diff options
Diffstat (limited to 'lib/el3_runtime/aarch64/context_mgmt.c')
-rw-r--r-- | lib/el3_runtime/aarch64/context_mgmt.c | 1531 |
1 files changed, 1531 insertions, 0 deletions
diff --git a/lib/el3_runtime/aarch64/context_mgmt.c b/lib/el3_runtime/aarch64/context_mgmt.c new file mode 100644 index 0000000..fdd1388 --- /dev/null +++ b/lib/el3_runtime/aarch64/context_mgmt.c @@ -0,0 +1,1531 @@ +/* + * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved. + * Copyright (c) 2022, NVIDIA Corporation. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <stdbool.h> +#include <string.h> + +#include <platform_def.h> + +#include <arch.h> +#include <arch_helpers.h> +#include <arch_features.h> +#include <bl31/interrupt_mgmt.h> +#include <common/bl_common.h> +#include <common/debug.h> +#include <context.h> +#include <drivers/arm/gicv3.h> +#include <lib/el3_runtime/context_mgmt.h> +#include <lib/el3_runtime/cpu_data.h> +#include <lib/el3_runtime/pubsub_events.h> +#include <lib/extensions/amu.h> +#include <lib/extensions/brbe.h> +#include <lib/extensions/mpam.h> +#include <lib/extensions/pmuv3.h> +#include <lib/extensions/sme.h> +#include <lib/extensions/spe.h> +#include <lib/extensions/sve.h> +#include <lib/extensions/sys_reg_trace.h> +#include <lib/extensions/trbe.h> +#include <lib/extensions/trf.h> +#include <lib/utils.h> + +#if ENABLE_FEAT_TWED +/* Make sure delay value fits within the range(0-15) */ +CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check); +#endif /* ENABLE_FEAT_TWED */ + +per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM]; +static bool has_secure_perworld_init; + +static void manage_extensions_nonsecure(cpu_context_t *ctx); +static void manage_extensions_secure(cpu_context_t *ctx); +static void manage_extensions_secure_per_world(void); + +static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep) +{ + u_register_t sctlr_elx, actlr_elx; + + /* + * Initialise SCTLR_EL1 to the reset value corresponding to the target + * execution state setting all fields rather than relying on the hw. + * Some fields have architecturally UNKNOWN reset values and these are + * set to zero. + * + * SCTLR.EE: Endianness is taken from the entrypoint attributes. + * + * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as + * required by PSCI specification) + */ + sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; + if (GET_RW(ep->spsr) == MODE_RW_64) { + sctlr_elx |= SCTLR_EL1_RES1; + } else { + /* + * If the target execution state is AArch32 then the following + * fields need to be set. + * + * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE + * instructions are not trapped to EL1. + * + * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI + * instructions are not trapped to EL1. + * + * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the + * CP15DMB, CP15DSB, and CP15ISB instructions. + */ + sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT + | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; + } + +#if ERRATA_A75_764081 + /* + * If workaround of errata 764081 for Cortex-A75 is used then set + * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier. + */ + sctlr_elx |= SCTLR_IESB_BIT; +#endif + /* Store the initialised SCTLR_EL1 value in the cpu_context */ + write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); + + /* + * Base the context ACTLR_EL1 on the current value, as it is + * implementation defined. The context restore process will write + * the value from the context to the actual register and can cause + * problems for processor cores that don't expect certain bits to + * be zero. + */ + actlr_elx = read_actlr_el1(); + write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); +} + +/****************************************************************************** + * This function performs initializations that are specific to SECURE state + * and updates the cpu context specified by 'ctx'. + *****************************************************************************/ +static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep) +{ + u_register_t scr_el3; + el3_state_t *state; + + state = get_el3state_ctx(ctx); + scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); + +#if defined(IMAGE_BL31) && !defined(SPD_spmd) + /* + * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as + * indicated by the interrupt routing model for BL31. + */ + scr_el3 |= get_scr_el3_from_routing_model(SECURE); +#endif + +#if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS + /* Get Memory Tagging Extension support level */ + unsigned int mte = get_armv8_5_mte_support(); +#endif + /* + * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS + * is set, or when MTE is only implemented at EL0. + */ +#if CTX_INCLUDE_MTE_REGS + assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)); + scr_el3 |= SCR_ATA_BIT; +#else + if (mte == MTE_IMPLEMENTED_EL0) { + scr_el3 |= SCR_ATA_BIT; + } +#endif /* CTX_INCLUDE_MTE_REGS */ + + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); + + /* + * Initialize EL1 context registers unless SPMC is running + * at S-EL2. + */ +#if !SPMD_SPM_AT_SEL2 + setup_el1_context(ctx, ep); +#endif + + manage_extensions_secure(ctx); + + /** + * manage_extensions_secure_per_world api has to be executed once, + * as the registers getting initialised, maintain constant value across + * all the cpus for the secure world. + * Henceforth, this check ensures that the registers are initialised once + * and avoids re-initialization from multiple cores. + */ + if (!has_secure_perworld_init) { + manage_extensions_secure_per_world(); + } + +} + +#if ENABLE_RME +/****************************************************************************** + * This function performs initializations that are specific to REALM state + * and updates the cpu context specified by 'ctx'. + *****************************************************************************/ +static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep) +{ + u_register_t scr_el3; + el3_state_t *state; + + state = get_el3state_ctx(ctx); + scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); + + scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT; + + if (is_feat_csv2_2_supported()) { + /* Enable access to the SCXTNUM_ELx registers. */ + scr_el3 |= SCR_EnSCXT_BIT; + } + + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); +} +#endif /* ENABLE_RME */ + +/****************************************************************************** + * This function performs initializations that are specific to NON-SECURE state + * and updates the cpu context specified by 'ctx'. + *****************************************************************************/ +static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep) +{ + u_register_t scr_el3; + el3_state_t *state; + + state = get_el3state_ctx(ctx); + scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); + + /* SCR_NS: Set the NS bit */ + scr_el3 |= SCR_NS_BIT; + + /* Allow access to Allocation Tags when MTE is implemented. */ + scr_el3 |= SCR_ATA_BIT; + +#if !CTX_INCLUDE_PAUTH_REGS + /* + * Pointer Authentication feature, if present, is always enabled by default + * for Non secure lower exception levels. We do not have an explicit + * flag to set it. + * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower + * exception levels of secure and realm worlds. + * + * To prevent the leakage between the worlds during world switch, + * we enable it only for the non-secure world. + * + * If the Secure/realm world wants to use pointer authentication, + * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case + * it will be enabled globally for all the contexts. + * + * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs + * other than EL3 + * + * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other + * than EL3 + */ + scr_el3 |= SCR_API_BIT | SCR_APK_BIT; + +#endif /* CTX_INCLUDE_PAUTH_REGS */ + +#if HANDLE_EA_EL3_FIRST_NS + /* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */ + scr_el3 |= SCR_EA_BIT; +#endif + +#if RAS_TRAP_NS_ERR_REC_ACCESS + /* + * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR + * and RAS ERX registers from EL1 and EL2(from any security state) + * are trapped to EL3. + * Set here to trap only for NS EL1/EL2 + * + */ + scr_el3 |= SCR_TERR_BIT; +#endif + + if (is_feat_csv2_2_supported()) { + /* Enable access to the SCXTNUM_ELx registers. */ + scr_el3 |= SCR_EnSCXT_BIT; + } + +#ifdef IMAGE_BL31 + /* + * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as + * indicated by the interrupt routing model for BL31. + */ + scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE); +#endif + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); + + /* Initialize EL1 context registers */ + setup_el1_context(ctx, ep); + + /* Initialize EL2 context registers */ +#if CTX_INCLUDE_EL2_REGS + + /* + * Initialize SCTLR_EL2 context register using Endianness value + * taken from the entrypoint attribute. + */ + u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; + sctlr_el2 |= SCTLR_EL2_RES1; + write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2, + sctlr_el2); + + if (is_feat_hcx_supported()) { + /* + * Initialize register HCRX_EL2 with its init value. + * As the value of HCRX_EL2 is UNKNOWN on reset, there is a + * chance that this can lead to unexpected behavior in lower + * ELs that have not been updated since the introduction of + * this feature if not properly initialized, especially when + * it comes to those bits that enable/disable traps. + */ + write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2, + HCRX_EL2_INIT_VAL); + } + + if (is_feat_fgt_supported()) { + /* + * Initialize HFG*_EL2 registers with a default value so legacy + * systems unaware of FEAT_FGT do not get trapped due to their lack + * of initialization for this feature. + */ + write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGITR_EL2, + HFGITR_EL2_INIT_VAL); + write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGRTR_EL2, + HFGRTR_EL2_INIT_VAL); + write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGWTR_EL2, + HFGWTR_EL2_INIT_VAL); + } +#endif /* CTX_INCLUDE_EL2_REGS */ + + manage_extensions_nonsecure(ctx); +} + +/******************************************************************************* + * The following function performs initialization of the cpu_context 'ctx' + * for first use that is common to all security states, and sets the + * initial entrypoint state as specified by the entry_point_info structure. + * + * The EE and ST attributes are used to configure the endianness and secure + * timer availability for the new execution context. + ******************************************************************************/ +static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) +{ + u_register_t scr_el3; + el3_state_t *state; + gp_regs_t *gp_regs; + + state = get_el3state_ctx(ctx); + + /* Clear any residual register values from the context */ + zeromem(ctx, sizeof(*ctx)); + + /* + * The lower-EL context is zeroed so that no stale values leak to a world. + * It is assumed that an all-zero lower-EL context is good enough for it + * to boot correctly. However, there are very few registers where this + * is not true and some values need to be recreated. + */ +#if CTX_INCLUDE_EL2_REGS + el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx); + + /* + * These bits are set in the gicv3 driver. Losing them (especially the + * SRE bit) is problematic for all worlds. Henceforth recreate them. + */ + u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT | + ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT; + write_ctx_reg(el2_ctx, CTX_ICC_SRE_EL2, icc_sre_el2); +#endif /* CTX_INCLUDE_EL2_REGS */ + + /* Start with a clean SCR_EL3 copy as all relevant values are set */ + scr_el3 = SCR_RESET_VAL; + + /* + * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at + * EL2, EL1 and EL0 are not trapped to EL3. + * + * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at + * EL2, EL1 and EL0 are not trapped to EL3. + * + * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from + * both Security states and both Execution states. + * + * SCR_EL3.SIF: Set to one to disable secure instruction execution from + * Non-secure memory. + */ + scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT); + + scr_el3 |= SCR_SIF_BIT; + + /* + * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next + * Exception level as specified by SPSR. + */ + if (GET_RW(ep->spsr) == MODE_RW_64) { + scr_el3 |= SCR_RW_BIT; + } + + /* + * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical + * Secure timer registers to EL3, from AArch64 state only, if specified + * by the entrypoint attributes. If SEL2 is present and enabled, the ST + * bit always behaves as 1 (i.e. secure physical timer register access + * is not trapped) + */ + if (EP_GET_ST(ep->h.attr) != 0U) { + scr_el3 |= SCR_ST_BIT; + } + + /* + * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting + * SCR_EL3.HXEn. + */ + if (is_feat_hcx_supported()) { + scr_el3 |= SCR_HXEn_BIT; + } + + /* + * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS + * registers are trapped to EL3. + */ +#if ENABLE_FEAT_RNG_TRAP + scr_el3 |= SCR_TRNDR_BIT; +#endif + +#if FAULT_INJECTION_SUPPORT + /* Enable fault injection from lower ELs */ + scr_el3 |= SCR_FIEN_BIT; +#endif + +#if CTX_INCLUDE_PAUTH_REGS + /* + * Enable Pointer Authentication globally for all the worlds. + * + * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs + * other than EL3 + * + * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other + * than EL3 + */ + scr_el3 |= SCR_API_BIT | SCR_APK_BIT; +#endif /* CTX_INCLUDE_PAUTH_REGS */ + + /* + * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present. + */ + if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) { + scr_el3 |= SCR_TCR2EN_BIT; + } + + /* + * SCR_EL3.PIEN: Enable permission indirection and overlay + * registers for AArch64 if present. + */ + if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) { + scr_el3 |= SCR_PIEN_BIT; + } + + /* + * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present. + */ + if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) { + scr_el3 |= SCR_GCSEn_BIT; + } + + /* + * SCR_EL3.HCE: Enable HVC instructions if next execution state is + * AArch64 and next EL is EL2, or if next execution state is AArch32 and + * next mode is Hyp. + * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the + * same conditions as HVC instructions and when the processor supports + * ARMv8.6-FGT. + * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV) + * CNTPOFF_EL2 register under the same conditions as HVC instructions + * and when the processor supports ECV. + */ + if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) + || ((GET_RW(ep->spsr) != MODE_RW_64) + && (GET_M32(ep->spsr) == MODE32_hyp))) { + scr_el3 |= SCR_HCE_BIT; + + if (is_feat_fgt_supported()) { + scr_el3 |= SCR_FGTEN_BIT; + } + + if (is_feat_ecv_supported()) { + scr_el3 |= SCR_ECVEN_BIT; + } + } + + /* Enable WFE trap delay in SCR_EL3 if supported and configured */ + if (is_feat_twed_supported()) { + /* Set delay in SCR_EL3 */ + scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT); + scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK) + << SCR_TWEDEL_SHIFT); + + /* Enable WFE delay */ + scr_el3 |= SCR_TWEDEn_BIT; + } + +#if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2 + /* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */ + if (is_feat_sel2_supported()) { + scr_el3 |= SCR_EEL2_BIT; + } +#endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */ + + if (is_feat_mpam_supported()) { + write_ctx_reg(get_el3state_ctx(ctx), CTX_MPAM3_EL3, \ + MPAM3_EL3_RESET_VAL); + } + + /* + * Populate EL3 state so that we've the right context + * before doing ERET + */ + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); + write_ctx_reg(state, CTX_ELR_EL3, ep->pc); + write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); + + /* + * Store the X0-X7 value from the entrypoint into the context + * Use memcpy as we are in control of the layout of the structures + */ + gp_regs = get_gpregs_ctx(ctx); + memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); +} + +/******************************************************************************* + * Context management library initialization routine. This library is used by + * runtime services to share pointers to 'cpu_context' structures for secure + * non-secure and realm states. Management of the structures and their associated + * memory is not done by the context management library e.g. the PSCI service + * manages the cpu context used for entry from and exit to the non-secure state. + * The Secure payload dispatcher service manages the context(s) corresponding to + * the secure state. It also uses this library to get access to the non-secure + * state cpu context pointers. + * Lastly, this library provides the API to make SP_EL3 point to the cpu context + * which will be used for programming an entry into a lower EL. The same context + * will be used to save state upon exception entry from that EL. + ******************************************************************************/ +void __init cm_init(void) +{ + /* + * The context management library has only global data to initialize, but + * that will be done when the BSS is zeroed out. + */ +} + +/******************************************************************************* + * This is the high-level function used to initialize the cpu_context 'ctx' for + * first use. It performs initializations that are common to all security states + * and initializations specific to the security state specified in 'ep' + ******************************************************************************/ +void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) +{ + unsigned int security_state; + + assert(ctx != NULL); + + /* + * Perform initializations that are common + * to all security states + */ + setup_context_common(ctx, ep); + + security_state = GET_SECURITY_STATE(ep->h.attr); + + /* Perform security state specific initializations */ + switch (security_state) { + case SECURE: + setup_secure_context(ctx, ep); + break; +#if ENABLE_RME + case REALM: + setup_realm_context(ctx, ep); + break; +#endif + case NON_SECURE: + setup_ns_context(ctx, ep); + break; + default: + ERROR("Invalid security state\n"); + panic(); + break; + } +} + +/******************************************************************************* + * Enable architecture extensions for EL3 execution. This function only updates + * registers in-place which are expected to either never change or be + * overwritten by el3_exit. + ******************************************************************************/ +#if IMAGE_BL31 +void cm_manage_extensions_el3(void) +{ + if (is_feat_spe_supported()) { + spe_init_el3(); + } + + if (is_feat_amu_supported()) { + amu_init_el3(); + } + + if (is_feat_sme_supported()) { + sme_init_el3(); + } + + if (is_feat_trbe_supported()) { + trbe_init_el3(); + } + + if (is_feat_brbe_supported()) { + brbe_init_el3(); + } + + if (is_feat_trf_supported()) { + trf_init_el3(); + } + + pmuv3_init_el3(); +} +#endif /* IMAGE_BL31 */ + +/******************************************************************************* + * Initialise per_world_context for Non-Secure world. + * This function enables the architecture extensions, which have same value + * across the cores for the non-secure world. + ******************************************************************************/ +#if IMAGE_BL31 +void manage_extensions_nonsecure_per_world(void) +{ + if (is_feat_sme_supported()) { + sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); + } + + if (is_feat_sve_supported()) { + sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); + } + + if (is_feat_amu_supported()) { + amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); + } + + if (is_feat_sys_reg_trace_supported()) { + sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); + } +} +#endif /* IMAGE_BL31 */ + +/******************************************************************************* + * Initialise per_world_context for Secure world. + * This function enables the architecture extensions, which have same value + * across the cores for the secure world. + ******************************************************************************/ + +static void manage_extensions_secure_per_world(void) +{ +#if IMAGE_BL31 + if (is_feat_sme_supported()) { + + if (ENABLE_SME_FOR_SWD) { + /* + * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure + * SME, SVE, and FPU/SIMD context properly managed. + */ + sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); + } else { + /* + * Disable SME, SVE, FPU/SIMD in secure context so non-secure + * world can safely use the associated registers. + */ + sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); + } + } + if (is_feat_sve_supported()) { + if (ENABLE_SVE_FOR_SWD) { + /* + * Enable SVE and FPU in secure context, SPM must ensure + * that the SVE and FPU register contexts are properly managed. + */ + sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); + } else { + /* + * Disable SVE and FPU in secure context so non-secure world + * can safely use them. + */ + sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); + } + } + + /* NS can access this but Secure shouldn't */ + if (is_feat_sys_reg_trace_supported()) { + sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); + } + + has_secure_perworld_init = true; +#endif /* IMAGE_BL31 */ +} + +/******************************************************************************* + * Enable architecture extensions on first entry to Non-secure world. + ******************************************************************************/ +static void manage_extensions_nonsecure(cpu_context_t *ctx) +{ +#if IMAGE_BL31 + if (is_feat_amu_supported()) { + amu_enable(ctx); + } + + if (is_feat_sme_supported()) { + sme_enable(ctx); + } + + if (is_feat_mpam_supported()) { + mpam_enable(ctx); + } + pmuv3_enable(ctx); +#endif /* IMAGE_BL31 */ +} + +/* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */ +static __unused void enable_pauth_el2(void) +{ + u_register_t hcr_el2 = read_hcr_el2(); + /* + * For Armv8.3 pointer authentication feature, disable traps to EL2 when + * accessing key registers or using pointer authentication instructions + * from lower ELs. + */ + hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); + + write_hcr_el2(hcr_el2); +} + +#if INIT_UNUSED_NS_EL2 +/******************************************************************************* + * Enable architecture extensions in-place at EL2 on first entry to Non-secure + * world when EL2 is empty and unused. + ******************************************************************************/ +static void manage_extensions_nonsecure_el2_unused(void) +{ +#if IMAGE_BL31 + if (is_feat_spe_supported()) { + spe_init_el2_unused(); + } + + if (is_feat_amu_supported()) { + amu_init_el2_unused(); + } + + if (is_feat_mpam_supported()) { + mpam_init_el2_unused(); + } + + if (is_feat_trbe_supported()) { + trbe_init_el2_unused(); + } + + if (is_feat_sys_reg_trace_supported()) { + sys_reg_trace_init_el2_unused(); + } + + if (is_feat_trf_supported()) { + trf_init_el2_unused(); + } + + pmuv3_init_el2_unused(); + + if (is_feat_sve_supported()) { + sve_init_el2_unused(); + } + + if (is_feat_sme_supported()) { + sme_init_el2_unused(); + } + +#if ENABLE_PAUTH + enable_pauth_el2(); +#endif /* ENABLE_PAUTH */ +#endif /* IMAGE_BL31 */ +} +#endif /* INIT_UNUSED_NS_EL2 */ + +/******************************************************************************* + * Enable architecture extensions on first entry to Secure world. + ******************************************************************************/ +static void manage_extensions_secure(cpu_context_t *ctx) +{ +#if IMAGE_BL31 + if (is_feat_sme_supported()) { + if (ENABLE_SME_FOR_SWD) { + /* + * Enable SME, SVE, FPU/SIMD in secure context, secure manager + * must ensure SME, SVE, and FPU/SIMD context properly managed. + */ + sme_init_el3(); + sme_enable(ctx); + } else { + /* + * Disable SME, SVE, FPU/SIMD in secure context so non-secure + * world can safely use the associated registers. + */ + sme_disable(ctx); + } + } +#endif /* IMAGE_BL31 */ +} + +/******************************************************************************* + * The following function initializes the cpu_context for a CPU specified by + * its `cpu_idx` for first use, and sets the initial entrypoint state as + * specified by the entry_point_info structure. + ******************************************************************************/ +void cm_init_context_by_index(unsigned int cpu_idx, + const entry_point_info_t *ep) +{ + cpu_context_t *ctx; + ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); + cm_setup_context(ctx, ep); +} + +/******************************************************************************* + * The following function initializes the cpu_context for the current CPU + * for first use, and sets the initial entrypoint state as specified by the + * entry_point_info structure. + ******************************************************************************/ +void cm_init_my_context(const entry_point_info_t *ep) +{ + cpu_context_t *ctx; + ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); + cm_setup_context(ctx, ep); +} + +/* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */ +static void init_nonsecure_el2_unused(cpu_context_t *ctx) +{ +#if INIT_UNUSED_NS_EL2 + u_register_t hcr_el2 = HCR_RESET_VAL; + u_register_t mdcr_el2; + u_register_t scr_el3; + + scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); + + /* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */ + if ((scr_el3 & SCR_RW_BIT) != 0U) { + hcr_el2 |= HCR_RW_BIT; + } + + write_hcr_el2(hcr_el2); + + /* + * Initialise CPTR_EL2 setting all fields rather than relying on the hw. + * All fields have architecturally UNKNOWN reset values. + */ + write_cptr_el2(CPTR_EL2_RESET_VAL); + + /* + * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on + * reset and are set to zero except for field(s) listed below. + * + * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of + * Non-secure EL0 and EL1 accesses to the physical timer registers. + * + * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of + * Non-secure EL0 and EL1 accesses to the physical counter registers. + */ + write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT); + + /* + * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally + * UNKNOWN value. + */ + write_cntvoff_el2(0); + + /* + * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1 + * respectively. + */ + write_vpidr_el2(read_midr_el1()); + write_vmpidr_el2(read_mpidr_el1()); + + /* + * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset. + * + * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address + * translation is disabled, cache maintenance operations depend on the + * VMID. + * + * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is + * disabled. + */ + write_vttbr_el2(VTTBR_RESET_VAL & + ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) | + (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); + + /* + * Initialise MDCR_EL2, setting all fields rather than relying on hw. + * Some fields are architecturally UNKNOWN on reset. + * + * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System + * register accesses to the Debug ROM registers are not trapped to EL2. + * + * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register + * accesses to the powerdown debug registers are not trapped to EL2. + * + * MDCR_EL2.TDA: Set to zero so that System register accesses to the + * debug registers do not trap to EL2. + * + * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to + * EL2. + */ + mdcr_el2 = MDCR_EL2_RESET_VAL & + ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT | + MDCR_EL2_TDE_BIT); + + write_mdcr_el2(mdcr_el2); + + /* + * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset. + * + * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or + * EL1 accesses to System registers do not trap to EL2. + */ + write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); + + /* + * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on + * reset. + * + * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer + * and prevent timer interrupts. + */ + write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT)); + + manage_extensions_nonsecure_el2_unused(); +#endif /* INIT_UNUSED_NS_EL2 */ +} + +/******************************************************************************* + * Prepare the CPU system registers for first entry into realm, secure, or + * normal world. + * + * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized + * If execution is requested to non-secure EL1 or svc mode, and the CPU supports + * EL2 then EL2 is disabled by configuring all necessary EL2 registers. + * For all entries, the EL1 registers are initialized from the cpu_context + ******************************************************************************/ +void cm_prepare_el3_exit(uint32_t security_state) +{ + u_register_t sctlr_elx, scr_el3; + cpu_context_t *ctx = cm_get_context(security_state); + + assert(ctx != NULL); + + if (security_state == NON_SECURE) { + uint64_t el2_implemented = el_implemented(2); + + scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), + CTX_SCR_EL3); + + if (((scr_el3 & SCR_HCE_BIT) != 0U) + || (el2_implemented != EL_IMPL_NONE)) { + /* + * If context is not being used for EL2, initialize + * HCRX_EL2 with its init value here. + */ + if (is_feat_hcx_supported()) { + write_hcrx_el2(HCRX_EL2_INIT_VAL); + } + + /* + * Initialize Fine-grained trap registers introduced + * by FEAT_FGT so all traps are initially disabled when + * switching to EL2 or a lower EL, preventing undesired + * behavior. + */ + if (is_feat_fgt_supported()) { + /* + * Initialize HFG*_EL2 registers with a default + * value so legacy systems unaware of FEAT_FGT + * do not get trapped due to their lack of + * initialization for this feature. + */ + write_hfgitr_el2(HFGITR_EL2_INIT_VAL); + write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL); + write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL); + } + } + + + if ((scr_el3 & SCR_HCE_BIT) != 0U) { + /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ + sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx), + CTX_SCTLR_EL1); + sctlr_elx &= SCTLR_EE_BIT; + sctlr_elx |= SCTLR_EL2_RES1; +#if ERRATA_A75_764081 + /* + * If workaround of errata 764081 for Cortex-A75 is used + * then set SCTLR_EL2.IESB to enable Implicit Error + * Synchronization Barrier. + */ + sctlr_elx |= SCTLR_IESB_BIT; +#endif + write_sctlr_el2(sctlr_elx); + } else if (el2_implemented != EL_IMPL_NONE) { + init_nonsecure_el2_unused(ctx); + } + } + + cm_el1_sysregs_context_restore(security_state); + cm_set_next_eret_context(security_state); +} + +#if CTX_INCLUDE_EL2_REGS + +static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx) +{ + write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2()); + if (is_feat_amu_supported()) { + write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2()); + } + write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2()); + write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2()); + write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2()); + write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2()); +} + +static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx) +{ + write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2)); + if (is_feat_amu_supported()) { + write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2)); + } + write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2)); + write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2)); + write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2)); + write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2)); +} + +static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx) +{ + u_register_t mpam_idr = read_mpamidr_el1(); + + write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2()); + + /* + * The context registers that we intend to save would be part of the + * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1. + */ + if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) { + return; + } + + /* + * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if + * MPAMIDR_HAS_HCR_BIT == 1. + */ + write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2()); + write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2()); + write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2()); + + /* + * The number of MPAMVPM registers is implementation defined, their + * number is stored in the MPAMIDR_EL1 register. + */ + switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) { + case 7: + write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2()); + __fallthrough; + case 6: + write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2()); + __fallthrough; + case 5: + write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2()); + __fallthrough; + case 4: + write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2()); + __fallthrough; + case 3: + write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2()); + __fallthrough; + case 2: + write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2()); + __fallthrough; + case 1: + write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2()); + break; + } +} + +static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx) +{ + u_register_t mpam_idr = read_mpamidr_el1(); + + write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2)); + + if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) { + return; + } + + write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2)); + write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2)); + write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2)); + + switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) { + case 7: + write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2)); + __fallthrough; + case 6: + write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2)); + __fallthrough; + case 5: + write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2)); + __fallthrough; + case 4: + write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2)); + __fallthrough; + case 3: + write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2)); + __fallthrough; + case 2: + write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2)); + __fallthrough; + case 1: + write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2)); + break; + } +} + +/* ----------------------------------------------------- + * The following registers are not added: + * AMEVCNTVOFF0<n>_EL2 + * AMEVCNTVOFF1<n>_EL2 + * ICH_AP0R<n>_EL2 + * ICH_AP1R<n>_EL2 + * ICH_LR<n>_EL2 + * ----------------------------------------------------- + */ +static void el2_sysregs_context_save_common(el2_sysregs_t *ctx) +{ + write_ctx_reg(ctx, CTX_ACTLR_EL2, read_actlr_el2()); + write_ctx_reg(ctx, CTX_AFSR0_EL2, read_afsr0_el2()); + write_ctx_reg(ctx, CTX_AFSR1_EL2, read_afsr1_el2()); + write_ctx_reg(ctx, CTX_AMAIR_EL2, read_amair_el2()); + write_ctx_reg(ctx, CTX_CNTHCTL_EL2, read_cnthctl_el2()); + write_ctx_reg(ctx, CTX_CNTVOFF_EL2, read_cntvoff_el2()); + write_ctx_reg(ctx, CTX_CPTR_EL2, read_cptr_el2()); + if (CTX_INCLUDE_AARCH32_REGS) { + write_ctx_reg(ctx, CTX_DBGVCR32_EL2, read_dbgvcr32_el2()); + } + write_ctx_reg(ctx, CTX_ELR_EL2, read_elr_el2()); + write_ctx_reg(ctx, CTX_ESR_EL2, read_esr_el2()); + write_ctx_reg(ctx, CTX_FAR_EL2, read_far_el2()); + write_ctx_reg(ctx, CTX_HACR_EL2, read_hacr_el2()); + write_ctx_reg(ctx, CTX_HCR_EL2, read_hcr_el2()); + write_ctx_reg(ctx, CTX_HPFAR_EL2, read_hpfar_el2()); + write_ctx_reg(ctx, CTX_HSTR_EL2, read_hstr_el2()); + + /* + * Set the NS bit to be able to access the ICC_SRE_EL2 register + * TODO: remove with root context + */ + u_register_t scr_el3 = read_scr_el3(); + + write_scr_el3(scr_el3 | SCR_NS_BIT); + isb(); + write_ctx_reg(ctx, CTX_ICC_SRE_EL2, read_icc_sre_el2()); + + write_scr_el3(scr_el3); + isb(); + + write_ctx_reg(ctx, CTX_ICH_HCR_EL2, read_ich_hcr_el2()); + write_ctx_reg(ctx, CTX_ICH_VMCR_EL2, read_ich_vmcr_el2()); + write_ctx_reg(ctx, CTX_MAIR_EL2, read_mair_el2()); + write_ctx_reg(ctx, CTX_MDCR_EL2, read_mdcr_el2()); + write_ctx_reg(ctx, CTX_SCTLR_EL2, read_sctlr_el2()); + write_ctx_reg(ctx, CTX_SPSR_EL2, read_spsr_el2()); + write_ctx_reg(ctx, CTX_SP_EL2, read_sp_el2()); + write_ctx_reg(ctx, CTX_TCR_EL2, read_tcr_el2()); + write_ctx_reg(ctx, CTX_TPIDR_EL2, read_tpidr_el2()); + write_ctx_reg(ctx, CTX_TTBR0_EL2, read_ttbr0_el2()); + write_ctx_reg(ctx, CTX_VBAR_EL2, read_vbar_el2()); + write_ctx_reg(ctx, CTX_VMPIDR_EL2, read_vmpidr_el2()); + write_ctx_reg(ctx, CTX_VPIDR_EL2, read_vpidr_el2()); + write_ctx_reg(ctx, CTX_VTCR_EL2, read_vtcr_el2()); + write_ctx_reg(ctx, CTX_VTTBR_EL2, read_vttbr_el2()); +} + +static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx) +{ + write_actlr_el2(read_ctx_reg(ctx, CTX_ACTLR_EL2)); + write_afsr0_el2(read_ctx_reg(ctx, CTX_AFSR0_EL2)); + write_afsr1_el2(read_ctx_reg(ctx, CTX_AFSR1_EL2)); + write_amair_el2(read_ctx_reg(ctx, CTX_AMAIR_EL2)); + write_cnthctl_el2(read_ctx_reg(ctx, CTX_CNTHCTL_EL2)); + write_cntvoff_el2(read_ctx_reg(ctx, CTX_CNTVOFF_EL2)); + write_cptr_el2(read_ctx_reg(ctx, CTX_CPTR_EL2)); + if (CTX_INCLUDE_AARCH32_REGS) { + write_dbgvcr32_el2(read_ctx_reg(ctx, CTX_DBGVCR32_EL2)); + } + write_elr_el2(read_ctx_reg(ctx, CTX_ELR_EL2)); + write_esr_el2(read_ctx_reg(ctx, CTX_ESR_EL2)); + write_far_el2(read_ctx_reg(ctx, CTX_FAR_EL2)); + write_hacr_el2(read_ctx_reg(ctx, CTX_HACR_EL2)); + write_hcr_el2(read_ctx_reg(ctx, CTX_HCR_EL2)); + write_hpfar_el2(read_ctx_reg(ctx, CTX_HPFAR_EL2)); + write_hstr_el2(read_ctx_reg(ctx, CTX_HSTR_EL2)); + + /* + * Set the NS bit to be able to access the ICC_SRE_EL2 register + * TODO: remove with root context + */ + u_register_t scr_el3 = read_scr_el3(); + + write_scr_el3(scr_el3 | SCR_NS_BIT); + isb(); + write_icc_sre_el2(read_ctx_reg(ctx, CTX_ICC_SRE_EL2)); + + write_scr_el3(scr_el3); + isb(); + + write_ich_hcr_el2(read_ctx_reg(ctx, CTX_ICH_HCR_EL2)); + write_ich_vmcr_el2(read_ctx_reg(ctx, CTX_ICH_VMCR_EL2)); + write_mair_el2(read_ctx_reg(ctx, CTX_MAIR_EL2)); + write_mdcr_el2(read_ctx_reg(ctx, CTX_MDCR_EL2)); + write_sctlr_el2(read_ctx_reg(ctx, CTX_SCTLR_EL2)); + write_spsr_el2(read_ctx_reg(ctx, CTX_SPSR_EL2)); + write_sp_el2(read_ctx_reg(ctx, CTX_SP_EL2)); + write_tcr_el2(read_ctx_reg(ctx, CTX_TCR_EL2)); + write_tpidr_el2(read_ctx_reg(ctx, CTX_TPIDR_EL2)); + write_ttbr0_el2(read_ctx_reg(ctx, CTX_TTBR0_EL2)); + write_vbar_el2(read_ctx_reg(ctx, CTX_VBAR_EL2)); + write_vmpidr_el2(read_ctx_reg(ctx, CTX_VMPIDR_EL2)); + write_vpidr_el2(read_ctx_reg(ctx, CTX_VPIDR_EL2)); + write_vtcr_el2(read_ctx_reg(ctx, CTX_VTCR_EL2)); + write_vttbr_el2(read_ctx_reg(ctx, CTX_VTTBR_EL2)); +} + +/******************************************************************************* + * Save EL2 sysreg context + ******************************************************************************/ +void cm_el2_sysregs_context_save(uint32_t security_state) +{ + cpu_context_t *ctx; + el2_sysregs_t *el2_sysregs_ctx; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); + + el2_sysregs_context_save_common(el2_sysregs_ctx); +#if CTX_INCLUDE_MTE_REGS + write_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2, read_tfsr_el2()); +#endif + if (is_feat_mpam_supported()) { + el2_sysregs_context_save_mpam(el2_sysregs_ctx); + } + + if (is_feat_fgt_supported()) { + el2_sysregs_context_save_fgt(el2_sysregs_ctx); + } + + if (is_feat_ecv_v2_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2, read_cntpoff_el2()); + } + + if (is_feat_vhe_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2, read_contextidr_el2()); + write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2, read_ttbr1_el2()); + } + + if (is_feat_ras_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2, read_vdisr_el2()); + write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2, read_vsesr_el2()); + } + + if (is_feat_nv2_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2, read_vncr_el2()); + } + + if (is_feat_trf_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2()); + } + + if (is_feat_csv2_2_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2, read_scxtnum_el2()); + } + + if (is_feat_hcx_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2()); + } + if (is_feat_tcr2_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2()); + } + if (is_feat_sxpie_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2()); + write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2()); + } + if (is_feat_s2pie_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2()); + } + if (is_feat_sxpoe_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2()); + } + if (is_feat_gcs_supported()) { + write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2()); + write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2()); + } +} + +/******************************************************************************* + * Restore EL2 sysreg context + ******************************************************************************/ +void cm_el2_sysregs_context_restore(uint32_t security_state) +{ + cpu_context_t *ctx; + el2_sysregs_t *el2_sysregs_ctx; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); + + el2_sysregs_context_restore_common(el2_sysregs_ctx); +#if CTX_INCLUDE_MTE_REGS + write_tfsr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2)); +#endif + if (is_feat_mpam_supported()) { + el2_sysregs_context_restore_mpam(el2_sysregs_ctx); + } + + if (is_feat_fgt_supported()) { + el2_sysregs_context_restore_fgt(el2_sysregs_ctx); + } + + if (is_feat_ecv_v2_supported()) { + write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2)); + } + + if (is_feat_vhe_supported()) { + write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2)); + write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2)); + } + + if (is_feat_ras_supported()) { + write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2)); + write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2)); + } + + if (is_feat_nv2_supported()) { + write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2)); + } + if (is_feat_trf_supported()) { + write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2)); + } + + if (is_feat_csv2_2_supported()) { + write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2)); + } + + if (is_feat_hcx_supported()) { + write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2)); + } + if (is_feat_tcr2_supported()) { + write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2)); + } + if (is_feat_sxpie_supported()) { + write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2)); + write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2)); + } + if (is_feat_s2pie_supported()) { + write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2)); + } + if (is_feat_sxpoe_supported()) { + write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2)); + } + if (is_feat_gcs_supported()) { + write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2)); + write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2)); + } +} +#endif /* CTX_INCLUDE_EL2_REGS */ + +/******************************************************************************* + * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS + * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly + * updating EL1 and EL2 registers. Otherwise, it calls the generic + * cm_prepare_el3_exit function. + ******************************************************************************/ +void cm_prepare_el3_exit_ns(void) +{ +#if CTX_INCLUDE_EL2_REGS +#if ENABLE_ASSERTIONS + cpu_context_t *ctx = cm_get_context(NON_SECURE); + assert(ctx != NULL); + + /* Assert that EL2 is used. */ + u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); + assert(((scr_el3 & SCR_HCE_BIT) != 0UL) && + (el_implemented(2U) != EL_IMPL_NONE)); +#endif /* ENABLE_ASSERTIONS */ + + /* Restore EL2 and EL1 sysreg contexts */ + cm_el2_sysregs_context_restore(NON_SECURE); + cm_el1_sysregs_context_restore(NON_SECURE); + cm_set_next_eret_context(NON_SECURE); +#else + cm_prepare_el3_exit(NON_SECURE); +#endif /* CTX_INCLUDE_EL2_REGS */ +} + +/******************************************************************************* + * The next four functions are used by runtime services to save and restore + * EL1 context on the 'cpu_context' structure for the specified security + * state. + ******************************************************************************/ +void cm_el1_sysregs_context_save(uint32_t security_state) +{ + cpu_context_t *ctx; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + el1_sysregs_context_save(get_el1_sysregs_ctx(ctx)); + +#if IMAGE_BL31 + if (security_state == SECURE) + PUBLISH_EVENT(cm_exited_secure_world); + else + PUBLISH_EVENT(cm_exited_normal_world); +#endif +} + +void cm_el1_sysregs_context_restore(uint32_t security_state) +{ + cpu_context_t *ctx; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx)); + +#if IMAGE_BL31 + if (security_state == SECURE) + PUBLISH_EVENT(cm_entering_secure_world); + else + PUBLISH_EVENT(cm_entering_normal_world); +#endif +} + +/******************************************************************************* + * This function populates ELR_EL3 member of 'cpu_context' pertaining to the + * given security state with the given entrypoint + ******************************************************************************/ +void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) +{ + cpu_context_t *ctx; + el3_state_t *state; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + /* Populate EL3 state so that ERET jumps to the correct entry */ + state = get_el3state_ctx(ctx); + write_ctx_reg(state, CTX_ELR_EL3, entrypoint); +} + +/******************************************************************************* + * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' + * pertaining to the given security state + ******************************************************************************/ +void cm_set_elr_spsr_el3(uint32_t security_state, + uintptr_t entrypoint, uint32_t spsr) +{ + cpu_context_t *ctx; + el3_state_t *state; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + /* Populate EL3 state so that ERET jumps to the correct entry */ + state = get_el3state_ctx(ctx); + write_ctx_reg(state, CTX_ELR_EL3, entrypoint); + write_ctx_reg(state, CTX_SPSR_EL3, spsr); +} + +/******************************************************************************* + * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' + * pertaining to the given security state using the value and bit position + * specified in the parameters. It preserves all other bits. + ******************************************************************************/ +void cm_write_scr_el3_bit(uint32_t security_state, + uint32_t bit_pos, + uint32_t value) +{ + cpu_context_t *ctx; + el3_state_t *state; + u_register_t scr_el3; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + /* Ensure that the bit position is a valid one */ + assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U); + + /* Ensure that the 'value' is only a bit wide */ + assert(value <= 1U); + + /* + * Get the SCR_EL3 value from the cpu context, clear the desired bit + * and set it to its new value. + */ + state = get_el3state_ctx(ctx); + scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); + scr_el3 &= ~(1UL << bit_pos); + scr_el3 |= (u_register_t)value << bit_pos; + write_ctx_reg(state, CTX_SCR_EL3, scr_el3); +} + +/******************************************************************************* + * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the + * given security state. + ******************************************************************************/ +u_register_t cm_get_scr_el3(uint32_t security_state) +{ + cpu_context_t *ctx; + el3_state_t *state; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + /* Populate EL3 state so that ERET jumps to the correct entry */ + state = get_el3state_ctx(ctx); + return read_ctx_reg(state, CTX_SCR_EL3); +} + +/******************************************************************************* + * This function is used to program the context that's used for exception + * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for + * the required security state + ******************************************************************************/ +void cm_set_next_eret_context(uint32_t security_state) +{ + cpu_context_t *ctx; + + ctx = cm_get_context(security_state); + assert(ctx != NULL); + + cm_set_next_context(ctx); +} |