1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
/*
* Copyright (c) 2016, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <arch.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <lib/mmio.h>
#include <mt8173_def.h>
#include <mtk_sip_svc.h>
#define crypt_read32(offset) \
mmio_read_32((uintptr_t)(CRYPT_BASE+((offset) * 4)))
#define crypt_write32(offset, value) \
mmio_write_32((uintptr_t)(CRYPT_BASE + ((offset) * 4)), (uint32_t)value)
#define GET_L32(x) ((uint32_t)(x & 0xffffffff))
#define GET_H32(x) ((uint32_t)((x >> 32) & 0xffffffff))
#define REG_INIT 0
#define REG_MSC 4
#define REG_TRIG 256
#define REG_STAT 512
#define REG_CLR 513
#define REG_INT 514
#define REG_P68 768
#define REG_P69 769
#define REG_P70 770
#define REG_P71 771
#define REG_P72 772
#define REG_D20 820
#define KEY_SIZE 160
#define KEY_LEN 40
/* Wait until crypt is completed */
uint64_t crypt_wait(void)
{
crypt_write32(REG_TRIG, 0);
while (crypt_read32(REG_STAT) == 0)
;
udelay(100);
crypt_write32(REG_CLR, crypt_read32(REG_STAT));
crypt_write32(REG_INT, 0);
return MTK_SIP_E_SUCCESS;
}
static uint32_t record[4];
/* Copy encrypted key to crypt engine */
uint64_t crypt_set_hdcp_key_ex(uint64_t x1, uint64_t x2, uint64_t x3)
{
uint32_t i = (uint32_t)x1;
uint32_t j = 0;
if (i > KEY_LEN)
return MTK_SIP_E_INVALID_PARAM;
if (i < KEY_LEN) {
crypt_write32(REG_MSC, 0x80ff3800);
crypt_write32(REG_INIT, 0);
crypt_write32(REG_INIT, 0xF);
crypt_write32(REG_CLR, 1);
crypt_write32(REG_INT, 0);
crypt_write32(REG_P68, 0x70);
crypt_write32(REG_P69, 0x1C0);
crypt_write32(REG_P70, 0x30);
crypt_write32(REG_P71, 0x4);
crypt_wait();
crypt_write32(REG_D20 + 4 * i, GET_L32(x2));
crypt_write32(REG_D20 + 4 * i + 1, GET_H32(x2));
crypt_write32(REG_D20 + 4 * i + 2, GET_L32(x3));
crypt_write32(REG_D20 + 4 * i + 3, GET_H32(x3));
crypt_write32(REG_P69, 0);
crypt_write32(REG_P68, 0x20);
crypt_write32(REG_P71, 0x34 + 4 * i);
crypt_write32(REG_P72, 0x34 + 4 * i);
crypt_wait();
for (j = 0; j < 4; j++) {
crypt_write32(REG_P68, 0x71);
crypt_write32(REG_P69, 0x34 + 4 * i + j);
crypt_write32(REG_P70, record[j]);
crypt_wait();
}
}
/* Prepare data for next iteration */
record[0] = GET_L32(x2);
record[1] = GET_H32(x2);
record[2] = GET_L32(x3);
record[3] = GET_H32(x3);
return MTK_SIP_E_SUCCESS;
}
/* Set key to hdcp */
uint64_t crypt_set_hdcp_key_num(uint32_t num)
{
if (num > KEY_LEN)
return MTK_SIP_E_INVALID_PARAM;
crypt_write32(REG_P68, 0x6A);
crypt_write32(REG_P69, 0x34 + 4 * num);
crypt_wait();
return MTK_SIP_E_SUCCESS;
}
/* Clear key in crypt engine */
uint64_t crypt_clear_hdcp_key(void)
{
uint32_t i;
for (i = 0; i < KEY_SIZE; i++)
crypt_write32(REG_D20 + i, 0);
return MTK_SIP_E_SUCCESS;
}
|