diff options
Diffstat (limited to 'vendor/elliptic-curve/src/hash2curve/osswu.rs')
-rw-r--r-- | vendor/elliptic-curve/src/hash2curve/osswu.rs | 130 |
1 files changed, 130 insertions, 0 deletions
diff --git a/vendor/elliptic-curve/src/hash2curve/osswu.rs b/vendor/elliptic-curve/src/hash2curve/osswu.rs new file mode 100644 index 0000000..3c3669a --- /dev/null +++ b/vendor/elliptic-curve/src/hash2curve/osswu.rs @@ -0,0 +1,130 @@ +//! Optimized simplified Shallue-van de Woestijne-Ulas methods. +//! +//! <https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html#straightline-sswu> + +use ff::Field; +use subtle::Choice; +use subtle::ConditionallySelectable; +use subtle::ConstantTimeEq; + +/// The Optimized Simplified Shallue-van de Woestijne-Ulas parameters +pub struct OsswuMapParams<F> +where + F: Field, +{ + /// The first constant term + pub c1: &'static [u64], + /// The second constant term + pub c2: F, + /// The ISO A variable or Curve A variable + pub map_a: F, + /// The ISO A variable or Curve A variable + pub map_b: F, + /// The Z parameter + pub z: F, +} + +/// Trait for determining the parity of the field +pub trait Sgn0 { + /// Return the parity of the field + /// 1 == negative + /// 0 == non-negative + fn sgn0(&self) -> Choice; +} + +/// The optimized simplified Shallue-van de Woestijne-Ulas method +/// for mapping elliptic curve scalars to affine points. +pub trait OsswuMap: Field + Sgn0 { + /// The OSSWU parameters for mapping the field to affine points. + /// For Weierstrass curves having A==0 or B==0, the parameters + /// should be for isogeny where A≠0 and B≠0. + const PARAMS: OsswuMapParams<Self>; + + /// Optimized sqrt_ratio for q = 3 mod 4. + fn sqrt_ratio_3mod4(u: Self, v: Self) -> (Choice, Self) { + // 1. tv1 = v^2 + let tv1 = v.square(); + // 2. tv2 = u * v + let tv2 = u * v; + // 3. tv1 = tv1 * tv2 + let tv1 = tv1 * tv2; + // 4. y1 = tv1^c1 + let y1 = tv1.pow_vartime(Self::PARAMS.c1); + // 5. y1 = y1 * tv2 + let y1 = y1 * tv2; + // 6. y2 = y1 * c2 + let y2 = y1 * Self::PARAMS.c2; + // 7. tv3 = y1^2 + let tv3 = y1.square(); + // 8. tv3 = tv3 * v + let tv3 = tv3 * v; + // 9. isQR = tv3 == u + let is_qr = tv3.ct_eq(&u); + // 10. y = CMOV(y2, y1, isQR) + let y = ConditionallySelectable::conditional_select(&y2, &y1, is_qr); + // 11. return (isQR, y) + (is_qr, y) + } + + /// Convert this field element into an affine point on the elliptic curve + /// returning (X, Y). For Weierstrass curves having A==0 or B==0 + /// the result is a point on an isogeny. + fn osswu(&self) -> (Self, Self) { + // 1. tv1 = u^2 + let tv1 = self.square(); + // 2. tv1 = Z * tv1 + let tv1 = Self::PARAMS.z * tv1; + // 3. tv2 = tv1^2 + let tv2 = tv1.square(); + // 4. tv2 = tv2 + tv1 + let tv2 = tv2 + tv1; + // 5. tv3 = tv2 + 1 + let tv3 = tv2 + Self::ONE; + // 6. tv3 = B * tv3 + let tv3 = Self::PARAMS.map_b * tv3; + // 7. tv4 = CMOV(Z, -tv2, tv2 != 0) + let tv4 = ConditionallySelectable::conditional_select( + &Self::PARAMS.z, + &-tv2, + !Field::is_zero(&tv2), + ); + // 8. tv4 = A * tv4 + let tv4 = Self::PARAMS.map_a * tv4; + // 9. tv2 = tv3^2 + let tv2 = tv3.square(); + // 10. tv6 = tv4^2 + let tv6 = tv4.square(); + // 11. tv5 = A * tv6 + let tv5 = Self::PARAMS.map_a * tv6; + // 12. tv2 = tv2 + tv5 + let tv2 = tv2 + tv5; + // 13. tv2 = tv2 * tv3 + let tv2 = tv2 * tv3; + // 14. tv6 = tv6 * tv4 + let tv6 = tv6 * tv4; + // 15. tv5 = B * tv6 + let tv5 = Self::PARAMS.map_b * tv6; + // 16. tv2 = tv2 + tv5 + let tv2 = tv2 + tv5; + // 17. x = tv1 * tv3 + let x = tv1 * tv3; + // 18. (is_gx1_square, y1) = sqrt_ratio(tv2, tv6) + let (is_gx1_square, y1) = Self::sqrt_ratio_3mod4(tv2, tv6); + // 19. y = tv1 * u + let y = tv1 * self; + // 20. y = y * y1 + let y = y * y1; + // 21. x = CMOV(x, tv3, is_gx1_square) + let x = ConditionallySelectable::conditional_select(&x, &tv3, is_gx1_square); + // 22. y = CMOV(y, y1, is_gx1_square) + let y = ConditionallySelectable::conditional_select(&y, &y1, is_gx1_square); + // 23. e1 = sgn0(u) == sgn0(y) + let e1 = self.sgn0().ct_eq(&y.sgn0()); + // 24. y = CMOV(-y, y, e1) + let y = ConditionallySelectable::conditional_select(&-y, &y, e1); + // 25. x = x / tv4 + let x = x * tv4.invert().unwrap(); + // 26. return (x, y) + (x, y) + } +} |