diff options
Diffstat (limited to 'vendor/regex-automata/src/util/determinize/mod.rs')
-rw-r--r-- | vendor/regex-automata/src/util/determinize/mod.rs | 682 |
1 files changed, 682 insertions, 0 deletions
diff --git a/vendor/regex-automata/src/util/determinize/mod.rs b/vendor/regex-automata/src/util/determinize/mod.rs new file mode 100644 index 0000000..ba32991 --- /dev/null +++ b/vendor/regex-automata/src/util/determinize/mod.rs @@ -0,0 +1,682 @@ +/*! +This module contains types and routines for implementing determinization. + +In this crate, there are at least two places where we implement +determinization: fully ahead-of-time compiled DFAs in the `dfa` module and +lazily compiled DFAs in the `hybrid` module. The stuff in this module +corresponds to the things that are in common between these implementations. + +There are three broad things that our implementations of determinization have +in common, as defined by this module: + +* The classification of start states. That is, whether we're dealing with +word boundaries, line boundaries, etc., is all the same. This also includes +the look-behind assertions that are satisfied by each starting state +classification. +* The representation of DFA states as sets of NFA states, including +convenience types for building these DFA states that are amenable to reusing +allocations. +* Routines for the "classical" parts of determinization: computing the +epsilon closure, tracking match states (with corresponding pattern IDs, since +we support multi-pattern finite automata) and, of course, computing the +transition function between states for units of input. + +I did consider a couple of alternatives to this particular form of code reuse: + +1. Don't do any code reuse. The problem here is that we *really* want both +forms of determinization to do exactly identical things when it comes to +their handling of NFA states. While our tests generally ensure this, the code +is tricky and large enough where not reusing code is a pretty big bummer. + +2. Implement all of determinization once and make it generic over fully +compiled DFAs and lazily compiled DFAs. While I didn't actually try this +approach, my instinct is that it would be more complex than is needed here. +And the interface required would be pretty hairy. Instead, I think splitting +it into logical sub-components works better. +*/ + +use alloc::vec::Vec; + +pub(crate) use self::state::{ + State, StateBuilderEmpty, StateBuilderMatches, StateBuilderNFA, +}; + +use crate::{ + nfa::thompson, + util::{ + alphabet, + look::{Look, LookSet}, + primitives::StateID, + search::MatchKind, + sparse_set::{SparseSet, SparseSets}, + start::Start, + utf8, + }, +}; + +mod state; + +/// Compute the set of all reachable NFA states, including the full epsilon +/// closure, from a DFA state for a single unit of input. The set of reachable +/// states is returned as a `StateBuilderNFA`. The `StateBuilderNFA` returned +/// also includes any look-behind assertions satisfied by `unit`, in addition +/// to whether it is a match state. For multi-pattern DFAs, the builder will +/// also include the pattern IDs that match (in the order seen). +/// +/// `nfa` must be able to resolve any NFA state in `state` and any NFA state +/// reachable via the epsilon closure of any NFA state in `state`. `sparses` +/// must have capacity equivalent to `nfa.len()`. +/// +/// `match_kind` should correspond to the match semantics implemented by the +/// DFA being built. Generally speaking, for leftmost-first match semantics, +/// states that appear after the first NFA match state will not be included in +/// the `StateBuilderNFA` returned since they are impossible to visit. +/// +/// `sparses` is used as scratch space for NFA traversal. Other than their +/// capacity requirements (detailed above), there are no requirements on what's +/// contained within them (if anything). Similarly, what's inside of them once +/// this routine returns is unspecified. +/// +/// `stack` must have length 0. It is used as scratch space for depth first +/// traversal. After returning, it is guaranteed that `stack` will have length +/// 0. +/// +/// `state` corresponds to the current DFA state on which one wants to compute +/// the transition for the input `unit`. +/// +/// `empty_builder` corresponds to the builder allocation to use to produce a +/// complete `StateBuilderNFA` state. If the state is not needed (or is already +/// cached), then it can be cleared and reused without needing to create a new +/// `State`. The `StateBuilderNFA` state returned is final and ready to be +/// turned into a `State` if necessary. +pub(crate) fn next( + nfa: &thompson::NFA, + match_kind: MatchKind, + sparses: &mut SparseSets, + stack: &mut Vec<StateID>, + state: &State, + unit: alphabet::Unit, + empty_builder: StateBuilderEmpty, +) -> StateBuilderNFA { + sparses.clear(); + + // Whether the NFA is matched in reverse or not. We use this in some + // conditional logic for dealing with the exceptionally annoying CRLF-aware + // line anchors. + let rev = nfa.is_reverse(); + // The look-around matcher that our NFA is configured with. We don't + // actually use it to match look-around assertions, but we do need its + // configuration for constructing states consistent with how it matches. + let lookm = nfa.look_matcher(); + + // Put the NFA state IDs into a sparse set in case we need to + // re-compute their epsilon closure. + // + // Doing this state shuffling is technically not necessary unless some + // kind of look-around is used in the DFA. Some ad hoc experiments + // suggested that avoiding this didn't lead to much of an improvement, + // but perhaps more rigorous experimentation should be done. And in + // particular, avoiding this check requires some light refactoring of + // the code below. + state.iter_nfa_state_ids(|nfa_id| { + sparses.set1.insert(nfa_id); + }); + + // Compute look-ahead assertions originating from the current state. Based + // on the input unit we're transitioning over, some additional set of + // assertions may be true. Thus, we re-compute this state's epsilon closure + // (but only if necessary). Notably, when we build a DFA state initially, + // we don't enable any look-ahead assertions because we don't know whether + // they're true or not at that point. + if !state.look_need().is_empty() { + // Add look-ahead assertions that are now true based on the current + // input unit. + let mut look_have = state.look_have().clone(); + match unit.as_u8() { + Some(b'\r') => { + if !rev || !state.is_half_crlf() { + look_have = look_have.insert(Look::EndCRLF); + } + } + Some(b'\n') => { + if rev || !state.is_half_crlf() { + look_have = look_have.insert(Look::EndCRLF); + } + } + Some(_) => {} + None => { + look_have = look_have + .insert(Look::End) + .insert(Look::EndLF) + .insert(Look::EndCRLF); + } + } + if unit.is_byte(lookm.get_line_terminator()) { + look_have = look_have.insert(Look::EndLF); + } + if state.is_half_crlf() + && ((rev && !unit.is_byte(b'\r')) + || (!rev && !unit.is_byte(b'\n'))) + { + look_have = look_have.insert(Look::StartCRLF); + } + if state.is_from_word() == unit.is_word_byte() { + look_have = look_have + .insert(Look::WordAsciiNegate) + .insert(Look::WordUnicodeNegate); + } else { + look_have = + look_have.insert(Look::WordAscii).insert(Look::WordUnicode); + } + if !unit.is_word_byte() { + look_have = look_have + .insert(Look::WordEndHalfAscii) + .insert(Look::WordEndHalfUnicode); + } + if state.is_from_word() && !unit.is_word_byte() { + look_have = look_have + .insert(Look::WordEndAscii) + .insert(Look::WordEndUnicode); + } else if !state.is_from_word() && unit.is_word_byte() { + look_have = look_have + .insert(Look::WordStartAscii) + .insert(Look::WordStartUnicode); + } + // If we have new assertions satisfied that are among the set of + // assertions that exist in this state (that is, just because we added + // an EndLF assertion above doesn't mean there is an EndLF conditional + // epsilon transition in this state), then we re-compute this state's + // epsilon closure using the updated set of assertions. + // + // Note that since our DFA states omit unconditional epsilon + // transitions, this check is necessary for correctness. If we re-did + // the epsilon closure below needlessly, it could change based on the + // fact that we omitted epsilon states originally. + if !look_have + .subtract(state.look_have()) + .intersect(state.look_need()) + .is_empty() + { + for nfa_id in sparses.set1.iter() { + epsilon_closure( + nfa, + nfa_id, + look_have, + stack, + &mut sparses.set2, + ); + } + sparses.swap(); + sparses.set2.clear(); + } + } + + // Convert our empty builder into one that can record assertions and match + // pattern IDs. + let mut builder = empty_builder.into_matches(); + // Set whether the StartLF look-behind assertion is true for this + // transition or not. The look-behind assertion for ASCII word boundaries + // is handled below. + if nfa.look_set_any().contains_anchor_line() + && unit.is_byte(lookm.get_line_terminator()) + { + // Why only handle StartLF here and not Start? That's because Start + // can only impact the starting state, which is special cased in + // start state handling. + builder.set_look_have(|have| have.insert(Look::StartLF)); + } + // We also need to add StartCRLF to our assertions too, if we can. This + // is unfortunately a bit more complicated, because it depends on the + // direction of the search. In the forward direction, ^ matches after a + // \n, but in the reverse direction, ^ only matches after a \r. (This is + // further complicated by the fact that reverse a regex means changing a ^ + // to a $ and vice versa.) + if nfa.look_set_any().contains_anchor_crlf() + && ((rev && unit.is_byte(b'\r')) || (!rev && unit.is_byte(b'\n'))) + { + builder.set_look_have(|have| have.insert(Look::StartCRLF)); + } + // And also for the start-half word boundary assertions. As long as the + // look-behind byte is not a word char, then the assertions are satisfied. + if nfa.look_set_any().contains_word() && !unit.is_word_byte() { + builder.set_look_have(|have| { + have.insert(Look::WordStartHalfAscii) + .insert(Look::WordStartHalfUnicode) + }); + } + for nfa_id in sparses.set1.iter() { + match *nfa.state(nfa_id) { + thompson::State::Union { .. } + | thompson::State::BinaryUnion { .. } + | thompson::State::Fail + | thompson::State::Look { .. } + | thompson::State::Capture { .. } => {} + thompson::State::Match { pattern_id } => { + // Notice here that we are calling the NEW state a match + // state if the OLD state we are transitioning from + // contains an NFA match state. This is precisely how we + // delay all matches by one byte and also what therefore + // guarantees that starting states cannot be match states. + // + // If we didn't delay matches by one byte, then whether + // a DFA is a matching state or not would be determined + // by whether one of its own constituent NFA states + // was a match state. (And that would be done in + // 'add_nfa_states'.) + // + // Also, 'add_match_pattern_id' requires that callers never + // pass duplicative pattern IDs. We do in fact uphold that + // guarantee here, but it's subtle. In particular, a Thompson + // NFA guarantees that each pattern has exactly one match + // state. Moreover, since we're iterating over the NFA state + // IDs in a set, we are guarateed not to have any duplicative + // match states. Thus, it is impossible to add the same pattern + // ID more than once. + // + // N.B. We delay matches by 1 byte as a way to hack 1-byte + // look-around into DFA searches. This lets us support ^, $ + // and ASCII-only \b. The delay is also why we need a special + // "end-of-input" (EOI) sentinel and why we need to follow the + // EOI sentinel at the end of every search. This final EOI + // transition is necessary to report matches found at the end + // of a haystack. + builder.add_match_pattern_id(pattern_id); + if !match_kind.continue_past_first_match() { + break; + } + } + thompson::State::ByteRange { ref trans } => { + if trans.matches_unit(unit) { + epsilon_closure( + nfa, + trans.next, + builder.look_have(), + stack, + &mut sparses.set2, + ); + } + } + thompson::State::Sparse(ref sparse) => { + if let Some(next) = sparse.matches_unit(unit) { + epsilon_closure( + nfa, + next, + builder.look_have(), + stack, + &mut sparses.set2, + ); + } + } + thompson::State::Dense(ref dense) => { + if let Some(next) = dense.matches_unit(unit) { + epsilon_closure( + nfa, + next, + builder.look_have(), + stack, + &mut sparses.set2, + ); + } + } + } + } + // We only set the word byte if there's a word boundary look-around + // anywhere in this regex. Otherwise, there's no point in bloating the + // number of states if we don't have one. + // + // We also only set it when the state has a non-zero number of NFA states. + // Otherwise, we could wind up with states that *should* be DEAD states + // but are otherwise distinct from DEAD states because of this look-behind + // assertion being set. While this can't technically impact correctness *in + // theory*, it can create pathological DFAs that consume input until EOI or + // a quit byte is seen. Consuming until EOI isn't a correctness problem, + // but a (serious) perf problem. Hitting a quit byte, however, could be a + // correctness problem since it could cause search routines to report an + // error instead of a detected match once the quit state is entered. (The + // search routine could be made to be a bit smarter by reporting a match + // if one was detected once it enters a quit state (and indeed, the search + // routines in this crate do just that), but it seems better to prevent + // these things by construction if possible.) + if !sparses.set2.is_empty() { + if nfa.look_set_any().contains_word() && unit.is_word_byte() { + builder.set_is_from_word(); + } + if nfa.look_set_any().contains_anchor_crlf() + && ((rev && unit.is_byte(b'\n')) || (!rev && unit.is_byte(b'\r'))) + { + builder.set_is_half_crlf(); + } + } + let mut builder_nfa = builder.into_nfa(); + add_nfa_states(nfa, &sparses.set2, &mut builder_nfa); + builder_nfa +} + +/// Compute the epsilon closure for the given NFA state. The epsilon closure +/// consists of all NFA state IDs, including `start_nfa_id`, that can be +/// reached from `start_nfa_id` without consuming any input. These state IDs +/// are written to `set` in the order they are visited, but only if they are +/// not already in `set`. `start_nfa_id` must be a valid state ID for the NFA +/// given. +/// +/// `look_have` consists of the satisfied assertions at the current +/// position. For conditional look-around epsilon transitions, these are +/// only followed if they are satisfied by `look_have`. +/// +/// `stack` must have length 0. It is used as scratch space for depth first +/// traversal. After returning, it is guaranteed that `stack` will have length +/// 0. +pub(crate) fn epsilon_closure( + nfa: &thompson::NFA, + start_nfa_id: StateID, + look_have: LookSet, + stack: &mut Vec<StateID>, + set: &mut SparseSet, +) { + assert!(stack.is_empty()); + // If this isn't an epsilon state, then the epsilon closure is always just + // itself, so there's no need to spin up the machinery below to handle it. + if !nfa.state(start_nfa_id).is_epsilon() { + set.insert(start_nfa_id); + return; + } + + stack.push(start_nfa_id); + while let Some(mut id) = stack.pop() { + // In many cases, we can avoid stack operations when an NFA state only + // adds one new state to visit. In that case, we just set our ID to + // that state and mush on. We only use the stack when an NFA state + // introduces multiple new states to visit. + loop { + // Insert this NFA state, and if it's already in the set and thus + // already visited, then we can move on to the next one. + if !set.insert(id) { + break; + } + match *nfa.state(id) { + thompson::State::ByteRange { .. } + | thompson::State::Sparse { .. } + | thompson::State::Dense { .. } + | thompson::State::Fail + | thompson::State::Match { .. } => break, + thompson::State::Look { look, next } => { + if !look_have.contains(look) { + break; + } + id = next; + } + thompson::State::Union { ref alternates } => { + id = match alternates.get(0) { + None => break, + Some(&id) => id, + }; + // We need to process our alternates in order to preserve + // match preferences, so put the earliest alternates closer + // to the top of the stack. + stack.extend(alternates[1..].iter().rev()); + } + thompson::State::BinaryUnion { alt1, alt2 } => { + id = alt1; + stack.push(alt2); + } + thompson::State::Capture { next, .. } => { + id = next; + } + } + } + } +} + +/// Add the NFA state IDs in the given `set` to the given DFA builder state. +/// The order in which states are added corresponds to the order in which they +/// were added to `set`. +/// +/// The DFA builder state given should already have its complete set of match +/// pattern IDs added (if any) and any look-behind assertions (StartLF, Start +/// and whether this state is being generated for a transition over a word byte +/// when applicable) that are true immediately prior to transitioning into this +/// state (via `builder.look_have()`). The match pattern IDs should correspond +/// to matches that occurred on the previous transition, since all matches are +/// delayed by one byte. The things that should _not_ be set are look-ahead +/// assertions (EndLF, End and whether the next byte is a word byte or not). +/// The builder state should also not have anything in `look_need` set, as this +/// routine will compute that for you. +/// +/// The given NFA should be able to resolve all identifiers in `set` to a +/// particular NFA state. Additionally, `set` must have capacity equivalent +/// to `nfa.len()`. +pub(crate) fn add_nfa_states( + nfa: &thompson::NFA, + set: &SparseSet, + builder: &mut StateBuilderNFA, +) { + for nfa_id in set.iter() { + match *nfa.state(nfa_id) { + thompson::State::ByteRange { .. } => { + builder.add_nfa_state_id(nfa_id); + } + thompson::State::Sparse { .. } => { + builder.add_nfa_state_id(nfa_id); + } + thompson::State::Dense { .. } => { + builder.add_nfa_state_id(nfa_id); + } + thompson::State::Look { look, .. } => { + builder.add_nfa_state_id(nfa_id); + builder.set_look_need(|need| need.insert(look)); + } + thompson::State::Union { .. } + | thompson::State::BinaryUnion { .. } => { + // Pure epsilon transitions don't need to be tracked as part + // of the DFA state. Tracking them is actually superfluous; + // they won't cause any harm other than making determinization + // slower. + // + // Why aren't these needed? Well, in an NFA, epsilon + // transitions are really just jumping points to other states. + // So once you hit an epsilon transition, the same set of + // resulting states always appears. Therefore, putting them in + // a DFA's set of ordered NFA states is strictly redundant. + // + // Look-around states are also epsilon transitions, but + // they are *conditional*. So their presence could be + // discriminatory, and thus, they are tracked above. + // + // But wait... why are epsilon states in our `set` in the first + // place? Why not just leave them out? They're in our `set` + // because it was generated by computing an epsilon closure, + // and we want to keep track of all states we visited to avoid + // re-visiting them. In exchange, we have to do this second + // iteration over our collected states to finalize our DFA + // state. In theory, we could avoid this second iteration if + // we maintained two sets during epsilon closure: the set of + // visited states (to avoid cycles) and the set of states that + // will actually be used to construct the next DFA state. + // + // Note that this optimization requires that we re-compute the + // epsilon closure to account for look-ahead in 'next' *only + // when necessary*. Namely, only when the set of look-around + // assertions changes and only when those changes are within + // the set of assertions that are needed in order to step + // through the closure correctly. Otherwise, if we re-do the + // epsilon closure needlessly, it could change based on the + // fact that we are omitting epsilon states here. + // + // ----- + // + // Welp, scratch the above. It turns out that recording these + // is in fact necessary to seemingly handle one particularly + // annoying case: when a conditional epsilon transition is + // put inside of a repetition operator. One specific case I + // ran into was the regex `(?:\b|%)+` on the haystack `z%`. + // The correct leftmost first matches are: [0, 0] and [1, 1]. + // But the DFA was reporting [0, 0] and [1, 2]. To understand + // why this happens, consider the NFA for the aforementioned + // regex: + // + // >000000: binary-union(4, 1) + // 000001: \x00-\xFF => 0 + // 000002: WordAscii => 5 + // 000003: % => 5 + // ^000004: binary-union(2, 3) + // 000005: binary-union(4, 6) + // 000006: MATCH(0) + // + // The problem here is that one of the DFA start states is + // going to consist of the NFA states [2, 3] by computing the + // epsilon closure of state 4. State 4 isn't included because + // we previously were not keeping track of union states. But + // only a subset of transitions out of this state will be able + // to follow WordAscii, and in those cases, the epsilon closure + // is redone. The only problem is that computing the epsilon + // closure from [2, 3] is different than computing the epsilon + // closure from [4]. In the former case, assuming the WordAscii + // assertion is satisfied, you get: [2, 3, 6]. In the latter + // case, you get: [2, 6, 3]. Notice that '6' is the match state + // and appears AFTER '3' in the former case. This leads to a + // preferential but incorrect match of '%' before returning + // a match. In the latter case, the match is preferred over + // continuing to accept the '%'. + // + // It almost feels like we might be able to fix the NFA states + // to avoid this, or to at least only keep track of union + // states where this actually matters, since in the vast + // majority of cases, this doesn't matter. + // + // Another alternative would be to define a new HIR property + // called "assertion is repeated anywhere" and compute it + // inductively over the entire pattern. If it happens anywhere, + // which is probably pretty rare, then we record union states. + // Otherwise we don't. + builder.add_nfa_state_id(nfa_id); + } + // Capture states we definitely do not need to record, since they + // are unconditional epsilon transitions with no branching. + thompson::State::Capture { .. } => {} + // It's not totally clear whether we need to record fail states or + // not, but we do so out of an abundance of caution. Since they are + // quite rare in practice, there isn't much cost to recording them. + thompson::State::Fail => { + builder.add_nfa_state_id(nfa_id); + } + thompson::State::Match { .. } => { + // Normally, the NFA match state doesn't actually need to + // be inside the DFA state. But since we delay matches by + // one byte, the matching DFA state corresponds to states + // that transition from the one we're building here. And + // the way we detect those cases is by looking for an NFA + // match state. See 'next' for how this is handled. + builder.add_nfa_state_id(nfa_id); + } + } + } + // If we know this state contains no look-around assertions, then + // there's no reason to track which look-around assertions were + // satisfied when this state was created. + if builder.look_need().is_empty() { + builder.set_look_have(|_| LookSet::empty()); + } +} + +/// Sets the appropriate look-behind assertions on the given state based on +/// this starting configuration. +pub(crate) fn set_lookbehind_from_start( + nfa: &thompson::NFA, + start: &Start, + builder: &mut StateBuilderMatches, +) { + let rev = nfa.is_reverse(); + let lineterm = nfa.look_matcher().get_line_terminator(); + let lookset = nfa.look_set_any(); + match *start { + Start::NonWordByte => { + if lookset.contains_word() { + builder.set_look_have(|have| { + have.insert(Look::WordStartHalfAscii) + .insert(Look::WordStartHalfUnicode) + }); + } + } + Start::WordByte => { + if lookset.contains_word() { + builder.set_is_from_word(); + } + } + Start::Text => { + if lookset.contains_anchor_haystack() { + builder.set_look_have(|have| have.insert(Look::Start)); + } + if lookset.contains_anchor_line() { + builder.set_look_have(|have| { + have.insert(Look::StartLF).insert(Look::StartCRLF) + }); + } + if lookset.contains_word() { + builder.set_look_have(|have| { + have.insert(Look::WordStartHalfAscii) + .insert(Look::WordStartHalfUnicode) + }); + } + } + Start::LineLF => { + if rev { + if lookset.contains_anchor_crlf() { + builder.set_is_half_crlf(); + } + if lookset.contains_anchor_line() { + builder.set_look_have(|have| have.insert(Look::StartLF)); + } + } else { + if lookset.contains_anchor_line() { + builder.set_look_have(|have| have.insert(Look::StartCRLF)); + } + } + if lookset.contains_anchor_line() && lineterm == b'\n' { + builder.set_look_have(|have| have.insert(Look::StartLF)); + } + if lookset.contains_word() { + builder.set_look_have(|have| { + have.insert(Look::WordStartHalfAscii) + .insert(Look::WordStartHalfUnicode) + }); + } + } + Start::LineCR => { + if lookset.contains_anchor_crlf() { + if rev { + builder.set_look_have(|have| have.insert(Look::StartCRLF)); + } else { + builder.set_is_half_crlf(); + } + } + if lookset.contains_anchor_line() && lineterm == b'\r' { + builder.set_look_have(|have| have.insert(Look::StartLF)); + } + if lookset.contains_word() { + builder.set_look_have(|have| { + have.insert(Look::WordStartHalfAscii) + .insert(Look::WordStartHalfUnicode) + }); + } + } + Start::CustomLineTerminator => { + if lookset.contains_anchor_line() { + builder.set_look_have(|have| have.insert(Look::StartLF)); + } + // This is a bit of a tricky case, but if the line terminator was + // set to a word byte, then we also need to behave as if the start + // configuration is Start::WordByte. That is, we need to mark our + // state as having come from a word byte. + if lookset.contains_word() { + if utf8::is_word_byte(lineterm) { + builder.set_is_from_word(); + } else { + builder.set_look_have(|have| { + have.insert(Look::WordStartHalfAscii) + .insert(Look::WordStartHalfUnicode) + }); + } + } + } + } +} |