diff options
Diffstat (limited to 'services/spd/opteed/opteed_main.c')
-rw-r--r-- | services/spd/opteed/opteed_main.c | 695 |
1 files changed, 695 insertions, 0 deletions
diff --git a/services/spd/opteed/opteed_main.c b/services/spd/opteed/opteed_main.c new file mode 100644 index 0000000..4d055db --- /dev/null +++ b/services/spd/opteed/opteed_main.c @@ -0,0 +1,695 @@ +/* + * Copyright (c) 2013-2023, ARM Limited and Contributors. All rights reserved. + * + * SPDX-License-Identifier: BSD-3-Clause + */ + + +/******************************************************************************* + * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a + * plug-in component to the Secure Monitor, registered as a runtime service. The + * SPD is expected to be a functional extension of the Secure Payload (SP) that + * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting + * the Trusted OS/Applications range to the dispatcher. The SPD will either + * handle the request locally or delegate it to the Secure Payload. It is also + * responsible for initialising and maintaining communication with the SP. + ******************************************************************************/ +#include <assert.h> +#include <errno.h> +#include <inttypes.h> +#include <stddef.h> + +#include <arch_helpers.h> +#include <bl31/bl31.h> +#include <common/bl_common.h> +#include <common/debug.h> +#include <common/runtime_svc.h> +#include <lib/coreboot.h> +#include <lib/el3_runtime/context_mgmt.h> +#include <lib/optee_utils.h> +#include <lib/xlat_tables/xlat_tables_v2.h> +#if OPTEE_ALLOW_SMC_LOAD +#include <libfdt.h> +#endif /* OPTEE_ALLOW_SMC_LOAD */ +#include <plat/common/platform.h> +#include <tools_share/uuid.h> + +#include "opteed_private.h" +#include "teesmc_opteed.h" + +/******************************************************************************* + * Address of the entrypoint vector table in OPTEE. It is + * initialised once on the primary core after a cold boot. + ******************************************************************************/ +struct optee_vectors *optee_vector_table; + +/******************************************************************************* + * Array to keep track of per-cpu OPTEE state + ******************************************************************************/ +optee_context_t opteed_sp_context[OPTEED_CORE_COUNT]; +uint32_t opteed_rw; + +#if OPTEE_ALLOW_SMC_LOAD +static bool opteed_allow_load; +/* OP-TEE image loading service UUID */ +DEFINE_SVC_UUID2(optee_image_load_uuid, + 0xb1eafba3, 0x5d31, 0x4612, 0xb9, 0x06, + 0xc4, 0xc7, 0xa4, 0xbe, 0x3c, 0xc0); + +#define OPTEED_FDT_SIZE 256 +static uint8_t fdt_buf[OPTEED_FDT_SIZE] __aligned(CACHE_WRITEBACK_GRANULE); + +#else +static int32_t opteed_init(void); +#endif + +uint64_t dual32to64(uint32_t high, uint32_t low) +{ + return ((uint64_t)high << 32) | low; +} + +/******************************************************************************* + * This function is the handler registered for S-EL1 interrupts by the + * OPTEED. It validates the interrupt and upon success arranges entry into + * the OPTEE at 'optee_fiq_entry()' for handling the interrupt. + ******************************************************************************/ +static uint64_t opteed_sel1_interrupt_handler(uint32_t id, + uint32_t flags, + void *handle, + void *cookie) +{ + uint32_t linear_id; + optee_context_t *optee_ctx; + + /* Check the security state when the exception was generated */ + assert(get_interrupt_src_ss(flags) == NON_SECURE); + + /* Sanity check the pointer to this cpu's context */ + assert(handle == cm_get_context(NON_SECURE)); + + /* Save the non-secure context before entering the OPTEE */ + cm_el1_sysregs_context_save(NON_SECURE); + + /* Get a reference to this cpu's OPTEE context */ + linear_id = plat_my_core_pos(); + optee_ctx = &opteed_sp_context[linear_id]; + assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); + + cm_set_elr_el3(SECURE, (uint64_t)&optee_vector_table->fiq_entry); + cm_el1_sysregs_context_restore(SECURE); + cm_set_next_eret_context(SECURE); + + /* + * Tell the OPTEE that it has to handle an FIQ (synchronously). + * Also the instruction in normal world where the interrupt was + * generated is passed for debugging purposes. It is safe to + * retrieve this address from ELR_EL3 as the secure context will + * not take effect until el3_exit(). + */ + SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3()); +} + +/******************************************************************************* + * OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type + * (aarch32/aarch64) if not already known and initialises the context for entry + * into OPTEE for its initialization. + ******************************************************************************/ +static int32_t opteed_setup(void) +{ +#if OPTEE_ALLOW_SMC_LOAD + opteed_allow_load = true; + INFO("Delaying OP-TEE setup until we receive an SMC call to load it\n"); + return 0; +#else + entry_point_info_t *optee_ep_info; + uint32_t linear_id; + uint64_t opteed_pageable_part; + uint64_t opteed_mem_limit; + uint64_t dt_addr; + + linear_id = plat_my_core_pos(); + + /* + * Get information about the Secure Payload (BL32) image. Its + * absence is a critical failure. TODO: Add support to + * conditionally include the SPD service + */ + optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE); + if (!optee_ep_info) { + WARN("No OPTEE provided by BL2 boot loader, Booting device" + " without OPTEE initialization. SMC`s destined for OPTEE" + " will return SMC_UNK\n"); + return 1; + } + + /* + * If there's no valid entry point for SP, we return a non-zero value + * signalling failure initializing the service. We bail out without + * registering any handlers + */ + if (!optee_ep_info->pc) + return 1; + + opteed_rw = optee_ep_info->args.arg0; + opteed_pageable_part = optee_ep_info->args.arg1; + opteed_mem_limit = optee_ep_info->args.arg2; + dt_addr = optee_ep_info->args.arg3; + + opteed_init_optee_ep_state(optee_ep_info, + opteed_rw, + optee_ep_info->pc, + opteed_pageable_part, + opteed_mem_limit, + dt_addr, + &opteed_sp_context[linear_id]); + + /* + * All OPTEED initialization done. Now register our init function with + * BL31 for deferred invocation + */ + bl31_register_bl32_init(&opteed_init); + + return 0; +#endif /* OPTEE_ALLOW_SMC_LOAD */ +} + +/******************************************************************************* + * This function passes control to the OPTEE image (BL32) for the first time + * on the primary cpu after a cold boot. It assumes that a valid secure + * context has already been created by opteed_setup() which can be directly + * used. It also assumes that a valid non-secure context has been + * initialised by PSCI so it does not need to save and restore any + * non-secure state. This function performs a synchronous entry into + * OPTEE. OPTEE passes control back to this routine through a SMC. This returns + * a non-zero value on success and zero on failure. + ******************************************************************************/ +static int32_t +opteed_init_with_entry_point(entry_point_info_t *optee_entry_point) +{ + uint32_t linear_id = plat_my_core_pos(); + optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; + uint64_t rc; + assert(optee_entry_point); + + cm_init_my_context(optee_entry_point); + + /* + * Arrange for an entry into OPTEE. It will be returned via + * OPTEE_ENTRY_DONE case + */ + rc = opteed_synchronous_sp_entry(optee_ctx); + assert(rc != 0); + + return rc; +} + +#if !OPTEE_ALLOW_SMC_LOAD +static int32_t opteed_init(void) +{ + entry_point_info_t *optee_entry_point; + /* + * Get information about the OP-TEE (BL32) image. Its + * absence is a critical failure. + */ + optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE); + return opteed_init_with_entry_point(optee_entry_point); +} +#endif /* !OPTEE_ALLOW_SMC_LOAD */ + +#if OPTEE_ALLOW_SMC_LOAD +#if COREBOOT +/* + * Adds a firmware/coreboot node with the coreboot table information to a device + * tree. Returns zero on success or if there is no coreboot table information; + * failure code otherwise. + */ +static int add_coreboot_node(void *fdt) +{ + int ret; + uint64_t coreboot_table_addr; + uint32_t coreboot_table_size; + struct { + uint64_t addr; + uint32_t size; + } reg_node; + coreboot_get_table_location(&coreboot_table_addr, &coreboot_table_size); + if (!coreboot_table_addr || !coreboot_table_size) { + WARN("Unable to get coreboot table location for device tree"); + return 0; + } + ret = fdt_begin_node(fdt, "firmware"); + if (ret) + return ret; + + ret = fdt_property(fdt, "ranges", NULL, 0); + if (ret) + return ret; + + ret = fdt_begin_node(fdt, "coreboot"); + if (ret) + return ret; + + ret = fdt_property_string(fdt, "compatible", "coreboot"); + if (ret) + return ret; + + reg_node.addr = cpu_to_fdt64(coreboot_table_addr); + reg_node.size = cpu_to_fdt32(coreboot_table_size); + ret = fdt_property(fdt, "reg", ®_node, + sizeof(uint64_t) + sizeof(uint32_t)); + if (ret) + return ret; + + ret = fdt_end_node(fdt); + if (ret) + return ret; + + return fdt_end_node(fdt); +} +#endif /* COREBOOT */ + +/* + * Creates a device tree for passing into OP-TEE. Currently is populated with + * the coreboot table address. + * Returns 0 on success, error code otherwise. + */ +static int create_opteed_dt(void) +{ + int ret; + + ret = fdt_create(fdt_buf, OPTEED_FDT_SIZE); + if (ret) + return ret; + + ret = fdt_finish_reservemap(fdt_buf); + if (ret) + return ret; + + ret = fdt_begin_node(fdt_buf, ""); + if (ret) + return ret; + +#if COREBOOT + ret = add_coreboot_node(fdt_buf); + if (ret) + return ret; +#endif /* COREBOOT */ + + ret = fdt_end_node(fdt_buf); + if (ret) + return ret; + + return fdt_finish(fdt_buf); +} + +/******************************************************************************* + * This function is responsible for handling the SMC that loads the OP-TEE + * binary image via a non-secure SMC call. It takes the size and physical + * address of the payload as parameters. + ******************************************************************************/ +static int32_t opteed_handle_smc_load(uint64_t data_size, uint32_t data_pa) +{ + uintptr_t data_va = data_pa; + uint64_t mapped_data_pa; + uintptr_t mapped_data_va; + uint64_t data_map_size; + int32_t rc; + optee_header_t *image_header; + uint8_t *image_ptr; + uint64_t target_pa; + uint64_t target_end_pa; + uint64_t image_pa; + uintptr_t image_va; + optee_image_t *curr_image; + uintptr_t target_va; + uint64_t target_size; + entry_point_info_t optee_ep_info; + uint32_t linear_id = plat_my_core_pos(); + uint64_t dt_addr = 0; + + mapped_data_pa = page_align(data_pa, DOWN); + mapped_data_va = mapped_data_pa; + data_map_size = page_align(data_size + (mapped_data_pa - data_pa), UP); + + /* + * We do not validate the passed in address because we are trusting the + * non-secure world at this point still. + */ + rc = mmap_add_dynamic_region(mapped_data_pa, mapped_data_va, + data_map_size, MT_MEMORY | MT_RO | MT_NS); + if (rc != 0) { + return rc; + } + + image_header = (optee_header_t *)data_va; + if (image_header->magic != TEE_MAGIC_NUM_OPTEE || + image_header->version != 2 || image_header->nb_images != 1) { + mmap_remove_dynamic_region(mapped_data_va, data_map_size); + return -EINVAL; + } + + image_ptr = (uint8_t *)data_va + sizeof(optee_header_t) + + sizeof(optee_image_t); + if (image_header->arch == 1) { + opteed_rw = OPTEE_AARCH64; + } else { + opteed_rw = OPTEE_AARCH32; + } + + curr_image = &image_header->optee_image_list[0]; + image_pa = dual32to64(curr_image->load_addr_hi, + curr_image->load_addr_lo); + image_va = image_pa; + target_end_pa = image_pa + curr_image->size; + + /* Now also map the memory we want to copy it to. */ + target_pa = page_align(image_pa, DOWN); + target_va = target_pa; + target_size = page_align(target_end_pa, UP) - target_pa; + + rc = mmap_add_dynamic_region(target_pa, target_va, target_size, + MT_MEMORY | MT_RW | MT_SECURE); + if (rc != 0) { + mmap_remove_dynamic_region(mapped_data_va, data_map_size); + return rc; + } + + INFO("Loaded OP-TEE via SMC: size %d addr 0x%" PRIx64 "\n", + curr_image->size, image_va); + + memcpy((void *)image_va, image_ptr, curr_image->size); + flush_dcache_range(target_pa, target_size); + + mmap_remove_dynamic_region(mapped_data_va, data_map_size); + mmap_remove_dynamic_region(target_va, target_size); + + /* Save the non-secure state */ + cm_el1_sysregs_context_save(NON_SECURE); + + rc = create_opteed_dt(); + if (rc) { + ERROR("Failed device tree creation %d\n", rc); + return rc; + } + dt_addr = (uint64_t)fdt_buf; + flush_dcache_range(dt_addr, OPTEED_FDT_SIZE); + + opteed_init_optee_ep_state(&optee_ep_info, + opteed_rw, + image_pa, + 0, + 0, + dt_addr, + &opteed_sp_context[linear_id]); + if (opteed_init_with_entry_point(&optee_ep_info) == 0) { + rc = -EFAULT; + } + + /* Restore non-secure state */ + cm_el1_sysregs_context_restore(NON_SECURE); + cm_set_next_eret_context(NON_SECURE); + + return rc; +} +#endif /* OPTEE_ALLOW_SMC_LOAD */ + +/******************************************************************************* + * This function is responsible for handling all SMCs in the Trusted OS/App + * range from the non-secure state as defined in the SMC Calling Convention + * Document. It is also responsible for communicating with the Secure + * payload to delegate work and return results back to the non-secure + * state. Lastly it will also return any information that OPTEE needs to do + * the work assigned to it. + ******************************************************************************/ +static uintptr_t opteed_smc_handler(uint32_t smc_fid, + u_register_t x1, + u_register_t x2, + u_register_t x3, + u_register_t x4, + void *cookie, + void *handle, + u_register_t flags) +{ + cpu_context_t *ns_cpu_context; + uint32_t linear_id = plat_my_core_pos(); + optee_context_t *optee_ctx = &opteed_sp_context[linear_id]; + uint64_t rc; + + /* + * Determine which security state this SMC originated from + */ + + if (is_caller_non_secure(flags)) { +#if OPTEE_ALLOW_SMC_LOAD + if (opteed_allow_load && smc_fid == NSSMC_OPTEED_CALL_UID) { + /* Provide the UUID of the image loading service. */ + SMC_UUID_RET(handle, optee_image_load_uuid); + } + if (smc_fid == NSSMC_OPTEED_CALL_LOAD_IMAGE) { + /* + * TODO: Consider wiping the code for SMC loading from + * memory after it has been invoked similar to what is + * done under RECLAIM_INIT, but extended to happen + * later. + */ + if (!opteed_allow_load) { + SMC_RET1(handle, -EPERM); + } + + opteed_allow_load = false; + uint64_t data_size = dual32to64(x1, x2); + uint64_t data_pa = dual32to64(x3, x4); + if (!data_size || !data_pa) { + /* + * This is invoked when the OP-TEE image didn't + * load correctly in the kernel but we want to + * block off loading of it later for security + * reasons. + */ + SMC_RET1(handle, -EINVAL); + } + SMC_RET1(handle, opteed_handle_smc_load( + data_size, data_pa)); + } +#endif /* OPTEE_ALLOW_SMC_LOAD */ + /* + * This is a fresh request from the non-secure client. + * The parameters are in x1 and x2. Figure out which + * registers need to be preserved, save the non-secure + * state and send the request to the secure payload. + */ + assert(handle == cm_get_context(NON_SECURE)); + + cm_el1_sysregs_context_save(NON_SECURE); + + /* + * We are done stashing the non-secure context. Ask the + * OP-TEE to do the work now. If we are loading vi an SMC, + * then we also need to init this CPU context if not done + * already. + */ + if (optee_vector_table == NULL) { + SMC_RET1(handle, -EINVAL); + } + + if (get_optee_pstate(optee_ctx->state) == + OPTEE_PSTATE_UNKNOWN) { + opteed_cpu_on_finish_handler(0); + } + + /* + * Verify if there is a valid context to use, copy the + * operation type and parameters to the secure context + * and jump to the fast smc entry point in the secure + * payload. Entry into S-EL1 will take place upon exit + * from this function. + */ + assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE)); + + /* Set appropriate entry for SMC. + * We expect OPTEE to manage the PSTATE.I and PSTATE.F + * flags as appropriate. + */ + if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) { + cm_set_elr_el3(SECURE, (uint64_t) + &optee_vector_table->fast_smc_entry); + } else { + cm_set_elr_el3(SECURE, (uint64_t) + &optee_vector_table->yield_smc_entry); + } + + cm_el1_sysregs_context_restore(SECURE); + cm_set_next_eret_context(SECURE); + + write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), + CTX_GPREG_X4, + read_ctx_reg(get_gpregs_ctx(handle), + CTX_GPREG_X4)); + write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), + CTX_GPREG_X5, + read_ctx_reg(get_gpregs_ctx(handle), + CTX_GPREG_X5)); + write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), + CTX_GPREG_X6, + read_ctx_reg(get_gpregs_ctx(handle), + CTX_GPREG_X6)); + /* Propagate hypervisor client ID */ + write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx), + CTX_GPREG_X7, + read_ctx_reg(get_gpregs_ctx(handle), + CTX_GPREG_X7)); + + SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3); + } + + /* + * Returning from OPTEE + */ + + switch (smc_fid) { + /* + * OPTEE has finished initialising itself after a cold boot + */ + case TEESMC_OPTEED_RETURN_ENTRY_DONE: + /* + * Stash the OPTEE entry points information. This is done + * only once on the primary cpu + */ + assert(optee_vector_table == NULL); + optee_vector_table = (optee_vectors_t *) x1; + + if (optee_vector_table) { + set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON); + + /* + * OPTEE has been successfully initialized. + * Register power management hooks with PSCI + */ + psci_register_spd_pm_hook(&opteed_pm); + + /* + * Register an interrupt handler for S-EL1 interrupts + * when generated during code executing in the + * non-secure state. + */ + flags = 0; + set_interrupt_rm_flag(flags, NON_SECURE); + rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, + opteed_sel1_interrupt_handler, + flags); + if (rc) + panic(); + } + + /* + * OPTEE reports completion. The OPTEED must have initiated + * the original request through a synchronous entry into + * OPTEE. Jump back to the original C runtime context. + */ + opteed_synchronous_sp_exit(optee_ctx, x1); + break; + + + /* + * These function IDs is used only by OP-TEE to indicate it has + * finished: + * 1. turning itself on in response to an earlier psci + * cpu_on request + * 2. resuming itself after an earlier psci cpu_suspend + * request. + */ + case TEESMC_OPTEED_RETURN_ON_DONE: + case TEESMC_OPTEED_RETURN_RESUME_DONE: + + + /* + * These function IDs is used only by the SP to indicate it has + * finished: + * 1. suspending itself after an earlier psci cpu_suspend + * request. + * 2. turning itself off in response to an earlier psci + * cpu_off request. + */ + case TEESMC_OPTEED_RETURN_OFF_DONE: + case TEESMC_OPTEED_RETURN_SUSPEND_DONE: + case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE: + case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE: + + /* + * OPTEE reports completion. The OPTEED must have initiated the + * original request through a synchronous entry into OPTEE. + * Jump back to the original C runtime context, and pass x1 as + * return value to the caller + */ + opteed_synchronous_sp_exit(optee_ctx, x1); + break; + + /* + * OPTEE is returning from a call or being preempted from a call, in + * either case execution should resume in the normal world. + */ + case TEESMC_OPTEED_RETURN_CALL_DONE: + /* + * This is the result from the secure client of an + * earlier request. The results are in x0-x3. Copy it + * into the non-secure context, save the secure state + * and return to the non-secure state. + */ + assert(handle == cm_get_context(SECURE)); + cm_el1_sysregs_context_save(SECURE); + + /* Get a reference to the non-secure context */ + ns_cpu_context = cm_get_context(NON_SECURE); + assert(ns_cpu_context); + + /* Restore non-secure state */ + cm_el1_sysregs_context_restore(NON_SECURE); + cm_set_next_eret_context(NON_SECURE); + + SMC_RET4(ns_cpu_context, x1, x2, x3, x4); + + /* + * OPTEE has finished handling a S-EL1 FIQ interrupt. Execution + * should resume in the normal world. + */ + case TEESMC_OPTEED_RETURN_FIQ_DONE: + /* Get a reference to the non-secure context */ + ns_cpu_context = cm_get_context(NON_SECURE); + assert(ns_cpu_context); + + /* + * Restore non-secure state. There is no need to save the + * secure system register context since OPTEE was supposed + * to preserve it during S-EL1 interrupt handling. + */ + cm_el1_sysregs_context_restore(NON_SECURE); + cm_set_next_eret_context(NON_SECURE); + + SMC_RET0((uint64_t) ns_cpu_context); + + default: + panic(); + } +} + +/* Define an OPTEED runtime service descriptor for fast SMC calls */ +DECLARE_RT_SVC( + opteed_fast, + + OEN_TOS_START, + OEN_TOS_END, + SMC_TYPE_FAST, + opteed_setup, + opteed_smc_handler +); + +/* Define an OPTEED runtime service descriptor for yielding SMC calls */ +DECLARE_RT_SVC( + opteed_std, + + OEN_TOS_START, + OEN_TOS_END, + SMC_TYPE_YIELD, + NULL, + opteed_smc_handler +); |