1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
//! Support for encoding signed integers
use super::{is_highest_bit_set, uint, value_cmp};
use crate::{
ord::OrdIsValueOrd, AnyRef, BytesRef, DecodeValue, EncodeValue, Error, ErrorKind, FixedTag,
Header, Length, Reader, Result, Tag, ValueOrd, Writer,
};
use core::cmp::Ordering;
#[cfg(feature = "alloc")]
pub use allocating::Int;
macro_rules! impl_encoding_traits {
($($int:ty => $uint:ty),+) => {
$(
impl<'a> DecodeValue<'a> for $int {
fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> Result<Self> {
let mut buf = [0u8; Self::BITS as usize / 8];
let max_length = u32::from(header.length) as usize;
if max_length > buf.len() {
return Err(Self::TAG.non_canonical_error());
}
let bytes = reader.read_into(&mut buf[..max_length])?;
let result = if is_highest_bit_set(bytes) {
<$uint>::from_be_bytes(decode_to_array(bytes)?) as $int
} else {
Self::from_be_bytes(uint::decode_to_array(bytes)?)
};
// Ensure we compute the same encoded length as the original any value
if header.length != result.value_len()? {
return Err(Self::TAG.non_canonical_error());
}
Ok(result)
}
}
impl EncodeValue for $int {
fn value_len(&self) -> Result<Length> {
if *self < 0 {
negative_encoded_len(&(*self as $uint).to_be_bytes())
} else {
uint::encoded_len(&self.to_be_bytes())
}
}
fn encode_value(&self, writer: &mut impl Writer) -> Result<()> {
if *self < 0 {
encode_bytes(writer, &(*self as $uint).to_be_bytes())
} else {
uint::encode_bytes(writer, &self.to_be_bytes())
}
}
}
impl FixedTag for $int {
const TAG: Tag = Tag::Integer;
}
impl ValueOrd for $int {
fn value_cmp(&self, other: &Self) -> Result<Ordering> {
value_cmp(*self, *other)
}
}
impl TryFrom<AnyRef<'_>> for $int {
type Error = Error;
fn try_from(any: AnyRef<'_>) -> Result<Self> {
any.decode_as()
}
}
)+
};
}
impl_encoding_traits!(i8 => u8, i16 => u16, i32 => u32, i64 => u64, i128 => u128);
/// Signed arbitrary precision ASN.1 `INTEGER` reference type.
///
/// Provides direct access to the underlying big endian bytes which comprise
/// an signed integer value.
///
/// Intended for use cases like very large integers that are used in
/// cryptographic applications (e.g. keys, signatures).
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct IntRef<'a> {
/// Inner value
inner: BytesRef<'a>,
}
impl<'a> IntRef<'a> {
/// Create a new [`IntRef`] from a byte slice.
pub fn new(bytes: &'a [u8]) -> Result<Self> {
let inner = BytesRef::new(strip_leading_ones(bytes))
.map_err(|_| ErrorKind::Length { tag: Self::TAG })?;
Ok(Self { inner })
}
/// Borrow the inner byte slice which contains the least significant bytes
/// of a big endian integer value with all leading ones stripped.
pub fn as_bytes(&self) -> &'a [u8] {
self.inner.as_slice()
}
/// Get the length of this [`IntRef`] in bytes.
pub fn len(&self) -> Length {
self.inner.len()
}
/// Is the inner byte slice empty?
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
}
impl_any_conversions!(IntRef<'a>, 'a);
impl<'a> DecodeValue<'a> for IntRef<'a> {
fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> Result<Self> {
let bytes = BytesRef::decode_value(reader, header)?;
validate_canonical(bytes.as_slice())?;
let result = Self::new(bytes.as_slice())?;
// Ensure we compute the same encoded length as the original any value.
if result.value_len()? != header.length {
return Err(Self::TAG.non_canonical_error());
}
Ok(result)
}
}
impl<'a> EncodeValue for IntRef<'a> {
fn value_len(&self) -> Result<Length> {
// Signed integers always hold their full encoded form.
Ok(self.inner.len())
}
fn encode_value(&self, writer: &mut impl Writer) -> Result<()> {
writer.write(self.as_bytes())
}
}
impl<'a> From<&IntRef<'a>> for IntRef<'a> {
fn from(value: &IntRef<'a>) -> IntRef<'a> {
*value
}
}
impl<'a> FixedTag for IntRef<'a> {
const TAG: Tag = Tag::Integer;
}
impl<'a> OrdIsValueOrd for IntRef<'a> {}
#[cfg(feature = "alloc")]
mod allocating {
use super::{strip_leading_ones, validate_canonical, IntRef};
use crate::{
asn1::Uint,
ord::OrdIsValueOrd,
referenced::{OwnedToRef, RefToOwned},
BytesOwned, DecodeValue, EncodeValue, ErrorKind, FixedTag, Header, Length, Reader, Result,
Tag, Writer,
};
use alloc::vec::Vec;
/// Signed arbitrary precision ASN.1 `INTEGER` type.
///
/// Provides heap-allocated storage for big endian bytes which comprise an
/// signed integer value.
///
/// Intended for use cases like very large integers that are used in
/// cryptographic applications (e.g. keys, signatures).
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct Int {
/// Inner value
inner: BytesOwned,
}
impl Int {
/// Create a new [`Int`] from a byte slice.
pub fn new(bytes: &[u8]) -> Result<Self> {
let inner = BytesOwned::new(strip_leading_ones(bytes))
.map_err(|_| ErrorKind::Length { tag: Self::TAG })?;
Ok(Self { inner })
}
/// Borrow the inner byte slice which contains the least significant bytes
/// of a big endian integer value with all leading ones stripped.
pub fn as_bytes(&self) -> &[u8] {
self.inner.as_slice()
}
/// Get the length of this [`Int`] in bytes.
pub fn len(&self) -> Length {
self.inner.len()
}
/// Is the inner byte slice empty?
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
}
impl_any_conversions!(Int);
impl<'a> DecodeValue<'a> for Int {
fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> Result<Self> {
let bytes = BytesOwned::decode_value(reader, header)?;
validate_canonical(bytes.as_slice())?;
let result = Self::new(bytes.as_slice())?;
// Ensure we compute the same encoded length as the original any value.
if result.value_len()? != header.length {
return Err(Self::TAG.non_canonical_error());
}
Ok(result)
}
}
impl EncodeValue for Int {
fn value_len(&self) -> Result<Length> {
// Signed integers always hold their full encoded form.
Ok(self.inner.len())
}
fn encode_value(&self, writer: &mut impl Writer) -> Result<()> {
writer.write(self.as_bytes())
}
}
impl<'a> From<&IntRef<'a>> for Int {
fn from(value: &IntRef<'a>) -> Int {
let inner = BytesOwned::new(value.as_bytes()).expect("Invalid Int");
Int { inner }
}
}
impl From<Uint> for Int {
fn from(value: Uint) -> Self {
let mut inner: Vec<u8> = Vec::new();
// Add leading `0x00` byte if required
if value.value_len().expect("invalid Uint") > value.len() {
inner.push(0x00);
}
inner.extend_from_slice(value.as_bytes());
let inner = BytesOwned::new(inner).expect("invalid Uint");
Int { inner }
}
}
impl FixedTag for Int {
const TAG: Tag = Tag::Integer;
}
impl OrdIsValueOrd for Int {}
impl<'a> RefToOwned<'a> for IntRef<'a> {
type Owned = Int;
fn ref_to_owned(&self) -> Self::Owned {
let inner = self.inner.ref_to_owned();
Int { inner }
}
}
impl OwnedToRef for Int {
type Borrowed<'a> = IntRef<'a>;
fn owned_to_ref(&self) -> Self::Borrowed<'_> {
let inner = self.inner.owned_to_ref();
IntRef { inner }
}
}
}
/// Ensure `INTEGER` is canonically encoded.
fn validate_canonical(bytes: &[u8]) -> Result<()> {
// The `INTEGER` type always encodes a signed value and we're decoding
// as signed here, so we allow a zero extension or sign extension byte,
// but only as permitted under DER canonicalization.
match bytes {
[] => Err(Tag::Integer.non_canonical_error()),
[0x00, byte, ..] if *byte < 0x80 => Err(Tag::Integer.non_canonical_error()),
[0xFF, byte, ..] if *byte >= 0x80 => Err(Tag::Integer.non_canonical_error()),
_ => Ok(()),
}
}
/// Decode an signed integer of the specified size.
///
/// Returns a byte array of the requested size containing a big endian integer.
fn decode_to_array<const N: usize>(bytes: &[u8]) -> Result<[u8; N]> {
match N.checked_sub(bytes.len()) {
Some(offset) => {
let mut output = [0xFFu8; N];
output[offset..].copy_from_slice(bytes);
Ok(output)
}
None => {
let expected_len = Length::try_from(N)?;
let actual_len = Length::try_from(bytes.len())?;
Err(ErrorKind::Incomplete {
expected_len,
actual_len,
}
.into())
}
}
}
/// Encode the given big endian bytes representing an integer as ASN.1 DER.
fn encode_bytes<W>(writer: &mut W, bytes: &[u8]) -> Result<()>
where
W: Writer + ?Sized,
{
writer.write(strip_leading_ones(bytes))
}
/// Get the encoded length for the given **negative** integer serialized as bytes.
#[inline]
fn negative_encoded_len(bytes: &[u8]) -> Result<Length> {
Length::try_from(strip_leading_ones(bytes).len())
}
/// Strip the leading all-ones bytes from the given byte slice.
pub(crate) fn strip_leading_ones(mut bytes: &[u8]) -> &[u8] {
while let Some((byte, rest)) = bytes.split_first() {
if *byte == 0xFF && is_highest_bit_set(rest) {
bytes = rest;
continue;
}
break;
}
bytes
}
#[cfg(test)]
mod tests {
use super::{validate_canonical, IntRef};
use crate::{asn1::integer::tests::*, Decode, Encode, SliceWriter};
#[test]
fn validate_canonical_ok() {
assert_eq!(validate_canonical(&[0x00]), Ok(()));
assert_eq!(validate_canonical(&[0x01]), Ok(()));
assert_eq!(validate_canonical(&[0x00, 0x80]), Ok(()));
assert_eq!(validate_canonical(&[0xFF, 0x00]), Ok(()));
}
#[test]
fn validate_canonical_err() {
// Empty integers are always non-canonical.
assert!(validate_canonical(&[]).is_err());
// Positives with excessive zero extension are non-canonical.
assert!(validate_canonical(&[0x00, 0x00]).is_err());
// Negatives with excessive sign extension are non-canonical.
assert!(validate_canonical(&[0xFF, 0x80]).is_err());
}
#[test]
fn decode_intref() {
// Positive numbers decode, but have zero extensions as necessary
// (to distinguish them from negative representations).
assert_eq!(&[0], IntRef::from_der(I0_BYTES).unwrap().as_bytes());
assert_eq!(&[127], IntRef::from_der(I127_BYTES).unwrap().as_bytes());
assert_eq!(&[0, 128], IntRef::from_der(I128_BYTES).unwrap().as_bytes());
assert_eq!(&[0, 255], IntRef::from_der(I255_BYTES).unwrap().as_bytes());
assert_eq!(
&[0x01, 0x00],
IntRef::from_der(I256_BYTES).unwrap().as_bytes()
);
assert_eq!(
&[0x7F, 0xFF],
IntRef::from_der(I32767_BYTES).unwrap().as_bytes()
);
// Negative integers decode.
assert_eq!(&[128], IntRef::from_der(INEG128_BYTES).unwrap().as_bytes());
assert_eq!(
&[255, 127],
IntRef::from_der(INEG129_BYTES).unwrap().as_bytes()
);
assert_eq!(
&[128, 0],
IntRef::from_der(INEG32768_BYTES).unwrap().as_bytes()
);
}
#[test]
fn encode_intref() {
for &example in &[
I0_BYTES,
I127_BYTES,
I128_BYTES,
I255_BYTES,
I256_BYTES,
I32767_BYTES,
] {
let uint = IntRef::from_der(example).unwrap();
let mut buf = [0u8; 128];
let mut encoder = SliceWriter::new(&mut buf);
uint.encode(&mut encoder).unwrap();
let result = encoder.finish().unwrap();
assert_eq!(example, result);
}
for &example in &[INEG128_BYTES, INEG129_BYTES, INEG32768_BYTES] {
let uint = IntRef::from_der(example).unwrap();
let mut buf = [0u8; 128];
let mut encoder = SliceWriter::new(&mut buf);
uint.encode(&mut encoder).unwrap();
let result = encoder.finish().unwrap();
assert_eq!(example, result);
}
}
}
|