summaryrefslogtreecommitdiffstats
path: root/services/spd/opteed/opteed_main.c
diff options
context:
space:
mode:
Diffstat (limited to 'services/spd/opteed/opteed_main.c')
-rw-r--r--services/spd/opteed/opteed_main.c695
1 files changed, 695 insertions, 0 deletions
diff --git a/services/spd/opteed/opteed_main.c b/services/spd/opteed/opteed_main.c
new file mode 100644
index 0000000..4d055db
--- /dev/null
+++ b/services/spd/opteed/opteed_main.c
@@ -0,0 +1,695 @@
+/*
+ * Copyright (c) 2013-2023, ARM Limited and Contributors. All rights reserved.
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ */
+
+
+/*******************************************************************************
+ * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
+ * plug-in component to the Secure Monitor, registered as a runtime service. The
+ * SPD is expected to be a functional extension of the Secure Payload (SP) that
+ * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
+ * the Trusted OS/Applications range to the dispatcher. The SPD will either
+ * handle the request locally or delegate it to the Secure Payload. It is also
+ * responsible for initialising and maintaining communication with the SP.
+ ******************************************************************************/
+#include <assert.h>
+#include <errno.h>
+#include <inttypes.h>
+#include <stddef.h>
+
+#include <arch_helpers.h>
+#include <bl31/bl31.h>
+#include <common/bl_common.h>
+#include <common/debug.h>
+#include <common/runtime_svc.h>
+#include <lib/coreboot.h>
+#include <lib/el3_runtime/context_mgmt.h>
+#include <lib/optee_utils.h>
+#include <lib/xlat_tables/xlat_tables_v2.h>
+#if OPTEE_ALLOW_SMC_LOAD
+#include <libfdt.h>
+#endif /* OPTEE_ALLOW_SMC_LOAD */
+#include <plat/common/platform.h>
+#include <tools_share/uuid.h>
+
+#include "opteed_private.h"
+#include "teesmc_opteed.h"
+
+/*******************************************************************************
+ * Address of the entrypoint vector table in OPTEE. It is
+ * initialised once on the primary core after a cold boot.
+ ******************************************************************************/
+struct optee_vectors *optee_vector_table;
+
+/*******************************************************************************
+ * Array to keep track of per-cpu OPTEE state
+ ******************************************************************************/
+optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
+uint32_t opteed_rw;
+
+#if OPTEE_ALLOW_SMC_LOAD
+static bool opteed_allow_load;
+/* OP-TEE image loading service UUID */
+DEFINE_SVC_UUID2(optee_image_load_uuid,
+ 0xb1eafba3, 0x5d31, 0x4612, 0xb9, 0x06,
+ 0xc4, 0xc7, 0xa4, 0xbe, 0x3c, 0xc0);
+
+#define OPTEED_FDT_SIZE 256
+static uint8_t fdt_buf[OPTEED_FDT_SIZE] __aligned(CACHE_WRITEBACK_GRANULE);
+
+#else
+static int32_t opteed_init(void);
+#endif
+
+uint64_t dual32to64(uint32_t high, uint32_t low)
+{
+ return ((uint64_t)high << 32) | low;
+}
+
+/*******************************************************************************
+ * This function is the handler registered for S-EL1 interrupts by the
+ * OPTEED. It validates the interrupt and upon success arranges entry into
+ * the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
+ ******************************************************************************/
+static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
+ uint32_t flags,
+ void *handle,
+ void *cookie)
+{
+ uint32_t linear_id;
+ optee_context_t *optee_ctx;
+
+ /* Check the security state when the exception was generated */
+ assert(get_interrupt_src_ss(flags) == NON_SECURE);
+
+ /* Sanity check the pointer to this cpu's context */
+ assert(handle == cm_get_context(NON_SECURE));
+
+ /* Save the non-secure context before entering the OPTEE */
+ cm_el1_sysregs_context_save(NON_SECURE);
+
+ /* Get a reference to this cpu's OPTEE context */
+ linear_id = plat_my_core_pos();
+ optee_ctx = &opteed_sp_context[linear_id];
+ assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
+
+ cm_set_elr_el3(SECURE, (uint64_t)&optee_vector_table->fiq_entry);
+ cm_el1_sysregs_context_restore(SECURE);
+ cm_set_next_eret_context(SECURE);
+
+ /*
+ * Tell the OPTEE that it has to handle an FIQ (synchronously).
+ * Also the instruction in normal world where the interrupt was
+ * generated is passed for debugging purposes. It is safe to
+ * retrieve this address from ELR_EL3 as the secure context will
+ * not take effect until el3_exit().
+ */
+ SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
+}
+
+/*******************************************************************************
+ * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
+ * (aarch32/aarch64) if not already known and initialises the context for entry
+ * into OPTEE for its initialization.
+ ******************************************************************************/
+static int32_t opteed_setup(void)
+{
+#if OPTEE_ALLOW_SMC_LOAD
+ opteed_allow_load = true;
+ INFO("Delaying OP-TEE setup until we receive an SMC call to load it\n");
+ return 0;
+#else
+ entry_point_info_t *optee_ep_info;
+ uint32_t linear_id;
+ uint64_t opteed_pageable_part;
+ uint64_t opteed_mem_limit;
+ uint64_t dt_addr;
+
+ linear_id = plat_my_core_pos();
+
+ /*
+ * Get information about the Secure Payload (BL32) image. Its
+ * absence is a critical failure. TODO: Add support to
+ * conditionally include the SPD service
+ */
+ optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
+ if (!optee_ep_info) {
+ WARN("No OPTEE provided by BL2 boot loader, Booting device"
+ " without OPTEE initialization. SMC`s destined for OPTEE"
+ " will return SMC_UNK\n");
+ return 1;
+ }
+
+ /*
+ * If there's no valid entry point for SP, we return a non-zero value
+ * signalling failure initializing the service. We bail out without
+ * registering any handlers
+ */
+ if (!optee_ep_info->pc)
+ return 1;
+
+ opteed_rw = optee_ep_info->args.arg0;
+ opteed_pageable_part = optee_ep_info->args.arg1;
+ opteed_mem_limit = optee_ep_info->args.arg2;
+ dt_addr = optee_ep_info->args.arg3;
+
+ opteed_init_optee_ep_state(optee_ep_info,
+ opteed_rw,
+ optee_ep_info->pc,
+ opteed_pageable_part,
+ opteed_mem_limit,
+ dt_addr,
+ &opteed_sp_context[linear_id]);
+
+ /*
+ * All OPTEED initialization done. Now register our init function with
+ * BL31 for deferred invocation
+ */
+ bl31_register_bl32_init(&opteed_init);
+
+ return 0;
+#endif /* OPTEE_ALLOW_SMC_LOAD */
+}
+
+/*******************************************************************************
+ * This function passes control to the OPTEE image (BL32) for the first time
+ * on the primary cpu after a cold boot. It assumes that a valid secure
+ * context has already been created by opteed_setup() which can be directly
+ * used. It also assumes that a valid non-secure context has been
+ * initialised by PSCI so it does not need to save and restore any
+ * non-secure state. This function performs a synchronous entry into
+ * OPTEE. OPTEE passes control back to this routine through a SMC. This returns
+ * a non-zero value on success and zero on failure.
+ ******************************************************************************/
+static int32_t
+opteed_init_with_entry_point(entry_point_info_t *optee_entry_point)
+{
+ uint32_t linear_id = plat_my_core_pos();
+ optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
+ uint64_t rc;
+ assert(optee_entry_point);
+
+ cm_init_my_context(optee_entry_point);
+
+ /*
+ * Arrange for an entry into OPTEE. It will be returned via
+ * OPTEE_ENTRY_DONE case
+ */
+ rc = opteed_synchronous_sp_entry(optee_ctx);
+ assert(rc != 0);
+
+ return rc;
+}
+
+#if !OPTEE_ALLOW_SMC_LOAD
+static int32_t opteed_init(void)
+{
+ entry_point_info_t *optee_entry_point;
+ /*
+ * Get information about the OP-TEE (BL32) image. Its
+ * absence is a critical failure.
+ */
+ optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
+ return opteed_init_with_entry_point(optee_entry_point);
+}
+#endif /* !OPTEE_ALLOW_SMC_LOAD */
+
+#if OPTEE_ALLOW_SMC_LOAD
+#if COREBOOT
+/*
+ * Adds a firmware/coreboot node with the coreboot table information to a device
+ * tree. Returns zero on success or if there is no coreboot table information;
+ * failure code otherwise.
+ */
+static int add_coreboot_node(void *fdt)
+{
+ int ret;
+ uint64_t coreboot_table_addr;
+ uint32_t coreboot_table_size;
+ struct {
+ uint64_t addr;
+ uint32_t size;
+ } reg_node;
+ coreboot_get_table_location(&coreboot_table_addr, &coreboot_table_size);
+ if (!coreboot_table_addr || !coreboot_table_size) {
+ WARN("Unable to get coreboot table location for device tree");
+ return 0;
+ }
+ ret = fdt_begin_node(fdt, "firmware");
+ if (ret)
+ return ret;
+
+ ret = fdt_property(fdt, "ranges", NULL, 0);
+ if (ret)
+ return ret;
+
+ ret = fdt_begin_node(fdt, "coreboot");
+ if (ret)
+ return ret;
+
+ ret = fdt_property_string(fdt, "compatible", "coreboot");
+ if (ret)
+ return ret;
+
+ reg_node.addr = cpu_to_fdt64(coreboot_table_addr);
+ reg_node.size = cpu_to_fdt32(coreboot_table_size);
+ ret = fdt_property(fdt, "reg", &reg_node,
+ sizeof(uint64_t) + sizeof(uint32_t));
+ if (ret)
+ return ret;
+
+ ret = fdt_end_node(fdt);
+ if (ret)
+ return ret;
+
+ return fdt_end_node(fdt);
+}
+#endif /* COREBOOT */
+
+/*
+ * Creates a device tree for passing into OP-TEE. Currently is populated with
+ * the coreboot table address.
+ * Returns 0 on success, error code otherwise.
+ */
+static int create_opteed_dt(void)
+{
+ int ret;
+
+ ret = fdt_create(fdt_buf, OPTEED_FDT_SIZE);
+ if (ret)
+ return ret;
+
+ ret = fdt_finish_reservemap(fdt_buf);
+ if (ret)
+ return ret;
+
+ ret = fdt_begin_node(fdt_buf, "");
+ if (ret)
+ return ret;
+
+#if COREBOOT
+ ret = add_coreboot_node(fdt_buf);
+ if (ret)
+ return ret;
+#endif /* COREBOOT */
+
+ ret = fdt_end_node(fdt_buf);
+ if (ret)
+ return ret;
+
+ return fdt_finish(fdt_buf);
+}
+
+/*******************************************************************************
+ * This function is responsible for handling the SMC that loads the OP-TEE
+ * binary image via a non-secure SMC call. It takes the size and physical
+ * address of the payload as parameters.
+ ******************************************************************************/
+static int32_t opteed_handle_smc_load(uint64_t data_size, uint32_t data_pa)
+{
+ uintptr_t data_va = data_pa;
+ uint64_t mapped_data_pa;
+ uintptr_t mapped_data_va;
+ uint64_t data_map_size;
+ int32_t rc;
+ optee_header_t *image_header;
+ uint8_t *image_ptr;
+ uint64_t target_pa;
+ uint64_t target_end_pa;
+ uint64_t image_pa;
+ uintptr_t image_va;
+ optee_image_t *curr_image;
+ uintptr_t target_va;
+ uint64_t target_size;
+ entry_point_info_t optee_ep_info;
+ uint32_t linear_id = plat_my_core_pos();
+ uint64_t dt_addr = 0;
+
+ mapped_data_pa = page_align(data_pa, DOWN);
+ mapped_data_va = mapped_data_pa;
+ data_map_size = page_align(data_size + (mapped_data_pa - data_pa), UP);
+
+ /*
+ * We do not validate the passed in address because we are trusting the
+ * non-secure world at this point still.
+ */
+ rc = mmap_add_dynamic_region(mapped_data_pa, mapped_data_va,
+ data_map_size, MT_MEMORY | MT_RO | MT_NS);
+ if (rc != 0) {
+ return rc;
+ }
+
+ image_header = (optee_header_t *)data_va;
+ if (image_header->magic != TEE_MAGIC_NUM_OPTEE ||
+ image_header->version != 2 || image_header->nb_images != 1) {
+ mmap_remove_dynamic_region(mapped_data_va, data_map_size);
+ return -EINVAL;
+ }
+
+ image_ptr = (uint8_t *)data_va + sizeof(optee_header_t) +
+ sizeof(optee_image_t);
+ if (image_header->arch == 1) {
+ opteed_rw = OPTEE_AARCH64;
+ } else {
+ opteed_rw = OPTEE_AARCH32;
+ }
+
+ curr_image = &image_header->optee_image_list[0];
+ image_pa = dual32to64(curr_image->load_addr_hi,
+ curr_image->load_addr_lo);
+ image_va = image_pa;
+ target_end_pa = image_pa + curr_image->size;
+
+ /* Now also map the memory we want to copy it to. */
+ target_pa = page_align(image_pa, DOWN);
+ target_va = target_pa;
+ target_size = page_align(target_end_pa, UP) - target_pa;
+
+ rc = mmap_add_dynamic_region(target_pa, target_va, target_size,
+ MT_MEMORY | MT_RW | MT_SECURE);
+ if (rc != 0) {
+ mmap_remove_dynamic_region(mapped_data_va, data_map_size);
+ return rc;
+ }
+
+ INFO("Loaded OP-TEE via SMC: size %d addr 0x%" PRIx64 "\n",
+ curr_image->size, image_va);
+
+ memcpy((void *)image_va, image_ptr, curr_image->size);
+ flush_dcache_range(target_pa, target_size);
+
+ mmap_remove_dynamic_region(mapped_data_va, data_map_size);
+ mmap_remove_dynamic_region(target_va, target_size);
+
+ /* Save the non-secure state */
+ cm_el1_sysregs_context_save(NON_SECURE);
+
+ rc = create_opteed_dt();
+ if (rc) {
+ ERROR("Failed device tree creation %d\n", rc);
+ return rc;
+ }
+ dt_addr = (uint64_t)fdt_buf;
+ flush_dcache_range(dt_addr, OPTEED_FDT_SIZE);
+
+ opteed_init_optee_ep_state(&optee_ep_info,
+ opteed_rw,
+ image_pa,
+ 0,
+ 0,
+ dt_addr,
+ &opteed_sp_context[linear_id]);
+ if (opteed_init_with_entry_point(&optee_ep_info) == 0) {
+ rc = -EFAULT;
+ }
+
+ /* Restore non-secure state */
+ cm_el1_sysregs_context_restore(NON_SECURE);
+ cm_set_next_eret_context(NON_SECURE);
+
+ return rc;
+}
+#endif /* OPTEE_ALLOW_SMC_LOAD */
+
+/*******************************************************************************
+ * This function is responsible for handling all SMCs in the Trusted OS/App
+ * range from the non-secure state as defined in the SMC Calling Convention
+ * Document. It is also responsible for communicating with the Secure
+ * payload to delegate work and return results back to the non-secure
+ * state. Lastly it will also return any information that OPTEE needs to do
+ * the work assigned to it.
+ ******************************************************************************/
+static uintptr_t opteed_smc_handler(uint32_t smc_fid,
+ u_register_t x1,
+ u_register_t x2,
+ u_register_t x3,
+ u_register_t x4,
+ void *cookie,
+ void *handle,
+ u_register_t flags)
+{
+ cpu_context_t *ns_cpu_context;
+ uint32_t linear_id = plat_my_core_pos();
+ optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
+ uint64_t rc;
+
+ /*
+ * Determine which security state this SMC originated from
+ */
+
+ if (is_caller_non_secure(flags)) {
+#if OPTEE_ALLOW_SMC_LOAD
+ if (opteed_allow_load && smc_fid == NSSMC_OPTEED_CALL_UID) {
+ /* Provide the UUID of the image loading service. */
+ SMC_UUID_RET(handle, optee_image_load_uuid);
+ }
+ if (smc_fid == NSSMC_OPTEED_CALL_LOAD_IMAGE) {
+ /*
+ * TODO: Consider wiping the code for SMC loading from
+ * memory after it has been invoked similar to what is
+ * done under RECLAIM_INIT, but extended to happen
+ * later.
+ */
+ if (!opteed_allow_load) {
+ SMC_RET1(handle, -EPERM);
+ }
+
+ opteed_allow_load = false;
+ uint64_t data_size = dual32to64(x1, x2);
+ uint64_t data_pa = dual32to64(x3, x4);
+ if (!data_size || !data_pa) {
+ /*
+ * This is invoked when the OP-TEE image didn't
+ * load correctly in the kernel but we want to
+ * block off loading of it later for security
+ * reasons.
+ */
+ SMC_RET1(handle, -EINVAL);
+ }
+ SMC_RET1(handle, opteed_handle_smc_load(
+ data_size, data_pa));
+ }
+#endif /* OPTEE_ALLOW_SMC_LOAD */
+ /*
+ * This is a fresh request from the non-secure client.
+ * The parameters are in x1 and x2. Figure out which
+ * registers need to be preserved, save the non-secure
+ * state and send the request to the secure payload.
+ */
+ assert(handle == cm_get_context(NON_SECURE));
+
+ cm_el1_sysregs_context_save(NON_SECURE);
+
+ /*
+ * We are done stashing the non-secure context. Ask the
+ * OP-TEE to do the work now. If we are loading vi an SMC,
+ * then we also need to init this CPU context if not done
+ * already.
+ */
+ if (optee_vector_table == NULL) {
+ SMC_RET1(handle, -EINVAL);
+ }
+
+ if (get_optee_pstate(optee_ctx->state) ==
+ OPTEE_PSTATE_UNKNOWN) {
+ opteed_cpu_on_finish_handler(0);
+ }
+
+ /*
+ * Verify if there is a valid context to use, copy the
+ * operation type and parameters to the secure context
+ * and jump to the fast smc entry point in the secure
+ * payload. Entry into S-EL1 will take place upon exit
+ * from this function.
+ */
+ assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
+
+ /* Set appropriate entry for SMC.
+ * We expect OPTEE to manage the PSTATE.I and PSTATE.F
+ * flags as appropriate.
+ */
+ if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
+ cm_set_elr_el3(SECURE, (uint64_t)
+ &optee_vector_table->fast_smc_entry);
+ } else {
+ cm_set_elr_el3(SECURE, (uint64_t)
+ &optee_vector_table->yield_smc_entry);
+ }
+
+ cm_el1_sysregs_context_restore(SECURE);
+ cm_set_next_eret_context(SECURE);
+
+ write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
+ CTX_GPREG_X4,
+ read_ctx_reg(get_gpregs_ctx(handle),
+ CTX_GPREG_X4));
+ write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
+ CTX_GPREG_X5,
+ read_ctx_reg(get_gpregs_ctx(handle),
+ CTX_GPREG_X5));
+ write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
+ CTX_GPREG_X6,
+ read_ctx_reg(get_gpregs_ctx(handle),
+ CTX_GPREG_X6));
+ /* Propagate hypervisor client ID */
+ write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
+ CTX_GPREG_X7,
+ read_ctx_reg(get_gpregs_ctx(handle),
+ CTX_GPREG_X7));
+
+ SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
+ }
+
+ /*
+ * Returning from OPTEE
+ */
+
+ switch (smc_fid) {
+ /*
+ * OPTEE has finished initialising itself after a cold boot
+ */
+ case TEESMC_OPTEED_RETURN_ENTRY_DONE:
+ /*
+ * Stash the OPTEE entry points information. This is done
+ * only once on the primary cpu
+ */
+ assert(optee_vector_table == NULL);
+ optee_vector_table = (optee_vectors_t *) x1;
+
+ if (optee_vector_table) {
+ set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
+
+ /*
+ * OPTEE has been successfully initialized.
+ * Register power management hooks with PSCI
+ */
+ psci_register_spd_pm_hook(&opteed_pm);
+
+ /*
+ * Register an interrupt handler for S-EL1 interrupts
+ * when generated during code executing in the
+ * non-secure state.
+ */
+ flags = 0;
+ set_interrupt_rm_flag(flags, NON_SECURE);
+ rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
+ opteed_sel1_interrupt_handler,
+ flags);
+ if (rc)
+ panic();
+ }
+
+ /*
+ * OPTEE reports completion. The OPTEED must have initiated
+ * the original request through a synchronous entry into
+ * OPTEE. Jump back to the original C runtime context.
+ */
+ opteed_synchronous_sp_exit(optee_ctx, x1);
+ break;
+
+
+ /*
+ * These function IDs is used only by OP-TEE to indicate it has
+ * finished:
+ * 1. turning itself on in response to an earlier psci
+ * cpu_on request
+ * 2. resuming itself after an earlier psci cpu_suspend
+ * request.
+ */
+ case TEESMC_OPTEED_RETURN_ON_DONE:
+ case TEESMC_OPTEED_RETURN_RESUME_DONE:
+
+
+ /*
+ * These function IDs is used only by the SP to indicate it has
+ * finished:
+ * 1. suspending itself after an earlier psci cpu_suspend
+ * request.
+ * 2. turning itself off in response to an earlier psci
+ * cpu_off request.
+ */
+ case TEESMC_OPTEED_RETURN_OFF_DONE:
+ case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
+ case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
+ case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
+
+ /*
+ * OPTEE reports completion. The OPTEED must have initiated the
+ * original request through a synchronous entry into OPTEE.
+ * Jump back to the original C runtime context, and pass x1 as
+ * return value to the caller
+ */
+ opteed_synchronous_sp_exit(optee_ctx, x1);
+ break;
+
+ /*
+ * OPTEE is returning from a call or being preempted from a call, in
+ * either case execution should resume in the normal world.
+ */
+ case TEESMC_OPTEED_RETURN_CALL_DONE:
+ /*
+ * This is the result from the secure client of an
+ * earlier request. The results are in x0-x3. Copy it
+ * into the non-secure context, save the secure state
+ * and return to the non-secure state.
+ */
+ assert(handle == cm_get_context(SECURE));
+ cm_el1_sysregs_context_save(SECURE);
+
+ /* Get a reference to the non-secure context */
+ ns_cpu_context = cm_get_context(NON_SECURE);
+ assert(ns_cpu_context);
+
+ /* Restore non-secure state */
+ cm_el1_sysregs_context_restore(NON_SECURE);
+ cm_set_next_eret_context(NON_SECURE);
+
+ SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
+
+ /*
+ * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
+ * should resume in the normal world.
+ */
+ case TEESMC_OPTEED_RETURN_FIQ_DONE:
+ /* Get a reference to the non-secure context */
+ ns_cpu_context = cm_get_context(NON_SECURE);
+ assert(ns_cpu_context);
+
+ /*
+ * Restore non-secure state. There is no need to save the
+ * secure system register context since OPTEE was supposed
+ * to preserve it during S-EL1 interrupt handling.
+ */
+ cm_el1_sysregs_context_restore(NON_SECURE);
+ cm_set_next_eret_context(NON_SECURE);
+
+ SMC_RET0((uint64_t) ns_cpu_context);
+
+ default:
+ panic();
+ }
+}
+
+/* Define an OPTEED runtime service descriptor for fast SMC calls */
+DECLARE_RT_SVC(
+ opteed_fast,
+
+ OEN_TOS_START,
+ OEN_TOS_END,
+ SMC_TYPE_FAST,
+ opteed_setup,
+ opteed_smc_handler
+);
+
+/* Define an OPTEED runtime service descriptor for yielding SMC calls */
+DECLARE_RT_SVC(
+ opteed_std,
+
+ OEN_TOS_START,
+ OEN_TOS_END,
+ SMC_TYPE_YIELD,
+ NULL,
+ opteed_smc_handler
+);