diff options
Diffstat (limited to 'vendor/regex-automata/src/nfa/thompson/compiler.rs')
-rw-r--r-- | vendor/regex-automata/src/nfa/thompson/compiler.rs | 2265 |
1 files changed, 2265 insertions, 0 deletions
diff --git a/vendor/regex-automata/src/nfa/thompson/compiler.rs b/vendor/regex-automata/src/nfa/thompson/compiler.rs new file mode 100644 index 0000000..2d21729 --- /dev/null +++ b/vendor/regex-automata/src/nfa/thompson/compiler.rs @@ -0,0 +1,2265 @@ +use core::{borrow::Borrow, cell::RefCell}; + +use alloc::{sync::Arc, vec, vec::Vec}; + +use regex_syntax::{ + hir::{self, Hir}, + utf8::{Utf8Range, Utf8Sequences}, + ParserBuilder, +}; + +use crate::{ + nfa::thompson::{ + builder::Builder, + error::BuildError, + literal_trie::LiteralTrie, + map::{Utf8BoundedMap, Utf8SuffixKey, Utf8SuffixMap}, + nfa::{Transition, NFA}, + range_trie::RangeTrie, + }, + util::{ + look::{Look, LookMatcher}, + primitives::{PatternID, StateID}, + }, +}; + +/// The configuration used for a Thompson NFA compiler. +#[derive(Clone, Debug, Default)] +pub struct Config { + utf8: Option<bool>, + reverse: Option<bool>, + nfa_size_limit: Option<Option<usize>>, + shrink: Option<bool>, + which_captures: Option<WhichCaptures>, + look_matcher: Option<LookMatcher>, + #[cfg(test)] + unanchored_prefix: Option<bool>, +} + +impl Config { + /// Return a new default Thompson NFA compiler configuration. + pub fn new() -> Config { + Config::default() + } + + /// Whether to enable UTF-8 mode during search or not. + /// + /// A regex engine is said to be in UTF-8 mode when it guarantees that + /// all matches returned by it have spans consisting of only valid UTF-8. + /// That is, it is impossible for a match span to be returned that + /// contains any invalid UTF-8. + /// + /// UTF-8 mode generally consists of two things: + /// + /// 1. Whether the NFA's states are constructed such that all paths to a + /// match state that consume at least one byte always correspond to valid + /// UTF-8. + /// 2. Whether all paths to a match state that do _not_ consume any bytes + /// should always correspond to valid UTF-8 boundaries. + /// + /// (1) is a guarantee made by whoever constructs the NFA. + /// If you're parsing a regex from its concrete syntax, then + /// [`syntax::Config::utf8`](crate::util::syntax::Config::utf8) can make + /// this guarantee for you. It does it by returning an error if the regex + /// pattern could every report a non-empty match span that contains invalid + /// UTF-8. So long as `syntax::Config::utf8` mode is enabled and your regex + /// successfully parses, then you're guaranteed that the corresponding NFA + /// will only ever report non-empty match spans containing valid UTF-8. + /// + /// (2) is a trickier guarantee because it cannot be enforced by the NFA + /// state graph itself. Consider, for example, the regex `a*`. It matches + /// the empty strings in `ā` at positions `0`, `1`, `2` and `3`, where + /// positions `1` and `2` occur within the UTF-8 encoding of a codepoint, + /// and thus correspond to invalid UTF-8 boundaries. Therefore, this + /// guarantee must be made at a higher level than the NFA state graph + /// itself. This crate deals with this case in each regex engine. Namely, + /// when a zero-width match that splits a codepoint is found and UTF-8 + /// mode enabled, then it is ignored and the engine moves on looking for + /// the next match. + /// + /// Thus, UTF-8 mode is both a promise that the NFA built only reports + /// non-empty matches that are valid UTF-8, and an *instruction* to regex + /// engines that empty matches that split codepoints should be banned. + /// + /// Because UTF-8 mode is fundamentally about avoiding invalid UTF-8 spans, + /// it only makes sense to enable this option when you *know* your haystack + /// is valid UTF-8. (For example, a `&str`.) Enabling UTF-8 mode and + /// searching a haystack that contains invalid UTF-8 leads to **unspecified + /// behavior**. + /// + /// Therefore, it may make sense to enable `syntax::Config::utf8` while + /// simultaneously *disabling* this option. That would ensure all non-empty + /// match spans are valid UTF-8, but that empty match spans may still split + /// a codepoint or match at other places that aren't valid UTF-8. + /// + /// In general, this mode is only relevant if your regex can match the + /// empty string. Most regexes don't. + /// + /// This is enabled by default. + /// + /// # Example + /// + /// This example shows how UTF-8 mode can impact the match spans that may + /// be reported in certain cases. + /// + /// ``` + /// use regex_automata::{ + /// nfa::thompson::{self, pikevm::PikeVM}, + /// Match, Input, + /// }; + /// + /// let re = PikeVM::new("")?; + /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures()); + /// + /// // UTF-8 mode is enabled by default. + /// let mut input = Input::new("ā"); + /// re.search(&mut cache, &input, &mut caps); + /// assert_eq!(Some(Match::must(0, 0..0)), caps.get_match()); + /// + /// // Even though an empty regex matches at 1..1, our next match is + /// // 3..3 because 1..1 and 2..2 split the snowman codepoint (which is + /// // three bytes long). + /// input.set_start(1); + /// re.search(&mut cache, &input, &mut caps); + /// assert_eq!(Some(Match::must(0, 3..3)), caps.get_match()); + /// + /// // But if we disable UTF-8, then we'll get matches at 1..1 and 2..2: + /// let re = PikeVM::builder() + /// .thompson(thompson::Config::new().utf8(false)) + /// .build("")?; + /// re.search(&mut cache, &input, &mut caps); + /// assert_eq!(Some(Match::must(0, 1..1)), caps.get_match()); + /// + /// input.set_start(2); + /// re.search(&mut cache, &input, &mut caps); + /// assert_eq!(Some(Match::must(0, 2..2)), caps.get_match()); + /// + /// input.set_start(3); + /// re.search(&mut cache, &input, &mut caps); + /// assert_eq!(Some(Match::must(0, 3..3)), caps.get_match()); + /// + /// input.set_start(4); + /// re.search(&mut cache, &input, &mut caps); + /// assert_eq!(None, caps.get_match()); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + pub fn utf8(mut self, yes: bool) -> Config { + self.utf8 = Some(yes); + self + } + + /// Reverse the NFA. + /// + /// A NFA reversal is performed by reversing all of the concatenated + /// sub-expressions in the original pattern, recursively. (Look around + /// operators are also inverted.) The resulting NFA can be used to match + /// the pattern starting from the end of a string instead of the beginning + /// of a string. + /// + /// Reversing the NFA is useful for building a reverse DFA, which is most + /// useful for finding the start of a match after its ending position has + /// been found. NFA execution engines typically do not work on reverse + /// NFAs. For example, currently, the Pike VM reports the starting location + /// of matches without a reverse NFA. + /// + /// Currently, enabling this setting requires disabling the + /// [`captures`](Config::captures) setting. If both are enabled, then the + /// compiler will return an error. It is expected that this limitation will + /// be lifted in the future. + /// + /// This is disabled by default. + /// + /// # Example + /// + /// This example shows how to build a DFA from a reverse NFA, and then use + /// the DFA to search backwards. + /// + /// ``` + /// use regex_automata::{ + /// dfa::{self, Automaton}, + /// nfa::thompson::{NFA, WhichCaptures}, + /// HalfMatch, Input, + /// }; + /// + /// let dfa = dfa::dense::Builder::new() + /// .thompson(NFA::config() + /// .which_captures(WhichCaptures::None) + /// .reverse(true) + /// ) + /// .build("baz[0-9]+")?; + /// let expected = Some(HalfMatch::must(0, 3)); + /// assert_eq!( + /// expected, + /// dfa.try_search_rev(&Input::new("foobaz12345bar"))?, + /// ); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + pub fn reverse(mut self, yes: bool) -> Config { + self.reverse = Some(yes); + self + } + + /// Sets an approximate size limit on the total heap used by the NFA being + /// compiled. + /// + /// This permits imposing constraints on the size of a compiled NFA. This + /// may be useful in contexts where the regex pattern is untrusted and one + /// wants to avoid using too much memory. + /// + /// This size limit does not apply to auxiliary heap used during + /// compilation that is not part of the built NFA. + /// + /// Note that this size limit is applied during compilation in order for + /// the limit to prevent too much heap from being used. However, the + /// implementation may use an intermediate NFA representation that is + /// otherwise slightly bigger than the final public form. Since the size + /// limit may be applied to an intermediate representation, there is not + /// necessarily a precise correspondence between the configured size limit + /// and the heap usage of the final NFA. + /// + /// There is no size limit by default. + /// + /// # Example + /// + /// This example demonstrates how Unicode mode can greatly increase the + /// size of the NFA. + /// + /// ``` + /// # if cfg!(miri) { return Ok(()); } // miri takes too long + /// use regex_automata::nfa::thompson::NFA; + /// + /// // 300KB isn't enough! + /// NFA::compiler() + /// .configure(NFA::config().nfa_size_limit(Some(300_000))) + /// .build(r"\w{20}") + /// .unwrap_err(); + /// + /// // ... but 400KB probably is. + /// let nfa = NFA::compiler() + /// .configure(NFA::config().nfa_size_limit(Some(400_000))) + /// .build(r"\w{20}")?; + /// + /// assert_eq!(nfa.pattern_len(), 1); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + pub fn nfa_size_limit(mut self, bytes: Option<usize>) -> Config { + self.nfa_size_limit = Some(bytes); + self + } + + /// Apply best effort heuristics to shrink the NFA at the expense of more + /// time/memory. + /// + /// Generally speaking, if one is using an NFA to compile a DFA, then the + /// extra time used to shrink the NFA will be more than made up for during + /// DFA construction (potentially by a lot). In other words, enabling this + /// can substantially decrease the overall amount of time it takes to build + /// a DFA. + /// + /// A reason to keep this disabled is if you want to compile an NFA and + /// start using it as quickly as possible without needing to build a DFA, + /// and you don't mind using a bit of extra memory for the NFA. e.g., for + /// an NFA simulation or for a lazy DFA. + /// + /// NFA shrinking is currently most useful when compiling a reverse + /// NFA with large Unicode character classes. In particular, it trades + /// additional CPU time during NFA compilation in favor of generating fewer + /// NFA states. + /// + /// This is disabled by default because it can increase compile times + /// quite a bit if you aren't building a full DFA. + /// + /// # Example + /// + /// This example shows that NFA shrinking can lead to substantial space + /// savings in some cases. Notice that, as noted above, we build a reverse + /// DFA and use a pattern with a large Unicode character class. + /// + /// ``` + /// # if cfg!(miri) { return Ok(()); } // miri takes too long + /// use regex_automata::nfa::thompson::{NFA, WhichCaptures}; + /// + /// // Currently we have to disable captures when enabling reverse NFA. + /// let config = NFA::config() + /// .which_captures(WhichCaptures::None) + /// .reverse(true); + /// let not_shrunk = NFA::compiler() + /// .configure(config.clone().shrink(false)) + /// .build(r"\w")?; + /// let shrunk = NFA::compiler() + /// .configure(config.clone().shrink(true)) + /// .build(r"\w")?; + /// + /// // While a specific shrink factor is not guaranteed, the savings can be + /// // considerable in some cases. + /// assert!(shrunk.states().len() * 2 < not_shrunk.states().len()); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + pub fn shrink(mut self, yes: bool) -> Config { + self.shrink = Some(yes); + self + } + + /// Whether to include 'Capture' states in the NFA. + /// + /// Currently, enabling this setting requires disabling the + /// [`reverse`](Config::reverse) setting. If both are enabled, then the + /// compiler will return an error. It is expected that this limitation will + /// be lifted in the future. + /// + /// This is enabled by default. + /// + /// # Example + /// + /// This example demonstrates that some regex engines, like the Pike VM, + /// require capturing states to be present in the NFA to report match + /// offsets. + /// + /// (Note that since this method is deprecated, the example below uses + /// [`Config::which_captures`] to disable capture states.) + /// + /// ``` + /// use regex_automata::nfa::thompson::{ + /// pikevm::PikeVM, + /// NFA, + /// WhichCaptures, + /// }; + /// + /// let re = PikeVM::builder() + /// .thompson(NFA::config().which_captures(WhichCaptures::None)) + /// .build(r"[a-z]+")?; + /// let mut cache = re.create_cache(); + /// + /// assert!(re.is_match(&mut cache, "abc")); + /// assert_eq!(None, re.find(&mut cache, "abc")); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + #[deprecated(since = "0.3.5", note = "use which_captures instead")] + pub fn captures(self, yes: bool) -> Config { + self.which_captures(if yes { + WhichCaptures::All + } else { + WhichCaptures::None + }) + } + + /// Configures what kinds of capture groups are compiled into + /// [`State::Capture`](crate::nfa::thompson::State::Capture) states in a + /// Thompson NFA. + /// + /// Currently, using any option except for [`WhichCaptures::None`] requires + /// disabling the [`reverse`](Config::reverse) setting. If both are + /// enabled, then the compiler will return an error. It is expected that + /// this limitation will be lifted in the future. + /// + /// This is set to [`WhichCaptures::All`] by default. Callers may wish to + /// use [`WhichCaptures::Implicit`] in cases where one wants avoid the + /// overhead of capture states for explicit groups. Usually this occurs + /// when one wants to use the `PikeVM` only for determining the overall + /// match. Otherwise, the `PikeVM` could use much more memory than is + /// necessary. + /// + /// # Example + /// + /// This example demonstrates that some regex engines, like the Pike VM, + /// require capturing states to be present in the NFA to report match + /// offsets. + /// + /// ``` + /// use regex_automata::nfa::thompson::{ + /// pikevm::PikeVM, + /// NFA, + /// WhichCaptures, + /// }; + /// + /// let re = PikeVM::builder() + /// .thompson(NFA::config().which_captures(WhichCaptures::None)) + /// .build(r"[a-z]+")?; + /// let mut cache = re.create_cache(); + /// + /// assert!(re.is_match(&mut cache, "abc")); + /// assert_eq!(None, re.find(&mut cache, "abc")); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + /// + /// The same applies to the bounded backtracker: + /// + /// ``` + /// use regex_automata::nfa::thompson::{ + /// backtrack::BoundedBacktracker, + /// NFA, + /// WhichCaptures, + /// }; + /// + /// let re = BoundedBacktracker::builder() + /// .thompson(NFA::config().which_captures(WhichCaptures::None)) + /// .build(r"[a-z]+")?; + /// let mut cache = re.create_cache(); + /// + /// assert!(re.try_is_match(&mut cache, "abc")?); + /// assert_eq!(None, re.try_find(&mut cache, "abc")?); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config { + self.which_captures = Some(which_captures); + self + } + + /// Sets the look-around matcher that should be used with this NFA. + /// + /// A look-around matcher determines how to match look-around assertions. + /// In particular, some assertions are configurable. For example, the + /// `(?m:^)` and `(?m:$)` assertions can have their line terminator changed + /// from the default of `\n` to any other byte. + /// + /// # Example + /// + /// This shows how to change the line terminator for multi-line assertions. + /// + /// ``` + /// use regex_automata::{ + /// nfa::thompson::{self, pikevm::PikeVM}, + /// util::look::LookMatcher, + /// Match, Input, + /// }; + /// + /// let mut lookm = LookMatcher::new(); + /// lookm.set_line_terminator(b'\x00'); + /// + /// let re = PikeVM::builder() + /// .thompson(thompson::Config::new().look_matcher(lookm)) + /// .build(r"(?m)^[a-z]+$")?; + /// let mut cache = re.create_cache(); + /// + /// // Multi-line assertions now use NUL as a terminator. + /// assert_eq!( + /// Some(Match::must(0, 1..4)), + /// re.find(&mut cache, b"\x00abc\x00"), + /// ); + /// // ... and \n is no longer recognized as a terminator. + /// assert_eq!( + /// None, + /// re.find(&mut cache, b"\nabc\n"), + /// ); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + pub fn look_matcher(mut self, m: LookMatcher) -> Config { + self.look_matcher = Some(m); + self + } + + /// Whether to compile an unanchored prefix into this NFA. + /// + /// This is enabled by default. It is made available for tests only to make + /// it easier to unit test the output of the compiler. + #[cfg(test)] + fn unanchored_prefix(mut self, yes: bool) -> Config { + self.unanchored_prefix = Some(yes); + self + } + + /// Returns whether this configuration has enabled UTF-8 mode. + pub fn get_utf8(&self) -> bool { + self.utf8.unwrap_or(true) + } + + /// Returns whether this configuration has enabled reverse NFA compilation. + pub fn get_reverse(&self) -> bool { + self.reverse.unwrap_or(false) + } + + /// Return the configured NFA size limit, if it exists, in the number of + /// bytes of heap used. + pub fn get_nfa_size_limit(&self) -> Option<usize> { + self.nfa_size_limit.unwrap_or(None) + } + + /// Return whether NFA shrinking is enabled. + pub fn get_shrink(&self) -> bool { + self.shrink.unwrap_or(false) + } + + /// Return whether NFA compilation is configured to produce capture states. + #[deprecated(since = "0.3.5", note = "use get_which_captures instead")] + pub fn get_captures(&self) -> bool { + self.get_which_captures().is_any() + } + + /// Return what kinds of capture states will be compiled into an NFA. + pub fn get_which_captures(&self) -> WhichCaptures { + self.which_captures.unwrap_or(WhichCaptures::All) + } + + /// Return the look-around matcher for this NFA. + pub fn get_look_matcher(&self) -> LookMatcher { + self.look_matcher.clone().unwrap_or(LookMatcher::default()) + } + + /// Return whether NFA compilation is configured to include an unanchored + /// prefix. + /// + /// This is always false when not in test mode. + fn get_unanchored_prefix(&self) -> bool { + #[cfg(test)] + { + self.unanchored_prefix.unwrap_or(true) + } + #[cfg(not(test))] + { + true + } + } + + /// Overwrite the default configuration such that the options in `o` are + /// always used. If an option in `o` is not set, then the corresponding + /// option in `self` is used. If it's not set in `self` either, then it + /// remains not set. + pub(crate) fn overwrite(&self, o: Config) -> Config { + Config { + utf8: o.utf8.or(self.utf8), + reverse: o.reverse.or(self.reverse), + nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit), + shrink: o.shrink.or(self.shrink), + which_captures: o.which_captures.or(self.which_captures), + look_matcher: o.look_matcher.or_else(|| self.look_matcher.clone()), + #[cfg(test)] + unanchored_prefix: o.unanchored_prefix.or(self.unanchored_prefix), + } + } +} + +/// A configuration indicating which kinds of +/// [`State::Capture`](crate::nfa::thompson::State::Capture) states to include. +/// +/// This configuration can be used with [`Config::which_captures`] to control +/// which capture states are compiled into a Thompson NFA. +/// +/// The default configuration is [`WhichCaptures::All`]. +#[derive(Clone, Copy, Debug)] +pub enum WhichCaptures { + /// All capture states, including those corresponding to both implicit and + /// explicit capture groups, are included in the Thompson NFA. + All, + /// Only capture states corresponding to implicit capture groups are + /// included. Implicit capture groups appear in every pattern implicitly + /// and correspond to the overall match of a pattern. + /// + /// This is useful when one only cares about the overall match of a + /// pattern. By excluding capture states from explicit capture groups, + /// one might be able to reduce the memory usage of a multi-pattern regex + /// substantially if it was otherwise written to have many explicit capture + /// groups. + Implicit, + /// No capture states are compiled into the Thompson NFA. + /// + /// This is useful when capture states are either not needed (for example, + /// if one is only trying to build a DFA) or if they aren't supported (for + /// example, a reverse NFA). + None, +} + +impl Default for WhichCaptures { + fn default() -> WhichCaptures { + WhichCaptures::All + } +} + +impl WhichCaptures { + /// Returns true if this configuration indicates that no capture states + /// should be produced in an NFA. + pub fn is_none(&self) -> bool { + matches!(*self, WhichCaptures::None) + } + + /// Returns true if this configuration indicates that some capture states + /// should be added to an NFA. Note that this might only include capture + /// states for implicit capture groups. + pub fn is_any(&self) -> bool { + !self.is_none() + } +} + +/* +This compiler below uses Thompson's construction algorithm. The compiler takes +a regex-syntax::Hir as input and emits an NFA graph as output. The NFA graph +is structured in a way that permits it to be executed by a virtual machine and +also used to efficiently build a DFA. + +The compiler deals with a slightly expanded set of NFA states than what is +in a final NFA (as exhibited by builder::State and nfa::State). Notably a +compiler state includes an empty node that has exactly one unconditional +epsilon transition to the next state. In other words, it's a "goto" instruction +if one views Thompson's NFA as a set of bytecode instructions. These goto +instructions are removed in a subsequent phase before returning the NFA to the +caller. The purpose of these empty nodes is that they make the construction +algorithm substantially simpler to implement. We remove them before returning +to the caller because they can represent substantial overhead when traversing +the NFA graph (either while searching using the NFA directly or while building +a DFA). + +In the future, it would be nice to provide a Glushkov compiler as well, as it +would work well as a bit-parallel NFA for smaller regexes. But the Thompson +construction is one I'm more familiar with and seems more straight-forward to +deal with when it comes to large Unicode character classes. + +Internally, the compiler uses interior mutability to improve composition in the +face of the borrow checker. In particular, we'd really like to be able to write +things like this: + + self.c_concat(exprs.iter().map(|e| self.c(e))) + +Which elegantly uses iterators to build up a sequence of compiled regex +sub-expressions and then hands it off to the concatenating compiler routine. +Without interior mutability, the borrow checker won't let us borrow `self` +mutably both inside and outside the closure at the same time. +*/ + +/// A builder for compiling an NFA from a regex's high-level intermediate +/// representation (HIR). +/// +/// This compiler provides a way to translate a parsed regex pattern into an +/// NFA state graph. The NFA state graph can either be used directly to execute +/// a search (e.g., with a Pike VM), or it can be further used to build a DFA. +/// +/// This compiler provides APIs both for compiling regex patterns directly from +/// their concrete syntax, or via a [`regex_syntax::hir::Hir`]. +/// +/// This compiler has various options that may be configured via +/// [`thompson::Config`](Config). +/// +/// Note that a compiler is not the same as a [`thompson::Builder`](Builder). +/// A `Builder` provides a lower level API that is uncoupled from a regex +/// pattern's concrete syntax or even its HIR. Instead, it permits stitching +/// together an NFA by hand. See its docs for examples. +/// +/// # Example: compilation from concrete syntax +/// +/// This shows how to compile an NFA from a pattern string while setting a size +/// limit on how big the NFA is allowed to be (in terms of bytes of heap used). +/// +/// ``` +/// use regex_automata::{ +/// nfa::thompson::{NFA, pikevm::PikeVM}, +/// Match, +/// }; +/// +/// let config = NFA::config().nfa_size_limit(Some(1_000)); +/// let nfa = NFA::compiler().configure(config).build(r"(?-u)\w")?; +/// +/// let re = PikeVM::new_from_nfa(nfa)?; +/// let mut cache = re.create_cache(); +/// let mut caps = re.create_captures(); +/// let expected = Some(Match::must(0, 3..4)); +/// re.captures(&mut cache, "!@#A#@!", &mut caps); +/// assert_eq!(expected, caps.get_match()); +/// +/// # Ok::<(), Box<dyn std::error::Error>>(()) +/// ``` +/// +/// # Example: compilation from HIR +/// +/// This shows how to hand assemble a regular expression via its HIR, and then +/// compile an NFA directly from it. +/// +/// ``` +/// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match}; +/// use regex_syntax::hir::{Hir, Class, ClassBytes, ClassBytesRange}; +/// +/// let hir = Hir::class(Class::Bytes(ClassBytes::new(vec![ +/// ClassBytesRange::new(b'0', b'9'), +/// ClassBytesRange::new(b'A', b'Z'), +/// ClassBytesRange::new(b'_', b'_'), +/// ClassBytesRange::new(b'a', b'z'), +/// ]))); +/// +/// let config = NFA::config().nfa_size_limit(Some(1_000)); +/// let nfa = NFA::compiler().configure(config).build_from_hir(&hir)?; +/// +/// let re = PikeVM::new_from_nfa(nfa)?; +/// let mut cache = re.create_cache(); +/// let mut caps = re.create_captures(); +/// let expected = Some(Match::must(0, 3..4)); +/// re.captures(&mut cache, "!@#A#@!", &mut caps); +/// assert_eq!(expected, caps.get_match()); +/// +/// # Ok::<(), Box<dyn std::error::Error>>(()) +/// ``` +#[derive(Clone, Debug)] +pub struct Compiler { + /// A regex parser, used when compiling an NFA directly from a pattern + /// string. + parser: ParserBuilder, + /// The compiler configuration. + config: Config, + /// The builder for actually constructing an NFA. This provides a + /// convenient abstraction for writing a compiler. + builder: RefCell<Builder>, + /// State used for compiling character classes to UTF-8 byte automata. + /// State is not retained between character class compilations. This just + /// serves to amortize allocation to the extent possible. + utf8_state: RefCell<Utf8State>, + /// State used for arranging character classes in reverse into a trie. + trie_state: RefCell<RangeTrie>, + /// State used for caching common suffixes when compiling reverse UTF-8 + /// automata (for Unicode character classes). + utf8_suffix: RefCell<Utf8SuffixMap>, +} + +impl Compiler { + /// Create a new NFA builder with its default configuration. + pub fn new() -> Compiler { + Compiler { + parser: ParserBuilder::new(), + config: Config::default(), + builder: RefCell::new(Builder::new()), + utf8_state: RefCell::new(Utf8State::new()), + trie_state: RefCell::new(RangeTrie::new()), + utf8_suffix: RefCell::new(Utf8SuffixMap::new(1000)), + } + } + + /// Compile the given regular expression pattern into an NFA. + /// + /// If there was a problem parsing the regex, then that error is returned. + /// + /// Otherwise, if there was a problem building the NFA, then an error is + /// returned. The only error that can occur is if the compiled regex would + /// exceed the size limits configured on this builder, or if any part of + /// the NFA would exceed the integer representations used. (For example, + /// too many states might plausibly occur on a 16-bit target.) + /// + /// # Example + /// + /// ``` + /// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match}; + /// + /// let config = NFA::config().nfa_size_limit(Some(1_000)); + /// let nfa = NFA::compiler().configure(config).build(r"(?-u)\w")?; + /// + /// let re = PikeVM::new_from_nfa(nfa)?; + /// let mut cache = re.create_cache(); + /// let mut caps = re.create_captures(); + /// let expected = Some(Match::must(0, 3..4)); + /// re.captures(&mut cache, "!@#A#@!", &mut caps); + /// assert_eq!(expected, caps.get_match()); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + pub fn build(&self, pattern: &str) -> Result<NFA, BuildError> { + self.build_many(&[pattern]) + } + + /// Compile the given regular expression patterns into a single NFA. + /// + /// When matches are returned, the pattern ID corresponds to the index of + /// the pattern in the slice given. + /// + /// # Example + /// + /// ``` + /// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match}; + /// + /// let config = NFA::config().nfa_size_limit(Some(1_000)); + /// let nfa = NFA::compiler().configure(config).build_many(&[ + /// r"(?-u)\s", + /// r"(?-u)\w", + /// ])?; + /// + /// let re = PikeVM::new_from_nfa(nfa)?; + /// let mut cache = re.create_cache(); + /// let mut caps = re.create_captures(); + /// let expected = Some(Match::must(1, 1..2)); + /// re.captures(&mut cache, "!A! !A!", &mut caps); + /// assert_eq!(expected, caps.get_match()); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + pub fn build_many<P: AsRef<str>>( + &self, + patterns: &[P], + ) -> Result<NFA, BuildError> { + let mut hirs = vec![]; + for p in patterns { + hirs.push( + self.parser + .build() + .parse(p.as_ref()) + .map_err(BuildError::syntax)?, + ); + debug!("parsed: {:?}", p.as_ref()); + } + self.build_many_from_hir(&hirs) + } + + /// Compile the given high level intermediate representation of a regular + /// expression into an NFA. + /// + /// If there was a problem building the NFA, then an error is returned. The + /// only error that can occur is if the compiled regex would exceed the + /// size limits configured on this builder, or if any part of the NFA would + /// exceed the integer representations used. (For example, too many states + /// might plausibly occur on a 16-bit target.) + /// + /// # Example + /// + /// ``` + /// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match}; + /// use regex_syntax::hir::{Hir, Class, ClassBytes, ClassBytesRange}; + /// + /// let hir = Hir::class(Class::Bytes(ClassBytes::new(vec![ + /// ClassBytesRange::new(b'0', b'9'), + /// ClassBytesRange::new(b'A', b'Z'), + /// ClassBytesRange::new(b'_', b'_'), + /// ClassBytesRange::new(b'a', b'z'), + /// ]))); + /// + /// let config = NFA::config().nfa_size_limit(Some(1_000)); + /// let nfa = NFA::compiler().configure(config).build_from_hir(&hir)?; + /// + /// let re = PikeVM::new_from_nfa(nfa)?; + /// let mut cache = re.create_cache(); + /// let mut caps = re.create_captures(); + /// let expected = Some(Match::must(0, 3..4)); + /// re.captures(&mut cache, "!@#A#@!", &mut caps); + /// assert_eq!(expected, caps.get_match()); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + pub fn build_from_hir(&self, expr: &Hir) -> Result<NFA, BuildError> { + self.build_many_from_hir(&[expr]) + } + + /// Compile the given high level intermediate representations of regular + /// expressions into a single NFA. + /// + /// When matches are returned, the pattern ID corresponds to the index of + /// the pattern in the slice given. + /// + /// # Example + /// + /// ``` + /// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match}; + /// use regex_syntax::hir::{Hir, Class, ClassBytes, ClassBytesRange}; + /// + /// let hirs = &[ + /// Hir::class(Class::Bytes(ClassBytes::new(vec![ + /// ClassBytesRange::new(b'\t', b'\r'), + /// ClassBytesRange::new(b' ', b' '), + /// ]))), + /// Hir::class(Class::Bytes(ClassBytes::new(vec![ + /// ClassBytesRange::new(b'0', b'9'), + /// ClassBytesRange::new(b'A', b'Z'), + /// ClassBytesRange::new(b'_', b'_'), + /// ClassBytesRange::new(b'a', b'z'), + /// ]))), + /// ]; + /// + /// let config = NFA::config().nfa_size_limit(Some(1_000)); + /// let nfa = NFA::compiler().configure(config).build_many_from_hir(hirs)?; + /// + /// let re = PikeVM::new_from_nfa(nfa)?; + /// let mut cache = re.create_cache(); + /// let mut caps = re.create_captures(); + /// let expected = Some(Match::must(1, 1..2)); + /// re.captures(&mut cache, "!A! !A!", &mut caps); + /// assert_eq!(expected, caps.get_match()); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + pub fn build_many_from_hir<H: Borrow<Hir>>( + &self, + exprs: &[H], + ) -> Result<NFA, BuildError> { + self.compile(exprs) + } + + /// Apply the given NFA configuration options to this builder. + /// + /// # Example + /// + /// ``` + /// use regex_automata::nfa::thompson::NFA; + /// + /// let config = NFA::config().nfa_size_limit(Some(1_000)); + /// let nfa = NFA::compiler().configure(config).build(r"(?-u)\w")?; + /// assert_eq!(nfa.pattern_len(), 1); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + pub fn configure(&mut self, config: Config) -> &mut Compiler { + self.config = self.config.overwrite(config); + self + } + + /// Set the syntax configuration for this builder using + /// [`syntax::Config`](crate::util::syntax::Config). + /// + /// This permits setting things like case insensitivity, Unicode and multi + /// line mode. + /// + /// This syntax configuration only applies when an NFA is built directly + /// from a pattern string. If an NFA is built from an HIR, then all syntax + /// settings are ignored. + /// + /// # Example + /// + /// ``` + /// use regex_automata::{nfa::thompson::NFA, util::syntax}; + /// + /// let syntax_config = syntax::Config::new().unicode(false); + /// let nfa = NFA::compiler().syntax(syntax_config).build(r"\w")?; + /// // If Unicode were enabled, the number of states would be much bigger. + /// assert!(nfa.states().len() < 15); + /// + /// # Ok::<(), Box<dyn std::error::Error>>(()) + /// ``` + pub fn syntax( + &mut self, + config: crate::util::syntax::Config, + ) -> &mut Compiler { + config.apply(&mut self.parser); + self + } +} + +impl Compiler { + /// Compile the sequence of HIR expressions given. Pattern IDs are + /// allocated starting from 0, in correspondence with the slice given. + /// + /// It is legal to provide an empty slice. In that case, the NFA returned + /// has no patterns and will never match anything. + fn compile<H: Borrow<Hir>>(&self, exprs: &[H]) -> Result<NFA, BuildError> { + if exprs.len() > PatternID::LIMIT { + return Err(BuildError::too_many_patterns(exprs.len())); + } + if self.config.get_reverse() + && self.config.get_which_captures().is_any() + { + return Err(BuildError::unsupported_captures()); + } + + self.builder.borrow_mut().clear(); + self.builder.borrow_mut().set_utf8(self.config.get_utf8()); + self.builder.borrow_mut().set_reverse(self.config.get_reverse()); + self.builder + .borrow_mut() + .set_look_matcher(self.config.get_look_matcher()); + self.builder + .borrow_mut() + .set_size_limit(self.config.get_nfa_size_limit())?; + + // We always add an unanchored prefix unless we were specifically told + // not to (for tests only), or if we know that the regex is anchored + // for all matches. When an unanchored prefix is not added, then the + // NFA's anchored and unanchored start states are equivalent. + let all_anchored = exprs.iter().all(|e| { + e.borrow() + .properties() + .look_set_prefix() + .contains(hir::Look::Start) + }); + let anchored = !self.config.get_unanchored_prefix() || all_anchored; + let unanchored_prefix = if anchored { + self.c_empty()? + } else { + self.c_at_least(&Hir::dot(hir::Dot::AnyByte), false, 0)? + }; + + let compiled = self.c_alt_iter(exprs.iter().map(|e| { + let _ = self.start_pattern()?; + let one = self.c_cap(0, None, e.borrow())?; + let match_state_id = self.add_match()?; + self.patch(one.end, match_state_id)?; + let _ = self.finish_pattern(one.start)?; + Ok(ThompsonRef { start: one.start, end: match_state_id }) + }))?; + self.patch(unanchored_prefix.end, compiled.start)?; + let nfa = self + .builder + .borrow_mut() + .build(compiled.start, unanchored_prefix.start)?; + + debug!("HIR-to-NFA compilation complete, config: {:?}", self.config); + Ok(nfa) + } + + /// Compile an arbitrary HIR expression. + fn c(&self, expr: &Hir) -> Result<ThompsonRef, BuildError> { + use regex_syntax::hir::{Class, HirKind::*}; + + match *expr.kind() { + Empty => self.c_empty(), + Literal(hir::Literal(ref bytes)) => self.c_literal(bytes), + Class(Class::Bytes(ref c)) => self.c_byte_class(c), + Class(Class::Unicode(ref c)) => self.c_unicode_class(c), + Look(ref look) => self.c_look(look), + Repetition(ref rep) => self.c_repetition(rep), + Capture(ref c) => self.c_cap(c.index, c.name.as_deref(), &c.sub), + Concat(ref es) => self.c_concat(es.iter().map(|e| self.c(e))), + Alternation(ref es) => self.c_alt_slice(es), + } + } + + /// Compile a concatenation of the sub-expressions yielded by the given + /// iterator. If the iterator yields no elements, then this compiles down + /// to an "empty" state that always matches. + /// + /// If the compiler is in reverse mode, then the expressions given are + /// automatically compiled in reverse. + fn c_concat<I>(&self, mut it: I) -> Result<ThompsonRef, BuildError> + where + I: DoubleEndedIterator<Item = Result<ThompsonRef, BuildError>>, + { + let first = if self.is_reverse() { it.next_back() } else { it.next() }; + let ThompsonRef { start, mut end } = match first { + Some(result) => result?, + None => return self.c_empty(), + }; + loop { + let next = + if self.is_reverse() { it.next_back() } else { it.next() }; + let compiled = match next { + Some(result) => result?, + None => break, + }; + self.patch(end, compiled.start)?; + end = compiled.end; + } + Ok(ThompsonRef { start, end }) + } + + /// Compile an alternation of the given HIR values. + /// + /// This is like 'c_alt_iter', but it accepts a slice of HIR values instead + /// of an iterator of compiled NFA subgraphs. The point of accepting a + /// slice here is that it opens up some optimization opportunities. For + /// example, if all of the HIR values are literals, then this routine might + /// re-shuffle them to make NFA epsilon closures substantially faster. + fn c_alt_slice(&self, exprs: &[Hir]) -> Result<ThompsonRef, BuildError> { + // self.c_alt_iter(exprs.iter().map(|e| self.c(e))) + let literal_count = exprs + .iter() + .filter(|e| { + matches!(*e.kind(), hir::HirKind::Literal(hir::Literal(_))) + }) + .count(); + if literal_count <= 1 || literal_count < exprs.len() { + return self.c_alt_iter(exprs.iter().map(|e| self.c(e))); + } + + let mut trie = if self.is_reverse() { + LiteralTrie::reverse() + } else { + LiteralTrie::forward() + }; + for expr in exprs.iter() { + let literal = match *expr.kind() { + hir::HirKind::Literal(hir::Literal(ref bytes)) => bytes, + _ => unreachable!(), + }; + trie.add(literal)?; + } + trie.compile(&mut self.builder.borrow_mut()) + } + + /// Compile an alternation, where each element yielded by the given + /// iterator represents an item in the alternation. If the iterator yields + /// no elements, then this compiles down to a "fail" state. + /// + /// In an alternation, expressions appearing earlier are "preferred" at + /// match time over expressions appearing later. At least, this is true + /// when using "leftmost first" match semantics. (If "leftmost longest" are + /// ever added in the future, then this preference order of priority would + /// not apply in that mode.) + fn c_alt_iter<I>(&self, mut it: I) -> Result<ThompsonRef, BuildError> + where + I: Iterator<Item = Result<ThompsonRef, BuildError>>, + { + let first = match it.next() { + None => return self.c_fail(), + Some(result) => result?, + }; + let second = match it.next() { + None => return Ok(first), + Some(result) => result?, + }; + + let union = self.add_union()?; + let end = self.add_empty()?; + self.patch(union, first.start)?; + self.patch(first.end, end)?; + self.patch(union, second.start)?; + self.patch(second.end, end)?; + for result in it { + let compiled = result?; + self.patch(union, compiled.start)?; + self.patch(compiled.end, end)?; + } + Ok(ThompsonRef { start: union, end }) + } + + /// Compile the given capture sub-expression. `expr` should be the + /// sub-expression contained inside the capture. If "capture" states are + /// enabled, then they are added as appropriate. + /// + /// This accepts the pieces of a capture instead of a `hir::Capture` so + /// that it's easy to manufacture a "fake" group when necessary, e.g., for + /// adding the entire pattern as if it were a group in order to create + /// appropriate "capture" states in the NFA. + fn c_cap( + &self, + index: u32, + name: Option<&str>, + expr: &Hir, + ) -> Result<ThompsonRef, BuildError> { + match self.config.get_which_captures() { + // No capture states means we always skip them. + WhichCaptures::None => return self.c(expr), + // Implicit captures states means we only add when index==0 since + // index==0 implies the group is implicit. + WhichCaptures::Implicit if index > 0 => return self.c(expr), + _ => {} + } + + let start = self.add_capture_start(index, name)?; + let inner = self.c(expr)?; + let end = self.add_capture_end(index)?; + self.patch(start, inner.start)?; + self.patch(inner.end, end)?; + Ok(ThompsonRef { start, end }) + } + + /// Compile the given repetition expression. This handles all types of + /// repetitions and greediness. + fn c_repetition( + &self, + rep: &hir::Repetition, + ) -> Result<ThompsonRef, BuildError> { + match (rep.min, rep.max) { + (0, Some(1)) => self.c_zero_or_one(&rep.sub, rep.greedy), + (min, None) => self.c_at_least(&rep.sub, rep.greedy, min), + (min, Some(max)) if min == max => self.c_exactly(&rep.sub, min), + (min, Some(max)) => self.c_bounded(&rep.sub, rep.greedy, min, max), + } + } + + /// Compile the given expression such that it matches at least `min` times, + /// but no more than `max` times. + /// + /// When `greedy` is true, then the preference is for the expression to + /// match as much as possible. Otherwise, it will match as little as + /// possible. + fn c_bounded( + &self, + expr: &Hir, + greedy: bool, + min: u32, + max: u32, + ) -> Result<ThompsonRef, BuildError> { + let prefix = self.c_exactly(expr, min)?; + if min == max { + return Ok(prefix); + } + + // It is tempting here to compile the rest here as a concatenation + // of zero-or-one matches. i.e., for `a{2,5}`, compile it as if it + // were `aaa?a?a?`. The problem here is that it leads to this program: + // + // >000000: 61 => 01 + // 000001: 61 => 02 + // 000002: union(03, 04) + // 000003: 61 => 04 + // 000004: union(05, 06) + // 000005: 61 => 06 + // 000006: union(07, 08) + // 000007: 61 => 08 + // 000008: MATCH + // + // And effectively, once you hit state 2, the epsilon closure will + // include states 3, 5, 6, 7 and 8, which is quite a bit. It is better + // to instead compile it like so: + // + // >000000: 61 => 01 + // 000001: 61 => 02 + // 000002: union(03, 08) + // 000003: 61 => 04 + // 000004: union(05, 08) + // 000005: 61 => 06 + // 000006: union(07, 08) + // 000007: 61 => 08 + // 000008: MATCH + // + // So that the epsilon closure of state 2 is now just 3 and 8. + let empty = self.add_empty()?; + let mut prev_end = prefix.end; + for _ in min..max { + let union = if greedy { + self.add_union() + } else { + self.add_union_reverse() + }?; + let compiled = self.c(expr)?; + self.patch(prev_end, union)?; + self.patch(union, compiled.start)?; + self.patch(union, empty)?; + prev_end = compiled.end; + } + self.patch(prev_end, empty)?; + Ok(ThompsonRef { start: prefix.start, end: empty }) + } + + /// Compile the given expression such that it may be matched `n` or more + /// times, where `n` can be any integer. (Although a particularly large + /// integer is likely to run afoul of any configured size limits.) + /// + /// When `greedy` is true, then the preference is for the expression to + /// match as much as possible. Otherwise, it will match as little as + /// possible. + fn c_at_least( + &self, + expr: &Hir, + greedy: bool, + n: u32, + ) -> Result<ThompsonRef, BuildError> { + if n == 0 { + // When the expression cannot match the empty string, then we + // can get away with something much simpler: just one 'alt' + // instruction that optionally repeats itself. But if the expr + // can match the empty string... see below. + if expr.properties().minimum_len().map_or(false, |len| len > 0) { + let union = if greedy { + self.add_union() + } else { + self.add_union_reverse() + }?; + let compiled = self.c(expr)?; + self.patch(union, compiled.start)?; + self.patch(compiled.end, union)?; + return Ok(ThompsonRef { start: union, end: union }); + } + + // What's going on here? Shouldn't x* be simpler than this? It + // turns out that when implementing leftmost-first (Perl-like) + // match semantics, x* results in an incorrect preference order + // when computing the transitive closure of states if and only if + // 'x' can match the empty string. So instead, we compile x* as + // (x+)?, which preserves the correct preference order. + // + // See: https://github.com/rust-lang/regex/issues/779 + let compiled = self.c(expr)?; + let plus = if greedy { + self.add_union() + } else { + self.add_union_reverse() + }?; + self.patch(compiled.end, plus)?; + self.patch(plus, compiled.start)?; + + let question = if greedy { + self.add_union() + } else { + self.add_union_reverse() + }?; + let empty = self.add_empty()?; + self.patch(question, compiled.start)?; + self.patch(question, empty)?; + self.patch(plus, empty)?; + Ok(ThompsonRef { start: question, end: empty }) + } else if n == 1 { + let compiled = self.c(expr)?; + let union = if greedy { + self.add_union() + } else { + self.add_union_reverse() + }?; + self.patch(compiled.end, union)?; + self.patch(union, compiled.start)?; + Ok(ThompsonRef { start: compiled.start, end: union }) + } else { + let prefix = self.c_exactly(expr, n - 1)?; + let last = self.c(expr)?; + let union = if greedy { + self.add_union() + } else { + self.add_union_reverse() + }?; + self.patch(prefix.end, last.start)?; + self.patch(last.end, union)?; + self.patch(union, last.start)?; + Ok(ThompsonRef { start: prefix.start, end: union }) + } + } + + /// Compile the given expression such that it may be matched zero or one + /// times. + /// + /// When `greedy` is true, then the preference is for the expression to + /// match as much as possible. Otherwise, it will match as little as + /// possible. + fn c_zero_or_one( + &self, + expr: &Hir, + greedy: bool, + ) -> Result<ThompsonRef, BuildError> { + let union = + if greedy { self.add_union() } else { self.add_union_reverse() }?; + let compiled = self.c(expr)?; + let empty = self.add_empty()?; + self.patch(union, compiled.start)?; + self.patch(union, empty)?; + self.patch(compiled.end, empty)?; + Ok(ThompsonRef { start: union, end: empty }) + } + + /// Compile the given HIR expression exactly `n` times. + fn c_exactly( + &self, + expr: &Hir, + n: u32, + ) -> Result<ThompsonRef, BuildError> { + let it = (0..n).map(|_| self.c(expr)); + self.c_concat(it) + } + + /// Compile the given byte oriented character class. + /// + /// This uses "sparse" states to represent an alternation between ranges in + /// this character class. We can use "sparse" states instead of stitching + /// together a "union" state because all ranges in a character class have + /// equal priority *and* are non-overlapping (thus, only one can match, so + /// there's never a question of priority in the first place). This saves a + /// fair bit of overhead when traversing an NFA. + /// + /// This routine compiles an empty character class into a "fail" state. + fn c_byte_class( + &self, + cls: &hir::ClassBytes, + ) -> Result<ThompsonRef, BuildError> { + let end = self.add_empty()?; + let mut trans = Vec::with_capacity(cls.ranges().len()); + for r in cls.iter() { + trans.push(Transition { + start: r.start(), + end: r.end(), + next: end, + }); + } + Ok(ThompsonRef { start: self.add_sparse(trans)?, end }) + } + + /// Compile the given Unicode character class. + /// + /// This routine specifically tries to use various types of compression, + /// since UTF-8 automata of large classes can get quite large. The specific + /// type of compression used depends on forward vs reverse compilation, and + /// whether NFA shrinking is enabled or not. + /// + /// Aside from repetitions causing lots of repeat group, this is like the + /// single most expensive part of regex compilation. Therefore, a large part + /// of the expense of compilation may be reduce by disabling Unicode in the + /// pattern. + /// + /// This routine compiles an empty character class into a "fail" state. + fn c_unicode_class( + &self, + cls: &hir::ClassUnicode, + ) -> Result<ThompsonRef, BuildError> { + // If all we have are ASCII ranges wrapped in a Unicode package, then + // there is zero reason to bring out the big guns. We can fit all ASCII + // ranges within a single sparse state. + if cls.is_ascii() { + let end = self.add_empty()?; + let mut trans = Vec::with_capacity(cls.ranges().len()); + for r in cls.iter() { + // The unwraps below are OK because we've verified that this + // class only contains ASCII codepoints. + trans.push(Transition { + // FIXME(1.59): use the 'TryFrom<char> for u8' impl. + start: u8::try_from(u32::from(r.start())).unwrap(), + end: u8::try_from(u32::from(r.end())).unwrap(), + next: end, + }); + } + Ok(ThompsonRef { start: self.add_sparse(trans)?, end }) + } else if self.is_reverse() { + if !self.config.get_shrink() { + // When we don't want to spend the extra time shrinking, we + // compile the UTF-8 automaton in reverse using something like + // the "naive" approach, but will attempt to re-use common + // suffixes. + self.c_unicode_class_reverse_with_suffix(cls) + } else { + // When we want to shrink our NFA for reverse UTF-8 automata, + // we cannot feed UTF-8 sequences directly to the UTF-8 + // compiler, since the UTF-8 compiler requires all sequences + // to be lexicographically sorted. Instead, we organize our + // sequences into a range trie, which can then output our + // sequences in the correct order. Unfortunately, building the + // range trie is fairly expensive (but not nearly as expensive + // as building a DFA). Hence the reason why the 'shrink' option + // exists, so that this path can be toggled off. For example, + // we might want to turn this off if we know we won't be + // compiling a DFA. + let mut trie = self.trie_state.borrow_mut(); + trie.clear(); + + for rng in cls.iter() { + for mut seq in Utf8Sequences::new(rng.start(), rng.end()) { + seq.reverse(); + trie.insert(seq.as_slice()); + } + } + let mut builder = self.builder.borrow_mut(); + let mut utf8_state = self.utf8_state.borrow_mut(); + let mut utf8c = + Utf8Compiler::new(&mut *builder, &mut *utf8_state)?; + trie.iter(|seq| { + utf8c.add(&seq)?; + Ok(()) + })?; + utf8c.finish() + } + } else { + // In the forward direction, we always shrink our UTF-8 automata + // because we can stream it right into the UTF-8 compiler. There + // is almost no downside (in either memory or time) to using this + // approach. + let mut builder = self.builder.borrow_mut(); + let mut utf8_state = self.utf8_state.borrow_mut(); + let mut utf8c = + Utf8Compiler::new(&mut *builder, &mut *utf8_state)?; + for rng in cls.iter() { + for seq in Utf8Sequences::new(rng.start(), rng.end()) { + utf8c.add(seq.as_slice())?; + } + } + utf8c.finish() + } + + // For reference, the code below is the "naive" version of compiling a + // UTF-8 automaton. It is deliciously simple (and works for both the + // forward and reverse cases), but will unfortunately produce very + // large NFAs. When compiling a forward automaton, the size difference + // can sometimes be an order of magnitude. For example, the '\w' regex + // will generate about ~3000 NFA states using the naive approach below, + // but only 283 states when using the approach above. This is because + // the approach above actually compiles a *minimal* (or near minimal, + // because of the bounded hashmap for reusing equivalent states) UTF-8 + // automaton. + // + // The code below is kept as a reference point in order to make it + // easier to understand the higher level goal here. Although, it will + // almost certainly bit-rot, so keep that in mind. Also, if you try to + // use it, some of the tests in this module will fail because they look + // for terser byte code produce by the more optimized handling above. + // But the integration test suite should still pass. + // + // One good example of the substantial difference this can make is to + // compare and contrast performance of the Pike VM when the code below + // is active vs the code above. Here's an example to try: + // + // regex-cli find match pikevm -b -p '(?m)^\w{20}' non-ascii-file + // + // With Unicode classes generated below, this search takes about 45s on + // my machine. But with the compressed version above, the search takes + // only around 1.4s. The NFA is also 20% smaller. This is in part due + // to the compression, but also because of the utilization of 'sparse' + // NFA states. They lead to much less state shuffling during the NFA + // search. + /* + let it = cls + .iter() + .flat_map(|rng| Utf8Sequences::new(rng.start(), rng.end())) + .map(|seq| { + let it = seq + .as_slice() + .iter() + .map(|rng| self.c_range(rng.start, rng.end)); + self.c_concat(it) + }); + self.c_alt_iter(it) + */ + } + + /// Compile the given Unicode character class in reverse with suffix + /// caching. + /// + /// This is a "quick" way to compile large Unicode classes into reverse + /// UTF-8 automata while doing a small amount of compression on that + /// automata by reusing common suffixes. + /// + /// A more comprehensive compression scheme can be accomplished by using + /// a range trie to efficiently sort a reverse sequence of UTF-8 byte + /// rqanges, and then use Daciuk's algorithm via `Utf8Compiler`. + /// + /// This is the technique used when "NFA shrinking" is disabled. + /// + /// (This also tries to use "sparse" states where possible, just like + /// `c_byte_class` does.) + fn c_unicode_class_reverse_with_suffix( + &self, + cls: &hir::ClassUnicode, + ) -> Result<ThompsonRef, BuildError> { + // N.B. It would likely be better to cache common *prefixes* in the + // reverse direction, but it's not quite clear how to do that. The + // advantage of caching suffixes is that it does give us a win, and + // has a very small additional overhead. + let mut cache = self.utf8_suffix.borrow_mut(); + cache.clear(); + + let union = self.add_union()?; + let alt_end = self.add_empty()?; + for urng in cls.iter() { + for seq in Utf8Sequences::new(urng.start(), urng.end()) { + let mut end = alt_end; + for brng in seq.as_slice() { + let key = Utf8SuffixKey { + from: end, + start: brng.start, + end: brng.end, + }; + let hash = cache.hash(&key); + if let Some(id) = cache.get(&key, hash) { + end = id; + continue; + } + + let compiled = self.c_range(brng.start, brng.end)?; + self.patch(compiled.end, end)?; + end = compiled.start; + cache.set(key, hash, end); + } + self.patch(union, end)?; + } + } + Ok(ThompsonRef { start: union, end: alt_end }) + } + + /// Compile the given HIR look-around assertion to an NFA look-around + /// assertion. + fn c_look(&self, anchor: &hir::Look) -> Result<ThompsonRef, BuildError> { + let look = match *anchor { + hir::Look::Start => Look::Start, + hir::Look::End => Look::End, + hir::Look::StartLF => Look::StartLF, + hir::Look::EndLF => Look::EndLF, + hir::Look::StartCRLF => Look::StartCRLF, + hir::Look::EndCRLF => Look::EndCRLF, + hir::Look::WordAscii => Look::WordAscii, + hir::Look::WordAsciiNegate => Look::WordAsciiNegate, + hir::Look::WordUnicode => Look::WordUnicode, + hir::Look::WordUnicodeNegate => Look::WordUnicodeNegate, + hir::Look::WordStartAscii => Look::WordStartAscii, + hir::Look::WordEndAscii => Look::WordEndAscii, + hir::Look::WordStartUnicode => Look::WordStartUnicode, + hir::Look::WordEndUnicode => Look::WordEndUnicode, + hir::Look::WordStartHalfAscii => Look::WordStartHalfAscii, + hir::Look::WordEndHalfAscii => Look::WordEndHalfAscii, + hir::Look::WordStartHalfUnicode => Look::WordStartHalfUnicode, + hir::Look::WordEndHalfUnicode => Look::WordEndHalfUnicode, + }; + let id = self.add_look(look)?; + Ok(ThompsonRef { start: id, end: id }) + } + + /// Compile the given byte string to a concatenation of bytes. + fn c_literal(&self, bytes: &[u8]) -> Result<ThompsonRef, BuildError> { + self.c_concat(bytes.iter().copied().map(|b| self.c_range(b, b))) + } + + /// Compile a "range" state with one transition that may only be followed + /// if the input byte is in the (inclusive) range given. + /// + /// Both the `start` and `end` locations point to the state created. + /// Callers will likely want to keep the `start`, but patch the `end` to + /// point to some other state. + fn c_range(&self, start: u8, end: u8) -> Result<ThompsonRef, BuildError> { + let id = self.add_range(start, end)?; + Ok(ThompsonRef { start: id, end: id }) + } + + /// Compile an "empty" state with one unconditional epsilon transition. + /// + /// Both the `start` and `end` locations point to the state created. + /// Callers will likely want to keep the `start`, but patch the `end` to + /// point to some other state. + fn c_empty(&self) -> Result<ThompsonRef, BuildError> { + let id = self.add_empty()?; + Ok(ThompsonRef { start: id, end: id }) + } + + /// Compile a "fail" state that can never have any outgoing transitions. + fn c_fail(&self) -> Result<ThompsonRef, BuildError> { + let id = self.add_fail()?; + Ok(ThompsonRef { start: id, end: id }) + } + + // The below helpers are meant to be simple wrappers around the + // corresponding Builder methods. For the most part, they let us write + // 'self.add_foo()' instead of 'self.builder.borrow_mut().add_foo()', where + // the latter is a mouthful. Some of the methods do inject a little bit + // of extra logic. e.g., Flipping look-around operators when compiling in + // reverse mode. + + fn patch(&self, from: StateID, to: StateID) -> Result<(), BuildError> { + self.builder.borrow_mut().patch(from, to) + } + + fn start_pattern(&self) -> Result<PatternID, BuildError> { + self.builder.borrow_mut().start_pattern() + } + + fn finish_pattern( + &self, + start_id: StateID, + ) -> Result<PatternID, BuildError> { + self.builder.borrow_mut().finish_pattern(start_id) + } + + fn add_empty(&self) -> Result<StateID, BuildError> { + self.builder.borrow_mut().add_empty() + } + + fn add_range(&self, start: u8, end: u8) -> Result<StateID, BuildError> { + self.builder.borrow_mut().add_range(Transition { + start, + end, + next: StateID::ZERO, + }) + } + + fn add_sparse( + &self, + ranges: Vec<Transition>, + ) -> Result<StateID, BuildError> { + self.builder.borrow_mut().add_sparse(ranges) + } + + fn add_look(&self, mut look: Look) -> Result<StateID, BuildError> { + if self.is_reverse() { + look = look.reversed(); + } + self.builder.borrow_mut().add_look(StateID::ZERO, look) + } + + fn add_union(&self) -> Result<StateID, BuildError> { + self.builder.borrow_mut().add_union(vec![]) + } + + fn add_union_reverse(&self) -> Result<StateID, BuildError> { + self.builder.borrow_mut().add_union_reverse(vec![]) + } + + fn add_capture_start( + &self, + capture_index: u32, + name: Option<&str>, + ) -> Result<StateID, BuildError> { + let name = name.map(|n| Arc::from(n)); + self.builder.borrow_mut().add_capture_start( + StateID::ZERO, + capture_index, + name, + ) + } + + fn add_capture_end( + &self, + capture_index: u32, + ) -> Result<StateID, BuildError> { + self.builder.borrow_mut().add_capture_end(StateID::ZERO, capture_index) + } + + fn add_fail(&self) -> Result<StateID, BuildError> { + self.builder.borrow_mut().add_fail() + } + + fn add_match(&self) -> Result<StateID, BuildError> { + self.builder.borrow_mut().add_match() + } + + fn is_reverse(&self) -> bool { + self.config.get_reverse() + } +} + +/// A value that represents the result of compiling a sub-expression of a +/// regex's HIR. Specifically, this represents a sub-graph of the NFA that +/// has an initial state at `start` and a final state at `end`. +#[derive(Clone, Copy, Debug)] +pub(crate) struct ThompsonRef { + pub(crate) start: StateID, + pub(crate) end: StateID, +} + +/// A UTF-8 compiler based on Daciuk's algorithm for compilining minimal DFAs +/// from a lexicographically sorted sequence of strings in linear time. +/// +/// The trick here is that any Unicode codepoint range can be converted to +/// a sequence of byte ranges that form a UTF-8 automaton. Connecting them +/// together via an alternation is trivial, and indeed, it works. However, +/// there is a lot of redundant structure in many UTF-8 automatons. Since our +/// UTF-8 ranges are in lexicographic order, we can use Daciuk's algorithm +/// to build nearly minimal DFAs in linear time. (They are guaranteed to be +/// minimal because we use a bounded cache of previously build DFA states.) +/// +/// The drawback is that this sadly doesn't work for reverse automata, since +/// the ranges are no longer in lexicographic order. For that, we invented the +/// range trie (which gets its own module). Once a range trie is built, we then +/// use this same Utf8Compiler to build a reverse UTF-8 automaton. +/// +/// The high level idea is described here: +/// https://blog.burntsushi.net/transducers/#finite-state-machines-as-data-structures +/// +/// There is also another implementation of this in the `fst` crate. +#[derive(Debug)] +struct Utf8Compiler<'a> { + builder: &'a mut Builder, + state: &'a mut Utf8State, + target: StateID, +} + +#[derive(Clone, Debug)] +struct Utf8State { + compiled: Utf8BoundedMap, + uncompiled: Vec<Utf8Node>, +} + +#[derive(Clone, Debug)] +struct Utf8Node { + trans: Vec<Transition>, + last: Option<Utf8LastTransition>, +} + +#[derive(Clone, Debug)] +struct Utf8LastTransition { + start: u8, + end: u8, +} + +impl Utf8State { + fn new() -> Utf8State { + Utf8State { compiled: Utf8BoundedMap::new(10_000), uncompiled: vec![] } + } + + fn clear(&mut self) { + self.compiled.clear(); + self.uncompiled.clear(); + } +} + +impl<'a> Utf8Compiler<'a> { + fn new( + builder: &'a mut Builder, + state: &'a mut Utf8State, + ) -> Result<Utf8Compiler<'a>, BuildError> { + let target = builder.add_empty()?; + state.clear(); + let mut utf8c = Utf8Compiler { builder, state, target }; + utf8c.add_empty(); + Ok(utf8c) + } + + fn finish(&mut self) -> Result<ThompsonRef, BuildError> { + self.compile_from(0)?; + let node = self.pop_root(); + let start = self.compile(node)?; + Ok(ThompsonRef { start, end: self.target }) + } + + fn add(&mut self, ranges: &[Utf8Range]) -> Result<(), BuildError> { + let prefix_len = ranges + .iter() + .zip(&self.state.uncompiled) + .take_while(|&(range, node)| { + node.last.as_ref().map_or(false, |t| { + (t.start, t.end) == (range.start, range.end) + }) + }) + .count(); + assert!(prefix_len < ranges.len()); + self.compile_from(prefix_len)?; + self.add_suffix(&ranges[prefix_len..]); + Ok(()) + } + + fn compile_from(&mut self, from: usize) -> Result<(), BuildError> { + let mut next = self.target; + while from + 1 < self.state.uncompiled.len() { + let node = self.pop_freeze(next); + next = self.compile(node)?; + } + self.top_last_freeze(next); + Ok(()) + } + + fn compile( + &mut self, + node: Vec<Transition>, + ) -> Result<StateID, BuildError> { + let hash = self.state.compiled.hash(&node); + if let Some(id) = self.state.compiled.get(&node, hash) { + return Ok(id); + } + let id = self.builder.add_sparse(node.clone())?; + self.state.compiled.set(node, hash, id); + Ok(id) + } + + fn add_suffix(&mut self, ranges: &[Utf8Range]) { + assert!(!ranges.is_empty()); + let last = self + .state + .uncompiled + .len() + .checked_sub(1) + .expect("non-empty nodes"); + assert!(self.state.uncompiled[last].last.is_none()); + self.state.uncompiled[last].last = Some(Utf8LastTransition { + start: ranges[0].start, + end: ranges[0].end, + }); + for r in &ranges[1..] { + self.state.uncompiled.push(Utf8Node { + trans: vec![], + last: Some(Utf8LastTransition { start: r.start, end: r.end }), + }); + } + } + + fn add_empty(&mut self) { + self.state.uncompiled.push(Utf8Node { trans: vec![], last: None }); + } + + fn pop_freeze(&mut self, next: StateID) -> Vec<Transition> { + let mut uncompiled = self.state.uncompiled.pop().unwrap(); + uncompiled.set_last_transition(next); + uncompiled.trans + } + + fn pop_root(&mut self) -> Vec<Transition> { + assert_eq!(self.state.uncompiled.len(), 1); + assert!(self.state.uncompiled[0].last.is_none()); + self.state.uncompiled.pop().expect("non-empty nodes").trans + } + + fn top_last_freeze(&mut self, next: StateID) { + let last = self + .state + .uncompiled + .len() + .checked_sub(1) + .expect("non-empty nodes"); + self.state.uncompiled[last].set_last_transition(next); + } +} + +impl Utf8Node { + fn set_last_transition(&mut self, next: StateID) { + if let Some(last) = self.last.take() { + self.trans.push(Transition { + start: last.start, + end: last.end, + next, + }); + } + } +} + +#[cfg(test)] +mod tests { + use alloc::{vec, vec::Vec}; + + use crate::{ + nfa::thompson::{SparseTransitions, State, Transition, NFA}, + util::primitives::{PatternID, SmallIndex, StateID}, + }; + + use super::*; + + fn build(pattern: &str) -> NFA { + NFA::compiler() + .configure( + NFA::config() + .which_captures(WhichCaptures::None) + .unanchored_prefix(false), + ) + .build(pattern) + .unwrap() + } + + fn pid(id: usize) -> PatternID { + PatternID::new(id).unwrap() + } + + fn sid(id: usize) -> StateID { + StateID::new(id).unwrap() + } + + fn s_byte(byte: u8, next: usize) -> State { + let next = sid(next); + let trans = Transition { start: byte, end: byte, next }; + State::ByteRange { trans } + } + + fn s_range(start: u8, end: u8, next: usize) -> State { + let next = sid(next); + let trans = Transition { start, end, next }; + State::ByteRange { trans } + } + + fn s_sparse(transitions: &[(u8, u8, usize)]) -> State { + let transitions = transitions + .iter() + .map(|&(start, end, next)| Transition { + start, + end, + next: sid(next), + }) + .collect(); + State::Sparse(SparseTransitions { transitions }) + } + + fn s_bin_union(alt1: usize, alt2: usize) -> State { + State::BinaryUnion { alt1: sid(alt1), alt2: sid(alt2) } + } + + fn s_union(alts: &[usize]) -> State { + State::Union { + alternates: alts + .iter() + .map(|&id| sid(id)) + .collect::<Vec<StateID>>() + .into_boxed_slice(), + } + } + + fn s_cap(next: usize, pattern: usize, index: usize, slot: usize) -> State { + State::Capture { + next: sid(next), + pattern_id: pid(pattern), + group_index: SmallIndex::new(index).unwrap(), + slot: SmallIndex::new(slot).unwrap(), + } + } + + fn s_fail() -> State { + State::Fail + } + + fn s_match(id: usize) -> State { + State::Match { pattern_id: pid(id) } + } + + // Test that building an unanchored NFA has an appropriate `(?s:.)*?` + // prefix. + #[test] + fn compile_unanchored_prefix() { + let nfa = NFA::compiler() + .configure(NFA::config().which_captures(WhichCaptures::None)) + .build(r"a") + .unwrap(); + assert_eq!( + nfa.states(), + &[ + s_bin_union(2, 1), + s_range(0, 255, 0), + s_byte(b'a', 3), + s_match(0), + ] + ); + } + + #[test] + fn compile_empty() { + assert_eq!(build("").states(), &[s_match(0),]); + } + + #[test] + fn compile_literal() { + assert_eq!(build("a").states(), &[s_byte(b'a', 1), s_match(0),]); + assert_eq!( + build("ab").states(), + &[s_byte(b'a', 1), s_byte(b'b', 2), s_match(0),] + ); + assert_eq!( + build("ā").states(), + &[s_byte(0xE2, 1), s_byte(0x98, 2), s_byte(0x83, 3), s_match(0)] + ); + + // Check that non-UTF-8 literals work. + let nfa = NFA::compiler() + .configure( + NFA::config() + .which_captures(WhichCaptures::None) + .unanchored_prefix(false), + ) + .syntax(crate::util::syntax::Config::new().utf8(false)) + .build(r"(?-u)\xFF") + .unwrap(); + assert_eq!(nfa.states(), &[s_byte(b'\xFF', 1), s_match(0),]); + } + + #[test] + fn compile_class_ascii() { + assert_eq!( + build(r"[a-z]").states(), + &[s_range(b'a', b'z', 1), s_match(0),] + ); + assert_eq!( + build(r"[x-za-c]").states(), + &[s_sparse(&[(b'a', b'c', 1), (b'x', b'z', 1)]), s_match(0)] + ); + } + + #[test] + #[cfg(not(miri))] + fn compile_class_unicode() { + assert_eq!( + build(r"[\u03B1-\u03B4]").states(), + &[s_range(0xB1, 0xB4, 2), s_byte(0xCE, 0), s_match(0)] + ); + assert_eq!( + build(r"[\u03B1-\u03B4\u{1F919}-\u{1F91E}]").states(), + &[ + s_range(0xB1, 0xB4, 5), + s_range(0x99, 0x9E, 5), + s_byte(0xA4, 1), + s_byte(0x9F, 2), + s_sparse(&[(0xCE, 0xCE, 0), (0xF0, 0xF0, 3)]), + s_match(0), + ] + ); + assert_eq!( + build(r"[a-zā]").states(), + &[ + s_byte(0x83, 3), + s_byte(0x98, 0), + s_sparse(&[(b'a', b'z', 3), (0xE2, 0xE2, 1)]), + s_match(0), + ] + ); + } + + #[test] + fn compile_repetition() { + assert_eq!( + build(r"a?").states(), + &[s_bin_union(1, 2), s_byte(b'a', 2), s_match(0),] + ); + assert_eq!( + build(r"a??").states(), + &[s_bin_union(2, 1), s_byte(b'a', 2), s_match(0),] + ); + } + + #[test] + fn compile_group() { + assert_eq!( + build(r"ab+").states(), + &[s_byte(b'a', 1), s_byte(b'b', 2), s_bin_union(1, 3), s_match(0)] + ); + assert_eq!( + build(r"(ab)").states(), + &[s_byte(b'a', 1), s_byte(b'b', 2), s_match(0)] + ); + assert_eq!( + build(r"(ab)+").states(), + &[s_byte(b'a', 1), s_byte(b'b', 2), s_bin_union(0, 3), s_match(0)] + ); + } + + #[test] + fn compile_alternation() { + assert_eq!( + build(r"a|b").states(), + &[s_range(b'a', b'b', 1), s_match(0)] + ); + assert_eq!( + build(r"ab|cd").states(), + &[ + s_byte(b'b', 3), + s_byte(b'd', 3), + s_sparse(&[(b'a', b'a', 0), (b'c', b'c', 1)]), + s_match(0) + ], + ); + assert_eq!( + build(r"|b").states(), + &[s_byte(b'b', 2), s_bin_union(2, 0), s_match(0)] + ); + assert_eq!( + build(r"a|").states(), + &[s_byte(b'a', 2), s_bin_union(0, 2), s_match(0)] + ); + } + + // This tests the use of a non-binary union, i.e., a state with more than + // 2 unconditional epsilon transitions. The only place they tend to appear + // is in reverse NFAs when shrinking is disabled. Otherwise, 'binary-union' + // and 'sparse' tend to cover all other cases of alternation. + #[test] + fn compile_non_binary_union() { + let nfa = NFA::compiler() + .configure( + NFA::config() + .which_captures(WhichCaptures::None) + .reverse(true) + .shrink(false) + .unanchored_prefix(false), + ) + .build(r"[\u1000\u2000\u3000]") + .unwrap(); + assert_eq!( + nfa.states(), + &[ + s_union(&[3, 6, 9]), + s_byte(0xE1, 10), + s_byte(0x80, 1), + s_byte(0x80, 2), + s_byte(0xE2, 10), + s_byte(0x80, 4), + s_byte(0x80, 5), + s_byte(0xE3, 10), + s_byte(0x80, 7), + s_byte(0x80, 8), + s_match(0), + ] + ); + } + + #[test] + fn compile_many_start_pattern() { + let nfa = NFA::compiler() + .configure( + NFA::config() + .which_captures(WhichCaptures::None) + .unanchored_prefix(false), + ) + .build_many(&["a", "b"]) + .unwrap(); + assert_eq!( + nfa.states(), + &[ + s_byte(b'a', 1), + s_match(0), + s_byte(b'b', 3), + s_match(1), + s_bin_union(0, 2), + ] + ); + assert_eq!(nfa.start_anchored().as_usize(), 4); + assert_eq!(nfa.start_unanchored().as_usize(), 4); + // Test that the start states for each individual pattern are correct. + assert_eq!(nfa.start_pattern(pid(0)).unwrap(), sid(0)); + assert_eq!(nfa.start_pattern(pid(1)).unwrap(), sid(2)); + } + + // This tests that our compiler can handle an empty character class. At the + // time of writing, the regex parser forbids it, so the only way to test it + // is to provide a hand written HIR. + #[test] + fn empty_class_bytes() { + use regex_syntax::hir::{Class, ClassBytes, Hir}; + + let hir = Hir::class(Class::Bytes(ClassBytes::new(vec![]))); + let config = NFA::config() + .which_captures(WhichCaptures::None) + .unanchored_prefix(false); + let nfa = + NFA::compiler().configure(config).build_from_hir(&hir).unwrap(); + assert_eq!(nfa.states(), &[s_fail(), s_match(0)]); + } + + // Like empty_class_bytes, but for a Unicode class. + #[test] + fn empty_class_unicode() { + use regex_syntax::hir::{Class, ClassUnicode, Hir}; + + let hir = Hir::class(Class::Unicode(ClassUnicode::new(vec![]))); + let config = NFA::config() + .which_captures(WhichCaptures::None) + .unanchored_prefix(false); + let nfa = + NFA::compiler().configure(config).build_from_hir(&hir).unwrap(); + assert_eq!(nfa.states(), &[s_fail(), s_match(0)]); + } + + #[test] + fn compile_captures_all() { + let nfa = NFA::compiler() + .configure( + NFA::config() + .unanchored_prefix(false) + .which_captures(WhichCaptures::All), + ) + .build("a(b)c") + .unwrap(); + assert_eq!( + nfa.states(), + &[ + s_cap(1, 0, 0, 0), + s_byte(b'a', 2), + s_cap(3, 0, 1, 2), + s_byte(b'b', 4), + s_cap(5, 0, 1, 3), + s_byte(b'c', 6), + s_cap(7, 0, 0, 1), + s_match(0) + ] + ); + let ginfo = nfa.group_info(); + assert_eq!(2, ginfo.all_group_len()); + } + + #[test] + fn compile_captures_implicit() { + let nfa = NFA::compiler() + .configure( + NFA::config() + .unanchored_prefix(false) + .which_captures(WhichCaptures::Implicit), + ) + .build("a(b)c") + .unwrap(); + assert_eq!( + nfa.states(), + &[ + s_cap(1, 0, 0, 0), + s_byte(b'a', 2), + s_byte(b'b', 3), + s_byte(b'c', 4), + s_cap(5, 0, 0, 1), + s_match(0) + ] + ); + let ginfo = nfa.group_info(); + assert_eq!(1, ginfo.all_group_len()); + } + + #[test] + fn compile_captures_none() { + let nfa = NFA::compiler() + .configure( + NFA::config() + .unanchored_prefix(false) + .which_captures(WhichCaptures::None), + ) + .build("a(b)c") + .unwrap(); + assert_eq!( + nfa.states(), + &[s_byte(b'a', 1), s_byte(b'b', 2), s_byte(b'c', 3), s_match(0)] + ); + let ginfo = nfa.group_info(); + assert_eq!(0, ginfo.all_group_len()); + } +} |