diff options
Diffstat (limited to 'vendor/bstr/src/ext_slice.rs')
-rw-r--r-- | vendor/bstr/src/ext_slice.rs | 3870 |
1 files changed, 3870 insertions, 0 deletions
diff --git a/vendor/bstr/src/ext_slice.rs b/vendor/bstr/src/ext_slice.rs new file mode 100644 index 0000000..503e0b2 --- /dev/null +++ b/vendor/bstr/src/ext_slice.rs @@ -0,0 +1,3870 @@ +use core::{iter, slice, str}; + +#[cfg(all(feature = "alloc", feature = "unicode"))] +use alloc::vec; +#[cfg(feature = "alloc")] +use alloc::{borrow::Cow, string::String, vec::Vec}; + +#[cfg(feature = "std")] +use std::{ffi::OsStr, path::Path}; + +use memchr::{memchr, memmem, memrchr}; + +use crate::escape_bytes::EscapeBytes; +#[cfg(feature = "alloc")] +use crate::ext_vec::ByteVec; +#[cfg(feature = "unicode")] +use crate::unicode::{ + whitespace_len_fwd, whitespace_len_rev, GraphemeIndices, Graphemes, + SentenceIndices, Sentences, WordIndices, Words, WordsWithBreakIndices, + WordsWithBreaks, +}; +use crate::{ + ascii, + bstr::BStr, + byteset, + utf8::{self, CharIndices, Chars, Utf8Chunks, Utf8Error}, +}; + +/// A short-hand constructor for building a `&[u8]`. +/// +/// This idiosyncratic constructor is useful for concisely building byte string +/// slices. Its primary utility is in conveniently writing byte string literals +/// in a uniform way. For example, consider this code that does not compile: +/// +/// ```ignore +/// let strs = vec![b"a", b"xy"]; +/// ``` +/// +/// The above code doesn't compile because the type of the byte string literal +/// `b"a"` is `&'static [u8; 1]`, and the type of `b"xy"` is +/// `&'static [u8; 2]`. Since their types aren't the same, they can't be stored +/// in the same `Vec`. (This is dissimilar from normal Unicode string slices, +/// where both `"a"` and `"xy"` have the same type of `&'static str`.) +/// +/// One way of getting the above code to compile is to convert byte strings to +/// slices. You might try this: +/// +/// ```ignore +/// let strs = vec![&b"a", &b"xy"]; +/// ``` +/// +/// But this just creates values with type `& &'static [u8; 1]` and +/// `& &'static [u8; 2]`. Instead, you need to force the issue like so: +/// +/// ``` +/// let strs = vec![&b"a"[..], &b"xy"[..]]; +/// // or +/// let strs = vec![b"a".as_ref(), b"xy".as_ref()]; +/// ``` +/// +/// But neither of these are particularly convenient to type, especially when +/// it's something as common as a string literal. Thus, this constructor +/// permits writing the following instead: +/// +/// ``` +/// use bstr::B; +/// +/// let strs = vec![B("a"), B(b"xy")]; +/// ``` +/// +/// Notice that this also lets you mix and match both string literals and byte +/// string literals. This can be quite convenient! +#[allow(non_snake_case)] +#[inline] +pub fn B<'a, B: ?Sized + AsRef<[u8]>>(bytes: &'a B) -> &'a [u8] { + bytes.as_ref() +} + +impl ByteSlice for [u8] { + #[inline] + fn as_bytes(&self) -> &[u8] { + self + } + + #[inline] + fn as_bytes_mut(&mut self) -> &mut [u8] { + self + } +} + +impl<const N: usize> ByteSlice for [u8; N] { + #[inline] + fn as_bytes(&self) -> &[u8] { + self + } + + #[inline] + fn as_bytes_mut(&mut self) -> &mut [u8] { + self + } +} + +/// Ensure that callers cannot implement `ByteSlice` by making an +/// umplementable trait its super trait. +mod private { + pub trait Sealed {} +} +impl private::Sealed for [u8] {} +impl<const N: usize> private::Sealed for [u8; N] {} + +/// A trait that extends `&[u8]` with string oriented methods. +/// +/// This trait is sealed and cannot be implemented outside of `bstr`. +pub trait ByteSlice: private::Sealed { + /// A method for accessing the raw bytes of this type. This is always a + /// no-op and callers shouldn't care about it. This only exists for making + /// the extension trait work. + #[doc(hidden)] + fn as_bytes(&self) -> &[u8]; + + /// A method for accessing the raw bytes of this type, mutably. This is + /// always a no-op and callers shouldn't care about it. This only exists + /// for making the extension trait work. + #[doc(hidden)] + fn as_bytes_mut(&mut self) -> &mut [u8]; + + /// Return this byte slice as a `&BStr`. + /// + /// Use `&BStr` is useful because of its `fmt::Debug` representation + /// and various other trait implementations (such as `PartialEq` and + /// `PartialOrd`). In particular, the `Debug` implementation for `BStr` + /// shows its bytes as a normal string. For invalid UTF-8, hex escape + /// sequences are used. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// println!("{:?}", b"foo\xFFbar".as_bstr()); + /// ``` + #[inline] + fn as_bstr(&self) -> &BStr { + BStr::new(self.as_bytes()) + } + + /// Return this byte slice as a `&mut BStr`. + /// + /// Use `&mut BStr` is useful because of its `fmt::Debug` representation + /// and various other trait implementations (such as `PartialEq` and + /// `PartialOrd`). In particular, the `Debug` implementation for `BStr` + /// shows its bytes as a normal string. For invalid UTF-8, hex escape + /// sequences are used. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let mut bytes = *b"foo\xFFbar"; + /// println!("{:?}", &mut bytes.as_bstr_mut()); + /// ``` + #[inline] + fn as_bstr_mut(&mut self) -> &mut BStr { + BStr::new_mut(self.as_bytes_mut()) + } + + /// Create an immutable byte string from an OS string slice. + /// + /// When the underlying bytes of OS strings are accessible, then this + /// always succeeds and is zero cost. Otherwise, this returns `None` if the + /// given OS string is not valid UTF-8. (For example, when the underlying + /// bytes are inaccessible on Windows, file paths are allowed to be a + /// sequence of arbitrary 16-bit integers. Not all such sequences can be + /// transcoded to valid UTF-8.) + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::ffi::OsStr; + /// + /// use bstr::{B, ByteSlice}; + /// + /// let os_str = OsStr::new("foo"); + /// let bs = <[u8]>::from_os_str(os_str).expect("should be valid UTF-8"); + /// assert_eq!(bs, B("foo")); + /// ``` + #[cfg(feature = "std")] + #[inline] + fn from_os_str(os_str: &OsStr) -> Option<&[u8]> { + #[cfg(unix)] + #[inline] + fn imp(os_str: &OsStr) -> Option<&[u8]> { + use std::os::unix::ffi::OsStrExt; + + Some(os_str.as_bytes()) + } + + #[cfg(not(unix))] + #[inline] + fn imp(os_str: &OsStr) -> Option<&[u8]> { + os_str.to_str().map(|s| s.as_bytes()) + } + + imp(os_str) + } + + /// Create an immutable byte string from a file path. + /// + /// When the underlying bytes of paths are accessible, then this always + /// succeeds and is zero cost. Otherwise, this returns `None` if the given + /// path is not valid UTF-8. (For example, when the underlying bytes are + /// inaccessible on Windows, file paths are allowed to be a sequence of + /// arbitrary 16-bit integers. Not all such sequences can be transcoded to + /// valid UTF-8.) + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::path::Path; + /// + /// use bstr::{B, ByteSlice}; + /// + /// let path = Path::new("foo"); + /// let bs = <[u8]>::from_path(path).expect("should be valid UTF-8"); + /// assert_eq!(bs, B("foo")); + /// ``` + #[cfg(feature = "std")] + #[inline] + fn from_path(path: &Path) -> Option<&[u8]> { + Self::from_os_str(path.as_os_str()) + } + + /// Safely convert this byte string into a `&str` if it's valid UTF-8. + /// + /// If this byte string is not valid UTF-8, then an error is returned. The + /// error returned indicates the first invalid byte found and the length + /// of the error. + /// + /// In cases where a lossy conversion to `&str` is acceptable, then use one + /// of the [`to_str_lossy`](trait.ByteSlice.html#method.to_str_lossy) or + /// [`to_str_lossy_into`](trait.ByteSlice.html#method.to_str_lossy_into) + /// methods. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// # #[cfg(feature = "alloc")] { + /// use bstr::{B, ByteSlice, ByteVec}; + /// + /// # fn example() -> Result<(), bstr::Utf8Error> { + /// let s = B("☃βツ").to_str()?; + /// assert_eq!("☃βツ", s); + /// + /// let mut bstring = <Vec<u8>>::from("☃βツ"); + /// bstring.push(b'\xFF'); + /// let err = bstring.to_str().unwrap_err(); + /// assert_eq!(8, err.valid_up_to()); + /// # Ok(()) }; example().unwrap() + /// # } + /// ``` + #[inline] + fn to_str(&self) -> Result<&str, Utf8Error> { + utf8::validate(self.as_bytes()).map(|_| { + // SAFETY: This is safe because of the guarantees provided by + // utf8::validate. + unsafe { str::from_utf8_unchecked(self.as_bytes()) } + }) + } + + /// Unsafely convert this byte string into a `&str`, without checking for + /// valid UTF-8. + /// + /// # Safety + /// + /// Callers *must* ensure that this byte string is valid UTF-8 before + /// calling this method. Converting a byte string into a `&str` that is + /// not valid UTF-8 is considered undefined behavior. + /// + /// This routine is useful in performance sensitive contexts where the + /// UTF-8 validity of the byte string is already known and it is + /// undesirable to pay the cost of an additional UTF-8 validation check + /// that [`to_str`](trait.ByteSlice.html#method.to_str) performs. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// // SAFETY: This is safe because string literals are guaranteed to be + /// // valid UTF-8 by the Rust compiler. + /// let s = unsafe { B("☃βツ").to_str_unchecked() }; + /// assert_eq!("☃βツ", s); + /// ``` + #[inline] + unsafe fn to_str_unchecked(&self) -> &str { + str::from_utf8_unchecked(self.as_bytes()) + } + + /// Convert this byte string to a valid UTF-8 string by replacing invalid + /// UTF-8 bytes with the Unicode replacement codepoint (`U+FFFD`). + /// + /// If the byte string is already valid UTF-8, then no copying or + /// allocation is performed and a borrrowed string slice is returned. If + /// the byte string is not valid UTF-8, then an owned string buffer is + /// returned with invalid bytes replaced by the replacement codepoint. + /// + /// This method uses the "substitution of maximal subparts" (Unicode + /// Standard, Chapter 3, Section 9) strategy for inserting the replacement + /// codepoint. Specifically, a replacement codepoint is inserted whenever a + /// byte is found that cannot possibly lead to a valid code unit sequence. + /// If there were previous bytes that represented a prefix of a well-formed + /// code unit sequence, then all of those bytes are substituted with a + /// single replacement codepoint. The "substitution of maximal subparts" + /// strategy is the same strategy used by + /// [W3C's Encoding standard](https://www.w3.org/TR/encoding/). + /// For a more precise description of the maximal subpart strategy, see + /// the Unicode Standard, Chapter 3, Section 9. See also + /// [Public Review Issue #121](https://www.unicode.org/review/pr-121.html). + /// + /// N.B. Rust's standard library also appears to use the same strategy, + /// but it does not appear to be an API guarantee. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::borrow::Cow; + /// + /// use bstr::ByteSlice; + /// + /// let mut bstring = <Vec<u8>>::from("☃βツ"); + /// assert_eq!(Cow::Borrowed("☃βツ"), bstring.to_str_lossy()); + /// + /// // Add a byte that makes the sequence invalid. + /// bstring.push(b'\xFF'); + /// assert_eq!(Cow::Borrowed("☃βツ\u{FFFD}"), bstring.to_str_lossy()); + /// ``` + /// + /// This demonstrates the "maximal subpart" substitution logic. + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// // \x61 is the ASCII codepoint for 'a'. + /// // \xF1\x80\x80 is a valid 3-byte code unit prefix. + /// // \xE1\x80 is a valid 2-byte code unit prefix. + /// // \xC2 is a valid 1-byte code unit prefix. + /// // \x62 is the ASCII codepoint for 'b'. + /// // + /// // In sum, each of the prefixes is replaced by a single replacement + /// // codepoint since none of the prefixes are properly completed. This + /// // is in contrast to other strategies that might insert a replacement + /// // codepoint for every single byte. + /// let bs = B(b"\x61\xF1\x80\x80\xE1\x80\xC2\x62"); + /// assert_eq!("a\u{FFFD}\u{FFFD}\u{FFFD}b", bs.to_str_lossy()); + /// ``` + #[cfg(feature = "alloc")] + #[inline] + fn to_str_lossy(&self) -> Cow<'_, str> { + match utf8::validate(self.as_bytes()) { + Ok(()) => { + // SAFETY: This is safe because of the guarantees provided by + // utf8::validate. + unsafe { + Cow::Borrowed(str::from_utf8_unchecked(self.as_bytes())) + } + } + Err(err) => { + let mut lossy = String::with_capacity(self.as_bytes().len()); + let (valid, after) = + self.as_bytes().split_at(err.valid_up_to()); + // SAFETY: This is safe because utf8::validate guarantees + // that all of `valid` is valid UTF-8. + lossy.push_str(unsafe { str::from_utf8_unchecked(valid) }); + lossy.push_str("\u{FFFD}"); + if let Some(len) = err.error_len() { + after[len..].to_str_lossy_into(&mut lossy); + } + Cow::Owned(lossy) + } + } + } + + /// Copy the contents of this byte string into the given owned string + /// buffer, while replacing invalid UTF-8 code unit sequences with the + /// Unicode replacement codepoint (`U+FFFD`). + /// + /// This method uses the same "substitution of maximal subparts" strategy + /// for inserting the replacement codepoint as the + /// [`to_str_lossy`](trait.ByteSlice.html#method.to_str_lossy) method. + /// + /// This routine is useful for amortizing allocation. However, unlike + /// `to_str_lossy`, this routine will _always_ copy the contents of this + /// byte string into the destination buffer, even if this byte string is + /// valid UTF-8. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use std::borrow::Cow; + /// + /// use bstr::ByteSlice; + /// + /// let mut bstring = <Vec<u8>>::from("☃βツ"); + /// // Add a byte that makes the sequence invalid. + /// bstring.push(b'\xFF'); + /// + /// let mut dest = String::new(); + /// bstring.to_str_lossy_into(&mut dest); + /// assert_eq!("☃βツ\u{FFFD}", dest); + /// ``` + #[cfg(feature = "alloc")] + #[inline] + fn to_str_lossy_into(&self, dest: &mut String) { + let mut bytes = self.as_bytes(); + dest.reserve(bytes.len()); + loop { + match utf8::validate(bytes) { + Ok(()) => { + // SAFETY: This is safe because utf8::validate guarantees + // that all of `bytes` is valid UTF-8. + dest.push_str(unsafe { str::from_utf8_unchecked(bytes) }); + break; + } + Err(err) => { + let (valid, after) = bytes.split_at(err.valid_up_to()); + // SAFETY: This is safe because utf8::validate guarantees + // that all of `valid` is valid UTF-8. + dest.push_str(unsafe { str::from_utf8_unchecked(valid) }); + dest.push_str("\u{FFFD}"); + match err.error_len() { + None => break, + Some(len) => bytes = &after[len..], + } + } + } + } + } + + /// Create an OS string slice from this byte string. + /// + /// When OS strings can be constructed from arbitrary byte sequences, this + /// always succeeds and is zero cost. Otherwise, this returns a UTF-8 + /// decoding error if this byte string is not valid UTF-8. (For example, + /// assuming the representation of `OsStr` is opaque on Windows, file paths + /// are allowed to be a sequence of arbitrary 16-bit integers. There is + /// no obvious mapping from an arbitrary sequence of 8-bit integers to an + /// arbitrary sequence of 16-bit integers. If the representation of `OsStr` + /// is even opened up, then this will convert any sequence of bytes to an + /// `OsStr` without cost.) + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let os_str = b"foo".to_os_str().expect("should be valid UTF-8"); + /// assert_eq!(os_str, "foo"); + /// ``` + #[cfg(feature = "std")] + #[inline] + fn to_os_str(&self) -> Result<&OsStr, Utf8Error> { + #[cfg(unix)] + #[inline] + fn imp(bytes: &[u8]) -> Result<&OsStr, Utf8Error> { + use std::os::unix::ffi::OsStrExt; + + Ok(OsStr::from_bytes(bytes)) + } + + #[cfg(not(unix))] + #[inline] + fn imp(bytes: &[u8]) -> Result<&OsStr, Utf8Error> { + bytes.to_str().map(OsStr::new) + } + + imp(self.as_bytes()) + } + + /// Lossily create an OS string slice from this byte string. + /// + /// When OS strings can be constructed from arbitrary byte sequences, this + /// is zero cost and always returns a slice. Otherwise, this will perform a + /// UTF-8 check and lossily convert this byte string into valid UTF-8 using + /// the Unicode replacement codepoint. + /// + /// Note that this can prevent the correct roundtripping of file paths when + /// the representation of `OsStr` is opaque. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let os_str = b"foo\xFFbar".to_os_str_lossy(); + /// assert_eq!(os_str.to_string_lossy(), "foo\u{FFFD}bar"); + /// ``` + #[cfg(feature = "std")] + #[inline] + fn to_os_str_lossy(&self) -> Cow<'_, OsStr> { + #[cfg(unix)] + #[inline] + fn imp(bytes: &[u8]) -> Cow<'_, OsStr> { + use std::os::unix::ffi::OsStrExt; + + Cow::Borrowed(OsStr::from_bytes(bytes)) + } + + #[cfg(not(unix))] + #[inline] + fn imp(bytes: &[u8]) -> Cow<OsStr> { + use std::ffi::OsString; + + match bytes.to_str_lossy() { + Cow::Borrowed(x) => Cow::Borrowed(OsStr::new(x)), + Cow::Owned(x) => Cow::Owned(OsString::from(x)), + } + } + + imp(self.as_bytes()) + } + + /// Create a path slice from this byte string. + /// + /// When paths can be constructed from arbitrary byte sequences, this + /// always succeeds and is zero cost. Otherwise, this returns a UTF-8 + /// decoding error if this byte string is not valid UTF-8. (For example, + /// assuming the representation of `Path` is opaque on Windows, file paths + /// are allowed to be a sequence of arbitrary 16-bit integers. There is + /// no obvious mapping from an arbitrary sequence of 8-bit integers to an + /// arbitrary sequence of 16-bit integers. If the representation of `Path` + /// is even opened up, then this will convert any sequence of bytes to an + /// `Path` without cost.) + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let path = b"foo".to_path().expect("should be valid UTF-8"); + /// assert_eq!(path.as_os_str(), "foo"); + /// ``` + #[cfg(feature = "std")] + #[inline] + fn to_path(&self) -> Result<&Path, Utf8Error> { + self.to_os_str().map(Path::new) + } + + /// Lossily create a path slice from this byte string. + /// + /// When paths can be constructed from arbitrary byte sequences, this is + /// zero cost and always returns a slice. Otherwise, this will perform a + /// UTF-8 check and lossily convert this byte string into valid UTF-8 using + /// the Unicode replacement codepoint. + /// + /// Note that this can prevent the correct roundtripping of file paths when + /// the representation of `Path` is opaque. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = b"foo\xFFbar"; + /// let path = bs.to_path_lossy(); + /// assert_eq!(path.to_string_lossy(), "foo\u{FFFD}bar"); + /// ``` + #[cfg(feature = "std")] + #[inline] + fn to_path_lossy(&self) -> Cow<'_, Path> { + use std::path::PathBuf; + + match self.to_os_str_lossy() { + Cow::Borrowed(x) => Cow::Borrowed(Path::new(x)), + Cow::Owned(x) => Cow::Owned(PathBuf::from(x)), + } + } + + /// Create a new byte string by repeating this byte string `n` times. + /// + /// # Panics + /// + /// This function panics if the capacity of the new byte string would + /// overflow. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// assert_eq!(b"foo".repeatn(4), B("foofoofoofoo")); + /// assert_eq!(b"foo".repeatn(0), B("")); + /// ``` + #[cfg(feature = "alloc")] + #[inline] + fn repeatn(&self, n: usize) -> Vec<u8> { + self.as_bytes().repeat(n) + } + + /// Returns true if and only if this byte string contains the given needle. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// assert!(b"foo bar".contains_str("foo")); + /// assert!(b"foo bar".contains_str("bar")); + /// assert!(!b"foo".contains_str("foobar")); + /// ``` + #[inline] + fn contains_str<B: AsRef<[u8]>>(&self, needle: B) -> bool { + self.find(needle).is_some() + } + + /// Returns true if and only if this byte string has the given prefix. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// assert!(b"foo bar".starts_with_str("foo")); + /// assert!(!b"foo bar".starts_with_str("bar")); + /// assert!(!b"foo".starts_with_str("foobar")); + /// ``` + #[inline] + fn starts_with_str<B: AsRef<[u8]>>(&self, prefix: B) -> bool { + self.as_bytes().starts_with(prefix.as_ref()) + } + + /// Returns true if and only if this byte string has the given suffix. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// assert!(b"foo bar".ends_with_str("bar")); + /// assert!(!b"foo bar".ends_with_str("foo")); + /// assert!(!b"bar".ends_with_str("foobar")); + /// ``` + #[inline] + fn ends_with_str<B: AsRef<[u8]>>(&self, suffix: B) -> bool { + self.as_bytes().ends_with(suffix.as_ref()) + } + + /// Returns the index of the first occurrence of the given needle. + /// + /// The needle may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. + /// + /// Note that if you're are searching for the same needle in many + /// different small haystacks, it may be faster to initialize a + /// [`Finder`](struct.Finder.html) once, and reuse it for each search. + /// + /// # Complexity + /// + /// This routine is guaranteed to have worst case linear time complexity + /// with respect to both the needle and the haystack. That is, this runs + /// in `O(needle.len() + haystack.len())` time. + /// + /// This routine is also guaranteed to have worst case constant space + /// complexity. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"foo bar baz"; + /// assert_eq!(Some(0), s.find("foo")); + /// assert_eq!(Some(4), s.find("bar")); + /// assert_eq!(None, s.find("quux")); + /// ``` + #[inline] + fn find<B: AsRef<[u8]>>(&self, needle: B) -> Option<usize> { + Finder::new(needle.as_ref()).find(self.as_bytes()) + } + + /// Returns the index of the last occurrence of the given needle. + /// + /// The needle may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. + /// + /// Note that if you're are searching for the same needle in many + /// different small haystacks, it may be faster to initialize a + /// [`FinderReverse`](struct.FinderReverse.html) once, and reuse it for + /// each search. + /// + /// # Complexity + /// + /// This routine is guaranteed to have worst case linear time complexity + /// with respect to both the needle and the haystack. That is, this runs + /// in `O(needle.len() + haystack.len())` time. + /// + /// This routine is also guaranteed to have worst case constant space + /// complexity. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"foo bar baz"; + /// assert_eq!(Some(0), s.rfind("foo")); + /// assert_eq!(Some(4), s.rfind("bar")); + /// assert_eq!(Some(8), s.rfind("ba")); + /// assert_eq!(None, s.rfind("quux")); + /// ``` + #[inline] + fn rfind<B: AsRef<[u8]>>(&self, needle: B) -> Option<usize> { + FinderReverse::new(needle.as_ref()).rfind(self.as_bytes()) + } + + /// Returns an iterator of the non-overlapping occurrences of the given + /// needle. The iterator yields byte offset positions indicating the start + /// of each match. + /// + /// # Complexity + /// + /// This routine is guaranteed to have worst case linear time complexity + /// with respect to both the needle and the haystack. That is, this runs + /// in `O(needle.len() + haystack.len())` time. + /// + /// This routine is also guaranteed to have worst case constant space + /// complexity. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"foo bar foo foo quux foo"; + /// let matches: Vec<usize> = s.find_iter("foo").collect(); + /// assert_eq!(matches, vec![0, 8, 12, 21]); + /// ``` + /// + /// An empty string matches at every position, including the position + /// immediately following the last byte: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let matches: Vec<usize> = b"foo".find_iter("").collect(); + /// assert_eq!(matches, vec![0, 1, 2, 3]); + /// + /// let matches: Vec<usize> = b"".find_iter("").collect(); + /// assert_eq!(matches, vec![0]); + /// ``` + #[inline] + fn find_iter<'h, 'n, B: ?Sized + AsRef<[u8]>>( + &'h self, + needle: &'n B, + ) -> Find<'h, 'n> { + Find::new(self.as_bytes(), needle.as_ref()) + } + + /// Returns an iterator of the non-overlapping occurrences of the given + /// needle in reverse. The iterator yields byte offset positions indicating + /// the start of each match. + /// + /// # Complexity + /// + /// This routine is guaranteed to have worst case linear time complexity + /// with respect to both the needle and the haystack. That is, this runs + /// in `O(needle.len() + haystack.len())` time. + /// + /// This routine is also guaranteed to have worst case constant space + /// complexity. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"foo bar foo foo quux foo"; + /// let matches: Vec<usize> = s.rfind_iter("foo").collect(); + /// assert_eq!(matches, vec![21, 12, 8, 0]); + /// ``` + /// + /// An empty string matches at every position, including the position + /// immediately following the last byte: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let matches: Vec<usize> = b"foo".rfind_iter("").collect(); + /// assert_eq!(matches, vec![3, 2, 1, 0]); + /// + /// let matches: Vec<usize> = b"".rfind_iter("").collect(); + /// assert_eq!(matches, vec![0]); + /// ``` + #[inline] + fn rfind_iter<'h, 'n, B: ?Sized + AsRef<[u8]>>( + &'h self, + needle: &'n B, + ) -> FindReverse<'h, 'n> { + FindReverse::new(self.as_bytes(), needle.as_ref()) + } + + /// Returns the index of the first occurrence of the given byte. If the + /// byte does not occur in this byte string, then `None` is returned. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// assert_eq!(Some(10), b"foo bar baz".find_byte(b'z')); + /// assert_eq!(None, b"foo bar baz".find_byte(b'y')); + /// ``` + #[inline] + fn find_byte(&self, byte: u8) -> Option<usize> { + memchr(byte, self.as_bytes()) + } + + /// Returns the index of the last occurrence of the given byte. If the + /// byte does not occur in this byte string, then `None` is returned. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// assert_eq!(Some(10), b"foo bar baz".rfind_byte(b'z')); + /// assert_eq!(None, b"foo bar baz".rfind_byte(b'y')); + /// ``` + #[inline] + fn rfind_byte(&self, byte: u8) -> Option<usize> { + memrchr(byte, self.as_bytes()) + } + + /// Returns the index of the first occurrence of the given codepoint. + /// If the codepoint does not occur in this byte string, then `None` is + /// returned. + /// + /// Note that if one searches for the replacement codepoint, `\u{FFFD}`, + /// then only explicit occurrences of that encoding will be found. Invalid + /// UTF-8 sequences will not be matched. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// assert_eq!(Some(10), b"foo bar baz".find_char('z')); + /// assert_eq!(Some(4), B("αβγγδ").find_char('γ')); + /// assert_eq!(None, b"foo bar baz".find_char('y')); + /// ``` + #[inline] + fn find_char(&self, ch: char) -> Option<usize> { + self.find(ch.encode_utf8(&mut [0; 4])) + } + + /// Returns the index of the last occurrence of the given codepoint. + /// If the codepoint does not occur in this byte string, then `None` is + /// returned. + /// + /// Note that if one searches for the replacement codepoint, `\u{FFFD}`, + /// then only explicit occurrences of that encoding will be found. Invalid + /// UTF-8 sequences will not be matched. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// assert_eq!(Some(10), b"foo bar baz".rfind_char('z')); + /// assert_eq!(Some(6), B("αβγγδ").rfind_char('γ')); + /// assert_eq!(None, b"foo bar baz".rfind_char('y')); + /// ``` + #[inline] + fn rfind_char(&self, ch: char) -> Option<usize> { + self.rfind(ch.encode_utf8(&mut [0; 4])) + } + + /// Returns the index of the first occurrence of any of the bytes in the + /// provided set. + /// + /// The `byteset` may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`, but + /// note that passing a `&str` which contains multibyte characters may not + /// behave as you expect: each byte in the `&str` is treated as an + /// individual member of the byte set. + /// + /// Note that order is irrelevant for the `byteset` parameter, and + /// duplicate bytes present in its body are ignored. + /// + /// # Complexity + /// + /// This routine is guaranteed to have worst case linear time complexity + /// with respect to both the set of bytes and the haystack. That is, this + /// runs in `O(byteset.len() + haystack.len())` time. + /// + /// This routine is also guaranteed to have worst case constant space + /// complexity. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// assert_eq!(b"foo bar baz".find_byteset(b"zr"), Some(6)); + /// assert_eq!(b"foo baz bar".find_byteset(b"bzr"), Some(4)); + /// assert_eq!(None, b"foo baz bar".find_byteset(b"\t\n")); + /// // The empty byteset never matches. + /// assert_eq!(None, b"abc".find_byteset(b"")); + /// assert_eq!(None, b"".find_byteset(b"")); + /// ``` + #[inline] + fn find_byteset<B: AsRef<[u8]>>(&self, byteset: B) -> Option<usize> { + byteset::find(self.as_bytes(), byteset.as_ref()) + } + + /// Returns the index of the first occurrence of a byte that is not a + /// member of the provided set. + /// + /// The `byteset` may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`, but + /// note that passing a `&str` which contains multibyte characters may not + /// behave as you expect: each byte in the `&str` is treated as an + /// individual member of the byte set. + /// + /// Note that order is irrelevant for the `byteset` parameter, and + /// duplicate bytes present in its body are ignored. + /// + /// # Complexity + /// + /// This routine is guaranteed to have worst case linear time complexity + /// with respect to both the set of bytes and the haystack. That is, this + /// runs in `O(byteset.len() + haystack.len())` time. + /// + /// This routine is also guaranteed to have worst case constant space + /// complexity. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// assert_eq!(b"foo bar baz".find_not_byteset(b"fo "), Some(4)); + /// assert_eq!(b"\t\tbaz bar".find_not_byteset(b" \t\r\n"), Some(2)); + /// assert_eq!(b"foo\nbaz\tbar".find_not_byteset(b"\t\n"), Some(0)); + /// // The negation of the empty byteset matches everything. + /// assert_eq!(Some(0), b"abc".find_not_byteset(b"")); + /// // But an empty string never contains anything. + /// assert_eq!(None, b"".find_not_byteset(b"")); + /// ``` + #[inline] + fn find_not_byteset<B: AsRef<[u8]>>(&self, byteset: B) -> Option<usize> { + byteset::find_not(self.as_bytes(), byteset.as_ref()) + } + + /// Returns the index of the last occurrence of any of the bytes in the + /// provided set. + /// + /// The `byteset` may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`, but + /// note that passing a `&str` which contains multibyte characters may not + /// behave as you expect: each byte in the `&str` is treated as an + /// individual member of the byte set. + /// + /// Note that order is irrelevant for the `byteset` parameter, and duplicate + /// bytes present in its body are ignored. + /// + /// # Complexity + /// + /// This routine is guaranteed to have worst case linear time complexity + /// with respect to both the set of bytes and the haystack. That is, this + /// runs in `O(byteset.len() + haystack.len())` time. + /// + /// This routine is also guaranteed to have worst case constant space + /// complexity. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// assert_eq!(b"foo bar baz".rfind_byteset(b"agb"), Some(9)); + /// assert_eq!(b"foo baz bar".rfind_byteset(b"rabz "), Some(10)); + /// assert_eq!(b"foo baz bar".rfind_byteset(b"\n123"), None); + /// ``` + #[inline] + fn rfind_byteset<B: AsRef<[u8]>>(&self, byteset: B) -> Option<usize> { + byteset::rfind(self.as_bytes(), byteset.as_ref()) + } + + /// Returns the index of the last occurrence of a byte that is not a member + /// of the provided set. + /// + /// The `byteset` may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`, but + /// note that passing a `&str` which contains multibyte characters may not + /// behave as you expect: each byte in the `&str` is treated as an + /// individual member of the byte set. + /// + /// Note that order is irrelevant for the `byteset` parameter, and + /// duplicate bytes present in its body are ignored. + /// + /// # Complexity + /// + /// This routine is guaranteed to have worst case linear time complexity + /// with respect to both the set of bytes and the haystack. That is, this + /// runs in `O(byteset.len() + haystack.len())` time. + /// + /// This routine is also guaranteed to have worst case constant space + /// complexity. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// assert_eq!(b"foo bar baz,\t".rfind_not_byteset(b",\t"), Some(10)); + /// assert_eq!(b"foo baz bar".rfind_not_byteset(b"rabz "), Some(2)); + /// assert_eq!(None, b"foo baz bar".rfind_not_byteset(b"barfoz ")); + /// ``` + #[inline] + fn rfind_not_byteset<B: AsRef<[u8]>>(&self, byteset: B) -> Option<usize> { + byteset::rfind_not(self.as_bytes(), byteset.as_ref()) + } + + /// Returns an iterator over the fields in a byte string, separated + /// by contiguous whitespace (according to the Unicode property + /// `White_Space`). + /// + /// # Example + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B(" foo\tbar\t\u{2003}\nquux \n"); + /// let fields: Vec<&[u8]> = s.fields().collect(); + /// assert_eq!(fields, vec![B("foo"), B("bar"), B("quux")]); + /// ``` + /// + /// A byte string consisting of just whitespace yields no elements: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// assert_eq!(0, B(" \n\t\u{2003}\n \t").fields().count()); + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn fields(&self) -> Fields<'_> { + Fields::new(self.as_bytes()) + } + + /// Returns an iterator over the fields in a byte string, separated by + /// contiguous codepoints satisfying the given predicate. + /// + /// If this byte string is not valid UTF-8, then the given closure will + /// be called with a Unicode replacement codepoint when invalid UTF-8 + /// bytes are seen. + /// + /// # Example + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = b"123foo999999bar1quux123456"; + /// let fields: Vec<&[u8]> = s.fields_with(|c| c.is_numeric()).collect(); + /// assert_eq!(fields, vec![B("foo"), B("bar"), B("quux")]); + /// ``` + /// + /// A byte string consisting of all codepoints satisfying the predicate + /// yields no elements: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// assert_eq!(0, b"1911354563".fields_with(|c| c.is_numeric()).count()); + /// ``` + #[inline] + fn fields_with<F: FnMut(char) -> bool>(&self, f: F) -> FieldsWith<'_, F> { + FieldsWith::new(self.as_bytes(), f) + } + + /// Returns an iterator over substrings of this byte string, separated + /// by the given byte string. Each element yielded is guaranteed not to + /// include the splitter substring. + /// + /// The splitter may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let x: Vec<&[u8]> = b"Mary had a little lamb".split_str(" ").collect(); + /// assert_eq!(x, vec![ + /// B("Mary"), B("had"), B("a"), B("little"), B("lamb"), + /// ]); + /// + /// let x: Vec<&[u8]> = b"".split_str("X").collect(); + /// assert_eq!(x, vec![b""]); + /// + /// let x: Vec<&[u8]> = b"lionXXtigerXleopard".split_str("X").collect(); + /// assert_eq!(x, vec![B("lion"), B(""), B("tiger"), B("leopard")]); + /// + /// let x: Vec<&[u8]> = b"lion::tiger::leopard".split_str("::").collect(); + /// assert_eq!(x, vec![B("lion"), B("tiger"), B("leopard")]); + /// ``` + /// + /// If a string contains multiple contiguous separators, you will end up + /// with empty strings yielded by the iterator: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let x: Vec<&[u8]> = b"||||a||b|c".split_str("|").collect(); + /// assert_eq!(x, vec![ + /// B(""), B(""), B(""), B(""), B("a"), B(""), B("b"), B("c"), + /// ]); + /// + /// let x: Vec<&[u8]> = b"(///)".split_str("/").collect(); + /// assert_eq!(x, vec![B("("), B(""), B(""), B(")")]); + /// ``` + /// + /// Separators at the start or end of a string are neighbored by empty + /// strings. + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let x: Vec<&[u8]> = b"010".split_str("0").collect(); + /// assert_eq!(x, vec![B(""), B("1"), B("")]); + /// ``` + /// + /// When the empty string is used as a separator, it splits every **byte** + /// in the byte string, along with the beginning and end of the byte + /// string. + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let x: Vec<&[u8]> = b"rust".split_str("").collect(); + /// assert_eq!(x, vec![ + /// B(""), B("r"), B("u"), B("s"), B("t"), B(""), + /// ]); + /// + /// // Splitting by an empty string is not UTF-8 aware. Elements yielded + /// // may not be valid UTF-8! + /// let x: Vec<&[u8]> = B("☃").split_str("").collect(); + /// assert_eq!(x, vec![ + /// B(""), B(b"\xE2"), B(b"\x98"), B(b"\x83"), B(""), + /// ]); + /// ``` + /// + /// Contiguous separators, especially whitespace, can lead to possibly + /// surprising behavior. For example, this code is correct: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let x: Vec<&[u8]> = b" a b c".split_str(" ").collect(); + /// assert_eq!(x, vec![ + /// B(""), B(""), B(""), B(""), B("a"), B(""), B("b"), B("c"), + /// ]); + /// ``` + /// + /// It does *not* give you `["a", "b", "c"]`. For that behavior, use + /// [`fields`](#method.fields) instead. + #[inline] + fn split_str<'h, 's, B: ?Sized + AsRef<[u8]>>( + &'h self, + splitter: &'s B, + ) -> Split<'h, 's> { + Split::new(self.as_bytes(), splitter.as_ref()) + } + + /// Returns an iterator over substrings of this byte string, separated by + /// the given byte string, in reverse. Each element yielded is guaranteed + /// not to include the splitter substring. + /// + /// The splitter may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let x: Vec<&[u8]> = + /// b"Mary had a little lamb".rsplit_str(" ").collect(); + /// assert_eq!(x, vec![ + /// B("lamb"), B("little"), B("a"), B("had"), B("Mary"), + /// ]); + /// + /// let x: Vec<&[u8]> = b"".rsplit_str("X").collect(); + /// assert_eq!(x, vec![b""]); + /// + /// let x: Vec<&[u8]> = b"lionXXtigerXleopard".rsplit_str("X").collect(); + /// assert_eq!(x, vec![B("leopard"), B("tiger"), B(""), B("lion")]); + /// + /// let x: Vec<&[u8]> = b"lion::tiger::leopard".rsplit_str("::").collect(); + /// assert_eq!(x, vec![B("leopard"), B("tiger"), B("lion")]); + /// ``` + /// + /// If a string contains multiple contiguous separators, you will end up + /// with empty strings yielded by the iterator: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let x: Vec<&[u8]> = b"||||a||b|c".rsplit_str("|").collect(); + /// assert_eq!(x, vec![ + /// B("c"), B("b"), B(""), B("a"), B(""), B(""), B(""), B(""), + /// ]); + /// + /// let x: Vec<&[u8]> = b"(///)".rsplit_str("/").collect(); + /// assert_eq!(x, vec![B(")"), B(""), B(""), B("(")]); + /// ``` + /// + /// Separators at the start or end of a string are neighbored by empty + /// strings. + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let x: Vec<&[u8]> = b"010".rsplit_str("0").collect(); + /// assert_eq!(x, vec![B(""), B("1"), B("")]); + /// ``` + /// + /// When the empty string is used as a separator, it splits every **byte** + /// in the byte string, along with the beginning and end of the byte + /// string. + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let x: Vec<&[u8]> = b"rust".rsplit_str("").collect(); + /// assert_eq!(x, vec![ + /// B(""), B("t"), B("s"), B("u"), B("r"), B(""), + /// ]); + /// + /// // Splitting by an empty string is not UTF-8 aware. Elements yielded + /// // may not be valid UTF-8! + /// let x: Vec<&[u8]> = B("☃").rsplit_str("").collect(); + /// assert_eq!(x, vec![B(""), B(b"\x83"), B(b"\x98"), B(b"\xE2"), B("")]); + /// ``` + /// + /// Contiguous separators, especially whitespace, can lead to possibly + /// surprising behavior. For example, this code is correct: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let x: Vec<&[u8]> = b" a b c".rsplit_str(" ").collect(); + /// assert_eq!(x, vec![ + /// B("c"), B("b"), B(""), B("a"), B(""), B(""), B(""), B(""), + /// ]); + /// ``` + /// + /// It does *not* give you `["a", "b", "c"]`. + #[inline] + fn rsplit_str<'h, 's, B: ?Sized + AsRef<[u8]>>( + &'h self, + splitter: &'s B, + ) -> SplitReverse<'h, 's> { + SplitReverse::new(self.as_bytes(), splitter.as_ref()) + } + + /// Split this byte string at the first occurrence of `splitter`. + /// + /// If the `splitter` is found in the byte string, returns a tuple + /// containing the parts of the string before and after the first occurrence + /// of `splitter` respectively. Otherwise, if there are no occurrences of + /// `splitter` in the byte string, returns `None`. + /// + /// The splitter may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. + /// + /// If you need to split on the *last* instance of a delimiter instead, see + /// the [`ByteSlice::rsplit_once_str`](#method.rsplit_once_str) method . + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// assert_eq!( + /// B("foo,bar").split_once_str(","), + /// Some((B("foo"), B("bar"))), + /// ); + /// assert_eq!( + /// B("foo,bar,baz").split_once_str(","), + /// Some((B("foo"), B("bar,baz"))), + /// ); + /// assert_eq!(B("foo").split_once_str(","), None); + /// assert_eq!(B("foo,").split_once_str(b","), Some((B("foo"), B("")))); + /// assert_eq!(B(",foo").split_once_str(b","), Some((B(""), B("foo")))); + /// ``` + #[inline] + fn split_once_str<'a, B: ?Sized + AsRef<[u8]>>( + &'a self, + splitter: &B, + ) -> Option<(&'a [u8], &'a [u8])> { + let bytes = self.as_bytes(); + let splitter = splitter.as_ref(); + let start = Finder::new(splitter).find(bytes)?; + let end = start + splitter.len(); + Some((&bytes[..start], &bytes[end..])) + } + + /// Split this byte string at the last occurrence of `splitter`. + /// + /// If the `splitter` is found in the byte string, returns a tuple + /// containing the parts of the string before and after the last occurrence + /// of `splitter`, respectively. Otherwise, if there are no occurrences of + /// `splitter` in the byte string, returns `None`. + /// + /// The splitter may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. + /// + /// If you need to split on the *first* instance of a delimiter instead, see + /// the [`ByteSlice::split_once_str`](#method.split_once_str) method. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// assert_eq!( + /// B("foo,bar").rsplit_once_str(","), + /// Some((B("foo"), B("bar"))), + /// ); + /// assert_eq!( + /// B("foo,bar,baz").rsplit_once_str(","), + /// Some((B("foo,bar"), B("baz"))), + /// ); + /// assert_eq!(B("foo").rsplit_once_str(","), None); + /// assert_eq!(B("foo,").rsplit_once_str(b","), Some((B("foo"), B("")))); + /// assert_eq!(B(",foo").rsplit_once_str(b","), Some((B(""), B("foo")))); + /// ``` + #[inline] + fn rsplit_once_str<'a, B: ?Sized + AsRef<[u8]>>( + &'a self, + splitter: &B, + ) -> Option<(&'a [u8], &'a [u8])> { + let bytes = self.as_bytes(); + let splitter = splitter.as_ref(); + let start = FinderReverse::new(splitter).rfind(bytes)?; + let end = start + splitter.len(); + Some((&bytes[..start], &bytes[end..])) + } + + /// Returns an iterator of at most `limit` substrings of this byte string, + /// separated by the given byte string. If `limit` substrings are yielded, + /// then the last substring will contain the remainder of this byte string. + /// + /// The needle may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let x: Vec<_> = b"Mary had a little lamb".splitn_str(3, " ").collect(); + /// assert_eq!(x, vec![B("Mary"), B("had"), B("a little lamb")]); + /// + /// let x: Vec<_> = b"".splitn_str(3, "X").collect(); + /// assert_eq!(x, vec![b""]); + /// + /// let x: Vec<_> = b"lionXXtigerXleopard".splitn_str(3, "X").collect(); + /// assert_eq!(x, vec![B("lion"), B(""), B("tigerXleopard")]); + /// + /// let x: Vec<_> = b"lion::tiger::leopard".splitn_str(2, "::").collect(); + /// assert_eq!(x, vec![B("lion"), B("tiger::leopard")]); + /// + /// let x: Vec<_> = b"abcXdef".splitn_str(1, "X").collect(); + /// assert_eq!(x, vec![B("abcXdef")]); + /// + /// let x: Vec<_> = b"abcdef".splitn_str(2, "X").collect(); + /// assert_eq!(x, vec![B("abcdef")]); + /// + /// let x: Vec<_> = b"abcXdef".splitn_str(0, "X").collect(); + /// assert!(x.is_empty()); + /// ``` + #[inline] + fn splitn_str<'h, 's, B: ?Sized + AsRef<[u8]>>( + &'h self, + limit: usize, + splitter: &'s B, + ) -> SplitN<'h, 's> { + SplitN::new(self.as_bytes(), splitter.as_ref(), limit) + } + + /// Returns an iterator of at most `limit` substrings of this byte string, + /// separated by the given byte string, in reverse. If `limit` substrings + /// are yielded, then the last substring will contain the remainder of this + /// byte string. + /// + /// The needle may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let x: Vec<_> = + /// b"Mary had a little lamb".rsplitn_str(3, " ").collect(); + /// assert_eq!(x, vec![B("lamb"), B("little"), B("Mary had a")]); + /// + /// let x: Vec<_> = b"".rsplitn_str(3, "X").collect(); + /// assert_eq!(x, vec![b""]); + /// + /// let x: Vec<_> = b"lionXXtigerXleopard".rsplitn_str(3, "X").collect(); + /// assert_eq!(x, vec![B("leopard"), B("tiger"), B("lionX")]); + /// + /// let x: Vec<_> = b"lion::tiger::leopard".rsplitn_str(2, "::").collect(); + /// assert_eq!(x, vec![B("leopard"), B("lion::tiger")]); + /// + /// let x: Vec<_> = b"abcXdef".rsplitn_str(1, "X").collect(); + /// assert_eq!(x, vec![B("abcXdef")]); + /// + /// let x: Vec<_> = b"abcdef".rsplitn_str(2, "X").collect(); + /// assert_eq!(x, vec![B("abcdef")]); + /// + /// let x: Vec<_> = b"abcXdef".rsplitn_str(0, "X").collect(); + /// assert!(x.is_empty()); + /// ``` + #[inline] + fn rsplitn_str<'h, 's, B: ?Sized + AsRef<[u8]>>( + &'h self, + limit: usize, + splitter: &'s B, + ) -> SplitNReverse<'h, 's> { + SplitNReverse::new(self.as_bytes(), splitter.as_ref(), limit) + } + + /// Replace all matches of the given needle with the given replacement, and + /// the result as a new `Vec<u8>`. + /// + /// This routine is useful as a convenience. If you need to reuse an + /// allocation, use [`replace_into`](#method.replace_into) instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"this is old".replace("old", "new"); + /// assert_eq!(s, "this is new".as_bytes()); + /// ``` + /// + /// When the pattern doesn't match: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"this is old".replace("nada nada", "limonada"); + /// assert_eq!(s, "this is old".as_bytes()); + /// ``` + /// + /// When the needle is an empty string: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"foo".replace("", "Z"); + /// assert_eq!(s, "ZfZoZoZ".as_bytes()); + /// ``` + #[cfg(feature = "alloc")] + #[inline] + fn replace<N: AsRef<[u8]>, R: AsRef<[u8]>>( + &self, + needle: N, + replacement: R, + ) -> Vec<u8> { + let mut dest = Vec::with_capacity(self.as_bytes().len()); + self.replace_into(needle, replacement, &mut dest); + dest + } + + /// Replace up to `limit` matches of the given needle with the given + /// replacement, and the result as a new `Vec<u8>`. + /// + /// This routine is useful as a convenience. If you need to reuse an + /// allocation, use [`replacen_into`](#method.replacen_into) instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"foofoo".replacen("o", "z", 2); + /// assert_eq!(s, "fzzfoo".as_bytes()); + /// ``` + /// + /// When the pattern doesn't match: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"foofoo".replacen("a", "z", 2); + /// assert_eq!(s, "foofoo".as_bytes()); + /// ``` + /// + /// When the needle is an empty string: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"foo".replacen("", "Z", 2); + /// assert_eq!(s, "ZfZoo".as_bytes()); + /// ``` + #[cfg(feature = "alloc")] + #[inline] + fn replacen<N: AsRef<[u8]>, R: AsRef<[u8]>>( + &self, + needle: N, + replacement: R, + limit: usize, + ) -> Vec<u8> { + let mut dest = Vec::with_capacity(self.as_bytes().len()); + self.replacen_into(needle, replacement, limit, &mut dest); + dest + } + + /// Replace all matches of the given needle with the given replacement, + /// and write the result into the provided `Vec<u8>`. + /// + /// This does **not** clear `dest` before writing to it. + /// + /// This routine is useful for reusing allocation. For a more convenient + /// API, use [`replace`](#method.replace) instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"this is old"; + /// + /// let mut dest = vec![]; + /// s.replace_into("old", "new", &mut dest); + /// assert_eq!(dest, "this is new".as_bytes()); + /// ``` + /// + /// When the pattern doesn't match: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"this is old"; + /// + /// let mut dest = vec![]; + /// s.replace_into("nada nada", "limonada", &mut dest); + /// assert_eq!(dest, "this is old".as_bytes()); + /// ``` + /// + /// When the needle is an empty string: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"foo"; + /// + /// let mut dest = vec![]; + /// s.replace_into("", "Z", &mut dest); + /// assert_eq!(dest, "ZfZoZoZ".as_bytes()); + /// ``` + #[cfg(feature = "alloc")] + #[inline] + fn replace_into<N: AsRef<[u8]>, R: AsRef<[u8]>>( + &self, + needle: N, + replacement: R, + dest: &mut Vec<u8>, + ) { + let (needle, replacement) = (needle.as_ref(), replacement.as_ref()); + + let mut last = 0; + for start in self.find_iter(needle) { + dest.push_str(&self.as_bytes()[last..start]); + dest.push_str(replacement); + last = start + needle.len(); + } + dest.push_str(&self.as_bytes()[last..]); + } + + /// Replace up to `limit` matches of the given needle with the given + /// replacement, and write the result into the provided `Vec<u8>`. + /// + /// This does **not** clear `dest` before writing to it. + /// + /// This routine is useful for reusing allocation. For a more convenient + /// API, use [`replacen`](#method.replacen) instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"foofoo"; + /// + /// let mut dest = vec![]; + /// s.replacen_into("o", "z", 2, &mut dest); + /// assert_eq!(dest, "fzzfoo".as_bytes()); + /// ``` + /// + /// When the pattern doesn't match: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"foofoo"; + /// + /// let mut dest = vec![]; + /// s.replacen_into("a", "z", 2, &mut dest); + /// assert_eq!(dest, "foofoo".as_bytes()); + /// ``` + /// + /// When the needle is an empty string: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let s = b"foo"; + /// + /// let mut dest = vec![]; + /// s.replacen_into("", "Z", 2, &mut dest); + /// assert_eq!(dest, "ZfZoo".as_bytes()); + /// ``` + #[cfg(feature = "alloc")] + #[inline] + fn replacen_into<N: AsRef<[u8]>, R: AsRef<[u8]>>( + &self, + needle: N, + replacement: R, + limit: usize, + dest: &mut Vec<u8>, + ) { + let (needle, replacement) = (needle.as_ref(), replacement.as_ref()); + + let mut last = 0; + for start in self.find_iter(needle).take(limit) { + dest.push_str(&self.as_bytes()[last..start]); + dest.push_str(replacement); + last = start + needle.len(); + } + dest.push_str(&self.as_bytes()[last..]); + } + + /// Returns an iterator over the bytes in this byte string. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = b"foobar"; + /// let bytes: Vec<u8> = bs.bytes().collect(); + /// assert_eq!(bytes, bs); + /// ``` + #[inline] + fn bytes(&self) -> Bytes<'_> { + Bytes { it: self.as_bytes().iter() } + } + + /// Returns an iterator over the Unicode scalar values in this byte string. + /// If invalid UTF-8 is encountered, then the Unicode replacement codepoint + /// is yielded instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = b"\xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61"; + /// let chars: Vec<char> = bs.chars().collect(); + /// assert_eq!(vec!['☃', '\u{FFFD}', '𝞃', '\u{FFFD}', 'a'], chars); + /// ``` + /// + /// Codepoints can also be iterated over in reverse: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = b"\xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61"; + /// let chars: Vec<char> = bs.chars().rev().collect(); + /// assert_eq!(vec!['a', '\u{FFFD}', '𝞃', '\u{FFFD}', '☃'], chars); + /// ``` + #[inline] + fn chars(&self) -> Chars<'_> { + Chars::new(self.as_bytes()) + } + + /// Returns an iterator over the Unicode scalar values in this byte string + /// along with their starting and ending byte index positions. If invalid + /// UTF-8 is encountered, then the Unicode replacement codepoint is yielded + /// instead. + /// + /// Note that this is slightly different from the `CharIndices` iterator + /// provided by the standard library. Aside from working on possibly + /// invalid UTF-8, this iterator provides both the corresponding starting + /// and ending byte indices of each codepoint yielded. The ending position + /// is necessary to slice the original byte string when invalid UTF-8 bytes + /// are converted into a Unicode replacement codepoint, since a single + /// replacement codepoint can substitute anywhere from 1 to 3 invalid bytes + /// (inclusive). + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = b"\xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61"; + /// let chars: Vec<(usize, usize, char)> = bs.char_indices().collect(); + /// assert_eq!(chars, vec![ + /// (0, 3, '☃'), + /// (3, 4, '\u{FFFD}'), + /// (4, 8, '𝞃'), + /// (8, 10, '\u{FFFD}'), + /// (10, 11, 'a'), + /// ]); + /// ``` + /// + /// Codepoints can also be iterated over in reverse: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = b"\xE2\x98\x83\xFF\xF0\x9D\x9E\x83\xE2\x98\x61"; + /// let chars: Vec<(usize, usize, char)> = bs + /// .char_indices() + /// .rev() + /// .collect(); + /// assert_eq!(chars, vec![ + /// (10, 11, 'a'), + /// (8, 10, '\u{FFFD}'), + /// (4, 8, '𝞃'), + /// (3, 4, '\u{FFFD}'), + /// (0, 3, '☃'), + /// ]); + /// ``` + #[inline] + fn char_indices(&self) -> CharIndices<'_> { + CharIndices::new(self.as_bytes()) + } + + /// Iterate over chunks of valid UTF-8. + /// + /// The iterator returned yields chunks of valid UTF-8 separated by invalid + /// UTF-8 bytes, if they exist. Invalid UTF-8 bytes are always 1-3 bytes, + /// which are determined via the "substitution of maximal subparts" + /// strategy described in the docs for the + /// [`ByteSlice::to_str_lossy`](trait.ByteSlice.html#method.to_str_lossy) + /// method. + /// + /// # Examples + /// + /// This example shows how to gather all valid and invalid chunks from a + /// byte slice: + /// + /// ``` + /// use bstr::{ByteSlice, Utf8Chunk}; + /// + /// let bytes = b"foo\xFD\xFEbar\xFF"; + /// + /// let (mut valid_chunks, mut invalid_chunks) = (vec![], vec![]); + /// for chunk in bytes.utf8_chunks() { + /// if !chunk.valid().is_empty() { + /// valid_chunks.push(chunk.valid()); + /// } + /// if !chunk.invalid().is_empty() { + /// invalid_chunks.push(chunk.invalid()); + /// } + /// } + /// + /// assert_eq!(valid_chunks, vec!["foo", "bar"]); + /// assert_eq!(invalid_chunks, vec![b"\xFD", b"\xFE", b"\xFF"]); + /// ``` + #[inline] + fn utf8_chunks(&self) -> Utf8Chunks<'_> { + Utf8Chunks { bytes: self.as_bytes() } + } + + /// Returns an iterator over the grapheme clusters in this byte string. + /// If invalid UTF-8 is encountered, then the Unicode replacement codepoint + /// is yielded instead. + /// + /// # Examples + /// + /// This example shows how multiple codepoints can combine to form a + /// single grapheme cluster: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = "a\u{0300}\u{0316}\u{1F1FA}\u{1F1F8}".as_bytes(); + /// let graphemes: Vec<&str> = bs.graphemes().collect(); + /// assert_eq!(vec!["à̖", "🇺🇸"], graphemes); + /// ``` + /// + /// This shows that graphemes can be iterated over in reverse: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = "a\u{0300}\u{0316}\u{1F1FA}\u{1F1F8}".as_bytes(); + /// let graphemes: Vec<&str> = bs.graphemes().rev().collect(); + /// assert_eq!(vec!["🇺🇸", "à̖"], graphemes); + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn graphemes(&self) -> Graphemes<'_> { + Graphemes::new(self.as_bytes()) + } + + /// Returns an iterator over the grapheme clusters in this byte string + /// along with their starting and ending byte index positions. If invalid + /// UTF-8 is encountered, then the Unicode replacement codepoint is yielded + /// instead. + /// + /// # Examples + /// + /// This example shows how to get the byte offsets of each individual + /// grapheme cluster: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = "a\u{0300}\u{0316}\u{1F1FA}\u{1F1F8}".as_bytes(); + /// let graphemes: Vec<(usize, usize, &str)> = + /// bs.grapheme_indices().collect(); + /// assert_eq!(vec![(0, 5, "à̖"), (5, 13, "🇺🇸")], graphemes); + /// ``` + /// + /// This example shows what happens when invalid UTF-8 is encountered. Note + /// that the offsets are valid indices into the original string, and do + /// not necessarily correspond to the length of the `&str` returned! + /// + /// ``` + /// # #[cfg(all(feature = "alloc"))] { + /// use bstr::{ByteSlice, ByteVec}; + /// + /// let mut bytes = vec![]; + /// bytes.push_str("a\u{0300}\u{0316}"); + /// bytes.push(b'\xFF'); + /// bytes.push_str("\u{1F1FA}\u{1F1F8}"); + /// + /// let graphemes: Vec<(usize, usize, &str)> = + /// bytes.grapheme_indices().collect(); + /// assert_eq!( + /// graphemes, + /// vec![(0, 5, "à̖"), (5, 6, "\u{FFFD}"), (6, 14, "🇺🇸")] + /// ); + /// # } + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn grapheme_indices(&self) -> GraphemeIndices<'_> { + GraphemeIndices::new(self.as_bytes()) + } + + /// Returns an iterator over the words in this byte string. If invalid + /// UTF-8 is encountered, then the Unicode replacement codepoint is yielded + /// instead. + /// + /// This is similar to + /// [`words_with_breaks`](trait.ByteSlice.html#method.words_with_breaks), + /// except it only returns elements that contain a "word" character. A word + /// character is defined by UTS #18 (Annex C) to be the combination of the + /// `Alphabetic` and `Join_Control` properties, along with the + /// `Decimal_Number`, `Mark` and `Connector_Punctuation` general + /// categories. + /// + /// Since words are made up of one or more codepoints, this iterator + /// yields `&str` elements. When invalid UTF-8 is encountered, replacement + /// codepoints are [substituted](index.html#handling-of-invalid-utf-8). + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = br#"The quick ("brown") fox can't jump 32.3 feet, right?"#; + /// let words: Vec<&str> = bs.words().collect(); + /// assert_eq!(words, vec![ + /// "The", "quick", "brown", "fox", "can't", + /// "jump", "32.3", "feet", "right", + /// ]); + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn words(&self) -> Words<'_> { + Words::new(self.as_bytes()) + } + + /// Returns an iterator over the words in this byte string along with + /// their starting and ending byte index positions. + /// + /// This is similar to + /// [`words_with_break_indices`](trait.ByteSlice.html#method.words_with_break_indices), + /// except it only returns elements that contain a "word" character. A word + /// character is defined by UTS #18 (Annex C) to be the combination of the + /// `Alphabetic` and `Join_Control` properties, along with the + /// `Decimal_Number`, `Mark` and `Connector_Punctuation` general + /// categories. + /// + /// Since words are made up of one or more codepoints, this iterator + /// yields `&str` elements. When invalid UTF-8 is encountered, replacement + /// codepoints are [substituted](index.html#handling-of-invalid-utf-8). + /// + /// # Examples + /// + /// This example shows how to get the byte offsets of each individual + /// word: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = b"can't jump 32.3 feet"; + /// let words: Vec<(usize, usize, &str)> = bs.word_indices().collect(); + /// assert_eq!(words, vec![ + /// (0, 5, "can't"), + /// (6, 10, "jump"), + /// (11, 15, "32.3"), + /// (16, 20, "feet"), + /// ]); + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn word_indices(&self) -> WordIndices<'_> { + WordIndices::new(self.as_bytes()) + } + + /// Returns an iterator over the words in this byte string, along with + /// all breaks between the words. Concatenating all elements yielded by + /// the iterator results in the original string (modulo Unicode replacement + /// codepoint substitutions if invalid UTF-8 is encountered). + /// + /// Since words are made up of one or more codepoints, this iterator + /// yields `&str` elements. When invalid UTF-8 is encountered, replacement + /// codepoints are [substituted](index.html#handling-of-invalid-utf-8). + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = br#"The quick ("brown") fox can't jump 32.3 feet, right?"#; + /// let words: Vec<&str> = bs.words_with_breaks().collect(); + /// assert_eq!(words, vec![ + /// "The", " ", "quick", " ", "(", "\"", "brown", "\"", ")", + /// " ", "fox", " ", "can't", " ", "jump", " ", "32.3", " ", "feet", + /// ",", " ", "right", "?", + /// ]); + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn words_with_breaks(&self) -> WordsWithBreaks<'_> { + WordsWithBreaks::new(self.as_bytes()) + } + + /// Returns an iterator over the words and their byte offsets in this + /// byte string, along with all breaks between the words. Concatenating + /// all elements yielded by the iterator results in the original string + /// (modulo Unicode replacement codepoint substitutions if invalid UTF-8 is + /// encountered). + /// + /// Since words are made up of one or more codepoints, this iterator + /// yields `&str` elements. When invalid UTF-8 is encountered, replacement + /// codepoints are [substituted](index.html#handling-of-invalid-utf-8). + /// + /// # Examples + /// + /// This example shows how to get the byte offsets of each individual + /// word: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = b"can't jump 32.3 feet"; + /// let words: Vec<(usize, usize, &str)> = + /// bs.words_with_break_indices().collect(); + /// assert_eq!(words, vec![ + /// (0, 5, "can't"), + /// (5, 6, " "), + /// (6, 10, "jump"), + /// (10, 11, " "), + /// (11, 15, "32.3"), + /// (15, 16, " "), + /// (16, 20, "feet"), + /// ]); + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn words_with_break_indices(&self) -> WordsWithBreakIndices<'_> { + WordsWithBreakIndices::new(self.as_bytes()) + } + + /// Returns an iterator over the sentences in this byte string. + /// + /// Typically, a sentence will include its trailing punctuation and + /// whitespace. Concatenating all elements yielded by the iterator + /// results in the original string (modulo Unicode replacement codepoint + /// substitutions if invalid UTF-8 is encountered). + /// + /// Since sentences are made up of one or more codepoints, this iterator + /// yields `&str` elements. When invalid UTF-8 is encountered, replacement + /// codepoints are [substituted](index.html#handling-of-invalid-utf-8). + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = b"I want this. Not that. Right now."; + /// let sentences: Vec<&str> = bs.sentences().collect(); + /// assert_eq!(sentences, vec![ + /// "I want this. ", + /// "Not that. ", + /// "Right now.", + /// ]); + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn sentences(&self) -> Sentences<'_> { + Sentences::new(self.as_bytes()) + } + + /// Returns an iterator over the sentences in this byte string along with + /// their starting and ending byte index positions. + /// + /// Typically, a sentence will include its trailing punctuation and + /// whitespace. Concatenating all elements yielded by the iterator + /// results in the original string (modulo Unicode replacement codepoint + /// substitutions if invalid UTF-8 is encountered). + /// + /// Since sentences are made up of one or more codepoints, this iterator + /// yields `&str` elements. When invalid UTF-8 is encountered, replacement + /// codepoints are [substituted](index.html#handling-of-invalid-utf-8). + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let bs = b"I want this. Not that. Right now."; + /// let sentences: Vec<(usize, usize, &str)> = + /// bs.sentence_indices().collect(); + /// assert_eq!(sentences, vec![ + /// (0, 13, "I want this. "), + /// (13, 23, "Not that. "), + /// (23, 33, "Right now."), + /// ]); + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn sentence_indices(&self) -> SentenceIndices<'_> { + SentenceIndices::new(self.as_bytes()) + } + + /// An iterator over all lines in a byte string, without their + /// terminators. + /// + /// For this iterator, the only line terminators recognized are `\r\n` and + /// `\n`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = b"\ + /// foo + /// + /// bar\r + /// baz + /// + /// + /// quux"; + /// let lines: Vec<&[u8]> = s.lines().collect(); + /// assert_eq!(lines, vec![ + /// B("foo"), B(""), B("bar"), B("baz"), B(""), B(""), B("quux"), + /// ]); + /// ``` + #[inline] + fn lines(&self) -> Lines<'_> { + Lines::new(self.as_bytes()) + } + + /// An iterator over all lines in a byte string, including their + /// terminators. + /// + /// For this iterator, the only line terminator recognized is `\n`. (Since + /// line terminators are included, this also handles `\r\n` line endings.) + /// + /// Line terminators are only included if they are present in the original + /// byte string. For example, the last line in a byte string may not end + /// with a line terminator. + /// + /// Concatenating all elements yielded by this iterator is guaranteed to + /// yield the original byte string. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = b"\ + /// foo + /// + /// bar\r + /// baz + /// + /// + /// quux"; + /// let lines: Vec<&[u8]> = s.lines_with_terminator().collect(); + /// assert_eq!(lines, vec![ + /// B("foo\n"), + /// B("\n"), + /// B("bar\r\n"), + /// B("baz\n"), + /// B("\n"), + /// B("\n"), + /// B("quux"), + /// ]); + /// ``` + #[inline] + fn lines_with_terminator(&self) -> LinesWithTerminator<'_> { + LinesWithTerminator::new(self.as_bytes()) + } + + /// Return a byte string slice with leading and trailing whitespace + /// removed. + /// + /// Whitespace is defined according to the terms of the `White_Space` + /// Unicode property. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B(" foo\tbar\t\u{2003}\n"); + /// assert_eq!(s.trim(), B("foo\tbar")); + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn trim(&self) -> &[u8] { + self.trim_start().trim_end() + } + + /// Return a byte string slice with leading whitespace removed. + /// + /// Whitespace is defined according to the terms of the `White_Space` + /// Unicode property. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B(" foo\tbar\t\u{2003}\n"); + /// assert_eq!(s.trim_start(), B("foo\tbar\t\u{2003}\n")); + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn trim_start(&self) -> &[u8] { + let start = whitespace_len_fwd(self.as_bytes()); + &self.as_bytes()[start..] + } + + /// Return a byte string slice with trailing whitespace removed. + /// + /// Whitespace is defined according to the terms of the `White_Space` + /// Unicode property. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B(" foo\tbar\t\u{2003}\n"); + /// assert_eq!(s.trim_end(), B(" foo\tbar")); + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn trim_end(&self) -> &[u8] { + let end = whitespace_len_rev(self.as_bytes()); + &self.as_bytes()[..end] + } + + /// Return a byte string slice with leading and trailing characters + /// satisfying the given predicate removed. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = b"123foo5bar789"; + /// assert_eq!(s.trim_with(|c| c.is_numeric()), B("foo5bar")); + /// ``` + #[inline] + fn trim_with<F: FnMut(char) -> bool>(&self, mut trim: F) -> &[u8] { + self.trim_start_with(&mut trim).trim_end_with(&mut trim) + } + + /// Return a byte string slice with leading characters satisfying the given + /// predicate removed. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = b"123foo5bar789"; + /// assert_eq!(s.trim_start_with(|c| c.is_numeric()), B("foo5bar789")); + /// ``` + #[inline] + fn trim_start_with<F: FnMut(char) -> bool>(&self, mut trim: F) -> &[u8] { + for (s, _, ch) in self.char_indices() { + if !trim(ch) { + return &self.as_bytes()[s..]; + } + } + b"" + } + + /// Return a byte string slice with trailing characters satisfying the + /// given predicate removed. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = b"123foo5bar789"; + /// assert_eq!(s.trim_end_with(|c| c.is_numeric()), B("123foo5bar")); + /// ``` + #[inline] + fn trim_end_with<F: FnMut(char) -> bool>(&self, mut trim: F) -> &[u8] { + for (_, e, ch) in self.char_indices().rev() { + if !trim(ch) { + return &self.as_bytes()[..e]; + } + } + b"" + } + + /// Returns a new `Vec<u8>` containing the lowercase equivalent of this + /// byte string. + /// + /// In this case, lowercase is defined according to the `Lowercase` Unicode + /// property. + /// + /// If invalid UTF-8 is seen, or if a character has no lowercase variant, + /// then it is written to the given buffer unchanged. + /// + /// Note that some characters in this byte string may expand into multiple + /// characters when changing the case, so the number of bytes written to + /// the given byte string may not be equivalent to the number of bytes in + /// this byte string. + /// + /// If you'd like to reuse an allocation for performance reasons, then use + /// [`to_lowercase_into`](#method.to_lowercase_into) instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B("HELLO Β"); + /// assert_eq!("hello β".as_bytes(), s.to_lowercase().as_bytes()); + /// ``` + /// + /// Scripts without case are not changed: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B("农历新年"); + /// assert_eq!("农历新年".as_bytes(), s.to_lowercase().as_bytes()); + /// ``` + /// + /// Invalid UTF-8 remains as is: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B(b"FOO\xFFBAR\xE2\x98BAZ"); + /// assert_eq!(B(b"foo\xFFbar\xE2\x98baz"), s.to_lowercase().as_bytes()); + /// ``` + #[cfg(all(feature = "alloc", feature = "unicode"))] + #[inline] + fn to_lowercase(&self) -> Vec<u8> { + let mut buf = vec![]; + self.to_lowercase_into(&mut buf); + buf + } + + /// Writes the lowercase equivalent of this byte string into the given + /// buffer. The buffer is not cleared before written to. + /// + /// In this case, lowercase is defined according to the `Lowercase` + /// Unicode property. + /// + /// If invalid UTF-8 is seen, or if a character has no lowercase variant, + /// then it is written to the given buffer unchanged. + /// + /// Note that some characters in this byte string may expand into multiple + /// characters when changing the case, so the number of bytes written to + /// the given byte string may not be equivalent to the number of bytes in + /// this byte string. + /// + /// If you don't need to amortize allocation and instead prefer + /// convenience, then use [`to_lowercase`](#method.to_lowercase) instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B("HELLO Β"); + /// + /// let mut buf = vec![]; + /// s.to_lowercase_into(&mut buf); + /// assert_eq!("hello β".as_bytes(), buf.as_bytes()); + /// ``` + /// + /// Scripts without case are not changed: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B("农历新年"); + /// + /// let mut buf = vec![]; + /// s.to_lowercase_into(&mut buf); + /// assert_eq!("农历新年".as_bytes(), buf.as_bytes()); + /// ``` + /// + /// Invalid UTF-8 remains as is: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B(b"FOO\xFFBAR\xE2\x98BAZ"); + /// + /// let mut buf = vec![]; + /// s.to_lowercase_into(&mut buf); + /// assert_eq!(B(b"foo\xFFbar\xE2\x98baz"), buf.as_bytes()); + /// ``` + #[cfg(all(feature = "alloc", feature = "unicode"))] + #[inline] + fn to_lowercase_into(&self, buf: &mut Vec<u8>) { + // TODO: This is the best we can do given what std exposes I think. + // If we roll our own case handling, then we might be able to do this + // a bit faster. We shouldn't roll our own case handling unless we + // need to, e.g., for doing caseless matching or case folding. + + // TODO(BUG): This doesn't handle any special casing rules. + + buf.reserve(self.as_bytes().len()); + for (s, e, ch) in self.char_indices() { + if ch == '\u{FFFD}' { + buf.push_str(&self.as_bytes()[s..e]); + } else if ch.is_ascii() { + buf.push_char(ch.to_ascii_lowercase()); + } else { + for upper in ch.to_lowercase() { + buf.push_char(upper); + } + } + } + } + + /// Returns a new `Vec<u8>` containing the ASCII lowercase equivalent of + /// this byte string. + /// + /// In this case, lowercase is only defined in ASCII letters. Namely, the + /// letters `A-Z` are converted to `a-z`. All other bytes remain unchanged. + /// In particular, the length of the byte string returned is always + /// equivalent to the length of this byte string. + /// + /// If you'd like to reuse an allocation for performance reasons, then use + /// [`make_ascii_lowercase`](#method.make_ascii_lowercase) to perform + /// the conversion in place. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B("HELLO Β"); + /// assert_eq!("hello Β".as_bytes(), s.to_ascii_lowercase().as_bytes()); + /// ``` + /// + /// Invalid UTF-8 remains as is: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B(b"FOO\xFFBAR\xE2\x98BAZ"); + /// assert_eq!(s.to_ascii_lowercase(), B(b"foo\xFFbar\xE2\x98baz")); + /// ``` + #[cfg(feature = "alloc")] + #[inline] + fn to_ascii_lowercase(&self) -> Vec<u8> { + self.as_bytes().to_ascii_lowercase() + } + + /// Convert this byte string to its lowercase ASCII equivalent in place. + /// + /// In this case, lowercase is only defined in ASCII letters. Namely, the + /// letters `A-Z` are converted to `a-z`. All other bytes remain unchanged. + /// + /// If you don't need to do the conversion in + /// place and instead prefer convenience, then use + /// [`to_ascii_lowercase`](#method.to_ascii_lowercase) instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let mut s = <Vec<u8>>::from("HELLO Β"); + /// s.make_ascii_lowercase(); + /// assert_eq!(s, "hello Β".as_bytes()); + /// ``` + /// + /// Invalid UTF-8 remains as is: + /// + /// ``` + /// # #[cfg(feature = "alloc")] { + /// use bstr::{B, ByteSlice, ByteVec}; + /// + /// let mut s = <Vec<u8>>::from_slice(b"FOO\xFFBAR\xE2\x98BAZ"); + /// s.make_ascii_lowercase(); + /// assert_eq!(s, B(b"foo\xFFbar\xE2\x98baz")); + /// # } + /// ``` + #[inline] + fn make_ascii_lowercase(&mut self) { + self.as_bytes_mut().make_ascii_lowercase(); + } + + /// Returns a new `Vec<u8>` containing the uppercase equivalent of this + /// byte string. + /// + /// In this case, uppercase is defined according to the `Uppercase` + /// Unicode property. + /// + /// If invalid UTF-8 is seen, or if a character has no uppercase variant, + /// then it is written to the given buffer unchanged. + /// + /// Note that some characters in this byte string may expand into multiple + /// characters when changing the case, so the number of bytes written to + /// the given byte string may not be equivalent to the number of bytes in + /// this byte string. + /// + /// If you'd like to reuse an allocation for performance reasons, then use + /// [`to_uppercase_into`](#method.to_uppercase_into) instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B("hello β"); + /// assert_eq!(s.to_uppercase(), B("HELLO Β")); + /// ``` + /// + /// Scripts without case are not changed: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B("农历新年"); + /// assert_eq!(s.to_uppercase(), B("农历新年")); + /// ``` + /// + /// Invalid UTF-8 remains as is: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B(b"foo\xFFbar\xE2\x98baz"); + /// assert_eq!(s.to_uppercase(), B(b"FOO\xFFBAR\xE2\x98BAZ")); + /// ``` + #[cfg(all(feature = "alloc", feature = "unicode"))] + #[inline] + fn to_uppercase(&self) -> Vec<u8> { + let mut buf = vec![]; + self.to_uppercase_into(&mut buf); + buf + } + + /// Writes the uppercase equivalent of this byte string into the given + /// buffer. The buffer is not cleared before written to. + /// + /// In this case, uppercase is defined according to the `Uppercase` + /// Unicode property. + /// + /// If invalid UTF-8 is seen, or if a character has no uppercase variant, + /// then it is written to the given buffer unchanged. + /// + /// Note that some characters in this byte string may expand into multiple + /// characters when changing the case, so the number of bytes written to + /// the given byte string may not be equivalent to the number of bytes in + /// this byte string. + /// + /// If you don't need to amortize allocation and instead prefer + /// convenience, then use [`to_uppercase`](#method.to_uppercase) instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B("hello β"); + /// + /// let mut buf = vec![]; + /// s.to_uppercase_into(&mut buf); + /// assert_eq!(buf, B("HELLO Β")); + /// ``` + /// + /// Scripts without case are not changed: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B("农历新年"); + /// + /// let mut buf = vec![]; + /// s.to_uppercase_into(&mut buf); + /// assert_eq!(buf, B("农历新年")); + /// ``` + /// + /// Invalid UTF-8 remains as is: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B(b"foo\xFFbar\xE2\x98baz"); + /// + /// let mut buf = vec![]; + /// s.to_uppercase_into(&mut buf); + /// assert_eq!(buf, B(b"FOO\xFFBAR\xE2\x98BAZ")); + /// ``` + #[cfg(all(feature = "alloc", feature = "unicode"))] + #[inline] + fn to_uppercase_into(&self, buf: &mut Vec<u8>) { + // TODO: This is the best we can do given what std exposes I think. + // If we roll our own case handling, then we might be able to do this + // a bit faster. We shouldn't roll our own case handling unless we + // need to, e.g., for doing caseless matching or case folding. + buf.reserve(self.as_bytes().len()); + for (s, e, ch) in self.char_indices() { + if ch == '\u{FFFD}' { + buf.push_str(&self.as_bytes()[s..e]); + } else if ch.is_ascii() { + buf.push_char(ch.to_ascii_uppercase()); + } else { + for upper in ch.to_uppercase() { + buf.push_char(upper); + } + } + } + } + + /// Returns a new `Vec<u8>` containing the ASCII uppercase equivalent of + /// this byte string. + /// + /// In this case, uppercase is only defined in ASCII letters. Namely, the + /// letters `a-z` are converted to `A-Z`. All other bytes remain unchanged. + /// In particular, the length of the byte string returned is always + /// equivalent to the length of this byte string. + /// + /// If you'd like to reuse an allocation for performance reasons, then use + /// [`make_ascii_uppercase`](#method.make_ascii_uppercase) to perform + /// the conversion in place. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B("hello β"); + /// assert_eq!(s.to_ascii_uppercase(), B("HELLO β")); + /// ``` + /// + /// Invalid UTF-8 remains as is: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = B(b"foo\xFFbar\xE2\x98baz"); + /// assert_eq!(s.to_ascii_uppercase(), B(b"FOO\xFFBAR\xE2\x98BAZ")); + /// ``` + #[cfg(feature = "alloc")] + #[inline] + fn to_ascii_uppercase(&self) -> Vec<u8> { + self.as_bytes().to_ascii_uppercase() + } + + /// Convert this byte string to its uppercase ASCII equivalent in place. + /// + /// In this case, uppercase is only defined in ASCII letters. Namely, the + /// letters `a-z` are converted to `A-Z`. All other bytes remain unchanged. + /// + /// If you don't need to do the conversion in + /// place and instead prefer convenience, then use + /// [`to_ascii_uppercase`](#method.to_ascii_uppercase) instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let mut s = <Vec<u8>>::from("hello β"); + /// s.make_ascii_uppercase(); + /// assert_eq!(s, B("HELLO β")); + /// ``` + /// + /// Invalid UTF-8 remains as is: + /// + /// ``` + /// # #[cfg(feature = "alloc")] { + /// use bstr::{B, ByteSlice, ByteVec}; + /// + /// let mut s = <Vec<u8>>::from_slice(b"foo\xFFbar\xE2\x98baz"); + /// s.make_ascii_uppercase(); + /// assert_eq!(s, B(b"FOO\xFFBAR\xE2\x98BAZ")); + /// # } + /// ``` + #[inline] + fn make_ascii_uppercase(&mut self) { + self.as_bytes_mut().make_ascii_uppercase(); + } + + /// Escapes this byte string into a sequence of `char` values. + /// + /// When the sequence of `char` values is concatenated into a string, the + /// result is always valid UTF-8. Any unprintable or invalid UTF-8 in this + /// byte string are escaped using using `\xNN` notation. Moreover, the + /// characters `\0`, `\r`, `\n`, `\t` and `\` are escaped as well. + /// + /// This is useful when one wants to get a human readable view of the raw + /// bytes that is also valid UTF-8. + /// + /// The iterator returned implements the `Display` trait. So one can do + /// `b"foo\xFFbar".escape_bytes().to_string()` to get a `String` with its + /// bytes escaped. + /// + /// The dual of this function is [`ByteVec::unescape_bytes`]. + /// + /// Note that this is similar to, but not equivalent to the `Debug` + /// implementation on [`BStr`] and [`BString`]. The `Debug` implementations + /// also use the debug representation for all Unicode codepoints. However, + /// this escaping routine only escapes individual bytes. All Unicode + /// codepoints above `U+007F` are passed through unchanged without any + /// escaping. + /// + /// # Examples + /// + /// ``` + /// # #[cfg(feature = "alloc")] { + /// use bstr::{B, ByteSlice}; + /// + /// assert_eq!(r"foo\xFFbar", b"foo\xFFbar".escape_bytes().to_string()); + /// assert_eq!(r"foo\nbar", b"foo\nbar".escape_bytes().to_string()); + /// assert_eq!(r"foo\tbar", b"foo\tbar".escape_bytes().to_string()); + /// assert_eq!(r"foo\\bar", b"foo\\bar".escape_bytes().to_string()); + /// assert_eq!(r"foo☃bar", B("foo☃bar").escape_bytes().to_string()); + /// # } + /// ``` + #[inline] + fn escape_bytes(&self) -> EscapeBytes<'_> { + EscapeBytes::new(self.as_bytes()) + } + + /// Reverse the bytes in this string, in place. + /// + /// This is not necessarily a well formed operation! For example, if this + /// byte string contains valid UTF-8 that isn't ASCII, then reversing the + /// string will likely result in invalid UTF-8 and otherwise non-sensical + /// content. + /// + /// Note that this is equivalent to the generic `[u8]::reverse` method. + /// This method is provided to permit callers to explicitly differentiate + /// between reversing bytes, codepoints and graphemes. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let mut s = <Vec<u8>>::from("hello"); + /// s.reverse_bytes(); + /// assert_eq!(s, "olleh".as_bytes()); + /// ``` + #[inline] + fn reverse_bytes(&mut self) { + self.as_bytes_mut().reverse(); + } + + /// Reverse the codepoints in this string, in place. + /// + /// If this byte string is valid UTF-8, then its reversal by codepoint + /// is also guaranteed to be valid UTF-8. + /// + /// This operation is equivalent to the following, but without allocating: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let mut s = <Vec<u8>>::from("foo☃bar"); + /// + /// let mut chars: Vec<char> = s.chars().collect(); + /// chars.reverse(); + /// + /// let reversed: String = chars.into_iter().collect(); + /// assert_eq!(reversed, "rab☃oof"); + /// ``` + /// + /// Note that this is not necessarily a well formed operation. For example, + /// if this byte string contains grapheme clusters with more than one + /// codepoint, then those grapheme clusters will not necessarily be + /// preserved. If you'd like to preserve grapheme clusters, then use + /// [`reverse_graphemes`](#method.reverse_graphemes) instead. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let mut s = <Vec<u8>>::from("foo☃bar"); + /// s.reverse_chars(); + /// assert_eq!(s, "rab☃oof".as_bytes()); + /// ``` + /// + /// This example shows that not all reversals lead to a well formed string. + /// For example, in this case, combining marks are used to put accents over + /// some letters, and those accent marks must appear after the codepoints + /// they modify. + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let mut s = <Vec<u8>>::from("résumé"); + /// s.reverse_chars(); + /// assert_eq!(s, B(b"\xCC\x81emus\xCC\x81er")); + /// ``` + /// + /// A word of warning: the above example relies on the fact that + /// `résumé` is in decomposed normal form, which means there are separate + /// codepoints for the accents above `e`. If it is instead in composed + /// normal form, then the example works: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let mut s = <Vec<u8>>::from("résumé"); + /// s.reverse_chars(); + /// assert_eq!(s, B("émusér")); + /// ``` + /// + /// The point here is to be cautious and not assume that just because + /// `reverse_chars` works in one case, that it therefore works in all + /// cases. + #[inline] + fn reverse_chars(&mut self) { + let mut i = 0; + loop { + let (_, size) = utf8::decode(&self.as_bytes()[i..]); + if size == 0 { + break; + } + if size > 1 { + self.as_bytes_mut()[i..i + size].reverse_bytes(); + } + i += size; + } + self.reverse_bytes(); + } + + /// Reverse the graphemes in this string, in place. + /// + /// If this byte string is valid UTF-8, then its reversal by grapheme + /// is also guaranteed to be valid UTF-8. + /// + /// This operation is equivalent to the following, but without allocating: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let mut s = <Vec<u8>>::from("foo☃bar"); + /// + /// let mut graphemes: Vec<&str> = s.graphemes().collect(); + /// graphemes.reverse(); + /// + /// let reversed = graphemes.concat(); + /// assert_eq!(reversed, "rab☃oof"); + /// ``` + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let mut s = <Vec<u8>>::from("foo☃bar"); + /// s.reverse_graphemes(); + /// assert_eq!(s, "rab☃oof".as_bytes()); + /// ``` + /// + /// This example shows how this correctly handles grapheme clusters, + /// unlike `reverse_chars`. + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// let mut s = <Vec<u8>>::from("résumé"); + /// s.reverse_graphemes(); + /// assert_eq!(s, "émusér".as_bytes()); + /// ``` + #[cfg(feature = "unicode")] + #[inline] + fn reverse_graphemes(&mut self) { + use crate::unicode::decode_grapheme; + + let mut i = 0; + loop { + let (_, size) = decode_grapheme(&self.as_bytes()[i..]); + if size == 0 { + break; + } + if size > 1 { + self.as_bytes_mut()[i..i + size].reverse_bytes(); + } + i += size; + } + self.reverse_bytes(); + } + + /// Returns true if and only if every byte in this byte string is ASCII. + /// + /// ASCII is an encoding that defines 128 codepoints. A byte corresponds to + /// an ASCII codepoint if and only if it is in the inclusive range + /// `[0, 127]`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// assert!(B("abc").is_ascii()); + /// assert!(!B("☃βツ").is_ascii()); + /// assert!(!B(b"\xFF").is_ascii()); + /// ``` + #[inline] + fn is_ascii(&self) -> bool { + ascii::first_non_ascii_byte(self.as_bytes()) == self.as_bytes().len() + } + + /// Returns true if and only if the entire byte string is valid UTF-8. + /// + /// If you need location information about where a byte string's first + /// invalid UTF-8 byte is, then use the [`to_str`](#method.to_str) method. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// assert!(B("abc").is_utf8()); + /// assert!(B("☃βツ").is_utf8()); + /// // invalid bytes + /// assert!(!B(b"abc\xFF").is_utf8()); + /// // surrogate encoding + /// assert!(!B(b"\xED\xA0\x80").is_utf8()); + /// // incomplete sequence + /// assert!(!B(b"\xF0\x9D\x9Ca").is_utf8()); + /// // overlong sequence + /// assert!(!B(b"\xF0\x82\x82\xAC").is_utf8()); + /// ``` + #[inline] + fn is_utf8(&self) -> bool { + utf8::validate(self.as_bytes()).is_ok() + } + + /// Returns the last byte in this byte string, if it's non-empty. If this + /// byte string is empty, this returns `None`. + /// + /// Note that this is like the generic `[u8]::last`, except this returns + /// the byte by value instead of a reference to the byte. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::ByteSlice; + /// + /// assert_eq!(Some(b'z'), b"baz".last_byte()); + /// assert_eq!(None, b"".last_byte()); + /// ``` + #[inline] + fn last_byte(&self) -> Option<u8> { + let bytes = self.as_bytes(); + bytes.get(bytes.len().saturating_sub(1)).map(|&b| b) + } + + /// Returns the index of the first non-ASCII byte in this byte string (if + /// any such indices exist). Specifically, it returns the index of the + /// first byte with a value greater than or equal to `0x80`. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{ByteSlice, B}; + /// + /// assert_eq!(Some(3), b"abc\xff".find_non_ascii_byte()); + /// assert_eq!(None, b"abcde".find_non_ascii_byte()); + /// assert_eq!(Some(0), B("😀").find_non_ascii_byte()); + /// ``` + #[inline] + fn find_non_ascii_byte(&self) -> Option<usize> { + let index = ascii::first_non_ascii_byte(self.as_bytes()); + if index == self.as_bytes().len() { + None + } else { + Some(index) + } + } +} + +/// A single substring searcher fixed to a particular needle. +/// +/// The purpose of this type is to permit callers to construct a substring +/// searcher that can be used to search haystacks without the overhead of +/// constructing the searcher in the first place. This is a somewhat niche +/// concern when it's necessary to re-use the same needle to search multiple +/// different haystacks with as little overhead as possible. In general, using +/// [`ByteSlice::find`](trait.ByteSlice.html#method.find) +/// or +/// [`ByteSlice::find_iter`](trait.ByteSlice.html#method.find_iter) +/// is good enough, but `Finder` is useful when you can meaningfully observe +/// searcher construction time in a profile. +/// +/// When the `std` feature is enabled, then this type has an `into_owned` +/// version which permits building a `Finder` that is not connected to the +/// lifetime of its needle. +#[derive(Clone, Debug)] +pub struct Finder<'a>(memmem::Finder<'a>); + +impl<'a> Finder<'a> { + /// Create a new finder for the given needle. + #[inline] + pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'a B) -> Finder<'a> { + Finder(memmem::Finder::new(needle.as_ref())) + } + + /// Convert this finder into its owned variant, such that it no longer + /// borrows the needle. + /// + /// If this is already an owned finder, then this is a no-op. Otherwise, + /// this copies the needle. + /// + /// This is only available when the `alloc` feature is enabled. + #[cfg(feature = "alloc")] + #[inline] + pub fn into_owned(self) -> Finder<'static> { + Finder(self.0.into_owned()) + } + + /// Returns the needle that this finder searches for. + /// + /// Note that the lifetime of the needle returned is tied to the lifetime + /// of the finder, and may be shorter than the `'a` lifetime. Namely, a + /// finder's needle can be either borrowed or owned, so the lifetime of the + /// needle returned must necessarily be the shorter of the two. + #[inline] + pub fn needle(&self) -> &[u8] { + self.0.needle() + } + + /// Returns the index of the first occurrence of this needle in the given + /// haystack. + /// + /// The haystack may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. + /// + /// # Complexity + /// + /// This routine is guaranteed to have worst case linear time complexity + /// with respect to both the needle and the haystack. That is, this runs + /// in `O(needle.len() + haystack.len())` time. + /// + /// This routine is also guaranteed to have worst case constant space + /// complexity. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::Finder; + /// + /// let haystack = "foo bar baz"; + /// assert_eq!(Some(0), Finder::new("foo").find(haystack)); + /// assert_eq!(Some(4), Finder::new("bar").find(haystack)); + /// assert_eq!(None, Finder::new("quux").find(haystack)); + /// ``` + #[inline] + pub fn find<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> { + self.0.find(haystack.as_ref()) + } +} + +/// A single substring reverse searcher fixed to a particular needle. +/// +/// The purpose of this type is to permit callers to construct a substring +/// searcher that can be used to search haystacks without the overhead of +/// constructing the searcher in the first place. This is a somewhat niche +/// concern when it's necessary to re-use the same needle to search multiple +/// different haystacks with as little overhead as possible. In general, using +/// [`ByteSlice::rfind`](trait.ByteSlice.html#method.rfind) +/// or +/// [`ByteSlice::rfind_iter`](trait.ByteSlice.html#method.rfind_iter) +/// is good enough, but `FinderReverse` is useful when you can meaningfully +/// observe searcher construction time in a profile. +/// +/// When the `std` feature is enabled, then this type has an `into_owned` +/// version which permits building a `FinderReverse` that is not connected to +/// the lifetime of its needle. +#[derive(Clone, Debug)] +pub struct FinderReverse<'a>(memmem::FinderRev<'a>); + +impl<'a> FinderReverse<'a> { + /// Create a new reverse finder for the given needle. + #[inline] + pub fn new<B: ?Sized + AsRef<[u8]>>(needle: &'a B) -> FinderReverse<'a> { + FinderReverse(memmem::FinderRev::new(needle.as_ref())) + } + + /// Convert this finder into its owned variant, such that it no longer + /// borrows the needle. + /// + /// If this is already an owned finder, then this is a no-op. Otherwise, + /// this copies the needle. + /// + /// This is only available when the `alloc` feature is enabled. + #[cfg(feature = "alloc")] + #[inline] + pub fn into_owned(self) -> FinderReverse<'static> { + FinderReverse(self.0.into_owned()) + } + + /// Returns the needle that this finder searches for. + /// + /// Note that the lifetime of the needle returned is tied to the lifetime + /// of this finder, and may be shorter than the `'a` lifetime. Namely, + /// a finder's needle can be either borrowed or owned, so the lifetime of + /// the needle returned must necessarily be the shorter of the two. + #[inline] + pub fn needle(&self) -> &[u8] { + self.0.needle() + } + + /// Returns the index of the last occurrence of this needle in the given + /// haystack. + /// + /// The haystack may be any type that can be cheaply converted into a + /// `&[u8]`. This includes, but is not limited to, `&str` and `&[u8]`. + /// + /// # Complexity + /// + /// This routine is guaranteed to have worst case linear time complexity + /// with respect to both the needle and the haystack. That is, this runs + /// in `O(needle.len() + haystack.len())` time. + /// + /// This routine is also guaranteed to have worst case constant space + /// complexity. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::FinderReverse; + /// + /// let haystack = "foo bar baz"; + /// assert_eq!(Some(0), FinderReverse::new("foo").rfind(haystack)); + /// assert_eq!(Some(4), FinderReverse::new("bar").rfind(haystack)); + /// assert_eq!(None, FinderReverse::new("quux").rfind(haystack)); + /// ``` + #[inline] + pub fn rfind<B: AsRef<[u8]>>(&self, haystack: B) -> Option<usize> { + self.0.rfind(haystack.as_ref()) + } +} + +/// An iterator over non-overlapping substring matches. +/// +/// Matches are reported by the byte offset at which they begin. +/// +/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the +/// needle. +#[derive(Debug)] +pub struct Find<'h, 'n> { + it: memmem::FindIter<'h, 'n>, + haystack: &'h [u8], + needle: &'n [u8], +} + +impl<'h, 'n> Find<'h, 'n> { + fn new(haystack: &'h [u8], needle: &'n [u8]) -> Find<'h, 'n> { + Find { it: memmem::find_iter(haystack, needle), haystack, needle } + } +} + +impl<'h, 'n> Iterator for Find<'h, 'n> { + type Item = usize; + + #[inline] + fn next(&mut self) -> Option<usize> { + self.it.next() + } +} + +/// An iterator over non-overlapping substring matches in reverse. +/// +/// Matches are reported by the byte offset at which they begin. +/// +/// `'h` is the lifetime of the haystack while `'n` is the lifetime of the +/// needle. +#[derive(Debug)] +pub struct FindReverse<'h, 'n> { + it: memmem::FindRevIter<'h, 'n>, + haystack: &'h [u8], + needle: &'n [u8], +} + +impl<'h, 'n> FindReverse<'h, 'n> { + fn new(haystack: &'h [u8], needle: &'n [u8]) -> FindReverse<'h, 'n> { + FindReverse { + it: memmem::rfind_iter(haystack, needle), + haystack, + needle, + } + } + + fn haystack(&self) -> &'h [u8] { + self.haystack + } + + fn needle(&self) -> &'n [u8] { + self.needle + } +} + +impl<'h, 'n> Iterator for FindReverse<'h, 'n> { + type Item = usize; + + #[inline] + fn next(&mut self) -> Option<usize> { + self.it.next() + } +} + +/// An iterator over the bytes in a byte string. +/// +/// `'a` is the lifetime of the byte string being traversed. +#[derive(Clone, Debug)] +pub struct Bytes<'a> { + it: slice::Iter<'a, u8>, +} + +impl<'a> Bytes<'a> { + /// Views the remaining underlying data as a subslice of the original data. + /// This has the same lifetime as the original slice, + /// and so the iterator can continue to be used while this exists. + #[inline] + pub fn as_bytes(&self) -> &'a [u8] { + self.it.as_slice() + } +} + +impl<'a> Iterator for Bytes<'a> { + type Item = u8; + + #[inline] + fn next(&mut self) -> Option<u8> { + self.it.next().map(|&b| b) + } + + #[inline] + fn size_hint(&self) -> (usize, Option<usize>) { + self.it.size_hint() + } +} + +impl<'a> DoubleEndedIterator for Bytes<'a> { + #[inline] + fn next_back(&mut self) -> Option<u8> { + self.it.next_back().map(|&b| b) + } +} + +impl<'a> ExactSizeIterator for Bytes<'a> { + #[inline] + fn len(&self) -> usize { + self.it.len() + } +} + +impl<'a> iter::FusedIterator for Bytes<'a> {} + +/// An iterator over the fields in a byte string, separated by whitespace. +/// +/// Whitespace for this iterator is defined by the Unicode property +/// `White_Space`. +/// +/// This iterator splits on contiguous runs of whitespace, such that the fields +/// in `foo\t\t\n \nbar` are `foo` and `bar`. +/// +/// `'a` is the lifetime of the byte string being split. +#[cfg(feature = "unicode")] +#[derive(Debug)] +pub struct Fields<'a> { + it: FieldsWith<'a, fn(char) -> bool>, +} + +#[cfg(feature = "unicode")] +impl<'a> Fields<'a> { + fn new(bytes: &'a [u8]) -> Fields<'a> { + Fields { it: bytes.fields_with(|ch| ch.is_whitespace()) } + } +} + +#[cfg(feature = "unicode")] +impl<'a> Iterator for Fields<'a> { + type Item = &'a [u8]; + + #[inline] + fn next(&mut self) -> Option<&'a [u8]> { + self.it.next() + } +} + +/// An iterator over fields in the byte string, separated by a predicate over +/// codepoints. +/// +/// This iterator splits a byte string based on its predicate function such +/// that the elements returned are separated by contiguous runs of codepoints +/// for which the predicate returns true. +/// +/// `'a` is the lifetime of the byte string being split, while `F` is the type +/// of the predicate, i.e., `FnMut(char) -> bool`. +#[derive(Debug)] +pub struct FieldsWith<'a, F> { + f: F, + bytes: &'a [u8], + chars: CharIndices<'a>, +} + +impl<'a, F: FnMut(char) -> bool> FieldsWith<'a, F> { + fn new(bytes: &'a [u8], f: F) -> FieldsWith<'a, F> { + FieldsWith { f, bytes, chars: bytes.char_indices() } + } +} + +impl<'a, F: FnMut(char) -> bool> Iterator for FieldsWith<'a, F> { + type Item = &'a [u8]; + + #[inline] + fn next(&mut self) -> Option<&'a [u8]> { + let (start, mut end); + loop { + match self.chars.next() { + None => return None, + Some((s, e, ch)) => { + if !(self.f)(ch) { + start = s; + end = e; + break; + } + } + } + } + while let Some((_, e, ch)) = self.chars.next() { + if (self.f)(ch) { + break; + } + end = e; + } + Some(&self.bytes[start..end]) + } +} + +/// An iterator over substrings in a byte string, split by a separator. +/// +/// `'h` is the lifetime of the byte string being split (the haystack), while +/// `'s` is the lifetime of the byte string doing the splitting. +#[derive(Debug)] +pub struct Split<'h, 's> { + finder: Find<'h, 's>, + /// The end position of the previous match of our splitter. The element + /// we yield corresponds to the substring starting at `last` up to the + /// beginning of the next match of the splitter. + last: usize, + /// Only set when iteration is complete. A corner case here is when a + /// splitter is matched at the end of the haystack. At that point, we still + /// need to yield an empty string following it. + done: bool, +} + +impl<'h, 's> Split<'h, 's> { + fn new(haystack: &'h [u8], splitter: &'s [u8]) -> Split<'h, 's> { + let finder = haystack.find_iter(splitter); + Split { finder, last: 0, done: false } + } +} + +impl<'h, 's> Iterator for Split<'h, 's> { + type Item = &'h [u8]; + + #[inline] + fn next(&mut self) -> Option<&'h [u8]> { + let haystack = self.finder.haystack; + match self.finder.next() { + Some(start) => { + let next = &haystack[self.last..start]; + self.last = start + self.finder.needle.len(); + Some(next) + } + None => { + if self.last >= haystack.len() { + if !self.done { + self.done = true; + Some(b"") + } else { + None + } + } else { + let s = &haystack[self.last..]; + self.last = haystack.len(); + self.done = true; + Some(s) + } + } + } + } +} + +/// An iterator over substrings in a byte string, split by a separator, in +/// reverse. +/// +/// `'h` is the lifetime of the byte string being split (the haystack), while +/// `'s` is the lifetime of the byte string doing the splitting. +#[derive(Debug)] +pub struct SplitReverse<'h, 's> { + finder: FindReverse<'h, 's>, + /// The end position of the previous match of our splitter. The element + /// we yield corresponds to the substring starting at `last` up to the + /// beginning of the next match of the splitter. + last: usize, + /// Only set when iteration is complete. A corner case here is when a + /// splitter is matched at the end of the haystack. At that point, we still + /// need to yield an empty string following it. + done: bool, +} + +impl<'h, 's> SplitReverse<'h, 's> { + fn new(haystack: &'h [u8], splitter: &'s [u8]) -> SplitReverse<'h, 's> { + let finder = haystack.rfind_iter(splitter); + SplitReverse { finder, last: haystack.len(), done: false } + } +} + +impl<'h, 's> Iterator for SplitReverse<'h, 's> { + type Item = &'h [u8]; + + #[inline] + fn next(&mut self) -> Option<&'h [u8]> { + let haystack = self.finder.haystack(); + match self.finder.next() { + Some(start) => { + let nlen = self.finder.needle().len(); + let next = &haystack[start + nlen..self.last]; + self.last = start; + Some(next) + } + None => { + if self.last == 0 { + if !self.done { + self.done = true; + Some(b"") + } else { + None + } + } else { + let s = &haystack[..self.last]; + self.last = 0; + self.done = true; + Some(s) + } + } + } + } +} + +/// An iterator over at most `n` substrings in a byte string, split by a +/// separator. +/// +/// `'h` is the lifetime of the byte string being split (the haystack), while +/// `'s` is the lifetime of the byte string doing the splitting. +#[derive(Debug)] +pub struct SplitN<'h, 's> { + split: Split<'h, 's>, + limit: usize, + count: usize, +} + +impl<'h, 's> SplitN<'h, 's> { + fn new( + haystack: &'h [u8], + splitter: &'s [u8], + limit: usize, + ) -> SplitN<'h, 's> { + let split = haystack.split_str(splitter); + SplitN { split, limit, count: 0 } + } +} + +impl<'h, 's> Iterator for SplitN<'h, 's> { + type Item = &'h [u8]; + + #[inline] + fn next(&mut self) -> Option<&'h [u8]> { + self.count += 1; + if self.count > self.limit || self.split.done { + None + } else if self.count == self.limit { + Some(&self.split.finder.haystack[self.split.last..]) + } else { + self.split.next() + } + } +} + +/// An iterator over at most `n` substrings in a byte string, split by a +/// separator, in reverse. +/// +/// `'h` is the lifetime of the byte string being split (the haystack), while +/// `'s` is the lifetime of the byte string doing the splitting. +#[derive(Debug)] +pub struct SplitNReverse<'h, 's> { + split: SplitReverse<'h, 's>, + limit: usize, + count: usize, +} + +impl<'h, 's> SplitNReverse<'h, 's> { + fn new( + haystack: &'h [u8], + splitter: &'s [u8], + limit: usize, + ) -> SplitNReverse<'h, 's> { + let split = haystack.rsplit_str(splitter); + SplitNReverse { split, limit, count: 0 } + } +} + +impl<'h, 's> Iterator for SplitNReverse<'h, 's> { + type Item = &'h [u8]; + + #[inline] + fn next(&mut self) -> Option<&'h [u8]> { + self.count += 1; + if self.count > self.limit || self.split.done { + None + } else if self.count == self.limit { + Some(&self.split.finder.haystack()[..self.split.last]) + } else { + self.split.next() + } + } +} + +/// An iterator over all lines in a byte string, without their terminators. +/// +/// For this iterator, the only line terminators recognized are `\r\n` and +/// `\n`. +/// +/// `'a` is the lifetime of the byte string being iterated over. +#[derive(Clone, Debug)] +pub struct Lines<'a> { + it: LinesWithTerminator<'a>, +} + +impl<'a> Lines<'a> { + fn new(bytes: &'a [u8]) -> Lines<'a> { + Lines { it: LinesWithTerminator::new(bytes) } + } + + /// Return a copy of the rest of the underlying bytes without affecting the + /// iterator itself. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = b"\ + /// foo + /// bar\r + /// baz"; + /// let mut lines = s.lines(); + /// assert_eq!(lines.next(), Some(B("foo"))); + /// assert_eq!(lines.as_bytes(), B("bar\r\nbaz")); + /// ``` + pub fn as_bytes(&self) -> &'a [u8] { + self.it.bytes + } +} + +impl<'a> Iterator for Lines<'a> { + type Item = &'a [u8]; + + #[inline] + fn next(&mut self) -> Option<&'a [u8]> { + Some(trim_last_terminator(self.it.next()?)) + } +} + +impl<'a> DoubleEndedIterator for Lines<'a> { + #[inline] + fn next_back(&mut self) -> Option<Self::Item> { + Some(trim_last_terminator(self.it.next_back()?)) + } +} + +impl<'a> iter::FusedIterator for Lines<'a> {} + +/// An iterator over all lines in a byte string, including their terminators. +/// +/// For this iterator, the only line terminator recognized is `\n`. (Since +/// line terminators are included, this also handles `\r\n` line endings.) +/// +/// Line terminators are only included if they are present in the original +/// byte string. For example, the last line in a byte string may not end with +/// a line terminator. +/// +/// Concatenating all elements yielded by this iterator is guaranteed to yield +/// the original byte string. +/// +/// `'a` is the lifetime of the byte string being iterated over. +#[derive(Clone, Debug)] +pub struct LinesWithTerminator<'a> { + bytes: &'a [u8], +} + +impl<'a> LinesWithTerminator<'a> { + fn new(bytes: &'a [u8]) -> LinesWithTerminator<'a> { + LinesWithTerminator { bytes } + } + + /// Return a copy of the rest of the underlying bytes without affecting the + /// iterator itself. + /// + /// # Examples + /// + /// Basic usage: + /// + /// ``` + /// use bstr::{B, ByteSlice}; + /// + /// let s = b"\ + /// foo + /// bar\r + /// baz"; + /// let mut lines = s.lines_with_terminator(); + /// assert_eq!(lines.next(), Some(B("foo\n"))); + /// assert_eq!(lines.as_bytes(), B("bar\r\nbaz")); + /// ``` + pub fn as_bytes(&self) -> &'a [u8] { + self.bytes + } +} + +impl<'a> Iterator for LinesWithTerminator<'a> { + type Item = &'a [u8]; + + #[inline] + fn next(&mut self) -> Option<&'a [u8]> { + match self.bytes.find_byte(b'\n') { + None if self.bytes.is_empty() => None, + None => { + let line = self.bytes; + self.bytes = b""; + Some(line) + } + Some(end) => { + let line = &self.bytes[..end + 1]; + self.bytes = &self.bytes[end + 1..]; + Some(line) + } + } + } +} + +impl<'a> DoubleEndedIterator for LinesWithTerminator<'a> { + #[inline] + fn next_back(&mut self) -> Option<Self::Item> { + let end = self.bytes.len().checked_sub(1)?; + match self.bytes[..end].rfind_byte(b'\n') { + None => { + let line = self.bytes; + self.bytes = b""; + Some(line) + } + Some(end) => { + let line = &self.bytes[end + 1..]; + self.bytes = &self.bytes[..end + 1]; + Some(line) + } + } + } +} + +impl<'a> iter::FusedIterator for LinesWithTerminator<'a> {} + +fn trim_last_terminator(mut s: &[u8]) -> &[u8] { + if s.last_byte() == Some(b'\n') { + s = &s[..s.len() - 1]; + if s.last_byte() == Some(b'\r') { + s = &s[..s.len() - 1]; + } + } + s +} + +#[cfg(all(test, feature = "std"))] +mod tests { + use crate::{ + ext_slice::{ByteSlice, Lines, LinesWithTerminator, B}, + tests::LOSSY_TESTS, + }; + + #[test] + fn to_str_lossy() { + for (i, &(expected, input)) in LOSSY_TESTS.iter().enumerate() { + let got = B(input).to_str_lossy(); + assert_eq!( + expected.as_bytes(), + got.as_bytes(), + "to_str_lossy(ith: {:?}, given: {:?})", + i, + input, + ); + + let mut got = String::new(); + B(input).to_str_lossy_into(&mut got); + assert_eq!( + expected.as_bytes(), + got.as_bytes(), + "to_str_lossy_into", + ); + + let got = String::from_utf8_lossy(input); + assert_eq!(expected.as_bytes(), got.as_bytes(), "std"); + } + } + + #[test] + fn lines_iteration() { + macro_rules! t { + ($it:expr, $forward:expr) => { + let mut res: Vec<&[u8]> = Vec::from($forward); + assert_eq!($it.collect::<Vec<_>>(), res); + res.reverse(); + assert_eq!($it.rev().collect::<Vec<_>>(), res); + }; + } + + t!(Lines::new(b""), []); + t!(LinesWithTerminator::new(b""), []); + + t!(Lines::new(b"\n"), [B("")]); + t!(Lines::new(b"\r\n"), [B("")]); + t!(LinesWithTerminator::new(b"\n"), [B("\n")]); + + t!(Lines::new(b"a"), [B("a")]); + t!(LinesWithTerminator::new(b"a"), [B("a")]); + + t!(Lines::new(b"abc"), [B("abc")]); + t!(LinesWithTerminator::new(b"abc"), [B("abc")]); + + t!(Lines::new(b"abc\n"), [B("abc")]); + t!(Lines::new(b"abc\r\n"), [B("abc")]); + t!(LinesWithTerminator::new(b"abc\n"), [B("abc\n")]); + + t!(Lines::new(b"abc\n\n"), [B("abc"), B("")]); + t!(LinesWithTerminator::new(b"abc\n\n"), [B("abc\n"), B("\n")]); + + t!(Lines::new(b"abc\n\ndef"), [B("abc"), B(""), B("def")]); + t!( + LinesWithTerminator::new(b"abc\n\ndef"), + [B("abc\n"), B("\n"), B("def")] + ); + + t!(Lines::new(b"abc\n\ndef\n"), [B("abc"), B(""), B("def")]); + t!( + LinesWithTerminator::new(b"abc\n\ndef\n"), + [B("abc\n"), B("\n"), B("def\n")] + ); + + t!(Lines::new(b"\na\nb\n"), [B(""), B("a"), B("b")]); + t!( + LinesWithTerminator::new(b"\na\nb\n"), + [B("\n"), B("a\n"), B("b\n")] + ); + + t!(Lines::new(b"\n\n\n"), [B(""), B(""), B("")]); + t!(LinesWithTerminator::new(b"\n\n\n"), [B("\n"), B("\n"), B("\n")]); + } +} |