr2_supported()) {
+ write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
+ }
+ if (is_feat_sxpie_supported()) {
+ write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
+ write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
+ }
+ if (is_feat_s2pie_supported()) {
+ write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
+ }
+ if (is_feat_sxpoe_supported()) {
+ write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
+ }
+ if (is_feat_gcs_supported()) {
+ write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
+ write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
+ }
+}
+
+/*******************************************************************************
+ * Restore EL2 sysreg context
+ ******************************************************************************/
+void cm_el2_sysregs_context_restore(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+ el2_sysregs_t *el2_sysregs_ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
+
+ el2_sysregs_context_restore_common(el2_sysregs_ctx);
+#if CTX_INCLUDE_MTE_REGS
+ write_tfsr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2));
+#endif
+ if (is_feat_mpam_supported()) {
+ el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
+ }
+
+ if (is_feat_fgt_supported()) {
+ el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
+ }
+
+ if (is_feat_ecv_v2_supported()) {
+ write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2));
+ }
+
+ if (is_feat_vhe_supported()) {
+ write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
+ write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
+ }
+
+ if (is_feat_ras_supported()) {
+ write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2));
+ write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2));
+ }
+
+ if (is_feat_nv2_supported()) {
+ write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
+ }
+ if (is_feat_trf_supported()) {
+ write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
+ }
+
+ if (is_feat_csv2_2_supported()) {
+ write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2));
+ }
+
+ if (is_feat_hcx_supported()) {
+ write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
+ }
+ if (is_feat_tcr2_supported()) {
+ write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
+ }
+ if (is_feat_sxpie_supported()) {
+ write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
+ write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
+ }
+ if (is_feat_s2pie_supported()) {
+ write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
+ }
+ if (is_feat_sxpoe_supported()) {
+ write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
+ }
+ if (is_feat_gcs_supported()) {
+ write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
+ write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
+ }
+}
+#endif /* CTX_INCLUDE_EL2_REGS */
+
+/*******************************************************************************
+ * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
+ * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
+ * updating EL1 and EL2 registers. Otherwise, it calls the generic
+ * cm_prepare_el3_exit function.
+ ******************************************************************************/
+void cm_prepare_el3_exit_ns(void)
+{
+#if CTX_INCLUDE_EL2_REGS
+#if ENABLE_ASSERTIONS
+ cpu_context_t *ctx = cm_get_context(NON_SECURE);
+ assert(ctx != NULL);
+
+ /* Assert that EL2 is used. */
+ u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
+ assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
+ (el_implemented(2U) != EL_IMPL_NONE));
+#endif /* ENABLE_ASSERTIONS */
+
+ /* Restore EL2 and EL1 sysreg contexts */
+ cm_el2_sysregs_context_restore(NON_SECURE);
+ cm_el1_sysregs_context_restore(NON_SECURE);
+ cm_set_next_eret_context(NON_SECURE);
+#else
+ cm_prepare_el3_exit(NON_SECURE);
+#endif /* CTX_INCLUDE_EL2_REGS */
+}
+
+/*******************************************************************************
+ * The next four functions are used by runtime services to save and restore
+ * EL1 context on the 'cpu_context' structure for the specified security
+ * state.
+ ******************************************************************************/
+void cm_el1_sysregs_context_save(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
+
+#if IMAGE_BL31
+ if (security_state == SECURE)
+ PUBLISH_EVENT(cm_exited_secure_world);
+ else
+ PUBLISH_EVENT(cm_exited_normal_world);
+#endif
+}
+
+void cm_el1_sysregs_context_restore(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
+
+#if IMAGE_BL31
+ if (security_state == SECURE)
+ PUBLISH_EVENT(cm_entering_secure_world);
+ else
+ PUBLISH_EVENT(cm_entering_normal_world);
+#endif
+}
+
+/*******************************************************************************
+ * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
+ * given security state with the given entrypoint
+ ******************************************************************************/
+void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ /* Populate EL3 state so that ERET jumps to the correct entry */
+ state = get_el3state_ctx(ctx);
+ write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
+}
+
+/*******************************************************************************
+ * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
+ * pertaining to the given security state
+ ******************************************************************************/
+void cm_set_elr_spsr_el3(uint32_t security_state,
+ uintptr_t entrypoint, uint32_t spsr)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ /* Populate EL3 state so that ERET jumps to the correct entry */
+ state = get_el3state_ctx(ctx);
+ write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
+ write_ctx_reg(state, CTX_SPSR_EL3, spsr);
+}
+
+/*******************************************************************************
+ * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
+ * pertaining to the given security state using the value and bit position
+ * specified in the parameters. It preserves all other bits.
+ ******************************************************************************/
+void cm_write_scr_el3_bit(uint32_t security_state,
+ uint32_t bit_pos,
+ uint32_t value)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+ u_register_t scr_el3;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ /* Ensure that the bit position is a valid one */
+ assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
+
+ /* Ensure that the 'value' is only a bit wide */
+ assert(value <= 1U);
+
+ /*
+ * Get the SCR_EL3 value from the cpu context, clear the desired bit
+ * and set it to its new value.
+ */
+ state = get_el3state_ctx(ctx);
+ scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
+ scr_el3 &= ~(1UL << bit_pos);
+ scr_el3 |= (u_register_t)value << bit_pos;
+ write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
+}
+
+/*******************************************************************************
+ * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
+ * given security state.
+ ******************************************************************************/
+u_register_t cm_get_scr_el3(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+ el3_state_t *state;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ /* Populate EL3 state so that ERET jumps to the correct entry */
+ state = get_el3state_ctx(ctx);
+ return read_ctx_reg(state, CTX_SCR_EL3);
+}
+
+/*******************************************************************************
+ * This function is used to program the context that's used for exception
+ * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
+ * the required security state
+ ******************************************************************************/
+void cm_set_next_eret_context(uint32_t security_state)
+{
+ cpu_context_t *ctx;
+
+ ctx = cm_get_context(security_state);
+ assert(ctx != NULL);
+
+ cm_set_next_context(ctx);
+}