summaryrefslogtreecommitdiffstats
path: root/drivers/cadence/nand/cdns_nand.c
blob: 5a6626262b08ec3a00c29330b29f7d8f77e7c97a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
/*
 * Copyright (c) 2022-2023, Intel Corporation. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <string.h>

#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/cadence/cdns_nand.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>
#include <lib/utils.h>
#include <platform_def.h>

/* NAND flash device information struct */
static cnf_dev_info_t dev_info;

/* Scratch buffers for read and write operations */
static uint8_t scratch_buff[PLATFORM_MTD_MAX_PAGE_SIZE];

/* Wait for controller to be in idle state */
static inline void cdns_nand_wait_idle(void)
{
	uint32_t reg = 0U;

	do {
		udelay(CNF_DEF_DELAY_US);
		reg = mmio_read_32(CNF_CMDREG(CTRL_STATUS));
	} while (CNF_GET_CTRL_BUSY(reg) != 0U);
}

/* Wait for given thread to be in ready state */
static inline void cdns_nand_wait_thread_ready(uint8_t thread_id)
{
	uint32_t reg = 0U;

	do {
		udelay(CNF_DEF_DELAY_US);
		reg = mmio_read_32(CNF_CMDREG(TRD_STATUS));
		reg &= (1U << (uint32_t)thread_id);
	} while (reg != 0U);
}

/* Check if the last operation/command in selected thread is completed */
static int cdns_nand_last_opr_status(uint8_t thread_id)
{
	uint8_t nthreads = 0U;
	uint32_t reg = 0U;

	/* Get number of threads */
	reg = mmio_read_32(CNF_CTRLPARAM(FEATURE));
	nthreads = CNF_GET_NTHREADS(reg);

	if (thread_id > nthreads) {
		ERROR("%s: Invalid thread ID\n", __func__);
		return -EINVAL;
	}

	/* Select thread */
	mmio_write_32(CNF_CMDREG(CMD_STAT_PTR), (uint32_t)thread_id);

	uint32_t err_mask = CNF_ECMD | CNF_EECC | CNF_EDEV | CNF_EDQS | CNF_EFAIL |
				CNF_EBUS | CNF_EDI | CNF_EPAR | CNF_ECTX | CNF_EPRO;

	do {
		udelay(CNF_DEF_DELAY_US * 2);
		reg = mmio_read_32(CNF_CMDREG(CMD_STAT));
	} while ((reg & CNF_CMPLT) == 0U);

	/* last operation is completed, make sure no other error bits are set */
	if ((reg & err_mask) == 1U) {
		ERROR("%s, CMD_STATUS:0x%x\n", __func__, reg);
		return -EIO;
	}

	return 0;
}

/* Set feature command */
int cdns_nand_set_feature(uint8_t feat_addr, uint8_t feat_val, uint8_t thread_id)
{
	/* Wait for thread to be ready */
	cdns_nand_wait_thread_ready(thread_id);

	/* Set feature address */
	mmio_write_32(CNF_CMDREG(CMD_REG1), (uint32_t)feat_addr);
	/* Set feature volume */
	mmio_write_32(CNF_CMDREG(CMD_REG2), (uint32_t)feat_val);

	/* Set feature command */
	uint32_t reg = (CNF_WORK_MODE_PIO << CNF_CMDREG0_CT);

	reg |= (thread_id << CNF_CMDREG0_TRD);
	reg |= (CNF_DEF_VOL_ID << CNF_CMDREG0_VOL);
	reg |= (CNF_INT_DIS << CNF_CMDREG0_INTR);
	reg |= (CNF_CT_SET_FEATURE << CNF_CMDREG0_CMD);
	mmio_write_32(CNF_CMDREG(CMD_REG0), reg);

	return cdns_nand_last_opr_status(thread_id);
}

/* Reset command to the selected device */
int cdns_nand_reset(uint8_t thread_id)
{
	/* Operation is executed in selected thread */
	cdns_nand_wait_thread_ready(thread_id);

	/* Select memory */
	mmio_write_32(CNF_CMDREG(CMD_REG4), (CNF_DEF_DEVICE << CNF_CMDREG4_MEM));

	/* Issue reset command */
	uint32_t reg = (CNF_WORK_MODE_PIO << CNF_CMDREG0_CT);

	reg |= (thread_id << CNF_CMDREG0_TRD);
	reg |= (CNF_DEF_VOL_ID << CNF_CMDREG0_VOL);
	reg |= (CNF_INT_DIS << CNF_CMDREG0_INTR);
	reg |= (CNF_CT_RESET_ASYNC << CNF_CMDREG0_CMD);
	mmio_write_32(CNF_CMDREG(CMD_REG0), reg);

	return cdns_nand_last_opr_status(thread_id);
}

/* Set operation work mode */
static void cdns_nand_set_opr_mode(uint8_t opr_mode)
{
	/* Wait for controller to be in idle state */
	cdns_nand_wait_idle();

	/* Reset DLL PHY */
	uint32_t reg = mmio_read_32(CNF_MINICTRL(DLL_PHY_CTRL));

	reg &= ~(1 << CNF_DLL_PHY_RST_N);
	mmio_write_32(CNF_MINICTRL(DLL_PHY_CTRL), reg);

	if (opr_mode == CNF_OPR_WORK_MODE_SDR) {
		/* Combo PHY Control Timing Block register settings */
		mmio_write_32(CP_CTB(CTRL_REG), CP_CTRL_REG_SDR);
		mmio_write_32(CP_CTB(TSEL_REG), CP_TSEL_REG_SDR);

		/* Combo PHY DLL register settings */
		mmio_write_32(CP_DLL(DQ_TIMING_REG), CP_DQ_TIMING_REG_SDR);
		mmio_write_32(CP_DLL(DQS_TIMING_REG), CP_DQS_TIMING_REG_SDR);
		mmio_write_32(CP_DLL(GATE_LPBK_CTRL_REG), CP_GATE_LPBK_CTRL_REG_SDR);
		mmio_write_32(CP_DLL(MASTER_CTRL_REG), CP_DLL_MASTER_CTRL_REG_SDR);

		/* Async mode timing settings */
		mmio_write_32(CNF_MINICTRL(ASYNC_TOGGLE_TIMINGS),
								(2 << CNF_ASYNC_TIMINGS_TRH) |
								(4 << CNF_ASYNC_TIMINGS_TRP) |
								(2 << CNF_ASYNC_TIMINGS_TWH) |
								(4 << CNF_ASYNC_TIMINGS_TWP));

		/* Set extended read and write mode */
		reg |= (1 << CNF_DLL_PHY_EXT_RD_MODE);
		reg |= (1 << CNF_DLL_PHY_EXT_WR_MODE);

		/* Set operation work mode in common settings */
		uint32_t data = mmio_read_32(CNF_MINICTRL(CMN_SETTINGS));

		data |= (CNF_OPR_WORK_MODE_SDR << CNF_CMN_SETTINGS_OPR);
		mmio_write_32(CNF_MINICTRL(CMN_SETTINGS), data);

	} else if (opr_mode == CNF_OPR_WORK_MODE_NVDDR) {
		; /* ToDo: add DDR mode settings also once available on SIMICS */
	} else {
		;
	}

	reg |= (1 << CNF_DLL_PHY_RST_N);
	mmio_write_32(CNF_MINICTRL(DLL_PHY_CTRL), reg);
}

/* Data transfer configuration */
static void cdns_nand_transfer_config(void)
{
	/* Wait for controller to be in idle state */
	cdns_nand_wait_idle();

	/* Configure data transfer parameters */
	mmio_write_32(CNF_CTRLCFG(TRANS_CFG0), 1);

	/* ECC is disabled */
	mmio_write_32(CNF_CTRLCFG(ECC_CFG0), 0);

	/* DMA burst select */
	mmio_write_32(CNF_CTRLCFG(DMA_SETTINGS),
					(CNF_DMA_BURST_SIZE_MAX << CNF_DMA_SETTINGS_BURST) |
					(1 << CNF_DMA_SETTINGS_OTE));

	/* Enable pre-fetching for 1K */
	mmio_write_32(CNF_CTRLCFG(FIFO_TLEVEL),
					(CNF_DMA_PREFETCH_SIZE << CNF_FIFO_TLEVEL_POS) |
					(CNF_DMA_PREFETCH_SIZE << CNF_FIFO_TLEVEL_DMA_SIZE));

	/* Select access type */
	mmio_write_32(CNF_CTRLCFG(MULTIPLANE_CFG), 0);
	mmio_write_32(CNF_CTRLCFG(CACHE_CFG), 0);
}

/* Update the nand flash device info */
static int cdns_nand_update_dev_info(void)
{
	uint32_t reg = 0U;

	/* Read the device type and number of LUNs */
	reg = mmio_read_32(CNF_CTRLPARAM(DEV_PARAMS0));
	dev_info.type = CNF_GET_DEV_TYPE(reg);
	if (dev_info.type == CNF_DT_UNKNOWN) {
		ERROR("%s: device type unknown\n", __func__);
		return -ENXIO;
	}
	dev_info.nluns = CNF_GET_NLUNS(reg);

	/* Pages per block */
	reg = mmio_read_32(CNF_CTRLCFG(DEV_LAYOUT));
	dev_info.npages_per_block = CNF_GET_NPAGES_PER_BLOCK(reg);

	/* Sector size and last sector size */
	reg = mmio_read_32(CNF_CTRLCFG(TRANS_CFG1));
	dev_info.sector_size = CNF_GET_SCTR_SIZE(reg);
	dev_info.last_sector_size = CNF_GET_LAST_SCTR_SIZE(reg);

	/* Page size and spare size */
	reg = mmio_read_32(CNF_CTRLPARAM(DEV_AREA));
	dev_info.page_size = CNF_GET_PAGE_SIZE(reg);
	dev_info.spare_size = CNF_GET_SPARE_SIZE(reg);

	/* Device blocks per LUN */
	dev_info.nblocks_per_lun = mmio_read_32(CNF_CTRLPARAM(DEV_BLOCKS_PLUN));

	/* Calculate block size and total device size */
	dev_info.block_size = (dev_info.npages_per_block * dev_info.page_size);
	dev_info.total_size = (dev_info.block_size * dev_info.nblocks_per_lun *
							dev_info.nluns);

	VERBOSE("CNF params: page %d, spare %d, block %d, total %lld\n",
				dev_info.page_size, dev_info.spare_size,
				dev_info.block_size, dev_info.total_size);

	return 0;
}

/* NAND Flash Controller/Host initialization */
int cdns_nand_host_init(void)
{
	uint32_t reg = 0U;
	int ret = 0;

	do {
		/* Read controller status register for init complete */
		reg = mmio_read_32(CNF_CMDREG(CTRL_STATUS));
	} while (CNF_GET_INIT_COMP(reg) == 0);

	ret = cdns_nand_update_dev_info();
	if (ret != 0) {
		return ret;
	}

	INFO("CNF: device discovery process completed and device type %d\n",
			dev_info.type);

	/* Enable data integrity, enable CRC and parity */
	reg = mmio_read_32(CNF_DI(CONTROL));
	reg |= (1 << CNF_DI_PAR_EN);
	reg |= (1 << CNF_DI_CRC_EN);
	mmio_write_32(CNF_DI(CONTROL), reg);

	/* Status polling mode, device control and status register */
	cdns_nand_wait_idle();
	reg = mmio_read_32(CNF_CTRLCFG(DEV_STAT));
	reg = reg & ~1;
	mmio_write_32(CNF_CTRLCFG(DEV_STAT), reg);

	/* Set operation work mode */
	cdns_nand_set_opr_mode(CNF_OPR_WORK_MODE_SDR);

	/* Set data transfer configuration parameters */
	cdns_nand_transfer_config();

	return 0;
}

/* erase: Block erase command */
int cdns_nand_erase(uint32_t offset, uint32_t size)
{
	/* Determine the starting block offset i.e row address */
	uint32_t row_address = dev_info.npages_per_block * offset;

	/* Wait for thread to be in ready state */
	cdns_nand_wait_thread_ready(CNF_DEF_TRD);

	/*Set row address */
	mmio_write_32(CNF_CMDREG(CMD_REG1), row_address);

	/* Operation bank number */
	mmio_write_32(CNF_CMDREG(CMD_REG4), (CNF_DEF_DEVICE << CNF_CMDREG4_MEM));

	/* Block erase command */
	uint32_t reg = (CNF_WORK_MODE_PIO << CNF_CMDREG0_CT);

	reg |= (CNF_DEF_TRD << CNF_CMDREG0_TRD);
	reg |= (CNF_DEF_VOL_ID << CNF_CMDREG0_VOL);
	reg |= (CNF_INT_DIS << CNF_CMDREG0_INTR);
	reg |= (CNF_CT_ERASE << CNF_CMDREG0_CMD);
	reg |= (((size-1) & 0xFF) << CNF_CMDREG0_CMD);
	mmio_write_32(CNF_CMDREG(CMD_REG0), reg);

	/* Wait for erase operation to complete */
	return cdns_nand_last_opr_status(CNF_DEF_TRD);
}

/* io mtd functions */
int cdns_nand_init_mtd(unsigned long long *size, unsigned int *erase_size)
{
	*size = dev_info.total_size;
	*erase_size = dev_info.block_size;

	return 0;
}

/* NAND Flash page read */
static int cdns_nand_read_page(uint32_t block, uint32_t page, uintptr_t buffer)
{
	/* Wait for thread to be ready */
	cdns_nand_wait_thread_ready(CNF_DEF_TRD);

	/* Select device */
	mmio_write_32(CNF_CMDREG(CMD_REG4),
					(CNF_DEF_DEVICE << CNF_CMDREG4_MEM));

	/* Set host memory address for DMA transfers */
	mmio_write_32(CNF_CMDREG(CMD_REG2), (buffer & 0xFFFF));
	mmio_write_32(CNF_CMDREG(CMD_REG3), ((buffer >> 32) & 0xFFFF));

	/* Set row address */
	uint32_t row_address = 0U;

	row_address |= ((page & 0x3F) | (block << 6));
	mmio_write_32(CNF_CMDREG(CMD_REG1), row_address);

	/* Page read command */
	uint32_t reg = (CNF_WORK_MODE_PIO << CNF_CMDREG0_CT);

	reg |= (CNF_DEF_TRD << CNF_CMDREG0_TRD);
	reg |= (CNF_DEF_VOL_ID << CNF_CMDREG0_VOL);
	reg |= (CNF_INT_DIS << CNF_CMDREG0_INTR);
	reg |= (CNF_DMA_MASTER_SEL << CNF_CMDREG0_DMA);
	reg |= (CNF_CT_PAGE_READ << CNF_CMDREG0_CMD);
	reg |= (((CNF_READ_SINGLE_PAGE-1) & 0xFF) << CNF_CMDREG0_CMD);
	mmio_write_32(CNF_CMDREG(CMD_REG0), reg);

	/* Wait for read operation to complete */
	if (cdns_nand_last_opr_status(CNF_DEF_TRD)) {
		ERROR("%s: Page read failed\n", __func__);
		return -EIO;
	}

	return 0;
}

int cdns_nand_read(unsigned int offset, uintptr_t buffer, size_t length,
					size_t *out_length)
{
	uint32_t block = offset / dev_info.block_size;
	uint32_t end_block = (offset + length - 1U) / dev_info.block_size;
	uint32_t page_start = (offset % dev_info.block_size) / dev_info.page_size;
	uint32_t start_offset = offset % dev_info.page_size;
	uint32_t nb_pages = dev_info.block_size / dev_info.page_size;
	uint32_t bytes_read = 0U;
	uint32_t page = 0U;
	int result = 0;

	VERBOSE("CNF: block %u-%u, page_start %u, len %zu, offset %u\n",
				block, end_block, page_start, length, offset);

	if ((offset >= dev_info.total_size) ||
		(offset + length-1 >= dev_info.total_size) ||
		(length == 0U)) {
		ERROR("CNF: Invalid read parameters\n");
		return -EINVAL;
	}

	*out_length = 0UL;

	while (block <= end_block) {
		for (page = page_start; page < nb_pages; page++) {
			if ((start_offset != 0U) || (length < dev_info.page_size)) {
				/* Partial page read */
				result = cdns_nand_read_page(block, page,
				(uintptr_t)scratch_buff);
				if (result != 0) {
					return result;
				}

				bytes_read = MIN((size_t)(dev_info.page_size - start_offset),
								length);

				memcpy((uint8_t *)buffer, scratch_buff + start_offset,
						bytes_read);
				start_offset = 0U;
			} else {
				/* Full page read */
				result = cdns_nand_read_page(block, page,
				(uintptr_t)scratch_buff);
				if (result != 0) {
					return result;
				}

				bytes_read = dev_info.page_size;
				memcpy((uint8_t *)buffer, scratch_buff, bytes_read);
			}

			length -= bytes_read;
			buffer += bytes_read;
			*out_length += bytes_read;

			/* All the bytes have read */
			if (length == 0U) {
				break;
			}

			udelay(CNF_READ_INT_DELAY_US);
		} /* for */

		page_start = 0U;
		block++;
	} /* while */

	return 0;
}