summaryrefslogtreecommitdiffstats
path: root/vendor/crypto-bigint/tests
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/crypto-bigint/tests')
-rw-r--r--vendor/crypto-bigint/tests/const_residue.rs10
-rw-r--r--vendor/crypto-bigint/tests/impl_modulus.rs5
-rw-r--r--vendor/crypto-bigint/tests/proptests.rs370
3 files changed, 385 insertions, 0 deletions
diff --git a/vendor/crypto-bigint/tests/const_residue.rs b/vendor/crypto-bigint/tests/const_residue.rs
new file mode 100644
index 0000000..d02bdb4
--- /dev/null
+++ b/vendor/crypto-bigint/tests/const_residue.rs
@@ -0,0 +1,10 @@
+//! Test to ensure that `const_residue!` works from outside this crate.
+
+use crypto_bigint::{const_residue, impl_modulus, modular::constant_mod::ResidueParams, U64};
+
+impl_modulus!(TestMod, U64, "30e4b8f030ab42f3");
+
+fn _test_fun() {
+ let base = U64::from(2u64);
+ let _base_mod = const_residue!(base, TestMod);
+}
diff --git a/vendor/crypto-bigint/tests/impl_modulus.rs b/vendor/crypto-bigint/tests/impl_modulus.rs
new file mode 100644
index 0000000..98f5fe5
--- /dev/null
+++ b/vendor/crypto-bigint/tests/impl_modulus.rs
@@ -0,0 +1,5 @@
+//! Test to ensure that `impl_modulus!` works from outside this crate.
+
+use crypto_bigint::{impl_modulus, U64};
+
+impl_modulus!(TestMod, U64, "30e4b8f030ab42f3");
diff --git a/vendor/crypto-bigint/tests/proptests.rs b/vendor/crypto-bigint/tests/proptests.rs
new file mode 100644
index 0000000..bad14bc
--- /dev/null
+++ b/vendor/crypto-bigint/tests/proptests.rs
@@ -0,0 +1,370 @@
+//! Equivalence tests between `num-bigint` and `crypto-bigint`
+
+use crypto_bigint::{
+ modular::runtime_mod::{DynResidue, DynResidueParams},
+ CtChoice, Encoding, Limb, NonZero, Word, U256,
+};
+use num_bigint::BigUint;
+use num_integer::Integer;
+use num_traits::identities::{One, Zero};
+use proptest::prelude::*;
+use std::mem;
+
+/// Example prime number (NIST P-256 curve order)
+const P: U256 =
+ U256::from_be_hex("ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551");
+
+fn to_biguint(uint: &U256) -> BigUint {
+ BigUint::from_bytes_le(uint.to_le_bytes().as_ref())
+}
+
+fn to_uint(big_uint: BigUint) -> U256 {
+ let mut input = [0u8; U256::BYTES];
+ let encoded = big_uint.to_bytes_le();
+ let l = encoded.len().min(U256::BYTES);
+ input[..l].copy_from_slice(&encoded[..l]);
+
+ U256::from_le_slice(&input)
+}
+
+prop_compose! {
+ fn uint()(bytes in any::<[u8; 32]>()) -> U256 {
+ U256::from_le_slice(&bytes)
+ }
+}
+prop_compose! {
+ fn uint_mod_p(p: U256)(a in uint()) -> U256 {
+ a.wrapping_rem(&p)
+ }
+}
+prop_compose! {
+ fn nonzero_limb()(x in any::<Word>()) -> Limb {
+ if x == 0 { Limb::from(1u32) } else {Limb::from(x)}
+ }
+}
+
+proptest! {
+ #[test]
+ fn roundtrip(a in uint()) {
+ assert_eq!(a, to_uint(to_biguint(&a)));
+ }
+
+ #[test]
+ fn shl_vartime(a in uint(), shift in any::<u8>()) {
+ let a_bi = to_biguint(&a);
+
+ let expected = to_uint(a_bi << shift);
+ let actual = a.shl_vartime(shift as usize);
+
+ assert_eq!(expected, actual);
+ }
+
+ #[test]
+ fn shl(a in uint(), shift in any::<u16>()) {
+ let a_bi = to_biguint(&a);
+
+ // Add a 50% probability of overflow.
+ let shift = (shift as usize) % (U256::BITS * 2);
+
+ let expected = to_uint((a_bi << shift) & ((BigUint::one() << U256::BITS) - BigUint::one()));
+ let actual = a.shl(shift);
+
+ assert_eq!(expected, actual);
+ }
+
+ #[test]
+ fn shr(a in uint(), shift in any::<u16>()) {
+ let a_bi = to_biguint(&a);
+
+ // Add a 50% probability of overflow.
+ let shift = (shift as usize) % (U256::BITS * 2);
+
+ let expected = to_uint(a_bi >> shift);
+ let actual = a.shr(shift);
+
+ assert_eq!(expected, actual);
+ }
+
+ #[test]
+ fn wrapping_add(a in uint(), b in uint()) {
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b);
+
+ let expected = to_uint(a_bi + b_bi);
+ let actual = a.wrapping_add(&b);
+
+ assert_eq!(expected, actual);
+ }
+
+ #[test]
+ fn add_mod_nist_p256(a in uint_mod_p(P), b in uint_mod_p(P)) {
+ assert!(a < P);
+ assert!(b < P);
+
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b);
+ let p_bi = to_biguint(&P);
+
+ let expected = to_uint((a_bi + b_bi) % p_bi);
+ let actual = a.add_mod(&b, &P);
+
+ assert!(expected < P);
+ assert!(actual < P);
+
+ assert_eq!(expected, actual);
+ }
+
+ #[test]
+ fn sub_mod_nist_p256(mut a in uint_mod_p(P), mut b in uint_mod_p(P)) {
+ if b > a {
+ mem::swap(&mut a, &mut b);
+ }
+
+ assert!(a < P);
+ assert!(b < P);
+
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b);
+ let p_bi = to_biguint(&P);
+
+ let expected = to_uint((a_bi - b_bi) % p_bi);
+ let actual = a.sub_mod(&b, &P);
+
+ assert!(expected < P);
+ assert!(actual < P);
+
+ assert_eq!(expected, actual);
+ }
+
+ #[test]
+ fn wrapping_sub(mut a in uint(), mut b in uint()) {
+ if b > a {
+ mem::swap(&mut a, &mut b);
+ }
+
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b);
+
+ let expected = to_uint(a_bi - b_bi);
+ let actual = a.wrapping_sub(&b);
+
+ assert_eq!(expected, actual);
+ }
+
+ #[test]
+ fn wrapping_mul(a in uint(), b in uint()) {
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b);
+
+ let expected = to_uint(a_bi * b_bi);
+ let actual = a.wrapping_mul(&b);
+
+ assert_eq!(expected, actual);
+ }
+
+ #[test]
+ fn wrapping_div(a in uint(), b in uint()) {
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b);
+
+ if !b_bi.is_zero() {
+ let expected = to_uint(a_bi / b_bi);
+ let actual = a.wrapping_div(&b);
+
+ assert_eq!(expected, actual);
+ }
+ }
+
+ #[test]
+ fn div_rem_limb(a in uint(), b in nonzero_limb()) {
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&U256::from(b));
+
+ let (expected_quo, expected_rem) = a_bi.div_rem(&b_bi);
+ let (actual_quo, actual_rem) = a.div_rem_limb(NonZero::new(b).unwrap());
+ assert_eq!(to_uint(expected_quo), actual_quo);
+ assert_eq!(to_uint(expected_rem), U256::from(actual_rem));
+ }
+
+ #[test]
+ fn div_rem_limb_min_max(a in uint()) {
+ let a_bi = to_biguint(&a);
+
+ for b in [Limb::from(1u32), Limb::MAX] {
+ let b_bi = to_biguint(&U256::from(b));
+ let (expected_quo, expected_rem) = a_bi.div_rem(&b_bi);
+ let (actual_quo, actual_rem) = a.div_rem_limb(NonZero::new(b).unwrap());
+ assert_eq!(to_uint(expected_quo), actual_quo);
+ assert_eq!(to_uint(expected_rem), U256::from(actual_rem));
+ }
+ }
+
+ #[test]
+ fn wrapping_rem(a in uint(), b in uint()) {
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b);
+
+ if !b_bi.is_zero() {
+ let expected = to_uint(a_bi % b_bi);
+ let actual = a.wrapping_rem(&b);
+
+ assert_eq!(expected, actual);
+ }
+ }
+
+ #[test]
+ fn inv_mod2k(a in uint(), k in any::<usize>()) {
+ let a = a | U256::ONE; // make odd
+ let k = k % (U256::BITS + 1);
+ let a_bi = to_biguint(&a);
+ let m_bi = BigUint::one() << k;
+
+ let actual = a.inv_mod2k(k);
+ let actual_vartime = a.inv_mod2k_vartime(k);
+ assert_eq!(actual, actual_vartime);
+
+ if k == 0 {
+ assert_eq!(actual, U256::ZERO);
+ }
+ else {
+ let inv_bi = to_biguint(&actual);
+ let res = (inv_bi * a_bi) % m_bi;
+ assert_eq!(res, BigUint::one());
+ }
+ }
+
+ #[test]
+ fn inv_mod(a in uint(), b in uint()) {
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b);
+
+ let expected_is_some = if a_bi.gcd(&b_bi) == BigUint::one() { CtChoice::TRUE } else { CtChoice::FALSE };
+ let (actual, actual_is_some) = a.inv_mod(&b);
+
+ assert_eq!(bool::from(expected_is_some), bool::from(actual_is_some));
+
+ if actual_is_some.into() {
+ let inv_bi = to_biguint(&actual);
+ let res = (inv_bi * a_bi) % b_bi;
+ assert_eq!(res, BigUint::one());
+ }
+ }
+
+ #[test]
+ fn wrapping_sqrt(a in uint()) {
+ let a_bi = to_biguint(&a);
+ let expected = to_uint(a_bi.sqrt());
+ let actual = a.wrapping_sqrt_vartime();
+
+ assert_eq!(expected, actual);
+ }
+
+ #[test]
+ fn wrapping_or(a in uint(), b in uint()) {
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b);
+
+ if !b_bi.is_zero() {
+ let expected = to_uint(a_bi | b_bi);
+ let actual = a.wrapping_or(&b);
+
+ assert_eq!(expected, actual);
+ }
+ }
+
+ #[test]
+ fn wrapping_and(a in uint(), b in uint()) {
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b);
+
+ if !b_bi.is_zero() {
+ let expected = to_uint(a_bi & b_bi);
+ let actual = a.wrapping_and(&b);
+
+ assert_eq!(expected, actual);
+ }
+ }
+
+ #[test]
+ fn wrapping_xor(a in uint(), b in uint()) {
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b);
+ if !b_bi.is_zero() {
+ let expected = to_uint(a_bi ^ b_bi);
+ let actual = a.wrapping_xor(&b);
+
+ assert_eq!(expected, actual);
+ }
+ }
+
+ #[test]
+ fn encoding(a in uint()) {
+ assert_eq!(a, U256::from_be_bytes(a.to_be_bytes()));
+ assert_eq!(a, U256::from_le_bytes(a.to_le_bytes()));
+ }
+
+ #[test]
+ fn encoding_reverse(a in uint()) {
+ let mut bytes = a.to_be_bytes();
+ bytes.reverse();
+ assert_eq!(a, U256::from_le_bytes(bytes));
+
+ let mut bytes = a.to_le_bytes();
+ bytes.reverse();
+ assert_eq!(a, U256::from_be_bytes(bytes));
+ }
+
+ #[test]
+ fn residue_pow(a in uint_mod_p(P), b in uint()) {
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b);
+ let p_bi = to_biguint(&P);
+
+ let expected = to_uint(a_bi.modpow(&b_bi, &p_bi));
+
+ let params = DynResidueParams::new(&P);
+ let a_m = DynResidue::new(&a, params);
+ let actual = a_m.pow(&b).retrieve();
+
+ assert_eq!(expected, actual);
+ }
+
+ #[test]
+ fn residue_pow_bounded_exp(a in uint_mod_p(P), b in uint(), exponent_bits in any::<u8>()) {
+
+ let b_masked = b & (U256::ONE << exponent_bits.into()).wrapping_sub(&U256::ONE);
+
+ let a_bi = to_biguint(&a);
+ let b_bi = to_biguint(&b_masked);
+ let p_bi = to_biguint(&P);
+
+ let expected = to_uint(a_bi.modpow(&b_bi, &p_bi));
+
+ let params = DynResidueParams::new(&P);
+ let a_m = DynResidue::new(&a, params);
+ let actual = a_m.pow_bounded_exp(&b, exponent_bits.into()).retrieve();
+
+ assert_eq!(expected, actual);
+ }
+
+ #[test]
+ fn residue_div_by_2(a in uint_mod_p(P)) {
+ let a_bi = to_biguint(&a);
+ let p_bi = to_biguint(&P);
+ let two = BigUint::from(2u32);
+
+ let expected = if a_bi.is_even() {
+ &a_bi / two
+ }
+ else {
+ (&a_bi + &p_bi) / two
+ };
+ let expected = to_uint(expected);
+
+ let params = DynResidueParams::new(&P);
+ let a_m = DynResidue::new(&a, params);
+ let actual = a_m.div_by_2().retrieve();
+
+ assert_eq!(expected, actual);
+ }
+}