summaryrefslogtreecommitdiffstats
path: root/vendor/regex-automata/src/util/start.rs
diff options
context:
space:
mode:
Diffstat (limited to 'vendor/regex-automata/src/util/start.rs')
-rw-r--r--vendor/regex-automata/src/util/start.rs479
1 files changed, 479 insertions, 0 deletions
diff --git a/vendor/regex-automata/src/util/start.rs b/vendor/regex-automata/src/util/start.rs
new file mode 100644
index 0000000..2715378
--- /dev/null
+++ b/vendor/regex-automata/src/util/start.rs
@@ -0,0 +1,479 @@
+/*!
+Provides helpers for dealing with start state configurations in DFAs.
+*/
+
+use crate::util::{
+ look::LookMatcher,
+ search::{Anchored, Input},
+ wire::{self, DeserializeError, SerializeError},
+};
+
+/// The configuration used to determine a DFA's start state for a search.
+///
+/// A DFA has a single starting state in the typical textbook description. That
+/// is, it corresponds to the set of all starting states for the NFA that built
+/// it, along with their espsilon closures. In this crate, however, DFAs have
+/// many possible start states due to a few factors:
+///
+/// * DFAs support the ability to run either anchored or unanchored searches.
+/// Each type of search needs its own start state. For example, an unanchored
+/// search requires starting at a state corresponding to a regex with a
+/// `(?s-u:.)*?` prefix, which will match through anything.
+/// * DFAs also optionally support starting an anchored search for any one
+/// specific pattern. Each such pattern requires its own start state.
+/// * If a look-behind assertion like `^` or `\b` is used in the regex, then
+/// the DFA will need to inspect a single byte immediately before the start of
+/// the search to choose the correct start state.
+///
+/// Indeed, this configuration precisely encapsulates all of the above factors.
+/// The [`Config::anchored`] method sets which kind of anchored search to
+/// perform while the [`Config::look_behind`] method provides a way to set
+/// the byte that occurs immediately before the start of the search.
+///
+/// Generally speaking, this type is only useful when you want to run searches
+/// without using an [`Input`]. In particular, an `Input` wants a haystack
+/// slice, but callers may not have a contiguous sequence of bytes as a
+/// haystack in all cases. This type provides a lower level of control such
+/// that callers can provide their own anchored configuration and look-behind
+/// byte explicitly.
+///
+/// # Example
+///
+/// This shows basic usage that permits running a search with a DFA without
+/// using the `Input` abstraction.
+///
+/// ```
+/// use regex_automata::{
+/// dfa::{Automaton, dense},
+/// util::start,
+/// Anchored,
+/// };
+///
+/// let dfa = dense::DFA::new(r"(?-u)\b\w+\b")?;
+/// let haystack = "quartz";
+///
+/// let config = start::Config::new().anchored(Anchored::Yes);
+/// let mut state = dfa.start_state(&config)?;
+/// for &b in haystack.as_bytes().iter() {
+/// state = dfa.next_state(state, b);
+/// }
+/// state = dfa.next_eoi_state(state);
+/// assert!(dfa.is_match_state(state));
+///
+/// # Ok::<(), Box<dyn std::error::Error>>(())
+/// ```
+///
+/// This example shows how to correctly run a search that doesn't begin at
+/// the start of a haystack. Notice how we set the look-behind byte, and as
+/// a result, the `\b` assertion does not match.
+///
+/// ```
+/// use regex_automata::{
+/// dfa::{Automaton, dense},
+/// util::start,
+/// Anchored,
+/// };
+///
+/// let dfa = dense::DFA::new(r"(?-u)\b\w+\b")?;
+/// let haystack = "quartz";
+///
+/// let config = start::Config::new()
+/// .anchored(Anchored::Yes)
+/// .look_behind(Some(b'q'));
+/// let mut state = dfa.start_state(&config)?;
+/// for &b in haystack.as_bytes().iter().skip(1) {
+/// state = dfa.next_state(state, b);
+/// }
+/// state = dfa.next_eoi_state(state);
+/// // No match!
+/// assert!(!dfa.is_match_state(state));
+///
+/// # Ok::<(), Box<dyn std::error::Error>>(())
+/// ```
+///
+/// If we had instead not set a look-behind byte, then the DFA would assume
+/// that it was starting at the beginning of the haystack, and thus `\b` should
+/// match. This in turn would result in erroneously reporting a match:
+///
+/// ```
+/// use regex_automata::{
+/// dfa::{Automaton, dense},
+/// util::start,
+/// Anchored,
+/// };
+///
+/// let dfa = dense::DFA::new(r"(?-u)\b\w+\b")?;
+/// let haystack = "quartz";
+///
+/// // Whoops, forgot the look-behind byte...
+/// let config = start::Config::new().anchored(Anchored::Yes);
+/// let mut state = dfa.start_state(&config)?;
+/// for &b in haystack.as_bytes().iter().skip(1) {
+/// state = dfa.next_state(state, b);
+/// }
+/// state = dfa.next_eoi_state(state);
+/// // And now we get a match unexpectedly.
+/// assert!(dfa.is_match_state(state));
+///
+/// # Ok::<(), Box<dyn std::error::Error>>(())
+/// ```
+#[derive(Clone, Debug)]
+pub struct Config {
+ look_behind: Option<u8>,
+ anchored: Anchored,
+}
+
+impl Config {
+ /// Create a new default start configuration.
+ ///
+ /// The default is an unanchored search that starts at the beginning of the
+ /// haystack.
+ pub fn new() -> Config {
+ Config { anchored: Anchored::No, look_behind: None }
+ }
+
+ /// A convenience routine for building a start configuration from an
+ /// [`Input`] for a forward search.
+ ///
+ /// This automatically sets the look-behind byte to the byte immediately
+ /// preceding the start of the search. If the start of the search is at
+ /// offset `0`, then no look-behind byte is set.
+ pub fn from_input_forward(input: &Input<'_>) -> Config {
+ let look_behind = input
+ .start()
+ .checked_sub(1)
+ .and_then(|i| input.haystack().get(i).copied());
+ Config { look_behind, anchored: input.get_anchored() }
+ }
+
+ /// A convenience routine for building a start configuration from an
+ /// [`Input`] for a reverse search.
+ ///
+ /// This automatically sets the look-behind byte to the byte immediately
+ /// following the end of the search. If the end of the search is at
+ /// offset `haystack.len()`, then no look-behind byte is set.
+ pub fn from_input_reverse(input: &Input<'_>) -> Config {
+ let look_behind = input.haystack().get(input.end()).copied();
+ Config { look_behind, anchored: input.get_anchored() }
+ }
+
+ /// Set the look-behind byte at the start of a search.
+ ///
+ /// Unless the search is intended to logically start at the beginning of a
+ /// haystack, this should _always_ be set to the byte immediately preceding
+ /// the start of the search. If no look-behind byte is set, then the start
+ /// configuration will assume it is at the beginning of the haystack. For
+ /// example, the anchor `^` will match.
+ ///
+ /// The default is that no look-behind byte is set.
+ pub fn look_behind(mut self, byte: Option<u8>) -> Config {
+ self.look_behind = byte;
+ self
+ }
+
+ /// Set the anchored mode of a search.
+ ///
+ /// The default is an unanchored search.
+ pub fn anchored(mut self, mode: Anchored) -> Config {
+ self.anchored = mode;
+ self
+ }
+
+ /// Return the look-behind byte in this configuration, if one exists.
+ pub fn get_look_behind(&self) -> Option<u8> {
+ self.look_behind
+ }
+
+ /// Return the anchored mode in this configuration.
+ pub fn get_anchored(&self) -> Anchored {
+ self.anchored
+ }
+}
+
+/// A map from every possible byte value to its corresponding starting
+/// configuration.
+///
+/// This map is used in order to lookup the start configuration for a particular
+/// position in a haystack. This start configuration is then used in
+/// combination with things like the anchored mode and pattern ID to fully
+/// determine the start state.
+///
+/// Generally speaking, this map is only used for fully compiled DFAs and lazy
+/// DFAs. For NFAs (including the one-pass DFA), the start state is generally
+/// selected by virtue of traversing the NFA state graph. DFAs do the same
+/// thing, but at build time and not search time. (Well, technically the lazy
+/// DFA does it at search time, but it does enough work to cache the full
+/// result of the epsilon closure that the NFA engines tend to need to do.)
+#[derive(Clone)]
+pub(crate) struct StartByteMap {
+ map: [Start; 256],
+}
+
+impl StartByteMap {
+ /// Create a new map from byte values to their corresponding starting
+ /// configurations. The map is determined, in part, by how look-around
+ /// assertions are matched via the matcher given.
+ pub(crate) fn new(lookm: &LookMatcher) -> StartByteMap {
+ let mut map = [Start::NonWordByte; 256];
+ map[usize::from(b'\n')] = Start::LineLF;
+ map[usize::from(b'\r')] = Start::LineCR;
+ map[usize::from(b'_')] = Start::WordByte;
+
+ let mut byte = b'0';
+ while byte <= b'9' {
+ map[usize::from(byte)] = Start::WordByte;
+ byte += 1;
+ }
+ byte = b'A';
+ while byte <= b'Z' {
+ map[usize::from(byte)] = Start::WordByte;
+ byte += 1;
+ }
+ byte = b'a';
+ while byte <= b'z' {
+ map[usize::from(byte)] = Start::WordByte;
+ byte += 1;
+ }
+
+ let lineterm = lookm.get_line_terminator();
+ // If our line terminator is normal, then it is already handled by
+ // the LineLF and LineCR configurations. But if it's weird, then we
+ // overwrite whatever was there before for that terminator with a
+ // special configuration. The trick here is that if the terminator
+ // is, say, a word byte like `a`, then callers seeing this start
+ // configuration need to account for that and build their DFA state as
+ // if it *also* came from a word byte.
+ if lineterm != b'\r' && lineterm != b'\n' {
+ map[usize::from(lineterm)] = Start::CustomLineTerminator;
+ }
+ StartByteMap { map }
+ }
+
+ /// Return the starting configuration for the given look-behind byte.
+ ///
+ /// If no look-behind exists, callers should use `Start::Text`.
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ pub(crate) fn get(&self, byte: u8) -> Start {
+ self.map[usize::from(byte)]
+ }
+
+ /// Deserializes a byte class map from the given slice. If the slice is of
+ /// insufficient length or otherwise contains an impossible mapping, then
+ /// an error is returned. Upon success, the number of bytes read along with
+ /// the map are returned. The number of bytes read is always a multiple of
+ /// 8.
+ pub(crate) fn from_bytes(
+ slice: &[u8],
+ ) -> Result<(StartByteMap, usize), DeserializeError> {
+ wire::check_slice_len(slice, 256, "start byte map")?;
+ let mut map = [Start::NonWordByte; 256];
+ for (i, &repr) in slice[..256].iter().enumerate() {
+ map[i] = match Start::from_usize(usize::from(repr)) {
+ Some(start) => start,
+ None => {
+ return Err(DeserializeError::generic(
+ "found invalid starting configuration",
+ ))
+ }
+ };
+ }
+ Ok((StartByteMap { map }, 256))
+ }
+
+ /// Writes this map to the given byte buffer. if the given buffer is too
+ /// small, then an error is returned. Upon success, the total number of
+ /// bytes written is returned. The number of bytes written is guaranteed to
+ /// be a multiple of 8.
+ pub(crate) fn write_to(
+ &self,
+ dst: &mut [u8],
+ ) -> Result<usize, SerializeError> {
+ let nwrite = self.write_to_len();
+ if dst.len() < nwrite {
+ return Err(SerializeError::buffer_too_small("start byte map"));
+ }
+ for (i, &start) in self.map.iter().enumerate() {
+ dst[i] = start.as_u8();
+ }
+ Ok(nwrite)
+ }
+
+ /// Returns the total number of bytes written by `write_to`.
+ pub(crate) fn write_to_len(&self) -> usize {
+ 256
+ }
+}
+
+impl core::fmt::Debug for StartByteMap {
+ fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
+ use crate::util::escape::DebugByte;
+
+ write!(f, "StartByteMap{{")?;
+ for byte in 0..=255 {
+ if byte > 0 {
+ write!(f, ", ")?;
+ }
+ let start = self.map[usize::from(byte)];
+ write!(f, "{:?} => {:?}", DebugByte(byte), start)?;
+ }
+ write!(f, "}}")?;
+ Ok(())
+ }
+}
+
+/// Represents the six possible starting configurations of a DFA search.
+///
+/// The starting configuration is determined by inspecting the the beginning
+/// of the haystack (up to 1 byte). Ultimately, this along with a pattern ID
+/// (if specified) and the type of search (anchored or not) is what selects the
+/// start state to use in a DFA.
+///
+/// As one example, if a DFA only supports unanchored searches and does not
+/// support anchored searches for each pattern, then it will have at most 6
+/// distinct start states. (Some start states may be reused if determinization
+/// can determine that they will be equivalent.) If the DFA supports both
+/// anchored and unanchored searches, then it will have a maximum of 12
+/// distinct start states. Finally, if the DFA also supports anchored searches
+/// for each pattern, then it can have up to `12 + (N * 6)` start states, where
+/// `N` is the number of patterns.
+///
+/// Handling each of these starting configurations in the context of DFA
+/// determinization can be *quite* tricky and subtle. But the code is small
+/// and can be found at `crate::util::determinize::set_lookbehind_from_start`.
+#[derive(Clone, Copy, Debug, Eq, PartialEq)]
+pub(crate) enum Start {
+ /// This occurs when the starting position is not any of the ones below.
+ NonWordByte = 0,
+ /// This occurs when the byte immediately preceding the start of the search
+ /// is an ASCII word byte.
+ WordByte = 1,
+ /// This occurs when the starting position of the search corresponds to the
+ /// beginning of the haystack.
+ Text = 2,
+ /// This occurs when the byte immediately preceding the start of the search
+ /// is a line terminator. Specifically, `\n`.
+ LineLF = 3,
+ /// This occurs when the byte immediately preceding the start of the search
+ /// is a line terminator. Specifically, `\r`.
+ LineCR = 4,
+ /// This occurs when a custom line terminator has been set via a
+ /// `LookMatcher`, and when that line terminator is neither a `\r` or a
+ /// `\n`.
+ ///
+ /// If the custom line terminator is a word byte, then this start
+ /// configuration is still selected. DFAs that implement word boundary
+ /// assertions will likely need to check whether the custom line terminator
+ /// is a word byte, in which case, it should behave as if the byte
+ /// satisfies `\b` in addition to multi-line anchors.
+ CustomLineTerminator = 5,
+}
+
+impl Start {
+ /// Return the starting state corresponding to the given integer. If no
+ /// starting state exists for the given integer, then None is returned.
+ pub(crate) fn from_usize(n: usize) -> Option<Start> {
+ match n {
+ 0 => Some(Start::NonWordByte),
+ 1 => Some(Start::WordByte),
+ 2 => Some(Start::Text),
+ 3 => Some(Start::LineLF),
+ 4 => Some(Start::LineCR),
+ 5 => Some(Start::CustomLineTerminator),
+ _ => None,
+ }
+ }
+
+ /// Returns the total number of starting state configurations.
+ pub(crate) fn len() -> usize {
+ 6
+ }
+
+ /// Return this starting configuration as `u8` integer. It is guaranteed to
+ /// be less than `Start::len()`.
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ pub(crate) fn as_u8(&self) -> u8 {
+ // AFAIK, 'as' is the only way to zero-cost convert an int enum to an
+ // actual int.
+ *self as u8
+ }
+
+ /// Return this starting configuration as a `usize` integer. It is
+ /// guaranteed to be less than `Start::len()`.
+ #[cfg_attr(feature = "perf-inline", inline(always))]
+ pub(crate) fn as_usize(&self) -> usize {
+ usize::from(self.as_u8())
+ }
+}
+
+#[cfg(test)]
+mod tests {
+ use super::*;
+
+ #[test]
+ fn start_fwd_done_range() {
+ let smap = StartByteMap::new(&LookMatcher::default());
+ let input = Input::new("").range(1..0);
+ let config = Config::from_input_forward(&input);
+ let start =
+ config.get_look_behind().map_or(Start::Text, |b| smap.get(b));
+ assert_eq!(Start::Text, start);
+ }
+
+ #[test]
+ fn start_rev_done_range() {
+ let smap = StartByteMap::new(&LookMatcher::default());
+ let input = Input::new("").range(1..0);
+ let config = Config::from_input_reverse(&input);
+ let start =
+ config.get_look_behind().map_or(Start::Text, |b| smap.get(b));
+ assert_eq!(Start::Text, start);
+ }
+
+ #[test]
+ fn start_fwd() {
+ let f = |haystack, start, end| {
+ let smap = StartByteMap::new(&LookMatcher::default());
+ let input = Input::new(haystack).range(start..end);
+ let config = Config::from_input_forward(&input);
+ let start =
+ config.get_look_behind().map_or(Start::Text, |b| smap.get(b));
+ start
+ };
+
+ assert_eq!(Start::Text, f("", 0, 0));
+ assert_eq!(Start::Text, f("abc", 0, 3));
+ assert_eq!(Start::Text, f("\nabc", 0, 3));
+
+ assert_eq!(Start::LineLF, f("\nabc", 1, 3));
+
+ assert_eq!(Start::LineCR, f("\rabc", 1, 3));
+
+ assert_eq!(Start::WordByte, f("abc", 1, 3));
+
+ assert_eq!(Start::NonWordByte, f(" abc", 1, 3));
+ }
+
+ #[test]
+ fn start_rev() {
+ let f = |haystack, start, end| {
+ let smap = StartByteMap::new(&LookMatcher::default());
+ let input = Input::new(haystack).range(start..end);
+ let config = Config::from_input_reverse(&input);
+ let start =
+ config.get_look_behind().map_or(Start::Text, |b| smap.get(b));
+ start
+ };
+
+ assert_eq!(Start::Text, f("", 0, 0));
+ assert_eq!(Start::Text, f("abc", 0, 3));
+ assert_eq!(Start::Text, f("abc\n", 0, 4));
+
+ assert_eq!(Start::LineLF, f("abc\nz", 0, 3));
+
+ assert_eq!(Start::LineCR, f("abc\rz", 0, 3));
+
+ assert_eq!(Start::WordByte, f("abc", 0, 2));
+
+ assert_eq!(Start::NonWordByte, f("abc ", 0, 3));
+ }
+}