summaryrefslogtreecommitdiffstats
path: root/vendor/crypto-bigint/src/uint/div_limb.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/crypto-bigint/src/uint/div_limb.rs')
-rw-r--r--vendor/crypto-bigint/src/uint/div_limb.rs287
1 files changed, 287 insertions, 0 deletions
diff --git a/vendor/crypto-bigint/src/uint/div_limb.rs b/vendor/crypto-bigint/src/uint/div_limb.rs
new file mode 100644
index 0000000..c00bc77
--- /dev/null
+++ b/vendor/crypto-bigint/src/uint/div_limb.rs
@@ -0,0 +1,287 @@
+//! Implementation of constant-time division via reciprocal precomputation, as described in
+//! "Improved Division by Invariant Integers" by Niels Möller and Torbjorn Granlund
+//! (DOI: 10.1109/TC.2010.143, <https://gmplib.org/~tege/division-paper.pdf>).
+use subtle::{Choice, ConditionallySelectable, CtOption};
+
+use crate::{CtChoice, Limb, Uint, WideWord, Word};
+
+/// Calculates the reciprocal of the given 32-bit divisor with the highmost bit set.
+#[cfg(target_pointer_width = "32")]
+pub const fn reciprocal(d: Word) -> Word {
+ debug_assert!(d >= (1 << (Word::BITS - 1)));
+
+ let d0 = d & 1;
+ let d10 = d >> 22;
+ let d21 = (d >> 11) + 1;
+ let d31 = (d >> 1) + d0;
+ let v0 = short_div((1 << 24) - (1 << 14) + (1 << 9), 24, d10, 10);
+ let (hi, _lo) = mulhilo(v0 * v0, d21);
+ let v1 = (v0 << 4) - hi - 1;
+
+ // Checks that the expression for `e` can be simplified in the way we did below.
+ debug_assert!(mulhilo(v1, d31).0 == (1 << 16) - 1);
+ let e = Word::MAX - v1.wrapping_mul(d31) + 1 + (v1 >> 1) * d0;
+
+ let (hi, _lo) = mulhilo(v1, e);
+ // Note: the paper does not mention a wrapping add here,
+ // but the 64-bit version has it at this stage, and the function panics without it
+ // when calculating a reciprocal for `Word::MAX`.
+ let v2 = (v1 << 15).wrapping_add(hi >> 1);
+
+ // The paper has `(v2 + 1) * d / 2^32` (there's another 2^32, but it's accounted for later).
+ // If `v2 == 2^32-1` this should give `d`, but we can't achieve this in our wrapping arithmetic.
+ // Hence the `ct_select()`.
+ let x = v2.wrapping_add(1);
+ let (hi, _lo) = mulhilo(x, d);
+ let hi = Limb::ct_select(Limb(d), Limb(hi), Limb(x).ct_is_nonzero()).0;
+
+ v2.wrapping_sub(hi).wrapping_sub(d)
+}
+
+/// Calculates the reciprocal of the given 64-bit divisor with the highmost bit set.
+#[cfg(target_pointer_width = "64")]
+pub const fn reciprocal(d: Word) -> Word {
+ debug_assert!(d >= (1 << (Word::BITS - 1)));
+
+ let d0 = d & 1;
+ let d9 = d >> 55;
+ let d40 = (d >> 24) + 1;
+ let d63 = (d >> 1) + d0;
+ let v0 = short_div((1 << 19) - 3 * (1 << 8), 19, d9 as u32, 9) as u64;
+ let v1 = (v0 << 11) - ((v0 * v0 * d40) >> 40) - 1;
+ let v2 = (v1 << 13) + ((v1 * ((1 << 60) - v1 * d40)) >> 47);
+
+ // Checks that the expression for `e` can be simplified in the way we did below.
+ debug_assert!(mulhilo(v2, d63).0 == (1 << 32) - 1);
+ let e = Word::MAX - v2.wrapping_mul(d63) + 1 + (v2 >> 1) * d0;
+
+ let (hi, _lo) = mulhilo(v2, e);
+ let v3 = (v2 << 31).wrapping_add(hi >> 1);
+
+ // The paper has `(v3 + 1) * d / 2^64` (there's another 2^64, but it's accounted for later).
+ // If `v3 == 2^64-1` this should give `d`, but we can't achieve this in our wrapping arithmetic.
+ // Hence the `ct_select()`.
+ let x = v3.wrapping_add(1);
+ let (hi, _lo) = mulhilo(x, d);
+ let hi = Limb::ct_select(Limb(d), Limb(hi), Limb(x).ct_is_nonzero()).0;
+
+ v3.wrapping_sub(hi).wrapping_sub(d)
+}
+
+/// Returns `u32::MAX` if `a < b` and `0` otherwise.
+#[inline]
+const fn ct_lt(a: u32, b: u32) -> u32 {
+ let bit = (((!a) & b) | (((!a) | b) & (a.wrapping_sub(b)))) >> (u32::BITS - 1);
+ bit.wrapping_neg()
+}
+
+/// Returns `a` if `c == 0` and `b` if `c == u32::MAX`.
+#[inline(always)]
+const fn ct_select(a: u32, b: u32, c: u32) -> u32 {
+ a ^ (c & (a ^ b))
+}
+
+/// Calculates `dividend / divisor` in constant time, given `dividend` and `divisor`
+/// along with their maximum bitsizes.
+#[inline(always)]
+const fn short_div(dividend: u32, dividend_bits: u32, divisor: u32, divisor_bits: u32) -> u32 {
+ // TODO: this may be sped up even more using the fact that `dividend` is a known constant.
+
+ // In the paper this is a table lookup, but since we want it to be constant-time,
+ // we have to access all the elements of the table, which is quite large.
+ // So this shift-and-subtract approach is actually faster.
+
+ // Passing `dividend_bits` and `divisor_bits` because calling `.leading_zeros()`
+ // causes a significant slowdown, and we know those values anyway.
+
+ let mut dividend = dividend;
+ let mut divisor = divisor << (dividend_bits - divisor_bits);
+ let mut quotient: u32 = 0;
+ let mut i = dividend_bits - divisor_bits + 1;
+
+ while i > 0 {
+ i -= 1;
+ let bit = ct_lt(dividend, divisor);
+ dividend = ct_select(dividend.wrapping_sub(divisor), dividend, bit);
+ divisor >>= 1;
+ let inv_bit = !bit;
+ quotient |= (inv_bit >> (u32::BITS - 1)) << i;
+ }
+
+ quotient
+}
+
+/// Multiplies `x` and `y`, returning the most significant
+/// and the least significant words as `(hi, lo)`.
+#[inline(always)]
+const fn mulhilo(x: Word, y: Word) -> (Word, Word) {
+ let res = (x as WideWord) * (y as WideWord);
+ ((res >> Word::BITS) as Word, res as Word)
+}
+
+/// Adds wide numbers represented by pairs of (most significant word, least significant word)
+/// and returns the result in the same format `(hi, lo)`.
+#[inline(always)]
+const fn addhilo(x_hi: Word, x_lo: Word, y_hi: Word, y_lo: Word) -> (Word, Word) {
+ let res = (((x_hi as WideWord) << Word::BITS) | (x_lo as WideWord))
+ + (((y_hi as WideWord) << Word::BITS) | (y_lo as WideWord));
+ ((res >> Word::BITS) as Word, res as Word)
+}
+
+/// Calculate the quotient and the remainder of the division of a wide word
+/// (supplied as high and low words) by `d`, with a precalculated reciprocal `v`.
+#[inline(always)]
+const fn div2by1(u1: Word, u0: Word, reciprocal: &Reciprocal) -> (Word, Word) {
+ let d = reciprocal.divisor_normalized;
+
+ debug_assert!(d >= (1 << (Word::BITS - 1)));
+ debug_assert!(u1 < d);
+
+ let (q1, q0) = mulhilo(reciprocal.reciprocal, u1);
+ let (q1, q0) = addhilo(q1, q0, u1, u0);
+ let q1 = q1.wrapping_add(1);
+ let r = u0.wrapping_sub(q1.wrapping_mul(d));
+
+ let r_gt_q0 = Limb::ct_lt(Limb(q0), Limb(r));
+ let q1 = Limb::ct_select(Limb(q1), Limb(q1.wrapping_sub(1)), r_gt_q0).0;
+ let r = Limb::ct_select(Limb(r), Limb(r.wrapping_add(d)), r_gt_q0).0;
+
+ // If this was a normal `if`, we wouldn't need wrapping ops, because there would be no overflow.
+ // But since we calculate both results either way, we have to wrap.
+ // Added an assert to still check the lack of overflow in debug mode.
+ debug_assert!(r < d || q1 < Word::MAX);
+ let r_ge_d = Limb::ct_le(Limb(d), Limb(r));
+ let q1 = Limb::ct_select(Limb(q1), Limb(q1.wrapping_add(1)), r_ge_d).0;
+ let r = Limb::ct_select(Limb(r), Limb(r.wrapping_sub(d)), r_ge_d).0;
+
+ (q1, r)
+}
+
+/// A pre-calculated reciprocal for division by a single limb.
+#[derive(Copy, Clone, Debug, PartialEq, Eq)]
+pub struct Reciprocal {
+ divisor_normalized: Word,
+ shift: u32,
+ reciprocal: Word,
+}
+
+impl Reciprocal {
+ /// Pre-calculates a reciprocal for a known divisor,
+ /// to be used in the single-limb division later.
+ /// Returns the reciprocal, and the truthy value if `divisor != 0`
+ /// and the falsy value otherwise.
+ ///
+ /// Note: if the returned flag is falsy, the returned reciprocal object is still self-consistent
+ /// and can be passed to functions here without causing them to panic,
+ /// but the results are naturally not to be used.
+ pub const fn ct_new(divisor: Limb) -> (Self, CtChoice) {
+ // Assuming this is constant-time for primitive types.
+ let shift = divisor.0.leading_zeros();
+
+ #[allow(trivial_numeric_casts)]
+ let is_some = Limb((Word::BITS - shift) as Word).ct_is_nonzero();
+
+ // If `divisor = 0`, shifting `divisor` by `leading_zeros == Word::BITS` will cause a panic.
+ // Have to substitute a "bogus" shift in that case.
+ #[allow(trivial_numeric_casts)]
+ let shift_limb = Limb::ct_select(Limb::ZERO, Limb(shift as Word), is_some);
+
+ // Need to provide bogus normalized divisor and reciprocal too,
+ // so that we don't get a panic in low-level functions.
+ let divisor_normalized = divisor.shl(shift_limb);
+ let divisor_normalized = Limb::ct_select(Limb::MAX, divisor_normalized, is_some).0;
+
+ #[allow(trivial_numeric_casts)]
+ let shift = shift_limb.0 as u32;
+
+ (
+ Self {
+ divisor_normalized,
+ shift,
+ reciprocal: reciprocal(divisor_normalized),
+ },
+ is_some,
+ )
+ }
+
+ /// Returns a default instance of this object.
+ /// It is a self-consistent `Reciprocal` that will not cause panics in functions that take it.
+ ///
+ /// NOTE: intended for using it as a placeholder during compile-time array generation,
+ /// don't rely on the contents.
+ pub const fn default() -> Self {
+ Self {
+ divisor_normalized: Word::MAX,
+ shift: 0,
+ // The result of calling `reciprocal(Word::MAX)`
+ // This holds both for 32- and 64-bit versions.
+ reciprocal: 1,
+ }
+ }
+
+ /// A non-const-fn version of `new_const()`, wrapping the result in a `CtOption`.
+ pub fn new(divisor: Limb) -> CtOption<Self> {
+ let (rec, is_some) = Self::ct_new(divisor);
+ CtOption::new(rec, is_some.into())
+ }
+}
+
+impl ConditionallySelectable for Reciprocal {
+ fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
+ Self {
+ divisor_normalized: Word::conditional_select(
+ &a.divisor_normalized,
+ &b.divisor_normalized,
+ choice,
+ ),
+ shift: u32::conditional_select(&a.shift, &b.shift, choice),
+ reciprocal: Word::conditional_select(&a.reciprocal, &b.reciprocal, choice),
+ }
+ }
+}
+
+// `CtOption.map()` needs this; for some reason it doesn't use the value it already has
+// for the `None` branch.
+impl Default for Reciprocal {
+ fn default() -> Self {
+ Self::default()
+ }
+}
+
+/// Divides `u` by the divisor encoded in the `reciprocal`, and returns
+/// the quotient and the remainder.
+#[inline(always)]
+pub(crate) const fn div_rem_limb_with_reciprocal<const L: usize>(
+ u: &Uint<L>,
+ reciprocal: &Reciprocal,
+) -> (Uint<L>, Limb) {
+ let (u_shifted, u_hi) = u.shl_limb(reciprocal.shift as usize);
+ let mut r = u_hi.0;
+ let mut q = [Limb::ZERO; L];
+
+ let mut j = L;
+ while j > 0 {
+ j -= 1;
+ let (qj, rj) = div2by1(r, u_shifted.as_limbs()[j].0, reciprocal);
+ q[j] = Limb(qj);
+ r = rj;
+ }
+ (Uint::<L>::new(q), Limb(r >> reciprocal.shift))
+}
+
+#[cfg(test)]
+mod tests {
+ use super::{div2by1, Reciprocal};
+ use crate::{Limb, Word};
+ #[test]
+ fn div2by1_overflow() {
+ // A regression test for a situation when in div2by1() an operation (`q1 + 1`)
+ // that is protected from overflowing by a condition in the original paper (`r >= d`)
+ // still overflows because we're calculating the results for both branches.
+ let r = Reciprocal::new(Limb(Word::MAX - 1)).unwrap();
+ assert_eq!(
+ div2by1(Word::MAX - 2, Word::MAX - 63, &r),
+ (Word::MAX, Word::MAX - 65)
+ );
+ }
+}