diff options
Diffstat (limited to 'vendor/once_cell/src/lib.rs')
-rw-r--r-- | vendor/once_cell/src/lib.rs | 1414 |
1 files changed, 1414 insertions, 0 deletions
diff --git a/vendor/once_cell/src/lib.rs b/vendor/once_cell/src/lib.rs new file mode 100644 index 0000000..db7e19a --- /dev/null +++ b/vendor/once_cell/src/lib.rs @@ -0,0 +1,1414 @@ +//! # Overview +//! +//! `once_cell` provides two new cell-like types, [`unsync::OnceCell`] and +//! [`sync::OnceCell`]. A `OnceCell` might store arbitrary non-`Copy` types, can +//! be assigned to at most once and provides direct access to the stored +//! contents. The core API looks *roughly* like this (and there's much more +//! inside, read on!): +//! +//! ```rust,ignore +//! impl<T> OnceCell<T> { +//! const fn new() -> OnceCell<T> { ... } +//! fn set(&self, value: T) -> Result<(), T> { ... } +//! fn get(&self) -> Option<&T> { ... } +//! } +//! ``` +//! +//! Note that, like with [`RefCell`] and [`Mutex`], the `set` method requires +//! only a shared reference. Because of the single assignment restriction `get` +//! can return a `&T` instead of `Ref<T>` or `MutexGuard<T>`. +//! +//! The `sync` flavor is thread-safe (that is, implements the [`Sync`] trait), +//! while the `unsync` one is not. +//! +//! [`unsync::OnceCell`]: unsync/struct.OnceCell.html +//! [`sync::OnceCell`]: sync/struct.OnceCell.html +//! [`RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html +//! [`Mutex`]: https://doc.rust-lang.org/std/sync/struct.Mutex.html +//! [`Sync`]: https://doc.rust-lang.org/std/marker/trait.Sync.html +//! +//! # Recipes +//! +//! `OnceCell` might be useful for a variety of patterns. +//! +//! ## Safe Initialization of Global Data +//! +//! ```rust +//! use std::{env, io}; +//! +//! use once_cell::sync::OnceCell; +//! +//! #[derive(Debug)] +//! pub struct Logger { +//! // ... +//! } +//! static INSTANCE: OnceCell<Logger> = OnceCell::new(); +//! +//! impl Logger { +//! pub fn global() -> &'static Logger { +//! INSTANCE.get().expect("logger is not initialized") +//! } +//! +//! fn from_cli(args: env::Args) -> Result<Logger, std::io::Error> { +//! // ... +//! # Ok(Logger {}) +//! } +//! } +//! +//! fn main() { +//! let logger = Logger::from_cli(env::args()).unwrap(); +//! INSTANCE.set(logger).unwrap(); +//! // use `Logger::global()` from now on +//! } +//! ``` +//! +//! ## Lazy Initialized Global Data +//! +//! This is essentially the `lazy_static!` macro, but without a macro. +//! +//! ```rust +//! use std::{sync::Mutex, collections::HashMap}; +//! +//! use once_cell::sync::OnceCell; +//! +//! fn global_data() -> &'static Mutex<HashMap<i32, String>> { +//! static INSTANCE: OnceCell<Mutex<HashMap<i32, String>>> = OnceCell::new(); +//! INSTANCE.get_or_init(|| { +//! let mut m = HashMap::new(); +//! m.insert(13, "Spica".to_string()); +//! m.insert(74, "Hoyten".to_string()); +//! Mutex::new(m) +//! }) +//! } +//! ``` +//! +//! There are also the [`sync::Lazy`] and [`unsync::Lazy`] convenience types to +//! streamline this pattern: +//! +//! ```rust +//! use std::{sync::Mutex, collections::HashMap}; +//! use once_cell::sync::Lazy; +//! +//! static GLOBAL_DATA: Lazy<Mutex<HashMap<i32, String>>> = Lazy::new(|| { +//! let mut m = HashMap::new(); +//! m.insert(13, "Spica".to_string()); +//! m.insert(74, "Hoyten".to_string()); +//! Mutex::new(m) +//! }); +//! +//! fn main() { +//! println!("{:?}", GLOBAL_DATA.lock().unwrap()); +//! } +//! ``` +//! +//! Note that the variable that holds `Lazy` is declared as `static`, *not* +//! `const`. This is important: using `const` instead compiles, but works wrong. +//! +//! [`sync::Lazy`]: sync/struct.Lazy.html +//! [`unsync::Lazy`]: unsync/struct.Lazy.html +//! +//! ## General purpose lazy evaluation +//! +//! Unlike `lazy_static!`, `Lazy` works with local variables. +//! +//! ```rust +//! use once_cell::unsync::Lazy; +//! +//! fn main() { +//! let ctx = vec![1, 2, 3]; +//! let thunk = Lazy::new(|| { +//! ctx.iter().sum::<i32>() +//! }); +//! assert_eq!(*thunk, 6); +//! } +//! ``` +//! +//! If you need a lazy field in a struct, you probably should use `OnceCell` +//! directly, because that will allow you to access `self` during +//! initialization. +//! +//! ```rust +//! use std::{fs, path::PathBuf}; +//! +//! use once_cell::unsync::OnceCell; +//! +//! struct Ctx { +//! config_path: PathBuf, +//! config: OnceCell<String>, +//! } +//! +//! impl Ctx { +//! pub fn get_config(&self) -> Result<&str, std::io::Error> { +//! let cfg = self.config.get_or_try_init(|| { +//! fs::read_to_string(&self.config_path) +//! })?; +//! Ok(cfg.as_str()) +//! } +//! } +//! ``` +//! +//! ## Lazily Compiled Regex +//! +//! This is a `regex!` macro which takes a string literal and returns an +//! *expression* that evaluates to a `&'static Regex`: +//! +//! ``` +//! macro_rules! regex { +//! ($re:literal $(,)?) => {{ +//! static RE: once_cell::sync::OnceCell<regex::Regex> = once_cell::sync::OnceCell::new(); +//! RE.get_or_init(|| regex::Regex::new($re).unwrap()) +//! }}; +//! } +//! ``` +//! +//! This macro can be useful to avoid the "compile regex on every loop +//! iteration" problem. +//! +//! ## Runtime `include_bytes!` +//! +//! The `include_bytes` macro is useful to include test resources, but it slows +//! down test compilation a lot. An alternative is to load the resources at +//! runtime: +//! +//! ``` +//! use std::path::Path; +//! +//! use once_cell::sync::OnceCell; +//! +//! pub struct TestResource { +//! path: &'static str, +//! cell: OnceCell<Vec<u8>>, +//! } +//! +//! impl TestResource { +//! pub const fn new(path: &'static str) -> TestResource { +//! TestResource { path, cell: OnceCell::new() } +//! } +//! pub fn bytes(&self) -> &[u8] { +//! self.cell.get_or_init(|| { +//! let dir = std::env::var("CARGO_MANIFEST_DIR").unwrap(); +//! let path = Path::new(dir.as_str()).join(self.path); +//! std::fs::read(&path).unwrap_or_else(|_err| { +//! panic!("failed to load test resource: {}", path.display()) +//! }) +//! }).as_slice() +//! } +//! } +//! +//! static TEST_IMAGE: TestResource = TestResource::new("test_data/lena.png"); +//! +//! #[test] +//! fn test_sobel_filter() { +//! let rgb: &[u8] = TEST_IMAGE.bytes(); +//! // ... +//! # drop(rgb); +//! } +//! ``` +//! +//! ## `lateinit` +//! +//! `LateInit` type for delayed initialization. It is reminiscent of Kotlin's +//! `lateinit` keyword and allows construction of cyclic data structures: +//! +//! +//! ``` +//! use once_cell::sync::OnceCell; +//! +//! pub struct LateInit<T> { cell: OnceCell<T> } +//! +//! impl<T> LateInit<T> { +//! pub fn init(&self, value: T) { +//! assert!(self.cell.set(value).is_ok()) +//! } +//! } +//! +//! impl<T> Default for LateInit<T> { +//! fn default() -> Self { LateInit { cell: OnceCell::default() } } +//! } +//! +//! impl<T> std::ops::Deref for LateInit<T> { +//! type Target = T; +//! fn deref(&self) -> &T { +//! self.cell.get().unwrap() +//! } +//! } +//! +//! #[derive(Default)] +//! struct A<'a> { +//! b: LateInit<&'a B<'a>>, +//! } +//! +//! #[derive(Default)] +//! struct B<'a> { +//! a: LateInit<&'a A<'a>> +//! } +//! +//! +//! fn build_cycle() { +//! let a = A::default(); +//! let b = B::default(); +//! a.b.init(&b); +//! b.a.init(&a); +//! +//! let _a = &a.b.a.b.a; +//! } +//! ``` +//! +//! # Comparison with std +//! +//! |`!Sync` types | Access Mode | Drawbacks | +//! |----------------------|------------------------|-----------------------------------------------| +//! |`Cell<T>` | `T` | requires `T: Copy` for `get` | +//! |`RefCell<T>` | `RefMut<T>` / `Ref<T>` | may panic at runtime | +//! |`unsync::OnceCell<T>` | `&T` | assignable only once | +//! +//! |`Sync` types | Access Mode | Drawbacks | +//! |----------------------|------------------------|-----------------------------------------------| +//! |`AtomicT` | `T` | works only with certain `Copy` types | +//! |`Mutex<T>` | `MutexGuard<T>` | may deadlock at runtime, may block the thread | +//! |`sync::OnceCell<T>` | `&T` | assignable only once, may block the thread | +//! +//! Technically, calling `get_or_init` will also cause a panic or a deadlock if +//! it recursively calls itself. However, because the assignment can happen only +//! once, such cases should be more rare than equivalents with `RefCell` and +//! `Mutex`. +//! +//! # Minimum Supported `rustc` Version +//! +//! This crate's minimum supported `rustc` version is `1.56.0`. +//! +//! If only the `std` feature is enabled, MSRV will be updated conservatively, +//! supporting at least latest 8 versions of the compiler. When using other +//! features, like `parking_lot`, MSRV might be updated more frequently, up to +//! the latest stable. In both cases, increasing MSRV is *not* considered a +//! semver-breaking change. +//! +//! # Implementation details +//! +//! The implementation is based on the +//! [`lazy_static`](https://github.com/rust-lang-nursery/lazy-static.rs/) and +//! [`lazy_cell`](https://github.com/indiv0/lazycell/) crates and +//! [`std::sync::Once`]. In some sense, `once_cell` just streamlines and unifies +//! those APIs. +//! +//! To implement a sync flavor of `OnceCell`, this crates uses either a custom +//! re-implementation of `std::sync::Once` or `parking_lot::Mutex`. This is +//! controlled by the `parking_lot` feature (disabled by default). Performance +//! is the same for both cases, but the `parking_lot` based `OnceCell<T>` is +//! smaller by up to 16 bytes. +//! +//! This crate uses `unsafe`. +//! +//! [`std::sync::Once`]: https://doc.rust-lang.org/std/sync/struct.Once.html +//! +//! # F.A.Q. +//! +//! **Should I use the sync or unsync flavor?** +//! +//! Because Rust compiler checks thread safety for you, it's impossible to +//! accidentally use `unsync` where `sync` is required. So, use `unsync` in +//! single-threaded code and `sync` in multi-threaded. It's easy to switch +//! between the two if code becomes multi-threaded later. +//! +//! At the moment, `unsync` has an additional benefit that reentrant +//! initialization causes a panic, which might be easier to debug than a +//! deadlock. +//! +//! **Does this crate support async?** +//! +//! No, but you can use +//! [`async_once_cell`](https://crates.io/crates/async_once_cell) instead. +//! +//! **Does this crate support `no_std`?** +//! +//! Yes, but with caveats. `OnceCell` is a synchronization primitive which +//! _semantically_ relies on blocking. `OnceCell` guarantees that at most one +//! `f` will be called to compute the value. If two threads of execution call +//! `get_or_init` concurrently, one of them has to wait. +//! +//! Waiting fundamentally requires OS support. Execution environment needs to +//! understand who waits on whom to prevent deadlocks due to priority inversion. +//! You _could_ make code to compile by blindly using pure spinlocks, but the +//! runtime behavior would be subtly wrong. +//! +//! Given these constraints, `once_cell` provides the following options: +//! +//! - The `race` module provides similar, but distinct synchronization primitive +//! which is compatible with `no_std`. With `race`, the `f` function can be +//! called multiple times by different threads, but only one thread will win +//! to install the value. +//! - `critical-section` feature (with a `-`, not `_`) uses `critical_section` +//! to implement blocking. +//! +//! **Can I bring my own mutex?** +//! +//! There is [generic_once_cell](https://crates.io/crates/generic_once_cell) to +//! allow just that. +//! +//! **Should I use `std::cell::OnceCell`, `once_cell`, or `lazy_static`?** +//! +//! If you can use `std` version (your MSRV is at least 1.70, and you don't need +//! extra features `once_cell` provides), use `std`. Otherwise, use `once_cell`. +//! Don't use `lazy_static`. +//! +//! # Related crates +//! +//! * Most of this crate's functionality is available in `std` starting with +//! Rust 1.70. See `std::cell::OnceCell` and `std::sync::OnceLock`. +//! * [double-checked-cell](https://github.com/niklasf/double-checked-cell) +//! * [lazy-init](https://crates.io/crates/lazy-init) +//! * [lazycell](https://crates.io/crates/lazycell) +//! * [mitochondria](https://crates.io/crates/mitochondria) +//! * [lazy_static](https://crates.io/crates/lazy_static) +//! * [async_once_cell](https://crates.io/crates/async_once_cell) +//! * [generic_once_cell](https://crates.io/crates/generic_once_cell) (bring +//! your own mutex) + +#![cfg_attr(not(feature = "std"), no_std)] + +#[cfg(feature = "alloc")] +extern crate alloc; + +#[cfg(all(feature = "critical-section", not(feature = "std")))] +#[path = "imp_cs.rs"] +mod imp; + +#[cfg(all(feature = "std", feature = "parking_lot"))] +#[path = "imp_pl.rs"] +mod imp; + +#[cfg(all(feature = "std", not(feature = "parking_lot")))] +#[path = "imp_std.rs"] +mod imp; + +/// Single-threaded version of `OnceCell`. +pub mod unsync { + use core::{ + cell::{Cell, UnsafeCell}, + fmt, mem, + ops::{Deref, DerefMut}, + panic::{RefUnwindSafe, UnwindSafe}, + }; + + /// A cell which can be written to only once. It is not thread safe. + /// + /// Unlike [`std::cell::RefCell`], a `OnceCell` provides simple `&` + /// references to the contents. + /// + /// [`std::cell::RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html + /// + /// # Example + /// ``` + /// use once_cell::unsync::OnceCell; + /// + /// let cell = OnceCell::new(); + /// assert!(cell.get().is_none()); + /// + /// let value: &String = cell.get_or_init(|| { + /// "Hello, World!".to_string() + /// }); + /// assert_eq!(value, "Hello, World!"); + /// assert!(cell.get().is_some()); + /// ``` + pub struct OnceCell<T> { + // Invariant: written to at most once. + inner: UnsafeCell<Option<T>>, + } + + // Similarly to a `Sync` bound on `sync::OnceCell`, we can use + // `&unsync::OnceCell` to sneak a `T` through `catch_unwind`, + // by initializing the cell in closure and extracting the value in the + // `Drop`. + impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {} + impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {} + + impl<T> Default for OnceCell<T> { + fn default() -> Self { + Self::new() + } + } + + impl<T: fmt::Debug> fmt::Debug for OnceCell<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match self.get() { + Some(v) => f.debug_tuple("OnceCell").field(v).finish(), + None => f.write_str("OnceCell(Uninit)"), + } + } + } + + impl<T: Clone> Clone for OnceCell<T> { + fn clone(&self) -> OnceCell<T> { + match self.get() { + Some(value) => OnceCell::with_value(value.clone()), + None => OnceCell::new(), + } + } + + fn clone_from(&mut self, source: &Self) { + match (self.get_mut(), source.get()) { + (Some(this), Some(source)) => this.clone_from(source), + _ => *self = source.clone(), + } + } + } + + impl<T: PartialEq> PartialEq for OnceCell<T> { + fn eq(&self, other: &Self) -> bool { + self.get() == other.get() + } + } + + impl<T: Eq> Eq for OnceCell<T> {} + + impl<T> From<T> for OnceCell<T> { + fn from(value: T) -> Self { + OnceCell::with_value(value) + } + } + + impl<T> OnceCell<T> { + /// Creates a new empty cell. + pub const fn new() -> OnceCell<T> { + OnceCell { inner: UnsafeCell::new(None) } + } + + /// Creates a new initialized cell. + pub const fn with_value(value: T) -> OnceCell<T> { + OnceCell { inner: UnsafeCell::new(Some(value)) } + } + + /// Gets a reference to the underlying value. + /// + /// Returns `None` if the cell is empty. + #[inline] + pub fn get(&self) -> Option<&T> { + // Safe due to `inner`'s invariant of being written to at most once. + // Had multiple writes to `inner` been allowed, a reference to the + // value we return now would become dangling by a write of a + // different value later. + unsafe { &*self.inner.get() }.as_ref() + } + + /// Gets a mutable reference to the underlying value. + /// + /// Returns `None` if the cell is empty. + /// + /// This method is allowed to violate the invariant of writing to a `OnceCell` + /// at most once because it requires `&mut` access to `self`. As with all + /// interior mutability, `&mut` access permits arbitrary modification: + /// + /// ``` + /// use once_cell::unsync::OnceCell; + /// + /// let mut cell: OnceCell<u32> = OnceCell::new(); + /// cell.set(92).unwrap(); + /// *cell.get_mut().unwrap() = 93; + /// assert_eq!(cell.get(), Some(&93)); + /// ``` + #[inline] + pub fn get_mut(&mut self) -> Option<&mut T> { + // Safe because we have unique access + unsafe { &mut *self.inner.get() }.as_mut() + } + + /// Sets the contents of this cell to `value`. + /// + /// Returns `Ok(())` if the cell was empty and `Err(value)` if it was + /// full. + /// + /// # Example + /// ``` + /// use once_cell::unsync::OnceCell; + /// + /// let cell = OnceCell::new(); + /// assert!(cell.get().is_none()); + /// + /// assert_eq!(cell.set(92), Ok(())); + /// assert_eq!(cell.set(62), Err(62)); + /// + /// assert!(cell.get().is_some()); + /// ``` + pub fn set(&self, value: T) -> Result<(), T> { + match self.try_insert(value) { + Ok(_) => Ok(()), + Err((_, value)) => Err(value), + } + } + + /// Like [`set`](Self::set), but also returns a reference to the final cell value. + /// + /// # Example + /// ``` + /// use once_cell::unsync::OnceCell; + /// + /// let cell = OnceCell::new(); + /// assert!(cell.get().is_none()); + /// + /// assert_eq!(cell.try_insert(92), Ok(&92)); + /// assert_eq!(cell.try_insert(62), Err((&92, 62))); + /// + /// assert!(cell.get().is_some()); + /// ``` + pub fn try_insert(&self, value: T) -> Result<&T, (&T, T)> { + if let Some(old) = self.get() { + return Err((old, value)); + } + + let slot = unsafe { &mut *self.inner.get() }; + // This is the only place where we set the slot, no races + // due to reentrancy/concurrency are possible, and we've + // checked that slot is currently `None`, so this write + // maintains the `inner`'s invariant. + *slot = Some(value); + Ok(unsafe { slot.as_ref().unwrap_unchecked() }) + } + + /// Gets the contents of the cell, initializing it with `f` + /// if the cell was empty. + /// + /// # Panics + /// + /// If `f` panics, the panic is propagated to the caller, and the cell + /// remains uninitialized. + /// + /// It is an error to reentrantly initialize the cell from `f`. Doing + /// so results in a panic. + /// + /// # Example + /// ``` + /// use once_cell::unsync::OnceCell; + /// + /// let cell = OnceCell::new(); + /// let value = cell.get_or_init(|| 92); + /// assert_eq!(value, &92); + /// let value = cell.get_or_init(|| unreachable!()); + /// assert_eq!(value, &92); + /// ``` + pub fn get_or_init<F>(&self, f: F) -> &T + where + F: FnOnce() -> T, + { + enum Void {} + match self.get_or_try_init(|| Ok::<T, Void>(f())) { + Ok(val) => val, + Err(void) => match void {}, + } + } + + /// Gets the contents of the cell, initializing it with `f` if + /// the cell was empty. If the cell was empty and `f` failed, an + /// error is returned. + /// + /// # Panics + /// + /// If `f` panics, the panic is propagated to the caller, and the cell + /// remains uninitialized. + /// + /// It is an error to reentrantly initialize the cell from `f`. Doing + /// so results in a panic. + /// + /// # Example + /// ``` + /// use once_cell::unsync::OnceCell; + /// + /// let cell = OnceCell::new(); + /// assert_eq!(cell.get_or_try_init(|| Err(())), Err(())); + /// assert!(cell.get().is_none()); + /// let value = cell.get_or_try_init(|| -> Result<i32, ()> { + /// Ok(92) + /// }); + /// assert_eq!(value, Ok(&92)); + /// assert_eq!(cell.get(), Some(&92)) + /// ``` + pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> + where + F: FnOnce() -> Result<T, E>, + { + if let Some(val) = self.get() { + return Ok(val); + } + let val = f()?; + // Note that *some* forms of reentrant initialization might lead to + // UB (see `reentrant_init` test). I believe that just removing this + // `assert`, while keeping `set/get` would be sound, but it seems + // better to panic, rather than to silently use an old value. + assert!(self.set(val).is_ok(), "reentrant init"); + Ok(unsafe { self.get().unwrap_unchecked() }) + } + + /// Takes the value out of this `OnceCell`, moving it back to an uninitialized state. + /// + /// Has no effect and returns `None` if the `OnceCell` hasn't been initialized. + /// + /// # Examples + /// + /// ``` + /// use once_cell::unsync::OnceCell; + /// + /// let mut cell: OnceCell<String> = OnceCell::new(); + /// assert_eq!(cell.take(), None); + /// + /// let mut cell = OnceCell::new(); + /// cell.set("hello".to_string()).unwrap(); + /// assert_eq!(cell.take(), Some("hello".to_string())); + /// assert_eq!(cell.get(), None); + /// ``` + /// + /// This method is allowed to violate the invariant of writing to a `OnceCell` + /// at most once because it requires `&mut` access to `self`. As with all + /// interior mutability, `&mut` access permits arbitrary modification: + /// + /// ``` + /// use once_cell::unsync::OnceCell; + /// + /// let mut cell: OnceCell<u32> = OnceCell::new(); + /// cell.set(92).unwrap(); + /// cell = OnceCell::new(); + /// ``` + pub fn take(&mut self) -> Option<T> { + mem::take(self).into_inner() + } + + /// Consumes the `OnceCell`, returning the wrapped value. + /// + /// Returns `None` if the cell was empty. + /// + /// # Examples + /// + /// ``` + /// use once_cell::unsync::OnceCell; + /// + /// let cell: OnceCell<String> = OnceCell::new(); + /// assert_eq!(cell.into_inner(), None); + /// + /// let cell = OnceCell::new(); + /// cell.set("hello".to_string()).unwrap(); + /// assert_eq!(cell.into_inner(), Some("hello".to_string())); + /// ``` + pub fn into_inner(self) -> Option<T> { + // Because `into_inner` takes `self` by value, the compiler statically verifies + // that it is not currently borrowed. So it is safe to move out `Option<T>`. + self.inner.into_inner() + } + } + + /// A value which is initialized on the first access. + /// + /// # Example + /// ``` + /// use once_cell::unsync::Lazy; + /// + /// let lazy: Lazy<i32> = Lazy::new(|| { + /// println!("initializing"); + /// 92 + /// }); + /// println!("ready"); + /// println!("{}", *lazy); + /// println!("{}", *lazy); + /// + /// // Prints: + /// // ready + /// // initializing + /// // 92 + /// // 92 + /// ``` + pub struct Lazy<T, F = fn() -> T> { + cell: OnceCell<T>, + init: Cell<Option<F>>, + } + + impl<T, F: RefUnwindSafe> RefUnwindSafe for Lazy<T, F> where OnceCell<T>: RefUnwindSafe {} + + impl<T: fmt::Debug, F> fmt::Debug for Lazy<T, F> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_struct("Lazy").field("cell", &self.cell).field("init", &"..").finish() + } + } + + impl<T, F> Lazy<T, F> { + /// Creates a new lazy value with the given initializing function. + /// + /// # Example + /// ``` + /// # fn main() { + /// use once_cell::unsync::Lazy; + /// + /// let hello = "Hello, World!".to_string(); + /// + /// let lazy = Lazy::new(|| hello.to_uppercase()); + /// + /// assert_eq!(&*lazy, "HELLO, WORLD!"); + /// # } + /// ``` + pub const fn new(init: F) -> Lazy<T, F> { + Lazy { cell: OnceCell::new(), init: Cell::new(Some(init)) } + } + + /// Consumes this `Lazy` returning the stored value. + /// + /// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise. + pub fn into_value(this: Lazy<T, F>) -> Result<T, F> { + let cell = this.cell; + let init = this.init; + cell.into_inner().ok_or_else(|| { + init.take().unwrap_or_else(|| panic!("Lazy instance has previously been poisoned")) + }) + } + } + + impl<T, F: FnOnce() -> T> Lazy<T, F> { + /// Forces the evaluation of this lazy value and returns a reference to + /// the result. + /// + /// This is equivalent to the `Deref` impl, but is explicit. + /// + /// # Example + /// ``` + /// use once_cell::unsync::Lazy; + /// + /// let lazy = Lazy::new(|| 92); + /// + /// assert_eq!(Lazy::force(&lazy), &92); + /// assert_eq!(&*lazy, &92); + /// ``` + pub fn force(this: &Lazy<T, F>) -> &T { + this.cell.get_or_init(|| match this.init.take() { + Some(f) => f(), + None => panic!("Lazy instance has previously been poisoned"), + }) + } + + /// Forces the evaluation of this lazy value and returns a mutable reference to + /// the result. + /// + /// This is equivalent to the `DerefMut` impl, but is explicit. + /// + /// # Example + /// ``` + /// use once_cell::unsync::Lazy; + /// + /// let mut lazy = Lazy::new(|| 92); + /// + /// assert_eq!(Lazy::force_mut(&mut lazy), &92); + /// assert_eq!(*lazy, 92); + /// ``` + pub fn force_mut(this: &mut Lazy<T, F>) -> &mut T { + if this.cell.get_mut().is_none() { + let value = match this.init.get_mut().take() { + Some(f) => f(), + None => panic!("Lazy instance has previously been poisoned"), + }; + this.cell = OnceCell::with_value(value); + } + this.cell.get_mut().unwrap_or_else(|| unreachable!()) + } + + /// Gets the reference to the result of this lazy value if + /// it was initialized, otherwise returns `None`. + /// + /// # Example + /// ``` + /// use once_cell::unsync::Lazy; + /// + /// let lazy = Lazy::new(|| 92); + /// + /// assert_eq!(Lazy::get(&lazy), None); + /// assert_eq!(&*lazy, &92); + /// assert_eq!(Lazy::get(&lazy), Some(&92)); + /// ``` + pub fn get(this: &Lazy<T, F>) -> Option<&T> { + this.cell.get() + } + + /// Gets the mutable reference to the result of this lazy value if + /// it was initialized, otherwise returns `None`. + /// + /// # Example + /// ``` + /// use once_cell::unsync::Lazy; + /// + /// let mut lazy = Lazy::new(|| 92); + /// + /// assert_eq!(Lazy::get_mut(&mut lazy), None); + /// assert_eq!(*lazy, 92); + /// assert_eq!(Lazy::get_mut(&mut lazy), Some(&mut 92)); + /// ``` + pub fn get_mut(this: &mut Lazy<T, F>) -> Option<&mut T> { + this.cell.get_mut() + } + } + + impl<T, F: FnOnce() -> T> Deref for Lazy<T, F> { + type Target = T; + fn deref(&self) -> &T { + Lazy::force(self) + } + } + + impl<T, F: FnOnce() -> T> DerefMut for Lazy<T, F> { + fn deref_mut(&mut self) -> &mut T { + Lazy::force_mut(self) + } + } + + impl<T: Default> Default for Lazy<T> { + /// Creates a new lazy value using `Default` as the initializing function. + fn default() -> Lazy<T> { + Lazy::new(T::default) + } + } +} + +/// Thread-safe, blocking version of `OnceCell`. +#[cfg(any(feature = "std", feature = "critical-section"))] +pub mod sync { + use core::{ + cell::Cell, + fmt, mem, + ops::{Deref, DerefMut}, + panic::RefUnwindSafe, + }; + + use super::imp::OnceCell as Imp; + + /// A thread-safe cell which can be written to only once. + /// + /// `OnceCell` provides `&` references to the contents without RAII guards. + /// + /// Reading a non-`None` value out of `OnceCell` establishes a + /// happens-before relationship with a corresponding write. For example, if + /// thread A initializes the cell with `get_or_init(f)`, and thread B + /// subsequently reads the result of this call, B also observes all the side + /// effects of `f`. + /// + /// # Example + /// ``` + /// use once_cell::sync::OnceCell; + /// + /// static CELL: OnceCell<String> = OnceCell::new(); + /// assert!(CELL.get().is_none()); + /// + /// std::thread::spawn(|| { + /// let value: &String = CELL.get_or_init(|| { + /// "Hello, World!".to_string() + /// }); + /// assert_eq!(value, "Hello, World!"); + /// }).join().unwrap(); + /// + /// let value: Option<&String> = CELL.get(); + /// assert!(value.is_some()); + /// assert_eq!(value.unwrap().as_str(), "Hello, World!"); + /// ``` + pub struct OnceCell<T>(Imp<T>); + + impl<T> Default for OnceCell<T> { + fn default() -> OnceCell<T> { + OnceCell::new() + } + } + + impl<T: fmt::Debug> fmt::Debug for OnceCell<T> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + match self.get() { + Some(v) => f.debug_tuple("OnceCell").field(v).finish(), + None => f.write_str("OnceCell(Uninit)"), + } + } + } + + impl<T: Clone> Clone for OnceCell<T> { + fn clone(&self) -> OnceCell<T> { + match self.get() { + Some(value) => Self::with_value(value.clone()), + None => Self::new(), + } + } + + fn clone_from(&mut self, source: &Self) { + match (self.get_mut(), source.get()) { + (Some(this), Some(source)) => this.clone_from(source), + _ => *self = source.clone(), + } + } + } + + impl<T> From<T> for OnceCell<T> { + fn from(value: T) -> Self { + Self::with_value(value) + } + } + + impl<T: PartialEq> PartialEq for OnceCell<T> { + fn eq(&self, other: &OnceCell<T>) -> bool { + self.get() == other.get() + } + } + + impl<T: Eq> Eq for OnceCell<T> {} + + impl<T> OnceCell<T> { + /// Creates a new empty cell. + pub const fn new() -> OnceCell<T> { + OnceCell(Imp::new()) + } + + /// Creates a new initialized cell. + pub const fn with_value(value: T) -> OnceCell<T> { + OnceCell(Imp::with_value(value)) + } + + /// Gets the reference to the underlying value. + /// + /// Returns `None` if the cell is empty, or being initialized. This + /// method never blocks. + pub fn get(&self) -> Option<&T> { + if self.0.is_initialized() { + // Safe b/c value is initialized. + Some(unsafe { self.get_unchecked() }) + } else { + None + } + } + + /// Gets the reference to the underlying value, blocking the current + /// thread until it is set. + /// + /// ``` + /// use once_cell::sync::OnceCell; + /// + /// let mut cell = std::sync::Arc::new(OnceCell::new()); + /// let t = std::thread::spawn({ + /// let cell = std::sync::Arc::clone(&cell); + /// move || cell.set(92).unwrap() + /// }); + /// + /// // Returns immediately, but might return None. + /// let _value_or_none = cell.get(); + /// + /// // Will return 92, but might block until the other thread does `.set`. + /// let value: &u32 = cell.wait(); + /// assert_eq!(*value, 92); + /// t.join().unwrap(); + /// ``` + #[cfg(feature = "std")] + pub fn wait(&self) -> &T { + if !self.0.is_initialized() { + self.0.wait() + } + debug_assert!(self.0.is_initialized()); + // Safe b/c of the wait call above and the fact that we didn't + // relinquish our borrow. + unsafe { self.get_unchecked() } + } + + /// Gets the mutable reference to the underlying value. + /// + /// Returns `None` if the cell is empty. + /// + /// This method is allowed to violate the invariant of writing to a `OnceCell` + /// at most once because it requires `&mut` access to `self`. As with all + /// interior mutability, `&mut` access permits arbitrary modification: + /// + /// ``` + /// use once_cell::sync::OnceCell; + /// + /// let mut cell: OnceCell<u32> = OnceCell::new(); + /// cell.set(92).unwrap(); + /// cell = OnceCell::new(); + /// ``` + #[inline] + pub fn get_mut(&mut self) -> Option<&mut T> { + self.0.get_mut() + } + + /// Get the reference to the underlying value, without checking if the + /// cell is initialized. + /// + /// # Safety + /// + /// Caller must ensure that the cell is in initialized state, and that + /// the contents are acquired by (synchronized to) this thread. + #[inline] + pub unsafe fn get_unchecked(&self) -> &T { + self.0.get_unchecked() + } + + /// Sets the contents of this cell to `value`. + /// + /// Returns `Ok(())` if the cell was empty and `Err(value)` if it was + /// full. + /// + /// # Example + /// + /// ``` + /// use once_cell::sync::OnceCell; + /// + /// static CELL: OnceCell<i32> = OnceCell::new(); + /// + /// fn main() { + /// assert!(CELL.get().is_none()); + /// + /// std::thread::spawn(|| { + /// assert_eq!(CELL.set(92), Ok(())); + /// }).join().unwrap(); + /// + /// assert_eq!(CELL.set(62), Err(62)); + /// assert_eq!(CELL.get(), Some(&92)); + /// } + /// ``` + pub fn set(&self, value: T) -> Result<(), T> { + match self.try_insert(value) { + Ok(_) => Ok(()), + Err((_, value)) => Err(value), + } + } + + /// Like [`set`](Self::set), but also returns a reference to the final cell value. + /// + /// # Example + /// + /// ``` + /// use once_cell::unsync::OnceCell; + /// + /// let cell = OnceCell::new(); + /// assert!(cell.get().is_none()); + /// + /// assert_eq!(cell.try_insert(92), Ok(&92)); + /// assert_eq!(cell.try_insert(62), Err((&92, 62))); + /// + /// assert!(cell.get().is_some()); + /// ``` + pub fn try_insert(&self, value: T) -> Result<&T, (&T, T)> { + let mut value = Some(value); + let res = self.get_or_init(|| unsafe { value.take().unwrap_unchecked() }); + match value { + None => Ok(res), + Some(value) => Err((res, value)), + } + } + + /// Gets the contents of the cell, initializing it with `f` if the cell + /// was empty. + /// + /// Many threads may call `get_or_init` concurrently with different + /// initializing functions, but it is guaranteed that only one function + /// will be executed. + /// + /// # Panics + /// + /// If `f` panics, the panic is propagated to the caller, and the cell + /// remains uninitialized. + /// + /// It is an error to reentrantly initialize the cell from `f`. The + /// exact outcome is unspecified. Current implementation deadlocks, but + /// this may be changed to a panic in the future. + /// + /// # Example + /// ``` + /// use once_cell::sync::OnceCell; + /// + /// let cell = OnceCell::new(); + /// let value = cell.get_or_init(|| 92); + /// assert_eq!(value, &92); + /// let value = cell.get_or_init(|| unreachable!()); + /// assert_eq!(value, &92); + /// ``` + pub fn get_or_init<F>(&self, f: F) -> &T + where + F: FnOnce() -> T, + { + enum Void {} + match self.get_or_try_init(|| Ok::<T, Void>(f())) { + Ok(val) => val, + Err(void) => match void {}, + } + } + + /// Gets the contents of the cell, initializing it with `f` if + /// the cell was empty. If the cell was empty and `f` failed, an + /// error is returned. + /// + /// # Panics + /// + /// If `f` panics, the panic is propagated to the caller, and + /// the cell remains uninitialized. + /// + /// It is an error to reentrantly initialize the cell from `f`. + /// The exact outcome is unspecified. Current implementation + /// deadlocks, but this may be changed to a panic in the future. + /// + /// # Example + /// ``` + /// use once_cell::sync::OnceCell; + /// + /// let cell = OnceCell::new(); + /// assert_eq!(cell.get_or_try_init(|| Err(())), Err(())); + /// assert!(cell.get().is_none()); + /// let value = cell.get_or_try_init(|| -> Result<i32, ()> { + /// Ok(92) + /// }); + /// assert_eq!(value, Ok(&92)); + /// assert_eq!(cell.get(), Some(&92)) + /// ``` + pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> + where + F: FnOnce() -> Result<T, E>, + { + // Fast path check + if let Some(value) = self.get() { + return Ok(value); + } + + self.0.initialize(f)?; + + // Safe b/c value is initialized. + debug_assert!(self.0.is_initialized()); + Ok(unsafe { self.get_unchecked() }) + } + + /// Takes the value out of this `OnceCell`, moving it back to an uninitialized state. + /// + /// Has no effect and returns `None` if the `OnceCell` hasn't been initialized. + /// + /// # Examples + /// + /// ``` + /// use once_cell::sync::OnceCell; + /// + /// let mut cell: OnceCell<String> = OnceCell::new(); + /// assert_eq!(cell.take(), None); + /// + /// let mut cell = OnceCell::new(); + /// cell.set("hello".to_string()).unwrap(); + /// assert_eq!(cell.take(), Some("hello".to_string())); + /// assert_eq!(cell.get(), None); + /// ``` + /// + /// This method is allowed to violate the invariant of writing to a `OnceCell` + /// at most once because it requires `&mut` access to `self`. As with all + /// interior mutability, `&mut` access permits arbitrary modification: + /// + /// ``` + /// use once_cell::sync::OnceCell; + /// + /// let mut cell: OnceCell<u32> = OnceCell::new(); + /// cell.set(92).unwrap(); + /// cell = OnceCell::new(); + /// ``` + pub fn take(&mut self) -> Option<T> { + mem::take(self).into_inner() + } + + /// Consumes the `OnceCell`, returning the wrapped value. Returns + /// `None` if the cell was empty. + /// + /// # Examples + /// + /// ``` + /// use once_cell::sync::OnceCell; + /// + /// let cell: OnceCell<String> = OnceCell::new(); + /// assert_eq!(cell.into_inner(), None); + /// + /// let cell = OnceCell::new(); + /// cell.set("hello".to_string()).unwrap(); + /// assert_eq!(cell.into_inner(), Some("hello".to_string())); + /// ``` + #[inline] + pub fn into_inner(self) -> Option<T> { + self.0.into_inner() + } + } + + /// A value which is initialized on the first access. + /// + /// This type is thread-safe and can be used in statics. + /// + /// # Example + /// + /// ``` + /// use std::collections::HashMap; + /// + /// use once_cell::sync::Lazy; + /// + /// static HASHMAP: Lazy<HashMap<i32, String>> = Lazy::new(|| { + /// println!("initializing"); + /// let mut m = HashMap::new(); + /// m.insert(13, "Spica".to_string()); + /// m.insert(74, "Hoyten".to_string()); + /// m + /// }); + /// + /// fn main() { + /// println!("ready"); + /// std::thread::spawn(|| { + /// println!("{:?}", HASHMAP.get(&13)); + /// }).join().unwrap(); + /// println!("{:?}", HASHMAP.get(&74)); + /// + /// // Prints: + /// // ready + /// // initializing + /// // Some("Spica") + /// // Some("Hoyten") + /// } + /// ``` + pub struct Lazy<T, F = fn() -> T> { + cell: OnceCell<T>, + init: Cell<Option<F>>, + } + + impl<T: fmt::Debug, F> fmt::Debug for Lazy<T, F> { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_struct("Lazy").field("cell", &self.cell).field("init", &"..").finish() + } + } + + // We never create a `&F` from a `&Lazy<T, F>` so it is fine to not impl + // `Sync` for `F`. We do create a `&mut Option<F>` in `force`, but this is + // properly synchronized, so it only happens once so it also does not + // contribute to this impl. + unsafe impl<T, F: Send> Sync for Lazy<T, F> where OnceCell<T>: Sync {} + // auto-derived `Send` impl is OK. + + impl<T, F: RefUnwindSafe> RefUnwindSafe for Lazy<T, F> where OnceCell<T>: RefUnwindSafe {} + + impl<T, F> Lazy<T, F> { + /// Creates a new lazy value with the given initializing + /// function. + pub const fn new(f: F) -> Lazy<T, F> { + Lazy { cell: OnceCell::new(), init: Cell::new(Some(f)) } + } + + /// Consumes this `Lazy` returning the stored value. + /// + /// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise. + pub fn into_value(this: Lazy<T, F>) -> Result<T, F> { + let cell = this.cell; + let init = this.init; + cell.into_inner().ok_or_else(|| { + init.take().unwrap_or_else(|| panic!("Lazy instance has previously been poisoned")) + }) + } + } + + impl<T, F: FnOnce() -> T> Lazy<T, F> { + /// Forces the evaluation of this lazy value and + /// returns a reference to the result. This is equivalent + /// to the `Deref` impl, but is explicit. + /// + /// # Example + /// ``` + /// use once_cell::sync::Lazy; + /// + /// let lazy = Lazy::new(|| 92); + /// + /// assert_eq!(Lazy::force(&lazy), &92); + /// assert_eq!(&*lazy, &92); + /// ``` + pub fn force(this: &Lazy<T, F>) -> &T { + this.cell.get_or_init(|| match this.init.take() { + Some(f) => f(), + None => panic!("Lazy instance has previously been poisoned"), + }) + } + + /// Forces the evaluation of this lazy value and + /// returns a mutable reference to the result. This is equivalent + /// to the `Deref` impl, but is explicit. + /// + /// # Example + /// ``` + /// use once_cell::sync::Lazy; + /// + /// let mut lazy = Lazy::new(|| 92); + /// + /// assert_eq!(Lazy::force_mut(&mut lazy), &mut 92); + /// ``` + pub fn force_mut(this: &mut Lazy<T, F>) -> &mut T { + if this.cell.get_mut().is_none() { + let value = match this.init.get_mut().take() { + Some(f) => f(), + None => panic!("Lazy instance has previously been poisoned"), + }; + this.cell = OnceCell::with_value(value); + } + this.cell.get_mut().unwrap_or_else(|| unreachable!()) + } + + /// Gets the reference to the result of this lazy value if + /// it was initialized, otherwise returns `None`. + /// + /// # Example + /// ``` + /// use once_cell::sync::Lazy; + /// + /// let lazy = Lazy::new(|| 92); + /// + /// assert_eq!(Lazy::get(&lazy), None); + /// assert_eq!(&*lazy, &92); + /// assert_eq!(Lazy::get(&lazy), Some(&92)); + /// ``` + pub fn get(this: &Lazy<T, F>) -> Option<&T> { + this.cell.get() + } + + /// Gets the reference to the result of this lazy value if + /// it was initialized, otherwise returns `None`. + /// + /// # Example + /// ``` + /// use once_cell::sync::Lazy; + /// + /// let mut lazy = Lazy::new(|| 92); + /// + /// assert_eq!(Lazy::get_mut(&mut lazy), None); + /// assert_eq!(&*lazy, &92); + /// assert_eq!(Lazy::get_mut(&mut lazy), Some(&mut 92)); + /// ``` + pub fn get_mut(this: &mut Lazy<T, F>) -> Option<&mut T> { + this.cell.get_mut() + } + } + + impl<T, F: FnOnce() -> T> Deref for Lazy<T, F> { + type Target = T; + fn deref(&self) -> &T { + Lazy::force(self) + } + } + + impl<T, F: FnOnce() -> T> DerefMut for Lazy<T, F> { + fn deref_mut(&mut self) -> &mut T { + Lazy::force_mut(self) + } + } + + impl<T: Default> Default for Lazy<T> { + /// Creates a new lazy value using `Default` as the initializing function. + fn default() -> Lazy<T> { + Lazy::new(T::default) + } + } + + /// ```compile_fail + /// struct S(*mut ()); + /// unsafe impl Sync for S {} + /// + /// fn share<T: Sync>(_: &T) {} + /// share(&once_cell::sync::OnceCell::<S>::new()); + /// ``` + /// + /// ```compile_fail + /// struct S(*mut ()); + /// unsafe impl Sync for S {} + /// + /// fn share<T: Sync>(_: &T) {} + /// share(&once_cell::sync::Lazy::<S>::new(|| unimplemented!())); + /// ``` + fn _dummy() {} +} + +#[cfg(feature = "race")] +pub mod race; |