diff options
Diffstat (limited to 'vendor/regex-syntax/src/parser.rs')
-rw-r--r-- | vendor/regex-syntax/src/parser.rs | 254 |
1 files changed, 254 insertions, 0 deletions
diff --git a/vendor/regex-syntax/src/parser.rs b/vendor/regex-syntax/src/parser.rs new file mode 100644 index 0000000..f482b84 --- /dev/null +++ b/vendor/regex-syntax/src/parser.rs @@ -0,0 +1,254 @@ +use crate::{ast, hir, Error}; + +/// A convenience routine for parsing a regex using default options. +/// +/// This is equivalent to `Parser::new().parse(pattern)`. +/// +/// If you need to set non-default options, then use a [`ParserBuilder`]. +/// +/// This routine returns an [`Hir`](hir::Hir) value. Namely, it automatically +/// parses the pattern as an [`Ast`](ast::Ast) and then invokes the translator +/// to convert the `Ast` into an `Hir`. If you need access to the `Ast`, then +/// you should use a [`ast::parse::Parser`]. +pub fn parse(pattern: &str) -> Result<hir::Hir, Error> { + Parser::new().parse(pattern) +} + +/// A builder for a regular expression parser. +/// +/// This builder permits modifying configuration options for the parser. +/// +/// This type combines the builder options for both the [AST +/// `ParserBuilder`](ast::parse::ParserBuilder) and the [HIR +/// `TranslatorBuilder`](hir::translate::TranslatorBuilder). +#[derive(Clone, Debug, Default)] +pub struct ParserBuilder { + ast: ast::parse::ParserBuilder, + hir: hir::translate::TranslatorBuilder, +} + +impl ParserBuilder { + /// Create a new parser builder with a default configuration. + pub fn new() -> ParserBuilder { + ParserBuilder::default() + } + + /// Build a parser from this configuration with the given pattern. + pub fn build(&self) -> Parser { + Parser { ast: self.ast.build(), hir: self.hir.build() } + } + + /// Set the nesting limit for this parser. + /// + /// The nesting limit controls how deep the abstract syntax tree is allowed + /// to be. If the AST exceeds the given limit (e.g., with too many nested + /// groups), then an error is returned by the parser. + /// + /// The purpose of this limit is to act as a heuristic to prevent stack + /// overflow for consumers that do structural induction on an `Ast` using + /// explicit recursion. While this crate never does this (instead using + /// constant stack space and moving the call stack to the heap), other + /// crates may. + /// + /// This limit is not checked until the entire Ast is parsed. Therefore, + /// if callers want to put a limit on the amount of heap space used, then + /// they should impose a limit on the length, in bytes, of the concrete + /// pattern string. In particular, this is viable since this parser + /// implementation will limit itself to heap space proportional to the + /// length of the pattern string. + /// + /// Note that a nest limit of `0` will return a nest limit error for most + /// patterns but not all. For example, a nest limit of `0` permits `a` but + /// not `ab`, since `ab` requires a concatenation, which results in a nest + /// depth of `1`. In general, a nest limit is not something that manifests + /// in an obvious way in the concrete syntax, therefore, it should not be + /// used in a granular way. + pub fn nest_limit(&mut self, limit: u32) -> &mut ParserBuilder { + self.ast.nest_limit(limit); + self + } + + /// Whether to support octal syntax or not. + /// + /// Octal syntax is a little-known way of uttering Unicode codepoints in + /// a regular expression. For example, `a`, `\x61`, `\u0061` and + /// `\141` are all equivalent regular expressions, where the last example + /// shows octal syntax. + /// + /// While supporting octal syntax isn't in and of itself a problem, it does + /// make good error messages harder. That is, in PCRE based regex engines, + /// syntax like `\0` invokes a backreference, which is explicitly + /// unsupported in Rust's regex engine. However, many users expect it to + /// be supported. Therefore, when octal support is disabled, the error + /// message will explicitly mention that backreferences aren't supported. + /// + /// Octal syntax is disabled by default. + pub fn octal(&mut self, yes: bool) -> &mut ParserBuilder { + self.ast.octal(yes); + self + } + + /// When disabled, translation will permit the construction of a regular + /// expression that may match invalid UTF-8. + /// + /// When enabled (the default), the translator is guaranteed to produce an + /// expression that, for non-empty matches, will only ever produce spans + /// that are entirely valid UTF-8 (otherwise, the translator will return an + /// error). + /// + /// Perhaps surprisingly, when UTF-8 is enabled, an empty regex or even + /// a negated ASCII word boundary (uttered as `(?-u:\B)` in the concrete + /// syntax) will be allowed even though they can produce matches that split + /// a UTF-8 encoded codepoint. This only applies to zero-width or "empty" + /// matches, and it is expected that the regex engine itself must handle + /// these cases if necessary (perhaps by suppressing any zero-width matches + /// that split a codepoint). + pub fn utf8(&mut self, yes: bool) -> &mut ParserBuilder { + self.hir.utf8(yes); + self + } + + /// Enable verbose mode in the regular expression. + /// + /// When enabled, verbose mode permits insignificant whitespace in many + /// places in the regular expression, as well as comments. Comments are + /// started using `#` and continue until the end of the line. + /// + /// By default, this is disabled. It may be selectively enabled in the + /// regular expression by using the `x` flag regardless of this setting. + pub fn ignore_whitespace(&mut self, yes: bool) -> &mut ParserBuilder { + self.ast.ignore_whitespace(yes); + self + } + + /// Enable or disable the case insensitive flag by default. + /// + /// By default this is disabled. It may alternatively be selectively + /// enabled in the regular expression itself via the `i` flag. + pub fn case_insensitive(&mut self, yes: bool) -> &mut ParserBuilder { + self.hir.case_insensitive(yes); + self + } + + /// Enable or disable the multi-line matching flag by default. + /// + /// By default this is disabled. It may alternatively be selectively + /// enabled in the regular expression itself via the `m` flag. + pub fn multi_line(&mut self, yes: bool) -> &mut ParserBuilder { + self.hir.multi_line(yes); + self + } + + /// Enable or disable the "dot matches any character" flag by default. + /// + /// By default this is disabled. It may alternatively be selectively + /// enabled in the regular expression itself via the `s` flag. + pub fn dot_matches_new_line(&mut self, yes: bool) -> &mut ParserBuilder { + self.hir.dot_matches_new_line(yes); + self + } + + /// Enable or disable the CRLF mode flag by default. + /// + /// By default this is disabled. It may alternatively be selectively + /// enabled in the regular expression itself via the `R` flag. + /// + /// When CRLF mode is enabled, the following happens: + /// + /// * Unless `dot_matches_new_line` is enabled, `.` will match any character + /// except for `\r` and `\n`. + /// * When `multi_line` mode is enabled, `^` and `$` will treat `\r\n`, + /// `\r` and `\n` as line terminators. And in particular, neither will + /// match between a `\r` and a `\n`. + pub fn crlf(&mut self, yes: bool) -> &mut ParserBuilder { + self.hir.crlf(yes); + self + } + + /// Sets the line terminator for use with `(?u-s:.)` and `(?-us:.)`. + /// + /// Namely, instead of `.` (by default) matching everything except for `\n`, + /// this will cause `.` to match everything except for the byte given. + /// + /// If `.` is used in a context where Unicode mode is enabled and this byte + /// isn't ASCII, then an error will be returned. When Unicode mode is + /// disabled, then any byte is permitted, but will return an error if UTF-8 + /// mode is enabled and it is a non-ASCII byte. + /// + /// In short, any ASCII value for a line terminator is always okay. But a + /// non-ASCII byte might result in an error depending on whether Unicode + /// mode or UTF-8 mode are enabled. + /// + /// Note that if `R` mode is enabled then it always takes precedence and + /// the line terminator will be treated as `\r` and `\n` simultaneously. + /// + /// Note also that this *doesn't* impact the look-around assertions + /// `(?m:^)` and `(?m:$)`. That's usually controlled by additional + /// configuration in the regex engine itself. + pub fn line_terminator(&mut self, byte: u8) -> &mut ParserBuilder { + self.hir.line_terminator(byte); + self + } + + /// Enable or disable the "swap greed" flag by default. + /// + /// By default this is disabled. It may alternatively be selectively + /// enabled in the regular expression itself via the `U` flag. + pub fn swap_greed(&mut self, yes: bool) -> &mut ParserBuilder { + self.hir.swap_greed(yes); + self + } + + /// Enable or disable the Unicode flag (`u`) by default. + /// + /// By default this is **enabled**. It may alternatively be selectively + /// disabled in the regular expression itself via the `u` flag. + /// + /// Note that unless `utf8` is disabled (it's enabled by default), a + /// regular expression will fail to parse if Unicode mode is disabled and a + /// sub-expression could possibly match invalid UTF-8. + pub fn unicode(&mut self, yes: bool) -> &mut ParserBuilder { + self.hir.unicode(yes); + self + } +} + +/// A convenience parser for regular expressions. +/// +/// This parser takes as input a regular expression pattern string (the +/// "concrete syntax") and returns a high-level intermediate representation +/// (the HIR) suitable for most types of analysis. In particular, this parser +/// hides the intermediate state of producing an AST (the "abstract syntax"). +/// The AST is itself far more complex than the HIR, so this parser serves as a +/// convenience for never having to deal with it at all. +/// +/// If callers have more fine grained use cases that need an AST, then please +/// see the [`ast::parse`] module. +/// +/// A `Parser` can be configured in more detail via a [`ParserBuilder`]. +#[derive(Clone, Debug)] +pub struct Parser { + ast: ast::parse::Parser, + hir: hir::translate::Translator, +} + +impl Parser { + /// Create a new parser with a default configuration. + /// + /// The parser can be run with `parse` method. The parse method returns + /// a high level intermediate representation of the given regular + /// expression. + /// + /// To set configuration options on the parser, use [`ParserBuilder`]. + pub fn new() -> Parser { + ParserBuilder::new().build() + } + + /// Parse the regular expression into a high level intermediate + /// representation. + pub fn parse(&mut self, pattern: &str) -> Result<hir::Hir, Error> { + let ast = self.ast.parse(pattern)?; + let hir = self.hir.translate(pattern, &ast)?; + Ok(hir) + } +} |