diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:47:55 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-04 12:47:55 +0000 |
commit | 2aadc03ef15cb5ca5cc2af8a7c08e070742f0ac4 (patch) | |
tree | 033cc839730fda84ff08db877037977be94e5e3a /vendor/regex-automata/src/util/empty.rs | |
parent | Initial commit. (diff) | |
download | cargo-upstream.tar.xz cargo-upstream.zip |
Adding upstream version 0.70.1+ds1.upstream/0.70.1+ds1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'vendor/regex-automata/src/util/empty.rs')
-rw-r--r-- | vendor/regex-automata/src/util/empty.rs | 265 |
1 files changed, 265 insertions, 0 deletions
diff --git a/vendor/regex-automata/src/util/empty.rs b/vendor/regex-automata/src/util/empty.rs new file mode 100644 index 0000000..e16af3b --- /dev/null +++ b/vendor/regex-automata/src/util/empty.rs @@ -0,0 +1,265 @@ +/*! +This module provides helper routines for dealing with zero-width matches. + +The main problem being solved here is this: + +1. The caller wants to search something that they know is valid UTF-8, such +as a Rust `&str`. +2. The regex used by the caller can match the empty string. For example, `a*`. +3. The caller should never get match offsets returned that occur within the +encoding of a UTF-8 codepoint. It is logically incorrect, and also means that, +e.g., slicing the `&str` at those offsets will lead to a panic. + +So the question here is, how do we prevent the caller from getting match +offsets that split a codepoint? For example, strictly speaking, the regex `a*` +matches `☃` at the positions `[0, 0]`, `[1, 1]`, `[2, 2]` and `[3, 3]` since +the UTF-8 encoding of `☃` is `\xE2\x98\x83`. In particular, the `NFA` that +underlies all of the matching engines in this crate doesn't have anything in +its state graph that prevents matching between UTF-8 code units. Indeed, any +engine derived from the `NFA` will match at those positions by virtue of the +fact that the `NFA` is byte oriented. That is, its transitions are defined over +bytes and the matching engines work by proceeding one byte at a time. + +(An alternative architecture would be to define the transitions in an `NFA` +over codepoints, or `char`. And then make the matching engines proceed by +decoding one codepoint at a time. This is a viable strategy, but it doesn't +work for DFA matching engines because designing a fast and memory efficient +transition table for an alphabet as large as Unicode is quite difficult. More +to the point, the top-level `regex` crate supports matching on arbitrary bytes +when Unicode mode is disabled and one is searching a `&[u8]`. So in that case, +you can't just limit yourself to decoding codepoints and matching those. You +really do need to be able to follow byte oriented transitions on the `NFA`.) + +In an older version of the regex crate, we handled this case not in the regex +engine, but in the iterators over matches. Namely, since this case only arises +when the match is empty, we "just" incremented the next starting position +of the search by `N`, where `N` is the length of the codepoint encoded at +the current position. The alternative or more "natural" solution of just +incrementing by `1` would result in executing a search of `a*` on `☃` like +this: + +* Start search at `0`. +* Found match at `[0, 0]`. +* Next start position is `0`. +* To avoid an infinite loop, since it's an empty match, increment by `1`. +* Start search at `1`. +* Found match at `[1, 1]`. Oops. + +But if we instead incremented by `3` (the length in bytes of `☃`), then we get +the following: + +* Start search at `0`. +* Found match at `[0, 0]`. +* Next start position is `0`. +* To avoid an infinite loop, since it's an empty match, increment by `3`. +* Start search at `3`. +* Found match at `[3, 3]`. + +And we get the correct result. But does this technique work in all cases? +Crucially, it requires that a zero-width match that splits a codepoint never +occurs beyond the starting position of the search. Because if it did, merely +incrementing the start position by the number of bytes in the codepoint at +the current position wouldn't be enough. A zero-width match could just occur +anywhere. It turns out that it is _almost_ true. We can convince ourselves by +looking at all possible patterns that can match the empty string: + +* Patterns like `a*`, `a{0}`, `(?:)`, `a|` and `|a` all unconditionally match +the empty string. That is, assuming there isn't an `a` at the current position, +they will all match the empty string at the start of a search. There is no way +to move past it because any other match would not be "leftmost." +* `^` only matches at the beginning of the haystack, where the start position +is `0`. Since we know we're searching valid UTF-8 (if it isn't valid UTF-8, +then this entire problem goes away because it implies your string type supports +invalid UTF-8 and thus must deal with offsets that not only split a codepoint +but occur in entirely invalid UTF-8 somehow), it follows that `^` never matches +between the code units of a codepoint because the start of a valid UTF-8 string +is never within the encoding of a codepoint. +* `$` basically the same logic as `^`, but for the end of a string. A valid +UTF-8 string can't have an incomplete codepoint at the end of it. +* `(?m:^)` follows similarly to `^`, but it can match immediately following +a `\n`. However, since a `\n` is always a codepoint itself and can never +appear within a codepoint, it follows that the position immediately following +a `\n` in a string that is valid UTF-8 is guaranteed to not be between the +code units of another codepoint. (One caveat here is that the line terminator +for multi-line anchors can now be changed to any arbitrary byte, including +things like `\x98` which might occur within a codepoint. However, this wasn't +supported by the old regex crate. If it was, it pose the same problems as +`(?-u:\B)`, as we'll discuss below.) +* `(?m:$)` a similar argument as for `(?m:^)`. The only difference is that a +`(?m:$)` matches just before a `\n`. But the same argument applies. +* `(?Rm:^)` and `(?Rm:$)` weren't supported by the old regex crate, but the +CRLF aware line anchors follow a similar argument as for `(?m:^)` and `(?m:$)`. +Namely, since they only ever match at a boundary where one side is either a +`\r` or a `\n`, neither of which can occur within a codepoint. +* `\b` only matches at positions where both sides are valid codepoints, so +this cannot split a codepoint. +* `\B`, like `\b`, also only matches at positions where both sides are valid +codepoints. So this cannot split a codepoint either. +* `(?-u:\b)` matches only at positions where at least one side of it is an ASCII +word byte. Since ASCII bytes cannot appear as code units in non-ASCII codepoints +(one of the many amazing qualities of UTF-8), it follows that this too cannot +split a codepoint. +* `(?-u:\B)` finally represents a problem. It can matches between *any* two +bytes that are either both word bytes or non-word bytes. Since code units like +`\xE2` and `\x98` (from the UTF-8 encoding of `☃`) are both non-word bytes, +`(?-u:\B)` will match at the position between them. + +Thus, our approach of incrementing one codepoint at a time after seeing an +empty match is flawed because `(?-u:\B)` can result in an empty match that +splits a codepoint at a position past the starting point of a search. For +example, searching `(?-u:\B)` on `a☃` would produce the following matches: `[2, +2]`, `[3, 3]` and `[4, 4]`. The positions at `0` and `1` don't match because +they correspond to word boundaries since `a` is an ASCII word byte. + +So what did the old regex crate do to avoid this? It banned `(?-u:\B)` from +regexes that could match `&str`. That might sound extreme, but a lot of other +things were banned too. For example, all of `(?-u:.)`, `(?-u:[^a])` and +`(?-u:\W)` can match invalid UTF-8 too, including individual code units with a +codepoint. The key difference is that those expressions could never produce an +empty match. That ban happens when translating an `Ast` to an `Hir`, because +that process that reason about whether an `Hir` can produce *non-empty* matches +at invalid UTF-8 boundaries. Bottom line though is that we side-stepped the +`(?-u:\B)` issue by banning it. + +If banning `(?-u:\B)` were the only issue with the old regex crate's approach, +then I probably would have kept it. `\B` is rarely used, so it's not such a big +deal to have to work-around it. However, the problem with the above approach +is that it doesn't compose. The logic for avoiding splitting a codepoint only +lived in the iterator, which means if anyone wants to implement their own +iterator over regex matches, they have to deal with this extremely subtle edge +case to get full correctness. + +Instead, in this crate, we take the approach of pushing this complexity down +to the lowest layers of each regex engine. The approach is pretty simple: + +* If this corner case doesn't apply, don't do anything. (For example, if UTF-8 +mode isn't enabled or if the regex cannot match the empty string.) +* If an empty match is reported, explicitly check if it splits a codepoint. +* If it doesn't, we're done, return the match. +* If it does, then ignore the match and re-run the search. +* Repeat the above process until the end of the haystack is reached or a match +is found that doesn't split a codepoint or isn't zero width. + +And that's pretty much what this module provides. Every regex engine uses these +methods in their lowest level public APIs, but just above the layer where +their internal engine is used. That way, all regex engines can be arbitrarily +composed without worrying about handling this case, and iterators don't need to +handle it explicitly. + +(It turns out that a new feature I added, support for changing the line +terminator in a regex to any arbitrary byte, also provokes the above problem. +Namely, the byte could be invalid UTF-8 or a UTF-8 continuation byte. So that +support would need to be limited or banned when UTF-8 mode is enabled, just +like we did for `(?-u:\B)`. But thankfully our more robust approach in this +crate handles that case just fine too.) +*/ + +use crate::util::search::{Input, MatchError}; + +#[cold] +#[inline(never)] +pub(crate) fn skip_splits_fwd<T, F>( + input: &Input<'_>, + init_value: T, + match_offset: usize, + find: F, +) -> Result<Option<T>, MatchError> +where + F: FnMut(&Input<'_>) -> Result<Option<(T, usize)>, MatchError>, +{ + skip_splits(true, input, init_value, match_offset, find) +} + +#[cold] +#[inline(never)] +pub(crate) fn skip_splits_rev<T, F>( + input: &Input<'_>, + init_value: T, + match_offset: usize, + find: F, +) -> Result<Option<T>, MatchError> +where + F: FnMut(&Input<'_>) -> Result<Option<(T, usize)>, MatchError>, +{ + skip_splits(false, input, init_value, match_offset, find) +} + +fn skip_splits<T, F>( + forward: bool, + input: &Input<'_>, + init_value: T, + mut match_offset: usize, + mut find: F, +) -> Result<Option<T>, MatchError> +where + F: FnMut(&Input<'_>) -> Result<Option<(T, usize)>, MatchError>, +{ + // If our config says to do an anchored search, then we're definitely + // done. We just need to determine whether we have a valid match or + // not. If we don't, then we're not allowed to continue, so we report + // no match. + // + // This is actually quite a subtle correctness thing. The key here is + // that if we got an empty match that splits a codepoint after doing an + // anchored search in UTF-8 mode, then that implies that we must have + // *started* the search at a location that splits a codepoint. This + // follows from the fact that if a match is reported from an anchored + // search, then the start offset of the match *must* match the start + // offset of the search. + // + // It also follows that no other non-empty match is possible. For + // example, you might write a regex like '(?:)|SOMETHING' and start its + // search in the middle of a codepoint. The first branch is an empty + // regex that will bubble up a match at the first position, and then + // get rejected here and report no match. But what if 'SOMETHING' could + // have matched? We reason that such a thing is impossible, because + // if it does, it must report a match that starts in the middle of a + // codepoint. This in turn implies that a match is reported whose span + // does not correspond to valid UTF-8, and this breaks the promise + // made when UTF-8 mode is enabled. (That promise *can* be broken, for + // example, by enabling UTF-8 mode but building an by hand NFA that + // produces non-empty matches that span invalid UTF-8. This is an unchecked + // but documented precondition violation of UTF-8 mode, and is documented + // to have unspecified behavior.) + // + // I believe this actually means that if an anchored search is run, and + // UTF-8 mode is enabled and the start position splits a codepoint, + // then it is correct to immediately report no match without even + // executing the regex engine. But it doesn't really seem worth writing + // out that case in every regex engine to save a tiny bit of work in an + // extremely pathological case, so we just handle it here. + if input.get_anchored().is_anchored() { + return Ok(if input.is_char_boundary(match_offset) { + Some(init_value) + } else { + None + }); + } + // Otherwise, we have an unanchored search, so just keep looking for + // matches until we have one that does not split a codepoint or we hit + // EOI. + let mut value = init_value; + let mut input = input.clone(); + while !input.is_char_boundary(match_offset) { + if forward { + // The unwrap is OK here because overflowing usize while + // iterating over a slice is impossible, at it would require + // a slice of length greater than isize::MAX, which is itself + // impossible. + input.set_start(input.start().checked_add(1).unwrap()); + } else { + input.set_end(match input.end().checked_sub(1) { + None => return Ok(None), + Some(end) => end, + }); + } + match find(&input)? { + None => return Ok(None), + Some((new_value, new_match_end)) => { + value = new_value; + match_offset = new_match_end; + } + } + } + Ok(Some(value)) +} |