diff options
Diffstat (limited to 'vendor/regex-automata/src/meta/strategy.rs')
-rw-r--r-- | vendor/regex-automata/src/meta/strategy.rs | 1914 |
1 files changed, 1914 insertions, 0 deletions
diff --git a/vendor/regex-automata/src/meta/strategy.rs b/vendor/regex-automata/src/meta/strategy.rs new file mode 100644 index 0000000..04f2ba3 --- /dev/null +++ b/vendor/regex-automata/src/meta/strategy.rs @@ -0,0 +1,1914 @@ +use core::{ + fmt::Debug, + panic::{RefUnwindSafe, UnwindSafe}, +}; + +use alloc::sync::Arc; + +use regex_syntax::hir::{literal, Hir}; + +use crate::{ + meta::{ + error::{BuildError, RetryError, RetryFailError, RetryQuadraticError}, + regex::{Cache, RegexInfo}, + reverse_inner, wrappers, + }, + nfa::thompson::{self, WhichCaptures, NFA}, + util::{ + captures::{Captures, GroupInfo}, + look::LookMatcher, + prefilter::{self, Prefilter, PrefilterI}, + primitives::{NonMaxUsize, PatternID}, + search::{Anchored, HalfMatch, Input, Match, MatchKind, PatternSet}, + }, +}; + +/// A trait that represents a single meta strategy. Its main utility is in +/// providing a way to do dynamic dispatch over a few choices. +/// +/// Why dynamic dispatch? I actually don't have a super compelling reason, and +/// importantly, I have not benchmarked it with the main alternative: an enum. +/// I went with dynamic dispatch initially because the regex engine search code +/// really can't be inlined into caller code in most cases because it's just +/// too big. In other words, it is already expected that every regex search +/// will entail at least the cost of a function call. +/// +/// I do wonder whether using enums would result in better codegen overall +/// though. It's a worthwhile experiment to try. Probably the most interesting +/// benchmark to run in such a case would be one with a high match count. That +/// is, a benchmark to test the overall latency of a search call. +pub(super) trait Strategy: + Debug + Send + Sync + RefUnwindSafe + UnwindSafe + 'static +{ + fn group_info(&self) -> &GroupInfo; + + fn create_cache(&self) -> Cache; + + fn reset_cache(&self, cache: &mut Cache); + + fn is_accelerated(&self) -> bool; + + fn memory_usage(&self) -> usize; + + fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match>; + + fn search_half( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Option<HalfMatch>; + + fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool; + + fn search_slots( + &self, + cache: &mut Cache, + input: &Input<'_>, + slots: &mut [Option<NonMaxUsize>], + ) -> Option<PatternID>; + + fn which_overlapping_matches( + &self, + cache: &mut Cache, + input: &Input<'_>, + patset: &mut PatternSet, + ); +} + +pub(super) fn new( + info: &RegexInfo, + hirs: &[&Hir], +) -> Result<Arc<dyn Strategy>, BuildError> { + // At this point, we're committed to a regex engine of some kind. So pull + // out a prefilter if we can, which will feed to each of the constituent + // regex engines. + let pre = if info.is_always_anchored_start() { + // PERF: I'm not sure we necessarily want to do this... We may want to + // run a prefilter for quickly rejecting in some cases. The problem + // is that anchored searches overlap quite a bit with the use case + // of "run a regex on every line to extract data." In that case, the + // regex always matches, so running a prefilter doesn't really help us + // there. The main place where a prefilter helps in an anchored search + // is if the anchored search is not expected to match frequently. That + // is, the prefilter gives us a way to possibly reject a haystack very + // quickly. + // + // Maybe we should do use a prefilter, but only for longer haystacks? + // Or maybe we should only use a prefilter when we think it's "fast"? + // + // Interestingly, I think we currently lack the infrastructure for + // disabling a prefilter based on haystack length. That would probably + // need to be a new 'Input' option. (Interestingly, an 'Input' used to + // carry a 'Prefilter' with it, but I moved away from that.) + debug!("skipping literal extraction since regex is anchored"); + None + } else if let Some(pre) = info.config().get_prefilter() { + debug!( + "skipping literal extraction since the caller provided a prefilter" + ); + Some(pre.clone()) + } else if info.config().get_auto_prefilter() { + let kind = info.config().get_match_kind(); + let prefixes = crate::util::prefilter::prefixes(kind, hirs); + // If we can build a full `Strategy` from just the extracted prefixes, + // then we can short-circuit and avoid building a regex engine at all. + if let Some(pre) = Pre::from_prefixes(info, &prefixes) { + debug!( + "found that the regex can be broken down to a literal \ + search, avoiding the regex engine entirely", + ); + return Ok(pre); + } + // This now attempts another short-circuit of the regex engine: if we + // have a huge alternation of just plain literals, then we can just use + // Aho-Corasick for that and avoid the regex engine entirely. + // + // You might think this case would just be handled by + // `Pre::from_prefixes`, but that technique relies on heuristic literal + // extraction from the corresponding `Hir`. That works, but part of + // heuristics limit the size and number of literals returned. This case + // will specifically handle patterns with very large alternations. + // + // One wonders if we should just roll this our heuristic literal + // extraction, and then I think this case could disappear entirely. + if let Some(pre) = Pre::from_alternation_literals(info, hirs) { + debug!( + "found plain alternation of literals, \ + avoiding regex engine entirely and using Aho-Corasick" + ); + return Ok(pre); + } + prefixes.literals().and_then(|strings| { + debug!( + "creating prefilter from {} literals: {:?}", + strings.len(), + strings, + ); + Prefilter::new(kind, strings) + }) + } else { + debug!("skipping literal extraction since prefilters were disabled"); + None + }; + let mut core = Core::new(info.clone(), pre.clone(), hirs)?; + // Now that we have our core regex engines built, there are a few cases + // where we can do a little bit better than just a normal "search forward + // and maybe use a prefilter when in a start state." However, these cases + // may not always work or otherwise build on top of the Core searcher. + // For example, the reverse anchored optimization seems like it might + // always work, but only the DFAs support reverse searching and the DFAs + // might give up or quit for reasons. If we had, e.g., a PikeVM that + // supported reverse searching, then we could avoid building a full Core + // engine for this case. + core = match ReverseAnchored::new(core) { + Err(core) => core, + Ok(ra) => { + debug!("using reverse anchored strategy"); + return Ok(Arc::new(ra)); + } + }; + core = match ReverseSuffix::new(core, hirs) { + Err(core) => core, + Ok(rs) => { + debug!("using reverse suffix strategy"); + return Ok(Arc::new(rs)); + } + }; + core = match ReverseInner::new(core, hirs) { + Err(core) => core, + Ok(ri) => { + debug!("using reverse inner strategy"); + return Ok(Arc::new(ri)); + } + }; + debug!("using core strategy"); + Ok(Arc::new(core)) +} + +#[derive(Clone, Debug)] +struct Pre<P> { + pre: P, + group_info: GroupInfo, +} + +impl<P: PrefilterI> Pre<P> { + fn new(pre: P) -> Arc<dyn Strategy> { + // The only thing we support when we use prefilters directly as a + // strategy is the start and end of the overall match for a single + // pattern. In other words, exactly one implicit capturing group. Which + // is exactly what we use here for a GroupInfo. + let group_info = GroupInfo::new([[None::<&str>]]).unwrap(); + Arc::new(Pre { pre, group_info }) + } +} + +// This is a little weird, but we don't actually care about the type parameter +// here because we're selecting which underlying prefilter to use. So we just +// define it on an arbitrary type. +impl Pre<()> { + /// Given a sequence of prefixes, attempt to return a full `Strategy` using + /// just the prefixes. + /// + /// Basically, this occurs when the prefixes given not just prefixes, + /// but an enumeration of the entire language matched by the regular + /// expression. + /// + /// A number of other conditions need to be true too. For example, there + /// can be only one pattern, the number of explicit capture groups is 0, no + /// look-around assertions and so on. + /// + /// Note that this ignores `Config::get_auto_prefilter` because if this + /// returns something, then it isn't a prefilter but a matcher itself. + /// Therefore, it shouldn't suffer from the problems typical to prefilters + /// (such as a high false positive rate). + fn from_prefixes( + info: &RegexInfo, + prefixes: &literal::Seq, + ) -> Option<Arc<dyn Strategy>> { + let kind = info.config().get_match_kind(); + // Check to see if our prefixes are exact, which means we might be + // able to bypass the regex engine entirely and just rely on literal + // searches. + if !prefixes.is_exact() { + return None; + } + // We also require that we have a single regex pattern. Namely, + // we reuse the prefilter infrastructure to implement search and + // prefilters only report spans. Prefilters don't know about pattern + // IDs. The multi-regex case isn't a lost cause, we might still use + // Aho-Corasick and we might still just use a regular prefilter, but + // that's done below. + if info.pattern_len() != 1 { + return None; + } + // We can't have any capture groups either. The literal engines don't + // know how to deal with things like '(foo)(bar)'. In that case, a + // prefilter will just be used and then the regex engine will resolve + // the capture groups. + if info.props()[0].explicit_captures_len() != 0 { + return None; + } + // We also require that it has zero look-around assertions. Namely, + // literal extraction treats look-around assertions as if they match + // *every* empty string. But of course, that isn't true. So for + // example, 'foo\bquux' never matches anything, but 'fooquux' is + // extracted from that as an exact literal. Such cases should just run + // the regex engine. 'fooquux' will be used as a normal prefilter, and + // then the regex engine will try to look for an actual match. + if !info.props()[0].look_set().is_empty() { + return None; + } + // Finally, currently, our prefilters are all oriented around + // leftmost-first match semantics, so don't try to use them if the + // caller asked for anything else. + if kind != MatchKind::LeftmostFirst { + return None; + } + // The above seems like a lot of requirements to meet, but it applies + // to a lot of cases. 'foo', '[abc][123]' and 'foo|bar|quux' all meet + // the above criteria, for example. + // + // Note that this is effectively a latency optimization. If we didn't + // do this, then the extracted literals would still get bundled into + // a prefilter, and every regex engine capable of running unanchored + // searches supports prefilters. So this optimization merely sidesteps + // having to run the regex engine at all to confirm the match. Thus, it + // decreases the latency of a match. + + // OK because we know the set is exact and thus finite. + let prefixes = prefixes.literals().unwrap(); + debug!( + "trying to bypass regex engine by creating \ + prefilter from {} literals: {:?}", + prefixes.len(), + prefixes, + ); + let choice = match prefilter::Choice::new(kind, prefixes) { + Some(choice) => choice, + None => { + debug!( + "regex bypass failed because no prefilter could be built" + ); + return None; + } + }; + let strat: Arc<dyn Strategy> = match choice { + prefilter::Choice::Memchr(pre) => Pre::new(pre), + prefilter::Choice::Memchr2(pre) => Pre::new(pre), + prefilter::Choice::Memchr3(pre) => Pre::new(pre), + prefilter::Choice::Memmem(pre) => Pre::new(pre), + prefilter::Choice::Teddy(pre) => Pre::new(pre), + prefilter::Choice::ByteSet(pre) => Pre::new(pre), + prefilter::Choice::AhoCorasick(pre) => Pre::new(pre), + }; + Some(strat) + } + + /// Attempts to extract an alternation of literals, and if it's deemed + /// worth doing, returns an Aho-Corasick prefilter as a strategy. + /// + /// And currently, this only returns something when 'hirs.len() == 1'. This + /// could in theory do something if there are multiple HIRs where all of + /// them are alternation of literals, but I haven't had the time to go down + /// that path yet. + fn from_alternation_literals( + info: &RegexInfo, + hirs: &[&Hir], + ) -> Option<Arc<dyn Strategy>> { + use crate::util::prefilter::AhoCorasick; + + let lits = crate::meta::literal::alternation_literals(info, hirs)?; + let ac = AhoCorasick::new(MatchKind::LeftmostFirst, &lits)?; + Some(Pre::new(ac)) + } +} + +// This implements Strategy for anything that implements PrefilterI. +// +// Note that this must only be used for regexes of length 1. Multi-regexes +// don't work here. The prefilter interface only provides the span of a match +// and not the pattern ID. (I did consider making it more expressive, but I +// couldn't figure out how to tie everything together elegantly.) Thus, so long +// as the regex only contains one pattern, we can simply assume that a match +// corresponds to PatternID::ZERO. And indeed, that's what we do here. +// +// In practice, since this impl is used to report matches directly and thus +// completely bypasses the regex engine, we only wind up using this under the +// following restrictions: +// +// * There must be only one pattern. As explained above. +// * The literal sequence must be finite and only contain exact literals. +// * There must not be any look-around assertions. If there are, the literals +// extracted might be exact, but a match doesn't necessarily imply an overall +// match. As a trivial example, 'foo\bbar' does not match 'foobar'. +// * The pattern must not have any explicit capturing groups. If it does, the +// caller might expect them to be resolved. e.g., 'foo(bar)'. +// +// So when all of those things are true, we use a prefilter directly as a +// strategy. +// +// In the case where the number of patterns is more than 1, we don't use this +// but do use a special Aho-Corasick strategy if all of the regexes are just +// simple literals or alternations of literals. (We also use the Aho-Corasick +// strategy when len(patterns)==1 if the number of literals is large. In that +// case, literal extraction gives up and will return an infinite set.) +impl<P: PrefilterI> Strategy for Pre<P> { + #[cfg_attr(feature = "perf-inline", inline(always))] + fn group_info(&self) -> &GroupInfo { + &self.group_info + } + + fn create_cache(&self) -> Cache { + Cache { + capmatches: Captures::all(self.group_info().clone()), + pikevm: wrappers::PikeVMCache::none(), + backtrack: wrappers::BoundedBacktrackerCache::none(), + onepass: wrappers::OnePassCache::none(), + hybrid: wrappers::HybridCache::none(), + revhybrid: wrappers::ReverseHybridCache::none(), + } + } + + fn reset_cache(&self, _cache: &mut Cache) {} + + fn is_accelerated(&self) -> bool { + self.pre.is_fast() + } + + fn memory_usage(&self) -> usize { + self.pre.memory_usage() + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search(&self, _cache: &mut Cache, input: &Input<'_>) -> Option<Match> { + if input.is_done() { + return None; + } + if input.get_anchored().is_anchored() { + return self + .pre + .prefix(input.haystack(), input.get_span()) + .map(|sp| Match::new(PatternID::ZERO, sp)); + } + self.pre + .find(input.haystack(), input.get_span()) + .map(|sp| Match::new(PatternID::ZERO, sp)) + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search_half( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Option<HalfMatch> { + self.search(cache, input).map(|m| HalfMatch::new(m.pattern(), m.end())) + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool { + self.search(cache, input).is_some() + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search_slots( + &self, + cache: &mut Cache, + input: &Input<'_>, + slots: &mut [Option<NonMaxUsize>], + ) -> Option<PatternID> { + let m = self.search(cache, input)?; + if let Some(slot) = slots.get_mut(0) { + *slot = NonMaxUsize::new(m.start()); + } + if let Some(slot) = slots.get_mut(1) { + *slot = NonMaxUsize::new(m.end()); + } + Some(m.pattern()) + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn which_overlapping_matches( + &self, + cache: &mut Cache, + input: &Input<'_>, + patset: &mut PatternSet, + ) { + if self.search(cache, input).is_some() { + patset.insert(PatternID::ZERO); + } + } +} + +#[derive(Debug)] +struct Core { + info: RegexInfo, + pre: Option<Prefilter>, + nfa: NFA, + nfarev: Option<NFA>, + pikevm: wrappers::PikeVM, + backtrack: wrappers::BoundedBacktracker, + onepass: wrappers::OnePass, + hybrid: wrappers::Hybrid, + dfa: wrappers::DFA, +} + +impl Core { + fn new( + info: RegexInfo, + pre: Option<Prefilter>, + hirs: &[&Hir], + ) -> Result<Core, BuildError> { + let mut lookm = LookMatcher::new(); + lookm.set_line_terminator(info.config().get_line_terminator()); + let thompson_config = thompson::Config::new() + .utf8(info.config().get_utf8_empty()) + .nfa_size_limit(info.config().get_nfa_size_limit()) + .shrink(false) + .which_captures(info.config().get_which_captures()) + .look_matcher(lookm); + let nfa = thompson::Compiler::new() + .configure(thompson_config.clone()) + .build_many_from_hir(hirs) + .map_err(BuildError::nfa)?; + // It's possible for the PikeVM or the BB to fail to build, even though + // at this point, we already have a full NFA in hand. They can fail + // when a Unicode word boundary is used but where Unicode word boundary + // support is disabled at compile time, thus making it impossible to + // match. (Construction can also fail if the NFA was compiled without + // captures, but we always enable that above.) + let pikevm = wrappers::PikeVM::new(&info, pre.clone(), &nfa)?; + let backtrack = + wrappers::BoundedBacktracker::new(&info, pre.clone(), &nfa)?; + // The onepass engine can of course fail to build, but we expect it to + // fail in many cases because it is an optimization that doesn't apply + // to all regexes. The 'OnePass' wrapper encapsulates this failure (and + // logs a message if it occurs). + let onepass = wrappers::OnePass::new(&info, &nfa); + // We try to encapsulate whether a particular regex engine should be + // used within each respective wrapper, but the DFAs need a reverse NFA + // to build itself, and we really do not want to build a reverse NFA if + // we know we aren't going to use the lazy DFA. So we do a config check + // up front, which is in practice the only way we won't try to use the + // DFA. + let (nfarev, hybrid, dfa) = + if !info.config().get_hybrid() && !info.config().get_dfa() { + (None, wrappers::Hybrid::none(), wrappers::DFA::none()) + } else { + // FIXME: Technically, we don't quite yet KNOW that we need + // a reverse NFA. It's possible for the DFAs below to both + // fail to build just based on the forward NFA. In which case, + // building the reverse NFA was totally wasted work. But... + // fixing this requires breaking DFA construction apart into + // two pieces: one for the forward part and another for the + // reverse part. Quite annoying. Making it worse, when building + // both DFAs fails, it's quite likely that the NFA is large and + // that it will take quite some time to build the reverse NFA + // too. So... it's really probably worth it to do this! + let nfarev = thompson::Compiler::new() + // Currently, reverse NFAs don't support capturing groups, + // so we MUST disable them. But even if we didn't have to, + // we would, because nothing in this crate does anything + // useful with capturing groups in reverse. And of course, + // the lazy DFA ignores capturing groups in all cases. + .configure( + thompson_config + .clone() + .which_captures(WhichCaptures::None) + .reverse(true), + ) + .build_many_from_hir(hirs) + .map_err(BuildError::nfa)?; + let dfa = if !info.config().get_dfa() { + wrappers::DFA::none() + } else { + wrappers::DFA::new(&info, pre.clone(), &nfa, &nfarev) + }; + let hybrid = if !info.config().get_hybrid() { + wrappers::Hybrid::none() + } else if dfa.is_some() { + debug!("skipping lazy DFA because we have a full DFA"); + wrappers::Hybrid::none() + } else { + wrappers::Hybrid::new(&info, pre.clone(), &nfa, &nfarev) + }; + (Some(nfarev), hybrid, dfa) + }; + Ok(Core { + info, + pre, + nfa, + nfarev, + pikevm, + backtrack, + onepass, + hybrid, + dfa, + }) + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn try_search_mayfail( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Option<Result<Option<Match>, RetryFailError>> { + if let Some(e) = self.dfa.get(input) { + trace!("using full DFA for search at {:?}", input.get_span()); + Some(e.try_search(input)) + } else if let Some(e) = self.hybrid.get(input) { + trace!("using lazy DFA for search at {:?}", input.get_span()); + Some(e.try_search(&mut cache.hybrid, input)) + } else { + None + } + } + + fn search_nofail( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Option<Match> { + let caps = &mut cache.capmatches; + caps.set_pattern(None); + // We manually inline 'try_search_slots_nofail' here because we need to + // borrow from 'cache.capmatches' in this method, but if we do, then + // we can't pass 'cache' wholesale to to 'try_slots_no_hybrid'. It's a + // classic example of how the borrow checker inhibits decomposition. + // There are of course work-arounds (more types and/or interior + // mutability), but that's more annoying than this IMO. + let pid = if let Some(ref e) = self.onepass.get(input) { + trace!("using OnePass for search at {:?}", input.get_span()); + e.search_slots(&mut cache.onepass, input, caps.slots_mut()) + } else if let Some(ref e) = self.backtrack.get(input) { + trace!( + "using BoundedBacktracker for search at {:?}", + input.get_span() + ); + e.search_slots(&mut cache.backtrack, input, caps.slots_mut()) + } else { + trace!("using PikeVM for search at {:?}", input.get_span()); + let e = self.pikevm.get(); + e.search_slots(&mut cache.pikevm, input, caps.slots_mut()) + }; + caps.set_pattern(pid); + caps.get_match() + } + + fn search_half_nofail( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Option<HalfMatch> { + // Only the lazy/full DFA returns half-matches, since the DFA requires + // a reverse scan to find the start position. These fallback regex + // engines can find the start and end in a single pass, so we just do + // that and throw away the start offset to conform to the API. + let m = self.search_nofail(cache, input)?; + Some(HalfMatch::new(m.pattern(), m.end())) + } + + fn search_slots_nofail( + &self, + cache: &mut Cache, + input: &Input<'_>, + slots: &mut [Option<NonMaxUsize>], + ) -> Option<PatternID> { + if let Some(ref e) = self.onepass.get(input) { + trace!( + "using OnePass for capture search at {:?}", + input.get_span() + ); + e.search_slots(&mut cache.onepass, input, slots) + } else if let Some(ref e) = self.backtrack.get(input) { + trace!( + "using BoundedBacktracker for capture search at {:?}", + input.get_span() + ); + e.search_slots(&mut cache.backtrack, input, slots) + } else { + trace!( + "using PikeVM for capture search at {:?}", + input.get_span() + ); + let e = self.pikevm.get(); + e.search_slots(&mut cache.pikevm, input, slots) + } + } + + fn is_match_nofail(&self, cache: &mut Cache, input: &Input<'_>) -> bool { + if let Some(ref e) = self.onepass.get(input) { + trace!( + "using OnePass for is-match search at {:?}", + input.get_span() + ); + e.search_slots(&mut cache.onepass, input, &mut []).is_some() + } else if let Some(ref e) = self.backtrack.get(input) { + trace!( + "using BoundedBacktracker for is-match search at {:?}", + input.get_span() + ); + e.is_match(&mut cache.backtrack, input) + } else { + trace!( + "using PikeVM for is-match search at {:?}", + input.get_span() + ); + let e = self.pikevm.get(); + e.is_match(&mut cache.pikevm, input) + } + } + + fn is_capture_search_needed(&self, slots_len: usize) -> bool { + slots_len > self.nfa.group_info().implicit_slot_len() + } +} + +impl Strategy for Core { + #[cfg_attr(feature = "perf-inline", inline(always))] + fn group_info(&self) -> &GroupInfo { + self.nfa.group_info() + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn create_cache(&self) -> Cache { + Cache { + capmatches: Captures::all(self.group_info().clone()), + pikevm: self.pikevm.create_cache(), + backtrack: self.backtrack.create_cache(), + onepass: self.onepass.create_cache(), + hybrid: self.hybrid.create_cache(), + revhybrid: wrappers::ReverseHybridCache::none(), + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn reset_cache(&self, cache: &mut Cache) { + cache.pikevm.reset(&self.pikevm); + cache.backtrack.reset(&self.backtrack); + cache.onepass.reset(&self.onepass); + cache.hybrid.reset(&self.hybrid); + } + + fn is_accelerated(&self) -> bool { + self.pre.as_ref().map_or(false, |pre| pre.is_fast()) + } + + fn memory_usage(&self) -> usize { + self.info.memory_usage() + + self.pre.as_ref().map_or(0, |pre| pre.memory_usage()) + + self.nfa.memory_usage() + + self.nfarev.as_ref().map_or(0, |nfa| nfa.memory_usage()) + + self.onepass.memory_usage() + + self.dfa.memory_usage() + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match> { + // We manually inline try_search_mayfail here because letting the + // compiler do it seems to produce pretty crappy codegen. + return if let Some(e) = self.dfa.get(input) { + trace!("using full DFA for full search at {:?}", input.get_span()); + match e.try_search(input) { + Ok(x) => x, + Err(_err) => { + trace!("full DFA search failed: {}", _err); + self.search_nofail(cache, input) + } + } + } else if let Some(e) = self.hybrid.get(input) { + trace!("using lazy DFA for full search at {:?}", input.get_span()); + match e.try_search(&mut cache.hybrid, input) { + Ok(x) => x, + Err(_err) => { + trace!("lazy DFA search failed: {}", _err); + self.search_nofail(cache, input) + } + } + } else { + self.search_nofail(cache, input) + }; + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search_half( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Option<HalfMatch> { + // The main difference with 'search' is that if we're using a DFA, we + // can use a single forward scan without needing to run the reverse + // DFA. + if let Some(e) = self.dfa.get(input) { + trace!("using full DFA for half search at {:?}", input.get_span()); + match e.try_search_half_fwd(input) { + Ok(x) => x, + Err(_err) => { + trace!("full DFA half search failed: {}", _err); + self.search_half_nofail(cache, input) + } + } + } else if let Some(e) = self.hybrid.get(input) { + trace!("using lazy DFA for half search at {:?}", input.get_span()); + match e.try_search_half_fwd(&mut cache.hybrid, input) { + Ok(x) => x, + Err(_err) => { + trace!("lazy DFA half search failed: {}", _err); + self.search_half_nofail(cache, input) + } + } + } else { + self.search_half_nofail(cache, input) + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool { + if let Some(e) = self.dfa.get(input) { + trace!( + "using full DFA for is-match search at {:?}", + input.get_span() + ); + match e.try_search_half_fwd(input) { + Ok(x) => x.is_some(), + Err(_err) => { + trace!("full DFA half search failed: {}", _err); + self.is_match_nofail(cache, input) + } + } + } else if let Some(e) = self.hybrid.get(input) { + trace!( + "using lazy DFA for is-match search at {:?}", + input.get_span() + ); + match e.try_search_half_fwd(&mut cache.hybrid, input) { + Ok(x) => x.is_some(), + Err(_err) => { + trace!("lazy DFA half search failed: {}", _err); + self.is_match_nofail(cache, input) + } + } + } else { + self.is_match_nofail(cache, input) + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search_slots( + &self, + cache: &mut Cache, + input: &Input<'_>, + slots: &mut [Option<NonMaxUsize>], + ) -> Option<PatternID> { + // Even if the regex has explicit capture groups, if the caller didn't + // provide any explicit slots, then it doesn't make sense to try and do + // extra work to get offsets for those slots. Ideally the caller should + // realize this and not call this routine in the first place, but alas, + // we try to save the caller from themselves if they do. + if !self.is_capture_search_needed(slots.len()) { + trace!("asked for slots unnecessarily, trying fast path"); + let m = self.search(cache, input)?; + copy_match_to_slots(m, slots); + return Some(m.pattern()); + } + // If the onepass DFA is available for this search (which only happens + // when it's anchored), then skip running a fallible DFA. The onepass + // DFA isn't as fast as a full or lazy DFA, but it is typically quite + // a bit faster than the backtracker or the PikeVM. So it isn't as + // advantageous to try and do a full/lazy DFA scan first. + // + // We still theorize that it's better to do a full/lazy DFA scan, even + // when it's anchored, because it's usually much faster and permits us + // to say "no match" much more quickly. This does hurt the case of, + // say, parsing each line in a log file into capture groups, because + // in that case, the line always matches. So the lazy DFA scan is + // usually just wasted work. But, the lazy DFA is usually quite fast + // and doesn't cost too much here. + if self.onepass.get(&input).is_some() { + return self.search_slots_nofail(cache, &input, slots); + } + let m = match self.try_search_mayfail(cache, input) { + Some(Ok(Some(m))) => m, + Some(Ok(None)) => return None, + Some(Err(_err)) => { + trace!("fast capture search failed: {}", _err); + return self.search_slots_nofail(cache, input, slots); + } + None => { + return self.search_slots_nofail(cache, input, slots); + } + }; + // At this point, now that we've found the bounds of the + // match, we need to re-run something that can resolve + // capturing groups. But we only need to run on it on the + // match bounds and not the entire haystack. + trace!( + "match found at {}..{} in capture search, \ + using another engine to find captures", + m.start(), + m.end(), + ); + let input = input + .clone() + .span(m.start()..m.end()) + .anchored(Anchored::Pattern(m.pattern())); + Some( + self.search_slots_nofail(cache, &input, slots) + .expect("should find a match"), + ) + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn which_overlapping_matches( + &self, + cache: &mut Cache, + input: &Input<'_>, + patset: &mut PatternSet, + ) { + if let Some(e) = self.dfa.get(input) { + trace!( + "using full DFA for overlapping search at {:?}", + input.get_span() + ); + let _err = match e.try_which_overlapping_matches(input, patset) { + Ok(()) => return, + Err(err) => err, + }; + trace!("fast overlapping search failed: {}", _err); + } else if let Some(e) = self.hybrid.get(input) { + trace!( + "using lazy DFA for overlapping search at {:?}", + input.get_span() + ); + let _err = match e.try_which_overlapping_matches( + &mut cache.hybrid, + input, + patset, + ) { + Ok(()) => { + return; + } + Err(err) => err, + }; + trace!("fast overlapping search failed: {}", _err); + } + trace!( + "using PikeVM for overlapping search at {:?}", + input.get_span() + ); + let e = self.pikevm.get(); + e.which_overlapping_matches(&mut cache.pikevm, input, patset) + } +} + +#[derive(Debug)] +struct ReverseAnchored { + core: Core, +} + +impl ReverseAnchored { + fn new(core: Core) -> Result<ReverseAnchored, Core> { + if !core.info.is_always_anchored_end() { + debug!( + "skipping reverse anchored optimization because \ + the regex is not always anchored at the end" + ); + return Err(core); + } + // Note that the caller can still request an anchored search even when + // the regex isn't anchored at the start. We detect that case in the + // search routines below and just fallback to the core engine. This + // is fine because both searches are anchored. It's just a matter of + // picking one. Falling back to the core engine is a little simpler, + // since if we used the reverse anchored approach, we'd have to add an + // extra check to ensure the match reported starts at the place where + // the caller requested the search to start. + if core.info.is_always_anchored_start() { + debug!( + "skipping reverse anchored optimization because \ + the regex is also anchored at the start" + ); + return Err(core); + } + // Only DFAs can do reverse searches (currently), so we need one of + // them in order to do this optimization. It's possible (although + // pretty unlikely) that we have neither and need to give up. + if !core.hybrid.is_some() && !core.dfa.is_some() { + debug!( + "skipping reverse anchored optimization because \ + we don't have a lazy DFA or a full DFA" + ); + return Err(core); + } + Ok(ReverseAnchored { core }) + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn try_search_half_anchored_rev( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Result<Option<HalfMatch>, RetryFailError> { + // We of course always want an anchored search. In theory, the + // underlying regex engines should automatically enable anchored + // searches since the regex is itself anchored, but this more clearly + // expresses intent and is always correct. + let input = input.clone().anchored(Anchored::Yes); + if let Some(e) = self.core.dfa.get(&input) { + trace!( + "using full DFA for reverse anchored search at {:?}", + input.get_span() + ); + e.try_search_half_rev(&input) + } else if let Some(e) = self.core.hybrid.get(&input) { + trace!( + "using lazy DFA for reverse anchored search at {:?}", + input.get_span() + ); + e.try_search_half_rev(&mut cache.hybrid, &input) + } else { + unreachable!("ReverseAnchored always has a DFA") + } + } +} + +// Note that in this impl, we don't check that 'input.end() == +// input.haystack().len()'. In particular, when that condition is false, a +// match is always impossible because we know that the regex is always anchored +// at the end (or else 'ReverseAnchored' won't be built). We don't check that +// here because the 'Regex' wrapper actually does that for us in all cases. +// Thus, in this impl, we can actually assume that the end position in 'input' +// is equivalent to the length of the haystack. +impl Strategy for ReverseAnchored { + #[cfg_attr(feature = "perf-inline", inline(always))] + fn group_info(&self) -> &GroupInfo { + self.core.group_info() + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn create_cache(&self) -> Cache { + self.core.create_cache() + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn reset_cache(&self, cache: &mut Cache) { + self.core.reset_cache(cache); + } + + fn is_accelerated(&self) -> bool { + // Since this is anchored at the end, a reverse anchored search is + // almost certainly guaranteed to result in a much faster search than + // a standard forward search. + true + } + + fn memory_usage(&self) -> usize { + self.core.memory_usage() + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match> { + if input.get_anchored().is_anchored() { + return self.core.search(cache, input); + } + match self.try_search_half_anchored_rev(cache, input) { + Err(_err) => { + trace!("fast reverse anchored search failed: {}", _err); + self.core.search_nofail(cache, input) + } + Ok(None) => None, + Ok(Some(hm)) => { + Some(Match::new(hm.pattern(), hm.offset()..input.end())) + } + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search_half( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Option<HalfMatch> { + if input.get_anchored().is_anchored() { + return self.core.search_half(cache, input); + } + match self.try_search_half_anchored_rev(cache, input) { + Err(_err) => { + trace!("fast reverse anchored search failed: {}", _err); + self.core.search_half_nofail(cache, input) + } + Ok(None) => None, + Ok(Some(hm)) => { + // Careful here! 'try_search_half' is a *forward* search that + // only cares about the *end* position of a match. But + // 'hm.offset()' is actually the start of the match. So we + // actually just throw that away here and, since we know we + // have a match, return the only possible position at which a + // match can occur: input.end(). + Some(HalfMatch::new(hm.pattern(), input.end())) + } + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool { + if input.get_anchored().is_anchored() { + return self.core.is_match(cache, input); + } + match self.try_search_half_anchored_rev(cache, input) { + Err(_err) => { + trace!("fast reverse anchored search failed: {}", _err); + self.core.is_match_nofail(cache, input) + } + Ok(None) => false, + Ok(Some(_)) => true, + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search_slots( + &self, + cache: &mut Cache, + input: &Input<'_>, + slots: &mut [Option<NonMaxUsize>], + ) -> Option<PatternID> { + if input.get_anchored().is_anchored() { + return self.core.search_slots(cache, input, slots); + } + match self.try_search_half_anchored_rev(cache, input) { + Err(_err) => { + trace!("fast reverse anchored search failed: {}", _err); + self.core.search_slots_nofail(cache, input, slots) + } + Ok(None) => None, + Ok(Some(hm)) => { + if !self.core.is_capture_search_needed(slots.len()) { + trace!("asked for slots unnecessarily, skipping captures"); + let m = Match::new(hm.pattern(), hm.offset()..input.end()); + copy_match_to_slots(m, slots); + return Some(m.pattern()); + } + let start = hm.offset(); + let input = input + .clone() + .span(start..input.end()) + .anchored(Anchored::Pattern(hm.pattern())); + self.core.search_slots_nofail(cache, &input, slots) + } + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn which_overlapping_matches( + &self, + cache: &mut Cache, + input: &Input<'_>, + patset: &mut PatternSet, + ) { + // It seems like this could probably benefit from a reverse anchored + // optimization, perhaps by doing an overlapping reverse search (which + // the DFAs do support). I haven't given it much thought though, and + // I'm currently focus more on the single pattern case. + self.core.which_overlapping_matches(cache, input, patset) + } +} + +#[derive(Debug)] +struct ReverseSuffix { + core: Core, + pre: Prefilter, +} + +impl ReverseSuffix { + fn new(core: Core, hirs: &[&Hir]) -> Result<ReverseSuffix, Core> { + if !core.info.config().get_auto_prefilter() { + debug!( + "skipping reverse suffix optimization because \ + automatic prefilters are disabled" + ); + return Err(core); + } + // Like the reverse inner optimization, we don't do this for regexes + // that are always anchored. It could lead to scanning too much, but + // could say "no match" much more quickly than running the regex + // engine if the initial literal scan doesn't match. With that said, + // the reverse suffix optimization has lower overhead, since it only + // requires a reverse scan after a literal match to confirm or reject + // the match. (Although, in the case of confirmation, it then needs to + // do another forward scan to find the end position.) + // + // Note that the caller can still request an anchored search even + // when the regex isn't anchored. We detect that case in the search + // routines below and just fallback to the core engine. Currently this + // optimization assumes all searches are unanchored, so if we do want + // to enable this optimization for anchored searches, it will need a + // little work to support it. + if core.info.is_always_anchored_start() { + debug!( + "skipping reverse suffix optimization because \ + the regex is always anchored at the start", + ); + return Err(core); + } + // Only DFAs can do reverse searches (currently), so we need one of + // them in order to do this optimization. It's possible (although + // pretty unlikely) that we have neither and need to give up. + if !core.hybrid.is_some() && !core.dfa.is_some() { + debug!( + "skipping reverse suffix optimization because \ + we don't have a lazy DFA or a full DFA" + ); + return Err(core); + } + if core.pre.as_ref().map_or(false, |p| p.is_fast()) { + debug!( + "skipping reverse suffix optimization because \ + we already have a prefilter that we think is fast" + ); + return Err(core); + } + let kind = core.info.config().get_match_kind(); + let suffixes = crate::util::prefilter::suffixes(kind, hirs); + let lcs = match suffixes.longest_common_suffix() { + None => { + debug!( + "skipping reverse suffix optimization because \ + a longest common suffix could not be found", + ); + return Err(core); + } + Some(lcs) if lcs.is_empty() => { + debug!( + "skipping reverse suffix optimization because \ + the longest common suffix is the empty string", + ); + return Err(core); + } + Some(lcs) => lcs, + }; + let pre = match Prefilter::new(kind, &[lcs]) { + Some(pre) => pre, + None => { + debug!( + "skipping reverse suffix optimization because \ + a prefilter could not be constructed from the \ + longest common suffix", + ); + return Err(core); + } + }; + if !pre.is_fast() { + debug!( + "skipping reverse suffix optimization because \ + while we have a suffix prefilter, it is not \ + believed to be 'fast'" + ); + return Err(core); + } + Ok(ReverseSuffix { core, pre }) + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn try_search_half_start( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Result<Option<HalfMatch>, RetryError> { + let mut span = input.get_span(); + let mut min_start = 0; + loop { + let litmatch = match self.pre.find(input.haystack(), span) { + None => return Ok(None), + Some(span) => span, + }; + trace!("reverse suffix scan found suffix match at {:?}", litmatch); + let revinput = input + .clone() + .anchored(Anchored::Yes) + .span(input.start()..litmatch.end); + match self + .try_search_half_rev_limited(cache, &revinput, min_start)? + { + None => { + if span.start >= span.end { + break; + } + span.start = litmatch.start.checked_add(1).unwrap(); + } + Some(hm) => return Ok(Some(hm)), + } + min_start = litmatch.end; + } + Ok(None) + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn try_search_half_fwd( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Result<Option<HalfMatch>, RetryFailError> { + if let Some(e) = self.core.dfa.get(&input) { + trace!( + "using full DFA for forward reverse suffix search at {:?}", + input.get_span() + ); + e.try_search_half_fwd(&input) + } else if let Some(e) = self.core.hybrid.get(&input) { + trace!( + "using lazy DFA for forward reverse suffix search at {:?}", + input.get_span() + ); + e.try_search_half_fwd(&mut cache.hybrid, &input) + } else { + unreachable!("ReverseSuffix always has a DFA") + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn try_search_half_rev_limited( + &self, + cache: &mut Cache, + input: &Input<'_>, + min_start: usize, + ) -> Result<Option<HalfMatch>, RetryError> { + if let Some(e) = self.core.dfa.get(&input) { + trace!( + "using full DFA for reverse suffix search at {:?}, \ + but will be stopped at {} to avoid quadratic behavior", + input.get_span(), + min_start, + ); + e.try_search_half_rev_limited(&input, min_start) + } else if let Some(e) = self.core.hybrid.get(&input) { + trace!( + "using lazy DFA for reverse suffix search at {:?}, \ + but will be stopped at {} to avoid quadratic behavior", + input.get_span(), + min_start, + ); + e.try_search_half_rev_limited(&mut cache.hybrid, &input, min_start) + } else { + unreachable!("ReverseSuffix always has a DFA") + } + } +} + +impl Strategy for ReverseSuffix { + #[cfg_attr(feature = "perf-inline", inline(always))] + fn group_info(&self) -> &GroupInfo { + self.core.group_info() + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn create_cache(&self) -> Cache { + self.core.create_cache() + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn reset_cache(&self, cache: &mut Cache) { + self.core.reset_cache(cache); + } + + fn is_accelerated(&self) -> bool { + self.pre.is_fast() + } + + fn memory_usage(&self) -> usize { + self.core.memory_usage() + self.pre.memory_usage() + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match> { + if input.get_anchored().is_anchored() { + return self.core.search(cache, input); + } + match self.try_search_half_start(cache, input) { + Err(RetryError::Quadratic(_err)) => { + trace!("reverse suffix optimization failed: {}", _err); + self.core.search(cache, input) + } + Err(RetryError::Fail(_err)) => { + trace!("reverse suffix reverse fast search failed: {}", _err); + self.core.search_nofail(cache, input) + } + Ok(None) => None, + Ok(Some(hm_start)) => { + let fwdinput = input + .clone() + .anchored(Anchored::Pattern(hm_start.pattern())) + .span(hm_start.offset()..input.end()); + match self.try_search_half_fwd(cache, &fwdinput) { + Err(_err) => { + trace!( + "reverse suffix forward fast search failed: {}", + _err + ); + self.core.search_nofail(cache, input) + } + Ok(None) => { + unreachable!( + "suffix match plus reverse match implies \ + there must be a match", + ) + } + Ok(Some(hm_end)) => Some(Match::new( + hm_start.pattern(), + hm_start.offset()..hm_end.offset(), + )), + } + } + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search_half( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Option<HalfMatch> { + if input.get_anchored().is_anchored() { + return self.core.search_half(cache, input); + } + match self.try_search_half_start(cache, input) { + Err(RetryError::Quadratic(_err)) => { + trace!("reverse suffix half optimization failed: {}", _err); + self.core.search_half(cache, input) + } + Err(RetryError::Fail(_err)) => { + trace!( + "reverse suffix reverse fast half search failed: {}", + _err + ); + self.core.search_half_nofail(cache, input) + } + Ok(None) => None, + Ok(Some(hm_start)) => { + // This is a bit subtle. It is tempting to just stop searching + // at this point and return a half-match with an offset + // corresponding to where the suffix was found. But the suffix + // match does not necessarily correspond to the end of the + // proper leftmost-first match. Consider /[a-z]+ing/ against + // 'tingling'. The first suffix match is the first 'ing', and + // the /[a-z]+/ matches the 't'. So if we stopped here, then + // we'd report 'ting' as the match. But 'tingling' is the + // correct match because of greediness. + let fwdinput = input + .clone() + .anchored(Anchored::Pattern(hm_start.pattern())) + .span(hm_start.offset()..input.end()); + match self.try_search_half_fwd(cache, &fwdinput) { + Err(_err) => { + trace!( + "reverse suffix forward fast search failed: {}", + _err + ); + self.core.search_half_nofail(cache, input) + } + Ok(None) => { + unreachable!( + "suffix match plus reverse match implies \ + there must be a match", + ) + } + Ok(Some(hm_end)) => Some(hm_end), + } + } + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool { + if input.get_anchored().is_anchored() { + return self.core.is_match(cache, input); + } + match self.try_search_half_start(cache, input) { + Err(RetryError::Quadratic(_err)) => { + trace!("reverse suffix half optimization failed: {}", _err); + self.core.is_match_nofail(cache, input) + } + Err(RetryError::Fail(_err)) => { + trace!( + "reverse suffix reverse fast half search failed: {}", + _err + ); + self.core.is_match_nofail(cache, input) + } + Ok(None) => false, + Ok(Some(_)) => true, + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search_slots( + &self, + cache: &mut Cache, + input: &Input<'_>, + slots: &mut [Option<NonMaxUsize>], + ) -> Option<PatternID> { + if input.get_anchored().is_anchored() { + return self.core.search_slots(cache, input, slots); + } + if !self.core.is_capture_search_needed(slots.len()) { + trace!("asked for slots unnecessarily, trying fast path"); + let m = self.search(cache, input)?; + copy_match_to_slots(m, slots); + return Some(m.pattern()); + } + let hm_start = match self.try_search_half_start(cache, input) { + Err(RetryError::Quadratic(_err)) => { + trace!( + "reverse suffix captures optimization failed: {}", + _err + ); + return self.core.search_slots(cache, input, slots); + } + Err(RetryError::Fail(_err)) => { + trace!( + "reverse suffix reverse fast captures search failed: {}", + _err + ); + return self.core.search_slots_nofail(cache, input, slots); + } + Ok(None) => return None, + Ok(Some(hm_start)) => hm_start, + }; + trace!( + "match found at {}..{} in capture search, \ + using another engine to find captures", + hm_start.offset(), + input.end(), + ); + let start = hm_start.offset(); + let input = input + .clone() + .span(start..input.end()) + .anchored(Anchored::Pattern(hm_start.pattern())); + self.core.search_slots_nofail(cache, &input, slots) + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn which_overlapping_matches( + &self, + cache: &mut Cache, + input: &Input<'_>, + patset: &mut PatternSet, + ) { + self.core.which_overlapping_matches(cache, input, patset) + } +} + +#[derive(Debug)] +struct ReverseInner { + core: Core, + preinner: Prefilter, + nfarev: NFA, + hybrid: wrappers::ReverseHybrid, + dfa: wrappers::ReverseDFA, +} + +impl ReverseInner { + fn new(core: Core, hirs: &[&Hir]) -> Result<ReverseInner, Core> { + if !core.info.config().get_auto_prefilter() { + debug!( + "skipping reverse inner optimization because \ + automatic prefilters are disabled" + ); + return Err(core); + } + // Currently we hard-code the assumption of leftmost-first match + // semantics. This isn't a huge deal because 'all' semantics tend to + // only be used for forward overlapping searches with multiple regexes, + // and this optimization only supports a single pattern at the moment. + if core.info.config().get_match_kind() != MatchKind::LeftmostFirst { + debug!( + "skipping reverse inner optimization because \ + match kind is {:?} but this only supports leftmost-first", + core.info.config().get_match_kind(), + ); + return Err(core); + } + // It's likely that a reverse inner scan has too much overhead for it + // to be worth it when the regex is anchored at the start. It is + // possible for it to be quite a bit faster if the initial literal + // scan fails to detect a match, in which case, we can say "no match" + // very quickly. But this could be undesirable, e.g., scanning too far + // or when the literal scan matches. If it matches, then confirming the + // match requires a reverse scan followed by a forward scan to confirm + // or reject, which is a fair bit of work. + // + // Note that the caller can still request an anchored search even + // when the regex isn't anchored. We detect that case in the search + // routines below and just fallback to the core engine. Currently this + // optimization assumes all searches are unanchored, so if we do want + // to enable this optimization for anchored searches, it will need a + // little work to support it. + if core.info.is_always_anchored_start() { + debug!( + "skipping reverse inner optimization because \ + the regex is always anchored at the start", + ); + return Err(core); + } + // Only DFAs can do reverse searches (currently), so we need one of + // them in order to do this optimization. It's possible (although + // pretty unlikely) that we have neither and need to give up. + if !core.hybrid.is_some() && !core.dfa.is_some() { + debug!( + "skipping reverse inner optimization because \ + we don't have a lazy DFA or a full DFA" + ); + return Err(core); + } + if core.pre.as_ref().map_or(false, |p| p.is_fast()) { + debug!( + "skipping reverse inner optimization because \ + we already have a prefilter that we think is fast" + ); + return Err(core); + } else if core.pre.is_some() { + debug!( + "core engine has a prefix prefilter, but it is \ + probably not fast, so continuing with attempt to \ + use reverse inner prefilter" + ); + } + let (concat_prefix, preinner) = match reverse_inner::extract(hirs) { + Some(x) => x, + // N.B. the 'extract' function emits debug messages explaining + // why we bailed out here. + None => return Err(core), + }; + debug!("building reverse NFA for prefix before inner literal"); + let mut lookm = LookMatcher::new(); + lookm.set_line_terminator(core.info.config().get_line_terminator()); + let thompson_config = thompson::Config::new() + .reverse(true) + .utf8(core.info.config().get_utf8_empty()) + .nfa_size_limit(core.info.config().get_nfa_size_limit()) + .shrink(false) + .which_captures(WhichCaptures::None) + .look_matcher(lookm); + let result = thompson::Compiler::new() + .configure(thompson_config) + .build_from_hir(&concat_prefix); + let nfarev = match result { + Ok(nfarev) => nfarev, + Err(_err) => { + debug!( + "skipping reverse inner optimization because the \ + reverse NFA failed to build: {}", + _err, + ); + return Err(core); + } + }; + debug!("building reverse DFA for prefix before inner literal"); + let dfa = if !core.info.config().get_dfa() { + wrappers::ReverseDFA::none() + } else { + wrappers::ReverseDFA::new(&core.info, &nfarev) + }; + let hybrid = if !core.info.config().get_hybrid() { + wrappers::ReverseHybrid::none() + } else if dfa.is_some() { + debug!( + "skipping lazy DFA for reverse inner optimization \ + because we have a full DFA" + ); + wrappers::ReverseHybrid::none() + } else { + wrappers::ReverseHybrid::new(&core.info, &nfarev) + }; + Ok(ReverseInner { core, preinner, nfarev, hybrid, dfa }) + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn try_search_full( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Result<Option<Match>, RetryError> { + let mut span = input.get_span(); + let mut min_match_start = 0; + let mut min_pre_start = 0; + loop { + let litmatch = match self.preinner.find(input.haystack(), span) { + None => return Ok(None), + Some(span) => span, + }; + if litmatch.start < min_pre_start { + trace!( + "found inner prefilter match at {:?}, which starts \ + before the end of the last forward scan at {}, \ + quitting to avoid quadratic behavior", + litmatch, + min_pre_start, + ); + return Err(RetryError::Quadratic(RetryQuadraticError::new())); + } + trace!("reverse inner scan found inner match at {:?}", litmatch); + let revinput = input + .clone() + .anchored(Anchored::Yes) + .span(input.start()..litmatch.start); + // Note that in addition to the literal search above scanning past + // our minimum start point, this routine can also return an error + // as a result of detecting possible quadratic behavior if the + // reverse scan goes past the minimum start point. That is, the + // literal search might not, but the reverse regex search for the + // prefix might! + match self.try_search_half_rev_limited( + cache, + &revinput, + min_match_start, + )? { + None => { + if span.start >= span.end { + break; + } + span.start = litmatch.start.checked_add(1).unwrap(); + } + Some(hm_start) => { + let fwdinput = input + .clone() + .anchored(Anchored::Pattern(hm_start.pattern())) + .span(hm_start.offset()..input.end()); + match self.try_search_half_fwd_stopat(cache, &fwdinput)? { + Err(stopat) => { + min_pre_start = stopat; + span.start = + litmatch.start.checked_add(1).unwrap(); + } + Ok(hm_end) => { + return Ok(Some(Match::new( + hm_start.pattern(), + hm_start.offset()..hm_end.offset(), + ))) + } + } + } + } + min_match_start = litmatch.end; + } + Ok(None) + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn try_search_half_fwd_stopat( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Result<Result<HalfMatch, usize>, RetryFailError> { + if let Some(e) = self.core.dfa.get(&input) { + trace!( + "using full DFA for forward reverse inner search at {:?}", + input.get_span() + ); + e.try_search_half_fwd_stopat(&input) + } else if let Some(e) = self.core.hybrid.get(&input) { + trace!( + "using lazy DFA for forward reverse inner search at {:?}", + input.get_span() + ); + e.try_search_half_fwd_stopat(&mut cache.hybrid, &input) + } else { + unreachable!("ReverseInner always has a DFA") + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn try_search_half_rev_limited( + &self, + cache: &mut Cache, + input: &Input<'_>, + min_start: usize, + ) -> Result<Option<HalfMatch>, RetryError> { + if let Some(e) = self.dfa.get(&input) { + trace!( + "using full DFA for reverse inner search at {:?}, \ + but will be stopped at {} to avoid quadratic behavior", + input.get_span(), + min_start, + ); + e.try_search_half_rev_limited(&input, min_start) + } else if let Some(e) = self.hybrid.get(&input) { + trace!( + "using lazy DFA for reverse inner search at {:?}, \ + but will be stopped at {} to avoid quadratic behavior", + input.get_span(), + min_start, + ); + e.try_search_half_rev_limited( + &mut cache.revhybrid, + &input, + min_start, + ) + } else { + unreachable!("ReverseInner always has a DFA") + } + } +} + +impl Strategy for ReverseInner { + #[cfg_attr(feature = "perf-inline", inline(always))] + fn group_info(&self) -> &GroupInfo { + self.core.group_info() + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn create_cache(&self) -> Cache { + let mut cache = self.core.create_cache(); + cache.revhybrid = self.hybrid.create_cache(); + cache + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn reset_cache(&self, cache: &mut Cache) { + self.core.reset_cache(cache); + cache.revhybrid.reset(&self.hybrid); + } + + fn is_accelerated(&self) -> bool { + self.preinner.is_fast() + } + + fn memory_usage(&self) -> usize { + self.core.memory_usage() + + self.preinner.memory_usage() + + self.nfarev.memory_usage() + + self.dfa.memory_usage() + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search(&self, cache: &mut Cache, input: &Input<'_>) -> Option<Match> { + if input.get_anchored().is_anchored() { + return self.core.search(cache, input); + } + match self.try_search_full(cache, input) { + Err(RetryError::Quadratic(_err)) => { + trace!("reverse inner optimization failed: {}", _err); + self.core.search(cache, input) + } + Err(RetryError::Fail(_err)) => { + trace!("reverse inner fast search failed: {}", _err); + self.core.search_nofail(cache, input) + } + Ok(matornot) => matornot, + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search_half( + &self, + cache: &mut Cache, + input: &Input<'_>, + ) -> Option<HalfMatch> { + if input.get_anchored().is_anchored() { + return self.core.search_half(cache, input); + } + match self.try_search_full(cache, input) { + Err(RetryError::Quadratic(_err)) => { + trace!("reverse inner half optimization failed: {}", _err); + self.core.search_half(cache, input) + } + Err(RetryError::Fail(_err)) => { + trace!("reverse inner fast half search failed: {}", _err); + self.core.search_half_nofail(cache, input) + } + Ok(None) => None, + Ok(Some(m)) => Some(HalfMatch::new(m.pattern(), m.end())), + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn is_match(&self, cache: &mut Cache, input: &Input<'_>) -> bool { + if input.get_anchored().is_anchored() { + return self.core.is_match(cache, input); + } + match self.try_search_full(cache, input) { + Err(RetryError::Quadratic(_err)) => { + trace!("reverse inner half optimization failed: {}", _err); + self.core.is_match_nofail(cache, input) + } + Err(RetryError::Fail(_err)) => { + trace!("reverse inner fast half search failed: {}", _err); + self.core.is_match_nofail(cache, input) + } + Ok(None) => false, + Ok(Some(_)) => true, + } + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn search_slots( + &self, + cache: &mut Cache, + input: &Input<'_>, + slots: &mut [Option<NonMaxUsize>], + ) -> Option<PatternID> { + if input.get_anchored().is_anchored() { + return self.core.search_slots(cache, input, slots); + } + if !self.core.is_capture_search_needed(slots.len()) { + trace!("asked for slots unnecessarily, trying fast path"); + let m = self.search(cache, input)?; + copy_match_to_slots(m, slots); + return Some(m.pattern()); + } + let m = match self.try_search_full(cache, input) { + Err(RetryError::Quadratic(_err)) => { + trace!("reverse inner captures optimization failed: {}", _err); + return self.core.search_slots(cache, input, slots); + } + Err(RetryError::Fail(_err)) => { + trace!("reverse inner fast captures search failed: {}", _err); + return self.core.search_slots_nofail(cache, input, slots); + } + Ok(None) => return None, + Ok(Some(m)) => m, + }; + trace!( + "match found at {}..{} in capture search, \ + using another engine to find captures", + m.start(), + m.end(), + ); + let input = input + .clone() + .span(m.start()..m.end()) + .anchored(Anchored::Pattern(m.pattern())); + self.core.search_slots_nofail(cache, &input, slots) + } + + #[cfg_attr(feature = "perf-inline", inline(always))] + fn which_overlapping_matches( + &self, + cache: &mut Cache, + input: &Input<'_>, + patset: &mut PatternSet, + ) { + self.core.which_overlapping_matches(cache, input, patset) + } +} + +/// Copies the offsets in the given match to the corresponding positions in +/// `slots`. +/// +/// In effect, this sets the slots corresponding to the implicit group for the +/// pattern in the given match. If the indices for the corresponding slots do +/// not exist, then no slots are set. +/// +/// This is useful when the caller provides slots (or captures), but you use a +/// regex engine that doesn't operate on slots (like a lazy DFA). This function +/// lets you map the match you get back to the slots provided by the caller. +#[cfg_attr(feature = "perf-inline", inline(always))] +fn copy_match_to_slots(m: Match, slots: &mut [Option<NonMaxUsize>]) { + let slot_start = m.pattern().as_usize() * 2; + let slot_end = slot_start + 1; + if let Some(slot) = slots.get_mut(slot_start) { + *slot = NonMaxUsize::new(m.start()); + } + if let Some(slot) = slots.get_mut(slot_end) { + *slot = NonMaxUsize::new(m.end()); + } +} |