summaryrefslogtreecommitdiffstats
path: root/vendor/ff/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/ff/src/lib.rs')
-rw-r--r--vendor/ff/src/lib.rs498
1 files changed, 498 insertions, 0 deletions
diff --git a/vendor/ff/src/lib.rs b/vendor/ff/src/lib.rs
new file mode 100644
index 0000000..96bd3e9
--- /dev/null
+++ b/vendor/ff/src/lib.rs
@@ -0,0 +1,498 @@
+//! This crate provides traits for working with finite fields.
+
+// Catch documentation errors caused by code changes.
+#![no_std]
+#![cfg_attr(docsrs, feature(doc_cfg))]
+#![deny(rustdoc::broken_intra_doc_links)]
+#![forbid(unsafe_code)]
+
+#[cfg(feature = "alloc")]
+extern crate alloc;
+
+mod batch;
+pub use batch::*;
+
+pub mod helpers;
+
+#[cfg(feature = "derive")]
+#[cfg_attr(docsrs, doc(cfg(feature = "derive")))]
+pub use ff_derive::PrimeField;
+
+#[cfg(feature = "bits")]
+#[cfg_attr(docsrs, doc(cfg(feature = "bits")))]
+pub use bitvec::view::BitViewSized;
+
+#[cfg(feature = "bits")]
+use bitvec::{array::BitArray, order::Lsb0};
+
+use core::fmt;
+use core::iter::{Product, Sum};
+use core::ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign};
+
+use rand_core::RngCore;
+use subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption};
+
+/// Bit representation of a field element.
+#[cfg(feature = "bits")]
+#[cfg_attr(docsrs, doc(cfg(feature = "bits")))]
+pub type FieldBits<V> = BitArray<V, Lsb0>;
+
+/// This trait represents an element of a field.
+pub trait Field:
+ Sized
+ + Eq
+ + Copy
+ + Clone
+ + Default
+ + Send
+ + Sync
+ + fmt::Debug
+ + 'static
+ + ConditionallySelectable
+ + ConstantTimeEq
+ + Neg<Output = Self>
+ + Add<Output = Self>
+ + Sub<Output = Self>
+ + Mul<Output = Self>
+ + Sum
+ + Product
+ + for<'a> Add<&'a Self, Output = Self>
+ + for<'a> Sub<&'a Self, Output = Self>
+ + for<'a> Mul<&'a Self, Output = Self>
+ + for<'a> Sum<&'a Self>
+ + for<'a> Product<&'a Self>
+ + AddAssign
+ + SubAssign
+ + MulAssign
+ + for<'a> AddAssign<&'a Self>
+ + for<'a> SubAssign<&'a Self>
+ + for<'a> MulAssign<&'a Self>
+{
+ /// The zero element of the field, the additive identity.
+ const ZERO: Self;
+
+ /// The one element of the field, the multiplicative identity.
+ const ONE: Self;
+
+ /// Returns an element chosen uniformly at random using a user-provided RNG.
+ fn random(rng: impl RngCore) -> Self;
+
+ /// Returns true iff this element is zero.
+ fn is_zero(&self) -> Choice {
+ self.ct_eq(&Self::ZERO)
+ }
+
+ /// Returns true iff this element is zero.
+ ///
+ /// # Security
+ ///
+ /// This method provides **no** constant-time guarantees. Implementors of the
+ /// `Field` trait **may** optimise this method using non-constant-time logic.
+ fn is_zero_vartime(&self) -> bool {
+ self.is_zero().into()
+ }
+
+ /// Squares this element.
+ #[must_use]
+ fn square(&self) -> Self;
+
+ /// Cubes this element.
+ #[must_use]
+ fn cube(&self) -> Self {
+ self.square() * self
+ }
+
+ /// Doubles this element.
+ #[must_use]
+ fn double(&self) -> Self;
+
+ /// Computes the multiplicative inverse of this element,
+ /// failing if the element is zero.
+ fn invert(&self) -> CtOption<Self>;
+
+ /// Computes:
+ ///
+ /// - $(\textsf{true}, \sqrt{\textsf{num}/\textsf{div}})$, if $\textsf{num}$ and
+ /// $\textsf{div}$ are nonzero and $\textsf{num}/\textsf{div}$ is a square in the
+ /// field;
+ /// - $(\textsf{true}, 0)$, if $\textsf{num}$ is zero;
+ /// - $(\textsf{false}, 0)$, if $\textsf{num}$ is nonzero and $\textsf{div}$ is zero;
+ /// - $(\textsf{false}, \sqrt{G_S \cdot \textsf{num}/\textsf{div}})$, if
+ /// $\textsf{num}$ and $\textsf{div}$ are nonzero and $\textsf{num}/\textsf{div}$ is
+ /// a nonsquare in the field;
+ ///
+ /// where $G_S$ is a non-square.
+ ///
+ /// # Warnings
+ ///
+ /// - The choice of root from `sqrt` is unspecified.
+ /// - The value of $G_S$ is unspecified, and cannot be assumed to have any specific
+ /// value in a generic context.
+ fn sqrt_ratio(num: &Self, div: &Self) -> (Choice, Self);
+
+ /// Equivalent to `Self::sqrt_ratio(self, one())`.
+ ///
+ /// The provided method is implemented in terms of [`Self::sqrt_ratio`].
+ fn sqrt_alt(&self) -> (Choice, Self) {
+ Self::sqrt_ratio(self, &Self::ONE)
+ }
+
+ /// Returns the square root of the field element, if it is
+ /// quadratic residue.
+ ///
+ /// The provided method is implemented in terms of [`Self::sqrt_ratio`].
+ fn sqrt(&self) -> CtOption<Self> {
+ let (is_square, res) = Self::sqrt_ratio(self, &Self::ONE);
+ CtOption::new(res, is_square)
+ }
+
+ /// Exponentiates `self` by `exp`, where `exp` is a little-endian order integer
+ /// exponent.
+ ///
+ /// # Guarantees
+ ///
+ /// This operation is constant time with respect to `self`, for all exponents with the
+ /// same number of digits (`exp.as_ref().len()`). It is variable time with respect to
+ /// the number of digits in the exponent.
+ fn pow<S: AsRef<[u64]>>(&self, exp: S) -> Self {
+ let mut res = Self::ONE;
+ for e in exp.as_ref().iter().rev() {
+ for i in (0..64).rev() {
+ res = res.square();
+ let mut tmp = res;
+ tmp *= self;
+ res.conditional_assign(&tmp, (((*e >> i) & 1) as u8).into());
+ }
+ }
+ res
+ }
+
+ /// Exponentiates `self` by `exp`, where `exp` is a little-endian order integer
+ /// exponent.
+ ///
+ /// # Guarantees
+ ///
+ /// **This operation is variable time with respect to `self`, for all exponent.** If
+ /// the exponent is fixed, this operation is effectively constant time. However, for
+ /// stronger constant-time guarantees, [`Field::pow`] should be used.
+ fn pow_vartime<S: AsRef<[u64]>>(&self, exp: S) -> Self {
+ let mut res = Self::ONE;
+ for e in exp.as_ref().iter().rev() {
+ for i in (0..64).rev() {
+ res = res.square();
+
+ if ((*e >> i) & 1) == 1 {
+ res.mul_assign(self);
+ }
+ }
+ }
+
+ res
+ }
+}
+
+/// This represents an element of a non-binary prime field.
+pub trait PrimeField: Field + From<u64> {
+ /// The prime field can be converted back and forth into this binary
+ /// representation.
+ type Repr: Copy + Default + Send + Sync + 'static + AsRef<[u8]> + AsMut<[u8]>;
+
+ /// Interpret a string of numbers as a (congruent) prime field element.
+ /// Does not accept unnecessary leading zeroes or a blank string.
+ ///
+ /// # Security
+ ///
+ /// This method provides **no** constant-time guarantees.
+ fn from_str_vartime(s: &str) -> Option<Self> {
+ if s.is_empty() {
+ return None;
+ }
+
+ if s == "0" {
+ return Some(Self::ZERO);
+ }
+
+ let mut res = Self::ZERO;
+
+ let ten = Self::from(10);
+
+ let mut first_digit = true;
+
+ for c in s.chars() {
+ match c.to_digit(10) {
+ Some(c) => {
+ if first_digit {
+ if c == 0 {
+ return None;
+ }
+
+ first_digit = false;
+ }
+
+ res.mul_assign(&ten);
+ res.add_assign(&Self::from(u64::from(c)));
+ }
+ None => {
+ return None;
+ }
+ }
+ }
+
+ Some(res)
+ }
+
+ /// Obtains a field element congruent to the integer `v`.
+ ///
+ /// For fields where `Self::CAPACITY >= 128`, this is injective and will produce a
+ /// unique field element.
+ ///
+ /// For fields where `Self::CAPACITY < 128`, this is surjective; some field elements
+ /// will be produced by multiple values of `v`.
+ ///
+ /// If you want to deterministically sample a field element representing a value, use
+ /// [`FromUniformBytes`] instead.
+ fn from_u128(v: u128) -> Self {
+ let lower = v as u64;
+ let upper = (v >> 64) as u64;
+ let mut tmp = Self::from(upper);
+ for _ in 0..64 {
+ tmp = tmp.double();
+ }
+ tmp + Self::from(lower)
+ }
+
+ /// Attempts to convert a byte representation of a field element into an element of
+ /// this prime field, failing if the input is not canonical (is not smaller than the
+ /// field's modulus).
+ ///
+ /// The byte representation is interpreted with the same endianness as elements
+ /// returned by [`PrimeField::to_repr`].
+ fn from_repr(repr: Self::Repr) -> CtOption<Self>;
+
+ /// Attempts to convert a byte representation of a field element into an element of
+ /// this prime field, failing if the input is not canonical (is not smaller than the
+ /// field's modulus).
+ ///
+ /// The byte representation is interpreted with the same endianness as elements
+ /// returned by [`PrimeField::to_repr`].
+ ///
+ /// # Security
+ ///
+ /// This method provides **no** constant-time guarantees. Implementors of the
+ /// `PrimeField` trait **may** optimise this method using non-constant-time logic.
+ fn from_repr_vartime(repr: Self::Repr) -> Option<Self> {
+ Self::from_repr(repr).into()
+ }
+
+ /// Converts an element of the prime field into the standard byte representation for
+ /// this field.
+ ///
+ /// The endianness of the byte representation is implementation-specific. Generic
+ /// encodings of field elements should be treated as opaque.
+ fn to_repr(&self) -> Self::Repr;
+
+ /// Returns true iff this element is odd.
+ fn is_odd(&self) -> Choice;
+
+ /// Returns true iff this element is even.
+ #[inline(always)]
+ fn is_even(&self) -> Choice {
+ !self.is_odd()
+ }
+
+ /// Modulus of the field written as a string for debugging purposes.
+ ///
+ /// The encoding of the modulus is implementation-specific. Generic users of the
+ /// `PrimeField` trait should treat this string as opaque.
+ const MODULUS: &'static str;
+
+ /// How many bits are needed to represent an element of this field.
+ const NUM_BITS: u32;
+
+ /// How many bits of information can be reliably stored in the field element.
+ ///
+ /// This is usually `Self::NUM_BITS - 1`.
+ const CAPACITY: u32;
+
+ /// Inverse of $2$ in the field.
+ const TWO_INV: Self;
+
+ /// A fixed multiplicative generator of `modulus - 1` order. This element must also be
+ /// a quadratic nonresidue.
+ ///
+ /// It can be calculated using [SageMath] as `GF(modulus).primitive_element()`.
+ ///
+ /// Implementations of this trait MUST ensure that this is the generator used to
+ /// derive `Self::ROOT_OF_UNITY`.
+ ///
+ /// [SageMath]: https://www.sagemath.org/
+ const MULTIPLICATIVE_GENERATOR: Self;
+
+ /// An integer `s` satisfying the equation `2^s * t = modulus - 1` with `t` odd.
+ ///
+ /// This is the number of leading zero bits in the little-endian bit representation of
+ /// `modulus - 1`.
+ const S: u32;
+
+ /// The `2^s` root of unity.
+ ///
+ /// It can be calculated by exponentiating `Self::MULTIPLICATIVE_GENERATOR` by `t`,
+ /// where `t = (modulus - 1) >> Self::S`.
+ const ROOT_OF_UNITY: Self;
+
+ /// Inverse of [`Self::ROOT_OF_UNITY`].
+ const ROOT_OF_UNITY_INV: Self;
+
+ /// Generator of the `t-order` multiplicative subgroup.
+ ///
+ /// It can be calculated by exponentiating [`Self::MULTIPLICATIVE_GENERATOR`] by `2^s`,
+ /// where `s` is [`Self::S`].
+ const DELTA: Self;
+}
+
+/// The subset of prime-order fields such that `(modulus - 1)` is divisible by `N`.
+///
+/// If `N` is prime, there will be `N - 1` valid choices of [`Self::ZETA`]. Similarly to
+/// [`PrimeField::MULTIPLICATIVE_GENERATOR`], the specific choice does not matter, as long
+/// as the choice is consistent across all uses of the field.
+pub trait WithSmallOrderMulGroup<const N: u8>: PrimeField {
+ /// A field element of small multiplicative order $N$.
+ ///
+ /// The presense of this element allows you to perform (certain types of)
+ /// endomorphisms on some elliptic curves.
+ ///
+ /// It can be calculated using [SageMath] as
+ /// `GF(modulus).primitive_element() ^ ((modulus - 1) // N)`.
+ /// Choosing the element of order $N$ that is smallest, when considered
+ /// as an integer, may help to ensure consistency.
+ ///
+ /// [SageMath]: https://www.sagemath.org/
+ const ZETA: Self;
+}
+
+/// Trait for constructing a [`PrimeField`] element from a fixed-length uniform byte
+/// array.
+///
+/// "Uniform" means that the byte array's contents must be indistinguishable from the
+/// [discrete uniform distribution]. Suitable byte arrays can be obtained:
+/// - from a cryptographically-secure randomness source (which makes this constructor
+/// equivalent to [`Field::random`]).
+/// - from a cryptographic hash function output, which enables a "random" field element to
+/// be selected deterministically. This is the primary use case for `FromUniformBytes`.
+///
+/// The length `N` of the byte array is chosen by the trait implementer such that the loss
+/// of uniformity in the mapping from byte arrays to field elements is cryptographically
+/// negligible.
+///
+/// [discrete uniform distribution]: https://en.wikipedia.org/wiki/Discrete_uniform_distribution
+///
+/// # Examples
+///
+/// ```
+/// # #[cfg(feature = "derive")] {
+/// # // Fake this so we don't actually need a dev-dependency on bls12_381.
+/// # mod bls12_381 {
+/// # use ff::{Field, PrimeField};
+/// #
+/// # #[derive(PrimeField)]
+/// # #[PrimeFieldModulus = "52435875175126190479447740508185965837690552500527637822603658699938581184513"]
+/// # #[PrimeFieldGenerator = "7"]
+/// # #[PrimeFieldReprEndianness = "little"]
+/// # pub struct Scalar([u64; 4]);
+/// #
+/// # impl ff::FromUniformBytes<64> for Scalar {
+/// # fn from_uniform_bytes(_bytes: &[u8; 64]) -> Self {
+/// # // Fake impl for doctest
+/// # Scalar::ONE
+/// # }
+/// # }
+/// # }
+/// #
+/// use blake2b_simd::blake2b;
+/// use bls12_381::Scalar;
+/// use ff::FromUniformBytes;
+///
+/// // `bls12_381::Scalar` implements `FromUniformBytes<64>`, and BLAKE2b (by default)
+/// // produces a 64-byte hash.
+/// let hash = blake2b(b"Some message");
+/// let val = Scalar::from_uniform_bytes(hash.as_array());
+/// # }
+/// ```
+///
+/// # Implementing `FromUniformBytes`
+///
+/// [`Self::from_uniform_bytes`] should always be implemented by interpreting the provided
+/// byte array as the little endian unsigned encoding of an integer, and then reducing that
+/// integer modulo the field modulus.
+///
+/// For security, `N` must be chosen so that `N * 8 >= Self::NUM_BITS + 128`. A larger
+/// value of `N` may be chosen for convenience; for example, for a field with a 255-bit
+/// modulus, `N = 64` is convenient as it matches the output length of several common
+/// cryptographic hash functions (such as SHA-512 and BLAKE2b).
+///
+/// ## Trait design
+///
+/// This trait exists because `PrimeField::from_uniform_bytes([u8; N])` cannot currently
+/// exist (trait methods cannot use associated constants in the const positions of their
+/// type signature, and we do not want `PrimeField` to require a generic const parameter).
+/// However, this has the side-effect that `FromUniformBytes` can be implemented multiple
+/// times for different values of `N`. Most implementations of [`PrimeField`] should only
+/// need to implement `FromUniformBytes` trait for one value of `N` (chosen following the
+/// above considerations); if you find yourself needing to implement it multiple times,
+/// please [let us know about your use case](https://github.com/zkcrypto/ff/issues/new) so
+/// we can take it into consideration for future evolutions of the `ff` traits.
+pub trait FromUniformBytes<const N: usize>: PrimeField {
+ /// Returns a field element that is congruent to the provided little endian unsigned
+ /// byte representation of an integer.
+ fn from_uniform_bytes(bytes: &[u8; N]) -> Self;
+}
+
+/// This represents the bits of an element of a prime field.
+#[cfg(feature = "bits")]
+#[cfg_attr(docsrs, doc(cfg(feature = "bits")))]
+pub trait PrimeFieldBits: PrimeField {
+ /// The backing store for a bit representation of a prime field element.
+ type ReprBits: BitViewSized + Send + Sync;
+
+ /// Converts an element of the prime field into a little-endian sequence of bits.
+ fn to_le_bits(&self) -> FieldBits<Self::ReprBits>;
+
+ /// Returns the bits of the field characteristic (the modulus) in little-endian order.
+ fn char_le_bits() -> FieldBits<Self::ReprBits>;
+}
+
+/// Functions and re-exported crates used by the [`PrimeField`] derive macro.
+#[cfg(feature = "derive")]
+#[cfg_attr(docsrs, doc(cfg(feature = "derive")))]
+pub mod derive {
+ pub use crate::arith_impl::*;
+
+ pub use {byteorder, rand_core, subtle};
+
+ #[cfg(feature = "bits")]
+ pub use bitvec;
+}
+
+#[cfg(feature = "derive")]
+mod arith_impl {
+ /// Computes `a - (b + borrow)`, returning the result and the new borrow.
+ #[inline(always)]
+ pub const fn sbb(a: u64, b: u64, borrow: u64) -> (u64, u64) {
+ let ret = (a as u128).wrapping_sub((b as u128) + ((borrow >> 63) as u128));
+ (ret as u64, (ret >> 64) as u64)
+ }
+
+ /// Computes `a + b + carry`, returning the result and the new carry over.
+ #[inline(always)]
+ pub const fn adc(a: u64, b: u64, carry: u64) -> (u64, u64) {
+ let ret = (a as u128) + (b as u128) + (carry as u128);
+ (ret as u64, (ret >> 64) as u64)
+ }
+
+ /// Computes `a + (b * c) + carry`, returning the result and the new carry over.
+ #[inline(always)]
+ pub const fn mac(a: u64, b: u64, c: u64, carry: u64) -> (u64, u64) {
+ let ret = (a as u128) + ((b as u128) * (c as u128)) + (carry as u128);
+ (ret as u64, (ret >> 64) as u64)
+ }
+}