summaryrefslogtreecommitdiffstats
path: root/vendor/regex-automata/src/dfa/minimize.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/regex-automata/src/dfa/minimize.rs')
-rw-r--r--vendor/regex-automata/src/dfa/minimize.rs463
1 files changed, 463 insertions, 0 deletions
diff --git a/vendor/regex-automata/src/dfa/minimize.rs b/vendor/regex-automata/src/dfa/minimize.rs
new file mode 100644
index 0000000..fea925b
--- /dev/null
+++ b/vendor/regex-automata/src/dfa/minimize.rs
@@ -0,0 +1,463 @@
+use core::{cell::RefCell, fmt, mem};
+
+use alloc::{collections::BTreeMap, rc::Rc, vec, vec::Vec};
+
+use crate::{
+ dfa::{automaton::Automaton, dense, DEAD},
+ util::{
+ alphabet,
+ primitives::{PatternID, StateID},
+ },
+};
+
+/// An implementation of Hopcroft's algorithm for minimizing DFAs.
+///
+/// The algorithm implemented here is mostly taken from Wikipedia:
+/// https://en.wikipedia.org/wiki/DFA_minimization#Hopcroft's_algorithm
+///
+/// This code has had some light optimization attention paid to it,
+/// particularly in the form of reducing allocation as much as possible.
+/// However, it is still generally slow. Future optimization work should
+/// probably focus on the bigger picture rather than micro-optimizations. For
+/// example:
+///
+/// 1. Figure out how to more intelligently create initial partitions. That is,
+/// Hopcroft's algorithm starts by creating two partitions of DFA states
+/// that are known to NOT be equivalent: match states and non-match states.
+/// The algorithm proceeds by progressively refining these partitions into
+/// smaller partitions. If we could start with more partitions, then we
+/// could reduce the amount of work that Hopcroft's algorithm needs to do.
+/// 2. For every partition that we visit, we find all incoming transitions to
+/// every state in the partition for *every* element in the alphabet. (This
+/// is why using byte classes can significantly decrease minimization times,
+/// since byte classes shrink the alphabet.) This is quite costly and there
+/// is perhaps some redundant work being performed depending on the specific
+/// states in the set. For example, we might be able to only visit some
+/// elements of the alphabet based on the transitions.
+/// 3. Move parts of minimization into determinization. If minimization has
+/// fewer states to deal with, then it should run faster. A prime example
+/// of this might be large Unicode classes, which are generated in way that
+/// can create a lot of redundant states. (Some work has been done on this
+/// point during NFA compilation via the algorithm described in the
+/// "Incremental Construction of MinimalAcyclic Finite-State Automata"
+/// paper.)
+pub(crate) struct Minimizer<'a> {
+ dfa: &'a mut dense::OwnedDFA,
+ in_transitions: Vec<Vec<Vec<StateID>>>,
+ partitions: Vec<StateSet>,
+ waiting: Vec<StateSet>,
+}
+
+impl<'a> fmt::Debug for Minimizer<'a> {
+ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
+ f.debug_struct("Minimizer")
+ .field("dfa", &self.dfa)
+ .field("in_transitions", &self.in_transitions)
+ .field("partitions", &self.partitions)
+ .field("waiting", &self.waiting)
+ .finish()
+ }
+}
+
+/// A set of states. A state set makes up a single partition in Hopcroft's
+/// algorithm.
+///
+/// It is represented by an ordered set of state identifiers. We use shared
+/// ownership so that a single state set can be in both the set of partitions
+/// and in the set of waiting sets simultaneously without an additional
+/// allocation. Generally, once a state set is built, it becomes immutable.
+///
+/// We use this representation because it avoids the overhead of more
+/// traditional set data structures (HashSet/BTreeSet), and also because
+/// computing intersection/subtraction on this representation is especially
+/// fast.
+#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
+struct StateSet {
+ ids: Rc<RefCell<Vec<StateID>>>,
+}
+
+impl<'a> Minimizer<'a> {
+ pub fn new(dfa: &'a mut dense::OwnedDFA) -> Minimizer<'a> {
+ let in_transitions = Minimizer::incoming_transitions(dfa);
+ let partitions = Minimizer::initial_partitions(dfa);
+ let waiting = partitions.clone();
+ Minimizer { dfa, in_transitions, partitions, waiting }
+ }
+
+ pub fn run(mut self) {
+ let stride2 = self.dfa.stride2();
+ let as_state_id = |index: usize| -> StateID {
+ StateID::new(index << stride2).unwrap()
+ };
+ let as_index = |id: StateID| -> usize { id.as_usize() >> stride2 };
+
+ let mut incoming = StateSet::empty();
+ let mut scratch1 = StateSet::empty();
+ let mut scratch2 = StateSet::empty();
+ let mut newparts = vec![];
+
+ // This loop is basically Hopcroft's algorithm. Everything else is just
+ // shuffling data around to fit our representation.
+ while let Some(set) = self.waiting.pop() {
+ for b in self.dfa.byte_classes().iter() {
+ self.find_incoming_to(b, &set, &mut incoming);
+ // If incoming is empty, then the intersection with any other
+ // set must also be empty. So 'newparts' just ends up being
+ // 'self.partitions'. So there's no need to go through the loop
+ // below.
+ //
+ // This actually turns out to be rather large optimization. On
+ // the order of making minimization 4-5x faster. It's likely
+ // that the vast majority of all states have very few incoming
+ // transitions.
+ if incoming.is_empty() {
+ continue;
+ }
+
+ for p in 0..self.partitions.len() {
+ self.partitions[p].intersection(&incoming, &mut scratch1);
+ if scratch1.is_empty() {
+ newparts.push(self.partitions[p].clone());
+ continue;
+ }
+
+ self.partitions[p].subtract(&incoming, &mut scratch2);
+ if scratch2.is_empty() {
+ newparts.push(self.partitions[p].clone());
+ continue;
+ }
+
+ let (x, y) =
+ (scratch1.deep_clone(), scratch2.deep_clone());
+ newparts.push(x.clone());
+ newparts.push(y.clone());
+ match self.find_waiting(&self.partitions[p]) {
+ Some(i) => {
+ self.waiting[i] = x;
+ self.waiting.push(y);
+ }
+ None => {
+ if x.len() <= y.len() {
+ self.waiting.push(x);
+ } else {
+ self.waiting.push(y);
+ }
+ }
+ }
+ }
+ newparts = mem::replace(&mut self.partitions, newparts);
+ newparts.clear();
+ }
+ }
+
+ // At this point, we now have a minimal partitioning of states, where
+ // each partition is an equivalence class of DFA states. Now we need to
+ // use this partitioning to update the DFA to only contain one state for
+ // each partition.
+
+ // Create a map from DFA state ID to the representative ID of the
+ // equivalence class to which it belongs. The representative ID of an
+ // equivalence class of states is the minimum ID in that class.
+ let mut state_to_part = vec![DEAD; self.dfa.state_len()];
+ for p in &self.partitions {
+ p.iter(|id| state_to_part[as_index(id)] = p.min());
+ }
+
+ // Generate a new contiguous sequence of IDs for minimal states, and
+ // create a map from equivalence IDs to the new IDs. Thus, the new
+ // minimal ID of *any* state in the unminimized DFA can be obtained
+ // with minimals_ids[state_to_part[old_id]].
+ let mut minimal_ids = vec![DEAD; self.dfa.state_len()];
+ let mut new_index = 0;
+ for state in self.dfa.states() {
+ if state_to_part[as_index(state.id())] == state.id() {
+ minimal_ids[as_index(state.id())] = as_state_id(new_index);
+ new_index += 1;
+ }
+ }
+ // The total number of states in the minimal DFA.
+ let minimal_count = new_index;
+ // Convenience function for remapping state IDs. This takes an old ID,
+ // looks up its Hopcroft partition and then maps that to the new ID
+ // range.
+ let remap = |old| minimal_ids[as_index(state_to_part[as_index(old)])];
+
+ // Re-map this DFA in place such that the only states remaining
+ // correspond to the representative states of every equivalence class.
+ for id in (0..self.dfa.state_len()).map(as_state_id) {
+ // If this state isn't a representative for an equivalence class,
+ // then we skip it since it won't appear in the minimal DFA.
+ if state_to_part[as_index(id)] != id {
+ continue;
+ }
+ self.dfa.remap_state(id, remap);
+ self.dfa.swap_states(id, minimal_ids[as_index(id)]);
+ }
+ // Trim off all unused states from the pre-minimized DFA. This
+ // represents all states that were merged into a non-singleton
+ // equivalence class of states, and appeared after the first state
+ // in each such class. (Because the state with the smallest ID in each
+ // equivalence class is its representative ID.)
+ self.dfa.truncate_states(minimal_count);
+
+ // Update the new start states, which is now just the minimal ID of
+ // whatever state the old start state was collapsed into. Also, we
+ // collect everything before-hand to work around the borrow checker.
+ // We're already allocating so much that this is probably fine. If this
+ // turns out to be costly, then I guess add a `starts_mut` iterator.
+ let starts: Vec<_> = self.dfa.starts().collect();
+ for (old_start_id, anchored, start_type) in starts {
+ self.dfa.set_start_state(
+ anchored,
+ start_type,
+ remap(old_start_id),
+ );
+ }
+
+ // Update the match state pattern ID list for multi-regexes. All we
+ // need to do is remap the match state IDs. The pattern ID lists are
+ // always the same as they were since match states with distinct
+ // pattern ID lists are always considered distinct states.
+ let mut pmap = BTreeMap::new();
+ for (match_id, pattern_ids) in self.dfa.pattern_map() {
+ let new_id = remap(match_id);
+ pmap.insert(new_id, pattern_ids);
+ }
+ // This unwrap is OK because minimization never increases the number of
+ // match states or patterns in those match states. Since minimization
+ // runs after the pattern map has already been set at least once, we
+ // know that our match states cannot error.
+ self.dfa.set_pattern_map(&pmap).unwrap();
+
+ // In order to update the ID of the maximum match state, we need to
+ // find the maximum ID among all of the match states in the minimized
+ // DFA. This is not necessarily the new ID of the unminimized maximum
+ // match state, since that could have been collapsed with a much
+ // earlier match state. Therefore, to find the new max match state,
+ // we iterate over all previous match states, find their corresponding
+ // new minimal ID, and take the maximum of those.
+ let old = self.dfa.special().clone();
+ let new = self.dfa.special_mut();
+ // ... but only remap if we had match states.
+ if old.matches() {
+ new.min_match = StateID::MAX;
+ new.max_match = StateID::ZERO;
+ for i in as_index(old.min_match)..=as_index(old.max_match) {
+ let new_id = remap(as_state_id(i));
+ if new_id < new.min_match {
+ new.min_match = new_id;
+ }
+ if new_id > new.max_match {
+ new.max_match = new_id;
+ }
+ }
+ }
+ // ... same, but for start states.
+ if old.starts() {
+ new.min_start = StateID::MAX;
+ new.max_start = StateID::ZERO;
+ for i in as_index(old.min_start)..=as_index(old.max_start) {
+ let new_id = remap(as_state_id(i));
+ if new_id == DEAD {
+ continue;
+ }
+ if new_id < new.min_start {
+ new.min_start = new_id;
+ }
+ if new_id > new.max_start {
+ new.max_start = new_id;
+ }
+ }
+ if new.max_start == DEAD {
+ new.min_start = DEAD;
+ }
+ }
+ new.quit_id = remap(new.quit_id);
+ new.set_max();
+ }
+
+ fn find_waiting(&self, set: &StateSet) -> Option<usize> {
+ self.waiting.iter().position(|s| s == set)
+ }
+
+ fn find_incoming_to(
+ &self,
+ b: alphabet::Unit,
+ set: &StateSet,
+ incoming: &mut StateSet,
+ ) {
+ incoming.clear();
+ set.iter(|id| {
+ for &inid in
+ &self.in_transitions[self.dfa.to_index(id)][b.as_usize()]
+ {
+ incoming.add(inid);
+ }
+ });
+ incoming.canonicalize();
+ }
+
+ fn initial_partitions(dfa: &dense::OwnedDFA) -> Vec<StateSet> {
+ // For match states, we know that two match states with different
+ // pattern ID lists will *always* be distinct, so we can partition them
+ // initially based on that.
+ let mut matching: BTreeMap<Vec<PatternID>, StateSet> = BTreeMap::new();
+ let mut is_quit = StateSet::empty();
+ let mut no_match = StateSet::empty();
+ for state in dfa.states() {
+ if dfa.is_match_state(state.id()) {
+ let mut pids = vec![];
+ for i in 0..dfa.match_len(state.id()) {
+ pids.push(dfa.match_pattern(state.id(), i));
+ }
+ matching
+ .entry(pids)
+ .or_insert(StateSet::empty())
+ .add(state.id());
+ } else if dfa.is_quit_state(state.id()) {
+ is_quit.add(state.id());
+ } else {
+ no_match.add(state.id());
+ }
+ }
+
+ let mut sets: Vec<StateSet> =
+ matching.into_iter().map(|(_, set)| set).collect();
+ sets.push(no_match);
+ sets.push(is_quit);
+ sets
+ }
+
+ fn incoming_transitions(dfa: &dense::OwnedDFA) -> Vec<Vec<Vec<StateID>>> {
+ let mut incoming = vec![];
+ for _ in dfa.states() {
+ incoming.push(vec![vec![]; dfa.alphabet_len()]);
+ }
+ for state in dfa.states() {
+ for (b, next) in state.transitions() {
+ incoming[dfa.to_index(next)][b.as_usize()].push(state.id());
+ }
+ }
+ incoming
+ }
+}
+
+impl StateSet {
+ fn empty() -> StateSet {
+ StateSet { ids: Rc::new(RefCell::new(vec![])) }
+ }
+
+ fn add(&mut self, id: StateID) {
+ self.ids.borrow_mut().push(id);
+ }
+
+ fn min(&self) -> StateID {
+ self.ids.borrow()[0]
+ }
+
+ fn canonicalize(&mut self) {
+ self.ids.borrow_mut().sort();
+ self.ids.borrow_mut().dedup();
+ }
+
+ fn clear(&mut self) {
+ self.ids.borrow_mut().clear();
+ }
+
+ fn len(&self) -> usize {
+ self.ids.borrow().len()
+ }
+
+ fn is_empty(&self) -> bool {
+ self.len() == 0
+ }
+
+ fn deep_clone(&self) -> StateSet {
+ let ids = self.ids.borrow().iter().cloned().collect();
+ StateSet { ids: Rc::new(RefCell::new(ids)) }
+ }
+
+ fn iter<F: FnMut(StateID)>(&self, mut f: F) {
+ for &id in self.ids.borrow().iter() {
+ f(id);
+ }
+ }
+
+ fn intersection(&self, other: &StateSet, dest: &mut StateSet) {
+ dest.clear();
+ if self.is_empty() || other.is_empty() {
+ return;
+ }
+
+ let (seta, setb) = (self.ids.borrow(), other.ids.borrow());
+ let (mut ita, mut itb) = (seta.iter().cloned(), setb.iter().cloned());
+ let (mut a, mut b) = (ita.next().unwrap(), itb.next().unwrap());
+ loop {
+ if a == b {
+ dest.add(a);
+ a = match ita.next() {
+ None => break,
+ Some(a) => a,
+ };
+ b = match itb.next() {
+ None => break,
+ Some(b) => b,
+ };
+ } else if a < b {
+ a = match ita.next() {
+ None => break,
+ Some(a) => a,
+ };
+ } else {
+ b = match itb.next() {
+ None => break,
+ Some(b) => b,
+ };
+ }
+ }
+ }
+
+ fn subtract(&self, other: &StateSet, dest: &mut StateSet) {
+ dest.clear();
+ if self.is_empty() || other.is_empty() {
+ self.iter(|s| dest.add(s));
+ return;
+ }
+
+ let (seta, setb) = (self.ids.borrow(), other.ids.borrow());
+ let (mut ita, mut itb) = (seta.iter().cloned(), setb.iter().cloned());
+ let (mut a, mut b) = (ita.next().unwrap(), itb.next().unwrap());
+ loop {
+ if a == b {
+ a = match ita.next() {
+ None => break,
+ Some(a) => a,
+ };
+ b = match itb.next() {
+ None => {
+ dest.add(a);
+ break;
+ }
+ Some(b) => b,
+ };
+ } else if a < b {
+ dest.add(a);
+ a = match ita.next() {
+ None => break,
+ Some(a) => a,
+ };
+ } else {
+ b = match itb.next() {
+ None => {
+ dest.add(a);
+ break;
+ }
+ Some(b) => b,
+ };
+ }
+ }
+ for a in ita {
+ dest.add(a);
+ }
+ }
+}