summaryrefslogtreecommitdiffstats
path: root/lib/gpt_rme/gpt_rme.c
blob: f5353cb140074a3cbcce370bc1cdc2fdbdcd4102 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
/*
 * Copyright (c) 2022, Arm Limited. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdint.h>

#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include "gpt_rme_private.h"
#include <lib/gpt_rme/gpt_rme.h>
#include <lib/smccc.h>
#include <lib/spinlock.h>
#include <lib/xlat_tables/xlat_tables_v2.h>

#if !ENABLE_RME
#error "ENABLE_RME must be enabled to use the GPT library."
#endif

/*
 * Lookup T from PPS
 *
 *   PPS    Size    T
 *   0b000  4GB     32
 *   0b001  64GB    36
 *   0b010  1TB     40
 *   0b011  4TB     42
 *   0b100  16TB    44
 *   0b101  256TB   48
 *   0b110  4PB     52
 *
 * See section 15.1.27 of the RME specification.
 */
static const gpt_t_val_e gpt_t_lookup[] = {PPS_4GB_T, PPS_64GB_T,
					   PPS_1TB_T, PPS_4TB_T,
					   PPS_16TB_T, PPS_256TB_T,
					   PPS_4PB_T};

/*
 * Lookup P from PGS
 *
 *   PGS    Size    P
 *   0b00   4KB     12
 *   0b10   16KB    14
 *   0b01   64KB    16
 *
 * Note that pgs=0b10 is 16KB and pgs=0b01 is 64KB, this is not a typo.
 *
 * See section 15.1.27 of the RME specification.
 */
static const gpt_p_val_e gpt_p_lookup[] = {PGS_4KB_P, PGS_64KB_P, PGS_16KB_P};

/*
 * This structure contains GPT configuration data.
 */
typedef struct {
	uintptr_t plat_gpt_l0_base;
	gpccr_pps_e pps;
	gpt_t_val_e t;
	gpccr_pgs_e pgs;
	gpt_p_val_e p;
} gpt_config_t;

static gpt_config_t gpt_config;

/* These variables are used during initialization of the L1 tables. */
static unsigned int gpt_next_l1_tbl_idx;
static uintptr_t gpt_l1_tbl;

/*
 * This function checks to see if a GPI value is valid.
 *
 * These are valid GPI values.
 *   GPT_GPI_NO_ACCESS   U(0x0)
 *   GPT_GPI_SECURE      U(0x8)
 *   GPT_GPI_NS          U(0x9)
 *   GPT_GPI_ROOT        U(0xA)
 *   GPT_GPI_REALM       U(0xB)
 *   GPT_GPI_ANY         U(0xF)
 *
 * Parameters
 *   gpi		GPI to check for validity.
 *
 * Return
 *   true for a valid GPI, false for an invalid one.
 */
static bool gpt_is_gpi_valid(unsigned int gpi)
{
	if ((gpi == GPT_GPI_NO_ACCESS) || (gpi == GPT_GPI_ANY) ||
	    ((gpi >= GPT_GPI_SECURE) && (gpi <= GPT_GPI_REALM))) {
		return true;
	}
	return false;
}

/*
 * This function checks to see if two PAS regions overlap.
 *
 * Parameters
 *   base_1: base address of first PAS
 *   size_1: size of first PAS
 *   base_2: base address of second PAS
 *   size_2: size of second PAS
 *
 * Return
 *   True if PAS regions overlap, false if they do not.
 */
static bool gpt_check_pas_overlap(uintptr_t base_1, size_t size_1,
				  uintptr_t base_2, size_t size_2)
{
	if (((base_1 + size_1) > base_2) && ((base_2 + size_2) > base_1)) {
		return true;
	}
	return false;
}

/*
 * This helper function checks to see if a PAS region from index 0 to
 * (pas_idx - 1) occupies the L0 region at index l0_idx in the L0 table.
 *
 * Parameters
 *   l0_idx:      Index of the L0 entry to check
 *   pas_regions: PAS region array
 *   pas_idx:     Upper bound of the PAS array index.
 *
 * Return
 *   True if a PAS region occupies the L0 region in question, false if not.
 */
static bool gpt_does_previous_pas_exist_here(unsigned int l0_idx,
					     pas_region_t *pas_regions,
					     unsigned int pas_idx)
{
	/* Iterate over PAS regions up to pas_idx. */
	for (unsigned int i = 0U; i < pas_idx; i++) {
		if (gpt_check_pas_overlap((GPT_L0GPTSZ_ACTUAL_SIZE * l0_idx),
		    GPT_L0GPTSZ_ACTUAL_SIZE,
		    pas_regions[i].base_pa, pas_regions[i].size)) {
			return true;
		}
	}
	return false;
}

/*
 * This function iterates over all of the PAS regions and checks them to ensure
 * proper alignment of base and size, that the GPI is valid, and that no regions
 * overlap. As a part of the overlap checks, this function checks existing L0
 * mappings against the new PAS regions in the event that gpt_init_pas_l1_tables
 * is called multiple times to place L1 tables in different areas of memory. It
 * also counts the number of L1 tables needed and returns it on success.
 *
 * Parameters
 *   *pas_regions	Pointer to array of PAS region structures.
 *   pas_region_cnt	Total number of PAS regions in the array.
 *
 * Return
 *   Negative Linux error code in the event of a failure, number of L1 regions
 *   required when successful.
 */
static int gpt_validate_pas_mappings(pas_region_t *pas_regions,
				     unsigned int pas_region_cnt)
{
	unsigned int idx;
	unsigned int l1_cnt = 0U;
	unsigned int pas_l1_cnt;
	uint64_t *l0_desc = (uint64_t *)gpt_config.plat_gpt_l0_base;

	assert(pas_regions != NULL);
	assert(pas_region_cnt != 0U);

	for (idx = 0U; idx < pas_region_cnt; idx++) {
		/* Check for arithmetic overflow in region. */
		if ((ULONG_MAX - pas_regions[idx].base_pa) <
		    pas_regions[idx].size) {
			ERROR("[GPT] Address overflow in PAS[%u]!\n", idx);
			return -EOVERFLOW;
		}

		/* Initial checks for PAS validity. */
		if (((pas_regions[idx].base_pa + pas_regions[idx].size) >
		    GPT_PPS_ACTUAL_SIZE(gpt_config.t)) ||
		    !gpt_is_gpi_valid(GPT_PAS_ATTR_GPI(pas_regions[idx].attrs))) {
			ERROR("[GPT] PAS[%u] is invalid!\n", idx);
			return -EFAULT;
		}

		/*
		 * Make sure this PAS does not overlap with another one. We
		 * start from idx + 1 instead of 0 since prior PAS mappings will
		 * have already checked themselves against this one.
		 */
		for (unsigned int i = idx + 1; i < pas_region_cnt; i++) {
			if (gpt_check_pas_overlap(pas_regions[idx].base_pa,
			    pas_regions[idx].size,
			    pas_regions[i].base_pa,
			    pas_regions[i].size)) {
				ERROR("[GPT] PAS[%u] overlaps with PAS[%u]\n",
					i, idx);
				return -EFAULT;
			}
		}

		/*
		 * Since this function can be called multiple times with
		 * separate L1 tables we need to check the existing L0 mapping
		 * to see if this PAS would fall into one that has already been
		 * initialized.
		 */
		for (unsigned int i = GPT_L0_IDX(pas_regions[idx].base_pa);
		     i <= GPT_L0_IDX(pas_regions[idx].base_pa + pas_regions[idx].size - 1);
		     i++) {
			if ((GPT_L0_TYPE(l0_desc[i]) == GPT_L0_TYPE_BLK_DESC) &&
			    (GPT_L0_BLKD_GPI(l0_desc[i]) == GPT_GPI_ANY)) {
				/* This descriptor is unused so continue. */
				continue;
			}

			/*
			 * This descriptor has been initialized in a previous
			 * call to this function so cannot be initialized again.
			 */
			ERROR("[GPT] PAS[%u] overlaps with previous L0[%d]!\n",
			      idx, i);
			return -EFAULT;
		}

		/* Check for block mapping (L0) type. */
		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
		    GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
			/* Make sure base and size are block-aligned. */
			if (!GPT_IS_L0_ALIGNED(pas_regions[idx].base_pa) ||
			    !GPT_IS_L0_ALIGNED(pas_regions[idx].size)) {
				ERROR("[GPT] PAS[%u] is not block-aligned!\n",
				      idx);
				return -EFAULT;
			}

			continue;
		}

		/* Check for granule mapping (L1) type. */
		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
		    GPT_PAS_ATTR_MAP_TYPE_GRANULE) {
			/* Make sure base and size are granule-aligned. */
			if (!GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].base_pa) ||
			    !GPT_IS_L1_ALIGNED(gpt_config.p, pas_regions[idx].size)) {
				ERROR("[GPT] PAS[%u] is not granule-aligned!\n",
				      idx);
				return -EFAULT;
			}

			/* Find how many L1 tables this PAS occupies. */
			pas_l1_cnt = (GPT_L0_IDX(pas_regions[idx].base_pa +
				     pas_regions[idx].size - 1) -
				     GPT_L0_IDX(pas_regions[idx].base_pa) + 1);

			/*
			 * This creates a situation where, if multiple PAS
			 * regions occupy the same table descriptor, we can get
			 * an artificially high total L1 table count. The way we
			 * handle this is by checking each PAS against those
			 * before it in the array, and if they both occupy the
			 * same PAS we subtract from pas_l1_cnt and only the
			 * first PAS in the array gets to count it.
			 */

			/*
			 * If L1 count is greater than 1 we know the start and
			 * end PAs are in different L0 regions so we must check
			 * both for overlap against other PAS.
			 */
			if (pas_l1_cnt > 1) {
				if (gpt_does_previous_pas_exist_here(
				    GPT_L0_IDX(pas_regions[idx].base_pa +
				    pas_regions[idx].size - 1),
				    pas_regions, idx)) {
					pas_l1_cnt = pas_l1_cnt - 1;
				}
			}

			if (gpt_does_previous_pas_exist_here(
			    GPT_L0_IDX(pas_regions[idx].base_pa),
			    pas_regions, idx)) {
				pas_l1_cnt = pas_l1_cnt - 1;
			}

			l1_cnt += pas_l1_cnt;
			continue;
		}

		/* If execution reaches this point, mapping type is invalid. */
		ERROR("[GPT] PAS[%u] has invalid mapping type 0x%x.\n", idx,
		      GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));
		return -EINVAL;
	}

	return l1_cnt;
}

/*
 * This function validates L0 initialization parameters.
 *
 * Parameters
 *   l0_mem_base	Base address of memory used for L0 tables.
 *   l1_mem_size	Size of memory available for L0 tables.
 *
 * Return
 *   Negative Linux error code in the event of a failure, 0 for success.
 */
static int gpt_validate_l0_params(gpccr_pps_e pps, uintptr_t l0_mem_base,
				  size_t l0_mem_size)
{
	size_t l0_alignment;

	/*
	 * Make sure PPS is valid and then store it since macros need this value
	 * to work.
	 */
	if (pps > GPT_PPS_MAX) {
		ERROR("[GPT] Invalid PPS: 0x%x\n", pps);
		return -EINVAL;
	}
	gpt_config.pps = pps;
	gpt_config.t = gpt_t_lookup[pps];

	/* Alignment must be the greater of 4k or l0 table size. */
	l0_alignment = PAGE_SIZE_4KB;
	if (l0_alignment < GPT_L0_TABLE_SIZE(gpt_config.t)) {
		l0_alignment = GPT_L0_TABLE_SIZE(gpt_config.t);
	}

	/* Check base address. */
	if ((l0_mem_base == 0U) || ((l0_mem_base & (l0_alignment - 1)) != 0U)) {
		ERROR("[GPT] Invalid L0 base address: 0x%lx\n", l0_mem_base);
		return -EFAULT;
	}

	/* Check size. */
	if (l0_mem_size < GPT_L0_TABLE_SIZE(gpt_config.t)) {
		ERROR("[GPT] Inadequate L0 memory: need 0x%lx, have 0x%lx)\n",
		      GPT_L0_TABLE_SIZE(gpt_config.t),
		      l0_mem_size);
		return -ENOMEM;
	}

	return 0;
}

/*
 * In the event that L1 tables are needed, this function validates
 * the L1 table generation parameters.
 *
 * Parameters
 *   l1_mem_base	Base address of memory used for L1 table allocation.
 *   l1_mem_size	Total size of memory available for L1 tables.
 *   l1_gpt_cnt		Number of L1 tables needed.
 *
 * Return
 *   Negative Linux error code in the event of a failure, 0 for success.
 */
static int gpt_validate_l1_params(uintptr_t l1_mem_base, size_t l1_mem_size,
				  unsigned int l1_gpt_cnt)
{
	size_t l1_gpt_mem_sz;

	/* Check if the granularity is supported */
	if (!xlat_arch_is_granule_size_supported(
	    GPT_PGS_ACTUAL_SIZE(gpt_config.p))) {
		return -EPERM;
	}

	/* Make sure L1 tables are aligned to their size. */
	if ((l1_mem_base & (GPT_L1_TABLE_SIZE(gpt_config.p) - 1)) != 0U) {
		ERROR("[GPT] Unaligned L1 GPT base address: 0x%lx\n",
		      l1_mem_base);
		return -EFAULT;
	}

	/* Get total memory needed for L1 tables. */
	l1_gpt_mem_sz = l1_gpt_cnt * GPT_L1_TABLE_SIZE(gpt_config.p);

	/* Check for overflow. */
	if ((l1_gpt_mem_sz / GPT_L1_TABLE_SIZE(gpt_config.p)) != l1_gpt_cnt) {
		ERROR("[GPT] Overflow calculating L1 memory size.\n");
		return -ENOMEM;
	}

	/* Make sure enough space was supplied. */
	if (l1_mem_size < l1_gpt_mem_sz) {
		ERROR("[GPT] Inadequate memory for L1 GPTs. ");
		ERROR("      Expected 0x%lx bytes. Got 0x%lx bytes\n",
		      l1_gpt_mem_sz, l1_mem_size);
		return -ENOMEM;
	}

	VERBOSE("[GPT] Requested 0x%lx bytes for L1 GPTs.\n", l1_gpt_mem_sz);
	return 0;
}

/*
 * This function initializes L0 block descriptors (regions that cannot be
 * transitioned at the granule level) according to the provided PAS.
 *
 * Parameters
 *   *pas		Pointer to the structure defining the PAS region to
 *			initialize.
 */
static void gpt_generate_l0_blk_desc(pas_region_t *pas)
{
	uint64_t gpt_desc;
	unsigned int end_idx;
	unsigned int idx;
	uint64_t *l0_gpt_arr;

	assert(gpt_config.plat_gpt_l0_base != 0U);
	assert(pas != NULL);

	/*
	 * Checking of PAS parameters has already been done in
	 * gpt_validate_pas_mappings so no need to check the same things again.
	 */

	l0_gpt_arr = (uint64_t *)gpt_config.plat_gpt_l0_base;

	/* Create the GPT Block descriptor for this PAS region */
	gpt_desc = GPT_L0_BLK_DESC(GPT_PAS_ATTR_GPI(pas->attrs));

	/* Start index of this region in L0 GPTs */
	idx = GPT_L0_IDX(pas->base_pa);

	/*
	 * Determine number of L0 GPT descriptors covered by
	 * this PAS region and use the count to populate these
	 * descriptors.
	 */
	end_idx = GPT_L0_IDX(pas->base_pa + pas->size);

	/* Generate the needed block descriptors. */
	for (; idx < end_idx; idx++) {
		l0_gpt_arr[idx] = gpt_desc;
		VERBOSE("[GPT] L0 entry (BLOCK) index %u [%p]: GPI = 0x%" PRIx64 " (0x%" PRIx64 ")\n",
			idx, &l0_gpt_arr[idx],
			(gpt_desc >> GPT_L0_BLK_DESC_GPI_SHIFT) &
			GPT_L0_BLK_DESC_GPI_MASK, l0_gpt_arr[idx]);
	}
}

/*
 * Helper function to determine if the end physical address lies in the same L0
 * region as the current physical address. If true, the end physical address is
 * returned else, the start address of the next region is returned.
 *
 * Parameters
 *   cur_pa		Physical address of the current PA in the loop through
 *			the range.
 *   end_pa		Physical address of the end PA in a PAS range.
 *
 * Return
 *   The PA of the end of the current range.
 */
static uintptr_t gpt_get_l1_end_pa(uintptr_t cur_pa, uintptr_t end_pa)
{
	uintptr_t cur_idx;
	uintptr_t end_idx;

	cur_idx = GPT_L0_IDX(cur_pa);
	end_idx = GPT_L0_IDX(end_pa);

	assert(cur_idx <= end_idx);

	if (cur_idx == end_idx) {
		return end_pa;
	}

	return (cur_idx + 1U) << GPT_L0_IDX_SHIFT;
}

/*
 * Helper function to fill out GPI entries in a single L1 table. This function
 * fills out entire L1 descriptors at a time to save memory writes.
 *
 * Parameters
 *   gpi		GPI to set this range to
 *   l1			Pointer to L1 table to fill out
 *   first		Address of first granule in range.
 *   last		Address of last granule in range (inclusive).
 */
static void gpt_fill_l1_tbl(uint64_t gpi, uint64_t *l1, uintptr_t first,
			    uintptr_t last)
{
	uint64_t gpi_field = GPT_BUILD_L1_DESC(gpi);
	uint64_t gpi_mask = 0xFFFFFFFFFFFFFFFF;

	assert(first <= last);
	assert((first & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U);
	assert((last & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) == 0U);
	assert(GPT_L0_IDX(first) == GPT_L0_IDX(last));
	assert(l1 != NULL);

	/* Shift the mask if we're starting in the middle of an L1 entry. */
	gpi_mask = gpi_mask << (GPT_L1_GPI_IDX(gpt_config.p, first) << 2);

	/* Fill out each L1 entry for this region. */
	for (unsigned int i = GPT_L1_IDX(gpt_config.p, first);
	     i <= GPT_L1_IDX(gpt_config.p, last); i++) {
		/* Account for stopping in the middle of an L1 entry. */
		if (i == GPT_L1_IDX(gpt_config.p, last)) {
			gpi_mask &= (gpi_mask >> ((15 -
				    GPT_L1_GPI_IDX(gpt_config.p, last)) << 2));
		}

		/* Write GPI values. */
		assert((l1[i] & gpi_mask) ==
		       (GPT_BUILD_L1_DESC(GPT_GPI_ANY) & gpi_mask));
		l1[i] = (l1[i] & ~gpi_mask) | (gpi_mask & gpi_field);

		/* Reset mask. */
		gpi_mask = 0xFFFFFFFFFFFFFFFF;
	}
}

/*
 * This function finds the next available unused L1 table and initializes all
 * granules descriptor entries to GPI_ANY. This ensures that there are no chunks
 * of GPI_NO_ACCESS (0b0000) memory floating around in the system in the
 * event that a PAS region stops midway through an L1 table, thus guaranteeing
 * that all memory not explicitly assigned is GPI_ANY. This function does not
 * check for overflow conditions, that should be done by the caller.
 *
 * Return
 *   Pointer to the next available L1 table.
 */
static uint64_t *gpt_get_new_l1_tbl(void)
{
	/* Retrieve the next L1 table. */
	uint64_t *l1 = (uint64_t *)((uint64_t)(gpt_l1_tbl) +
		       (GPT_L1_TABLE_SIZE(gpt_config.p) *
		       gpt_next_l1_tbl_idx));

	/* Increment L1 counter. */
	gpt_next_l1_tbl_idx++;

	/* Initialize all GPIs to GPT_GPI_ANY */
	for (unsigned int i = 0U; i < GPT_L1_ENTRY_COUNT(gpt_config.p); i++) {
		l1[i] = GPT_BUILD_L1_DESC(GPT_GPI_ANY);
	}

	return l1;
}

/*
 * When L1 tables are needed, this function creates the necessary L0 table
 * descriptors and fills out the L1 table entries according to the supplied
 * PAS range.
 *
 * Parameters
 *   *pas		Pointer to the structure defining the PAS region.
 */
static void gpt_generate_l0_tbl_desc(pas_region_t *pas)
{
	uintptr_t end_pa;
	uintptr_t cur_pa;
	uintptr_t last_gran_pa;
	uint64_t *l0_gpt_base;
	uint64_t *l1_gpt_arr;
	unsigned int l0_idx;

	assert(gpt_config.plat_gpt_l0_base != 0U);
	assert(pas != NULL);

	/*
	 * Checking of PAS parameters has already been done in
	 * gpt_validate_pas_mappings so no need to check the same things again.
	 */

	end_pa = pas->base_pa + pas->size;
	l0_gpt_base = (uint64_t *)gpt_config.plat_gpt_l0_base;

	/* We start working from the granule at base PA */
	cur_pa = pas->base_pa;

	/* Iterate over each L0 region in this memory range. */
	for (l0_idx = GPT_L0_IDX(pas->base_pa);
	     l0_idx <= GPT_L0_IDX(end_pa - 1U);
	     l0_idx++) {

		/*
		 * See if the L0 entry is already a table descriptor or if we
		 * need to create one.
		 */
		if (GPT_L0_TYPE(l0_gpt_base[l0_idx]) == GPT_L0_TYPE_TBL_DESC) {
			/* Get the L1 array from the L0 entry. */
			l1_gpt_arr = GPT_L0_TBLD_ADDR(l0_gpt_base[l0_idx]);
		} else {
			/* Get a new L1 table from the L1 memory space. */
			l1_gpt_arr = gpt_get_new_l1_tbl();

			/* Fill out the L0 descriptor and flush it. */
			l0_gpt_base[l0_idx] = GPT_L0_TBL_DESC(l1_gpt_arr);
		}

		VERBOSE("[GPT] L0 entry (TABLE) index %u [%p] ==> L1 Addr 0x%llx (0x%" PRIx64 ")\n",
			l0_idx, &l0_gpt_base[l0_idx],
			(unsigned long long)(l1_gpt_arr),
			l0_gpt_base[l0_idx]);

		/*
		 * Determine the PA of the last granule in this L0 descriptor.
		 */
		last_gran_pa = gpt_get_l1_end_pa(cur_pa, end_pa) -
			       GPT_PGS_ACTUAL_SIZE(gpt_config.p);

		/*
		 * Fill up L1 GPT entries between these two addresses. This
		 * function needs the addresses of the first granule and last
		 * granule in the range.
		 */
		gpt_fill_l1_tbl(GPT_PAS_ATTR_GPI(pas->attrs), l1_gpt_arr,
				cur_pa, last_gran_pa);

		/* Advance cur_pa to first granule in next L0 region. */
		cur_pa = gpt_get_l1_end_pa(cur_pa, end_pa);
	}
}

/*
 * This function flushes a range of L0 descriptors used by a given PAS region
 * array. There is a chance that some unmodified L0 descriptors would be flushed
 * in the case that there are "holes" in an array of PAS regions but overall
 * this should be faster than individually flushing each modified L0 descriptor
 * as they are created.
 *
 * Parameters
 *   *pas		Pointer to an array of PAS regions.
 *   pas_count		Number of entries in the PAS array.
 */
static void flush_l0_for_pas_array(pas_region_t *pas, unsigned int pas_count)
{
	unsigned int idx;
	unsigned int start_idx;
	unsigned int end_idx;
	uint64_t *l0 = (uint64_t *)gpt_config.plat_gpt_l0_base;

	assert(pas != NULL);
	assert(pas_count > 0);

	/* Initial start and end values. */
	start_idx = GPT_L0_IDX(pas[0].base_pa);
	end_idx = GPT_L0_IDX(pas[0].base_pa + pas[0].size - 1);

	/* Find lowest and highest L0 indices used in this PAS array. */
	for (idx = 1; idx < pas_count; idx++) {
		if (GPT_L0_IDX(pas[idx].base_pa) < start_idx) {
			start_idx = GPT_L0_IDX(pas[idx].base_pa);
		}
		if (GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1) > end_idx) {
			end_idx = GPT_L0_IDX(pas[idx].base_pa + pas[idx].size - 1);
		}
	}

	/*
	 * Flush all covered L0 descriptors, add 1 because we need to include
	 * the end index value.
	 */
	flush_dcache_range((uintptr_t)&l0[start_idx],
			   ((end_idx + 1) - start_idx) * sizeof(uint64_t));
}

/*
 * Public API to enable granule protection checks once the tables have all been
 * initialized. This function is called at first initialization and then again
 * later during warm boots of CPU cores.
 *
 * Return
 *   Negative Linux error code in the event of a failure, 0 for success.
 */
int gpt_enable(void)
{
	u_register_t gpccr_el3;

	/*
	 * Granule tables must be initialised before enabling
	 * granule protection.
	 */
	if (gpt_config.plat_gpt_l0_base == 0U) {
		ERROR("[GPT] Tables have not been initialized!\n");
		return -EPERM;
	}

	/* Write the base address of the L0 tables into GPTBR */
	write_gptbr_el3(((gpt_config.plat_gpt_l0_base >> GPTBR_BADDR_VAL_SHIFT)
			>> GPTBR_BADDR_SHIFT) & GPTBR_BADDR_MASK);

	/* GPCCR_EL3.PPS */
	gpccr_el3 = SET_GPCCR_PPS(gpt_config.pps);

	/* GPCCR_EL3.PGS */
	gpccr_el3 |= SET_GPCCR_PGS(gpt_config.pgs);

	/*
	 * Since EL3 maps the L1 region as Inner shareable, use the same
	 * shareability attribute for GPC as well so that
	 * GPC fetches are visible to PEs
	 */
	gpccr_el3 |= SET_GPCCR_SH(GPCCR_SH_IS);

	/* Outer and Inner cacheability set to Normal memory, WB, RA, WA. */
	gpccr_el3 |= SET_GPCCR_ORGN(GPCCR_ORGN_WB_RA_WA);
	gpccr_el3 |= SET_GPCCR_IRGN(GPCCR_IRGN_WB_RA_WA);

	/* Prepopulate GPCCR_EL3 but don't enable GPC yet */
	write_gpccr_el3(gpccr_el3);
	isb();

	/* Invalidate any stale TLB entries and any cached register fields */
	tlbipaallos();
	dsb();
	isb();

	/* Enable GPT */
	gpccr_el3 |= GPCCR_GPC_BIT;

	/* TODO: Configure GPCCR_EL3_GPCP for Fault control. */
	write_gpccr_el3(gpccr_el3);
	isb();
	tlbipaallos();
	dsb();
	isb();

	return 0;
}

/*
 * Public API to disable granule protection checks.
 */
void gpt_disable(void)
{
	u_register_t gpccr_el3 = read_gpccr_el3();

	write_gpccr_el3(gpccr_el3 & ~GPCCR_GPC_BIT);
	dsbsy();
	isb();
}

/*
 * Public API that initializes the entire protected space to GPT_GPI_ANY using
 * the L0 tables (block descriptors). Ideally, this function is invoked prior
 * to DDR discovery and initialization. The MMU must be initialized before
 * calling this function.
 *
 * Parameters
 *   pps		PPS value to use for table generation
 *   l0_mem_base	Base address of L0 tables in memory.
 *   l0_mem_size	Total size of memory available for L0 tables.
 *
 * Return
 *   Negative Linux error code in the event of a failure, 0 for success.
 */
int gpt_init_l0_tables(gpccr_pps_e pps, uintptr_t l0_mem_base,
		       size_t l0_mem_size)
{
	int ret;
	uint64_t gpt_desc;

	/* Ensure that MMU and Data caches are enabled. */
	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);

	/* Validate other parameters. */
	ret = gpt_validate_l0_params(pps, l0_mem_base, l0_mem_size);
	if (ret != 0) {
		return ret;
	}

	/* Create the descriptor to initialize L0 entries with. */
	gpt_desc = GPT_L0_BLK_DESC(GPT_GPI_ANY);

	/* Iterate through all L0 entries */
	for (unsigned int i = 0U; i < GPT_L0_REGION_COUNT(gpt_config.t); i++) {
		((uint64_t *)l0_mem_base)[i] = gpt_desc;
	}

	/* Flush updated L0 tables to memory. */
	flush_dcache_range((uintptr_t)l0_mem_base,
			   (size_t)GPT_L0_TABLE_SIZE(gpt_config.t));

	/* Stash the L0 base address once initial setup is complete. */
	gpt_config.plat_gpt_l0_base = l0_mem_base;

	return 0;
}

/*
 * Public API that carves out PAS regions from the L0 tables and builds any L1
 * tables that are needed. This function ideally is run after DDR discovery and
 * initialization. The L0 tables must have already been initialized to GPI_ANY
 * when this function is called.
 *
 * This function can be called multiple times with different L1 memory ranges
 * and PAS regions if it is desirable to place L1 tables in different locations
 * in memory. (ex: you have multiple DDR banks and want to place the L1 tables
 * in the DDR bank that they control)
 *
 * Parameters
 *   pgs		PGS value to use for table generation.
 *   l1_mem_base	Base address of memory used for L1 tables.
 *   l1_mem_size	Total size of memory available for L1 tables.
 *   *pas_regions	Pointer to PAS regions structure array.
 *   pas_count		Total number of PAS regions.
 *
 * Return
 *   Negative Linux error code in the event of a failure, 0 for success.
 */
int gpt_init_pas_l1_tables(gpccr_pgs_e pgs, uintptr_t l1_mem_base,
			   size_t l1_mem_size, pas_region_t *pas_regions,
			   unsigned int pas_count)
{
	int ret;
	int l1_gpt_cnt;

	/* Ensure that MMU and Data caches are enabled. */
	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);

	/* PGS is needed for gpt_validate_pas_mappings so check it now. */
	if (pgs > GPT_PGS_MAX) {
		ERROR("[GPT] Invalid PGS: 0x%x\n", pgs);
		return -EINVAL;
	}
	gpt_config.pgs = pgs;
	gpt_config.p = gpt_p_lookup[pgs];

	/* Make sure L0 tables have been initialized. */
	if (gpt_config.plat_gpt_l0_base == 0U) {
		ERROR("[GPT] L0 tables must be initialized first!\n");
		return -EPERM;
	}

	/* Check if L1 GPTs are required and how many. */
	l1_gpt_cnt = gpt_validate_pas_mappings(pas_regions, pas_count);
	if (l1_gpt_cnt < 0) {
		return l1_gpt_cnt;
	}

	VERBOSE("[GPT] %u L1 GPTs requested.\n", l1_gpt_cnt);

	/* If L1 tables are needed then validate the L1 parameters. */
	if (l1_gpt_cnt > 0) {
		ret = gpt_validate_l1_params(l1_mem_base, l1_mem_size,
		      l1_gpt_cnt);
		if (ret != 0) {
			return ret;
		}

		/* Set up parameters for L1 table generation. */
		gpt_l1_tbl = l1_mem_base;
		gpt_next_l1_tbl_idx = 0U;
	}

	INFO("[GPT] Boot Configuration\n");
	INFO("  PPS/T:     0x%x/%u\n", gpt_config.pps, gpt_config.t);
	INFO("  PGS/P:     0x%x/%u\n", gpt_config.pgs, gpt_config.p);
	INFO("  L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
	INFO("  PAS count: 0x%x\n", pas_count);
	INFO("  L0 base:   0x%lx\n", gpt_config.plat_gpt_l0_base);

	/* Generate the tables in memory. */
	for (unsigned int idx = 0U; idx < pas_count; idx++) {
		INFO("[GPT] PAS[%u]: base 0x%lx, size 0x%lx, GPI 0x%x, type 0x%x\n",
		     idx, pas_regions[idx].base_pa, pas_regions[idx].size,
		     GPT_PAS_ATTR_GPI(pas_regions[idx].attrs),
		     GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs));

		/* Check if a block or table descriptor is required */
		if (GPT_PAS_ATTR_MAP_TYPE(pas_regions[idx].attrs) ==
		    GPT_PAS_ATTR_MAP_TYPE_BLOCK) {
			gpt_generate_l0_blk_desc(&pas_regions[idx]);

		} else {
			gpt_generate_l0_tbl_desc(&pas_regions[idx]);
		}
	}

	/* Flush modified L0 tables. */
	flush_l0_for_pas_array(pas_regions, pas_count);

	/* Flush L1 tables if needed. */
	if (l1_gpt_cnt > 0) {
		flush_dcache_range(l1_mem_base,
				   GPT_L1_TABLE_SIZE(gpt_config.p) *
				   l1_gpt_cnt);
	}

	/* Make sure that all the entries are written to the memory. */
	dsbishst();
	tlbipaallos();
	dsb();
	isb();

	return 0;
}

/*
 * Public API to initialize the runtime gpt_config structure based on the values
 * present in the GPTBR_EL3 and GPCCR_EL3 registers. GPT initialization
 * typically happens in a bootloader stage prior to setting up the EL3 runtime
 * environment for the granule transition service so this function detects the
 * initialization from a previous stage. Granule protection checks must be
 * enabled already or this function will return an error.
 *
 * Return
 *   Negative Linux error code in the event of a failure, 0 for success.
 */
int gpt_runtime_init(void)
{
	u_register_t reg;

	/* Ensure that MMU and Data caches are enabled. */
	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0U);

	/* Ensure GPC are already enabled. */
	if ((read_gpccr_el3() & GPCCR_GPC_BIT) == 0U) {
		ERROR("[GPT] Granule protection checks are not enabled!\n");
		return -EPERM;
	}

	/*
	 * Read the L0 table address from GPTBR, we don't need the L1 base
	 * address since those are included in the L0 tables as needed.
	 */
	reg = read_gptbr_el3();
	gpt_config.plat_gpt_l0_base = ((reg >> GPTBR_BADDR_SHIFT) &
				      GPTBR_BADDR_MASK) <<
				      GPTBR_BADDR_VAL_SHIFT;

	/* Read GPCCR to get PGS and PPS values. */
	reg = read_gpccr_el3();
	gpt_config.pps = (reg >> GPCCR_PPS_SHIFT) & GPCCR_PPS_MASK;
	gpt_config.t = gpt_t_lookup[gpt_config.pps];
	gpt_config.pgs = (reg >> GPCCR_PGS_SHIFT) & GPCCR_PGS_MASK;
	gpt_config.p = gpt_p_lookup[gpt_config.pgs];

	VERBOSE("[GPT] Runtime Configuration\n");
	VERBOSE("  PPS/T:     0x%x/%u\n", gpt_config.pps, gpt_config.t);
	VERBOSE("  PGS/P:     0x%x/%u\n", gpt_config.pgs, gpt_config.p);
	VERBOSE("  L0GPTSZ/S: 0x%x/%u\n", GPT_L0GPTSZ, GPT_S_VAL);
	VERBOSE("  L0 base:   0x%lx\n", gpt_config.plat_gpt_l0_base);

	return 0;
}

/*
 * The L1 descriptors are protected by a spinlock to ensure that multiple
 * CPUs do not attempt to change the descriptors at once. In the future it
 * would be better to have separate spinlocks for each L1 descriptor.
 */
static spinlock_t gpt_lock;

/*
 * A helper to write the value (target_pas << gpi_shift) to the index of
 * the gpt_l1_addr
 */
static inline void write_gpt(uint64_t *gpt_l1_desc, uint64_t *gpt_l1_addr,
			     unsigned int gpi_shift, unsigned int idx,
			     unsigned int target_pas)
{
	*gpt_l1_desc &= ~(GPT_L1_GRAN_DESC_GPI_MASK << gpi_shift);
	*gpt_l1_desc |= ((uint64_t)target_pas << gpi_shift);
	gpt_l1_addr[idx] = *gpt_l1_desc;
}

/*
 * Helper to retrieve the gpt_l1_* information from the base address
 * returned in gpi_info
 */
static int get_gpi_params(uint64_t base, gpi_info_t *gpi_info)
{
	uint64_t gpt_l0_desc, *gpt_l0_base;

	gpt_l0_base = (uint64_t *)gpt_config.plat_gpt_l0_base;
	gpt_l0_desc = gpt_l0_base[GPT_L0_IDX(base)];
	if (GPT_L0_TYPE(gpt_l0_desc) != GPT_L0_TYPE_TBL_DESC) {
		VERBOSE("[GPT] Granule is not covered by a table descriptor!\n");
		VERBOSE("      Base=0x%" PRIx64 "\n", base);
		return -EINVAL;
	}

	/* Get the table index and GPI shift from PA. */
	gpi_info->gpt_l1_addr = GPT_L0_TBLD_ADDR(gpt_l0_desc);
	gpi_info->idx = GPT_L1_IDX(gpt_config.p, base);
	gpi_info->gpi_shift = GPT_L1_GPI_IDX(gpt_config.p, base) << 2;

	gpi_info->gpt_l1_desc = (gpi_info->gpt_l1_addr)[gpi_info->idx];
	gpi_info->gpi = (gpi_info->gpt_l1_desc >> gpi_info->gpi_shift) &
		GPT_L1_GRAN_DESC_GPI_MASK;
	return 0;
}

/*
 * This function is the granule transition delegate service. When a granule
 * transition request occurs it is routed to this function to have the request,
 * if valid, fulfilled following A1.1.1 Delegate of RME supplement
 *
 * TODO: implement support for transitioning multiple granules at once.
 *
 * Parameters
 *   base		Base address of the region to transition, must be
 *			aligned to granule size.
 *   size		Size of region to transition, must be aligned to granule
 *			size.
 *   src_sec_state	Security state of the caller.
 *
 * Return
 *   Negative Linux error code in the event of a failure, 0 for success.
 */
int gpt_delegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
{
	gpi_info_t gpi_info;
	uint64_t nse;
	int res;
	unsigned int target_pas;

	/* Ensure that the tables have been set up before taking requests. */
	assert(gpt_config.plat_gpt_l0_base != 0UL);

	/* Ensure that caches are enabled. */
	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);

	/* Delegate request can only come from REALM or SECURE */
	assert(src_sec_state == SMC_FROM_REALM ||
	       src_sec_state == SMC_FROM_SECURE);

	/* See if this is a single or a range of granule transition. */
	if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
		return -EINVAL;
	}

	/* Check that base and size are valid */
	if ((ULONG_MAX - base) < size) {
		VERBOSE("[GPT] Transition request address overflow!\n");
		VERBOSE("      Base=0x%" PRIx64 "\n", base);
		VERBOSE("      Size=0x%lx\n", size);
		return -EINVAL;
	}

	/* Make sure base and size are valid. */
	if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
	    ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
	    (size == 0UL) ||
	    ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
		VERBOSE("[GPT] Invalid granule transition address range!\n");
		VERBOSE("      Base=0x%" PRIx64 "\n", base);
		VERBOSE("      Size=0x%lx\n", size);
		return -EINVAL;
	}

	target_pas = GPT_GPI_REALM;
	if (src_sec_state == SMC_FROM_SECURE) {
		target_pas = GPT_GPI_SECURE;
	}

	/*
	 * Access to L1 tables is controlled by a global lock to ensure
	 * that no more than one CPU is allowed to make changes at any
	 * given time.
	 */
	spin_lock(&gpt_lock);
	res = get_gpi_params(base, &gpi_info);
	if (res != 0) {
		spin_unlock(&gpt_lock);
		return res;
	}

	/* Check that the current address is in NS state */
	if (gpi_info.gpi != GPT_GPI_NS) {
		VERBOSE("[GPT] Only Granule in NS state can be delegated.\n");
		VERBOSE("      Caller: %u, Current GPI: %u\n", src_sec_state,
			gpi_info.gpi);
		spin_unlock(&gpt_lock);
		return -EPERM;
	}

	if (src_sec_state == SMC_FROM_SECURE) {
		nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
	} else {
		nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
	}

	/*
	 * In order to maintain mutual distrust between Realm and Secure
	 * states, remove any data speculatively fetched into the target
	 * physical address space. Issue DC CIPAPA over address range
	 */
	flush_dcache_to_popa_range(nse | base,
				   GPT_PGS_ACTUAL_SIZE(gpt_config.p));

	write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
		  gpi_info.gpi_shift, gpi_info.idx, target_pas);
	dsboshst();

	gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
	dsbosh();

	nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;

	flush_dcache_to_popa_range(nse | base,
				   GPT_PGS_ACTUAL_SIZE(gpt_config.p));

	/* Unlock access to the L1 tables. */
	spin_unlock(&gpt_lock);

	/*
	 * The isb() will be done as part of context
	 * synchronization when returning to lower EL
	 */
	VERBOSE("[GPT] Granule 0x%" PRIx64 ", GPI 0x%x->0x%x\n",
		base, gpi_info.gpi, target_pas);

	return 0;
}

/*
 * This function is the granule transition undelegate service. When a granule
 * transition request occurs it is routed to this function where the request is
 * validated then fulfilled if possible.
 *
 * TODO: implement support for transitioning multiple granules at once.
 *
 * Parameters
 *   base		Base address of the region to transition, must be
 *			aligned to granule size.
 *   size		Size of region to transition, must be aligned to granule
 *			size.
 *   src_sec_state	Security state of the caller.
 *
 * Return
 *    Negative Linux error code in the event of a failure, 0 for success.
 */
int gpt_undelegate_pas(uint64_t base, size_t size, unsigned int src_sec_state)
{
	gpi_info_t gpi_info;
	uint64_t nse;
	int res;

	/* Ensure that the tables have been set up before taking requests. */
	assert(gpt_config.plat_gpt_l0_base != 0UL);

	/* Ensure that MMU and caches are enabled. */
	assert((read_sctlr_el3() & SCTLR_C_BIT) != 0UL);

	/* Delegate request can only come from REALM or SECURE */
	assert(src_sec_state == SMC_FROM_REALM ||
	       src_sec_state == SMC_FROM_SECURE);

	/* See if this is a single or a range of granule transition. */
	if (size != GPT_PGS_ACTUAL_SIZE(gpt_config.p)) {
		return -EINVAL;
	}

	/* Check that base and size are valid */
	if ((ULONG_MAX - base) < size) {
		VERBOSE("[GPT] Transition request address overflow!\n");
		VERBOSE("      Base=0x%" PRIx64 "\n", base);
		VERBOSE("      Size=0x%lx\n", size);
		return -EINVAL;
	}

	/* Make sure base and size are valid. */
	if (((base & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
	    ((size & (GPT_PGS_ACTUAL_SIZE(gpt_config.p) - 1)) != 0UL) ||
	    (size == 0UL) ||
	    ((base + size) >= GPT_PPS_ACTUAL_SIZE(gpt_config.t))) {
		VERBOSE("[GPT] Invalid granule transition address range!\n");
		VERBOSE("      Base=0x%" PRIx64 "\n", base);
		VERBOSE("      Size=0x%lx\n", size);
		return -EINVAL;
	}

	/*
	 * Access to L1 tables is controlled by a global lock to ensure
	 * that no more than one CPU is allowed to make changes at any
	 * given time.
	 */
	spin_lock(&gpt_lock);

	res = get_gpi_params(base, &gpi_info);
	if (res != 0) {
		spin_unlock(&gpt_lock);
		return res;
	}

	/* Check that the current address is in the delegated state */
	if ((src_sec_state == SMC_FROM_REALM  &&
	     gpi_info.gpi != GPT_GPI_REALM) ||
	    (src_sec_state == SMC_FROM_SECURE &&
	     gpi_info.gpi != GPT_GPI_SECURE)) {
		VERBOSE("[GPT] Only Granule in REALM or SECURE state can be undelegated.\n");
		VERBOSE("      Caller: %u, Current GPI: %u\n", src_sec_state,
			gpi_info.gpi);
		spin_unlock(&gpt_lock);
		return -EPERM;
	}


	/* In order to maintain mutual distrust between Realm and Secure
	 * states, remove access now, in order to guarantee that writes
	 * to the currently-accessible physical address space will not
	 * later become observable.
	 */
	write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
		  gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NO_ACCESS);
	dsboshst();

	gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
	dsbosh();

	if (src_sec_state == SMC_FROM_SECURE) {
		nse = (uint64_t)GPT_NSE_SECURE << GPT_NSE_SHIFT;
	} else {
		nse = (uint64_t)GPT_NSE_REALM << GPT_NSE_SHIFT;
	}

	/* Ensure that the scrubbed data has made it past the PoPA */
	flush_dcache_to_popa_range(nse | base,
				   GPT_PGS_ACTUAL_SIZE(gpt_config.p));

	/*
	 * Remove any data loaded speculatively
	 * in NS space from before the scrubbing
	 */
	nse = (uint64_t)GPT_NSE_NS << GPT_NSE_SHIFT;

	flush_dcache_to_popa_range(nse | base,
				   GPT_PGS_ACTUAL_SIZE(gpt_config.p));

	/* Clear existing GPI encoding and transition granule. */
	write_gpt(&gpi_info.gpt_l1_desc, gpi_info.gpt_l1_addr,
		  gpi_info.gpi_shift, gpi_info.idx, GPT_GPI_NS);
	dsboshst();

	/* Ensure that all agents observe the new NS configuration */
	gpt_tlbi_by_pa_ll(base, GPT_PGS_ACTUAL_SIZE(gpt_config.p));
	dsbosh();

	/* Unlock access to the L1 tables. */
	spin_unlock(&gpt_lock);

	/*
	 * The isb() will be done as part of context
	 * synchronization when returning to lower EL
	 */
	VERBOSE("[GPT] Granule 0x%" PRIx64 ", GPI 0x%x->0x%x\n",
		base, gpi_info.gpi, GPT_GPI_NS);

	return 0;
}