1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
|
use core::{fmt, mem};
use alloc::{boxed::Box, format, string::String, sync::Arc, vec, vec::Vec};
#[cfg(feature = "syntax")]
use crate::nfa::thompson::{
compiler::{Compiler, Config},
error::BuildError,
};
use crate::{
nfa::thompson::builder::Builder,
util::{
alphabet::{self, ByteClassSet, ByteClasses},
captures::{GroupInfo, GroupInfoError},
look::{Look, LookMatcher, LookSet},
primitives::{
IteratorIndexExt, PatternID, PatternIDIter, SmallIndex, StateID,
},
sparse_set::SparseSet,
},
};
/// A byte oriented Thompson non-deterministic finite automaton (NFA).
///
/// A Thompson NFA is a finite state machine that permits unconditional epsilon
/// transitions, but guarantees that there exists at most one non-epsilon
/// transition for each element in the alphabet for each state.
///
/// An NFA may be used directly for searching, for analysis or to build
/// a deterministic finite automaton (DFA).
///
/// # Cheap clones
///
/// Since an NFA is a core data type in this crate that many other regex
/// engines are based on top of, it is convenient to give ownership of an NFA
/// to said regex engines. Because of this, an NFA uses reference counting
/// internally. Therefore, it is cheap to clone and it is encouraged to do so.
///
/// # Capabilities
///
/// Using an NFA for searching via the
/// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM) provides the most amount
/// of "power" of any regex engine in this crate. Namely, it supports the
/// following in all cases:
///
/// 1. Detection of a match.
/// 2. Location of a match, including both the start and end offset, in a
/// single pass of the haystack.
/// 3. Location of matching capturing groups.
/// 4. Handles multiple patterns, including (1)-(3) when multiple patterns are
/// present.
///
/// # Capturing Groups
///
/// Groups refer to parenthesized expressions inside a regex pattern. They look
/// like this, where `exp` is an arbitrary regex:
///
/// * `(exp)` - An unnamed capturing group.
/// * `(?P<name>exp)` or `(?<name>exp)` - A named capturing group.
/// * `(?:exp)` - A non-capturing group.
/// * `(?i:exp)` - A non-capturing group that sets flags.
///
/// Only the first two forms are said to be _capturing_. Capturing
/// means that the last position at which they match is reportable. The
/// [`Captures`](crate::util::captures::Captures) type provides convenient
/// access to the match positions of capturing groups, which includes looking
/// up capturing groups by their name.
///
/// # Byte oriented
///
/// This NFA is byte oriented, which means that all of its transitions are
/// defined on bytes. In other words, the alphabet of an NFA consists of the
/// 256 different byte values.
///
/// While DFAs nearly demand that they be byte oriented for performance
/// reasons, an NFA could conceivably be *Unicode codepoint* oriented. Indeed,
/// a previous version of this NFA supported both byte and codepoint oriented
/// modes. A codepoint oriented mode can work because an NFA fundamentally uses
/// a sparse representation of transitions, which works well with the large
/// sparse space of Unicode codepoints.
///
/// Nevertheless, this NFA is only byte oriented. This choice is primarily
/// driven by implementation simplicity, and also in part memory usage. In
/// practice, performance between the two is roughly comparable. However,
/// building a DFA (including a hybrid DFA) really wants a byte oriented NFA.
/// So if we do have a codepoint oriented NFA, then we also need to generate
/// byte oriented NFA in order to build an hybrid NFA/DFA. Thus, by only
/// generating byte oriented NFAs, we can produce one less NFA. In other words,
/// if we made our NFA codepoint oriented, we'd need to *also* make it support
/// a byte oriented mode, which is more complicated. But a byte oriented mode
/// can support everything.
///
/// # Differences with DFAs
///
/// At the theoretical level, the precise difference between an NFA and a DFA
/// is that, in a DFA, for every state, an input symbol unambiguously refers
/// to a single transition _and_ that an input symbol is required for each
/// transition. At a practical level, this permits DFA implementations to be
/// implemented at their core with a small constant number of CPU instructions
/// for each byte of input searched. In practice, this makes them quite a bit
/// faster than NFAs _in general_. Namely, in order to execute a search for any
/// Thompson NFA, one needs to keep track of a _set_ of states, and execute
/// the possible transitions on all of those states for each input symbol.
/// Overall, this results in much more overhead. To a first approximation, one
/// can expect DFA searches to be about an order of magnitude faster.
///
/// So why use an NFA at all? The main advantage of an NFA is that it takes
/// linear time (in the size of the pattern string after repetitions have been
/// expanded) to build and linear memory usage. A DFA, on the other hand, may
/// take exponential time and/or space to build. Even in non-pathological
/// cases, DFAs often take quite a bit more memory than their NFA counterparts,
/// _especially_ if large Unicode character classes are involved. Of course,
/// an NFA also provides additional capabilities. For example, it can match
/// Unicode word boundaries on non-ASCII text and resolve the positions of
/// capturing groups.
///
/// Note that a [`hybrid::regex::Regex`](crate::hybrid::regex::Regex) strikes a
/// good balance between an NFA and a DFA. It avoids the exponential build time
/// of a DFA while maintaining its fast search time. The downside of a hybrid
/// NFA/DFA is that in some cases it can be slower at search time than the NFA.
/// (It also has less functionality than a pure NFA. It cannot handle Unicode
/// word boundaries on non-ASCII text and cannot resolve capturing groups.)
///
/// # Example
///
/// This shows how to build an NFA with the default configuration and execute a
/// search using the Pike VM.
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re = PikeVM::new(r"foo[0-9]+")?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
///
/// let expected = Some(Match::must(0, 0..8));
/// re.captures(&mut cache, b"foo12345", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: resolving capturing groups
///
/// This example shows how to parse some simple dates and extract the
/// components of each date via capturing groups.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// util::captures::Captures,
/// };
///
/// let vm = PikeVM::new(r"(?P<y>\d{4})-(?P<m>\d{2})-(?P<d>\d{2})")?;
/// let mut cache = vm.create_cache();
///
/// let haystack = "2012-03-14, 2013-01-01 and 2014-07-05";
/// let all: Vec<Captures> = vm.captures_iter(
/// &mut cache, haystack.as_bytes()
/// ).collect();
/// // There should be a total of 3 matches.
/// assert_eq!(3, all.len());
/// // The year from the second match is '2013'.
/// let span = all[1].get_group_by_name("y").unwrap();
/// assert_eq!("2013", &haystack[span]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This example shows that only the last match of a capturing group is
/// reported, even if it had to match multiple times for an overall match
/// to occur.
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span};
///
/// let re = PikeVM::new(r"([a-z]){4}")?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
///
/// let haystack = b"quux";
/// re.captures(&mut cache, haystack, &mut caps);
/// assert!(caps.is_match());
/// assert_eq!(Some(Span::from(3..4)), caps.get_group(1));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone)]
pub struct NFA(
// We make NFAs reference counted primarily for two reasons. First is that
// the NFA type itself is quite large (at least 0.5KB), and so it makes
// sense to put it on the heap by default anyway. Second is that, for Arc
// specifically, this enables cheap clones. This tends to be useful because
// several structures (the backtracker, the Pike VM, the hybrid NFA/DFA)
// all want to hang on to an NFA for use during search time. We could
// provide the NFA at search time via a function argument, but this makes
// for an unnecessarily annoying API. Instead, we just let each structure
// share ownership of the NFA. Using a deep clone would not be smart, since
// the NFA can use quite a bit of heap space.
Arc<Inner>,
);
impl NFA {
/// Parse the given regular expression using a default configuration and
/// build an NFA from it.
///
/// If you want a non-default configuration, then use the NFA
/// [`Compiler`] with a [`Config`].
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re = PikeVM::new(r"foo[0-9]+")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let expected = Some(Match::must(0, 0..8));
/// re.captures(&mut cache, b"foo12345", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new(pattern: &str) -> Result<NFA, BuildError> {
NFA::compiler().build(pattern)
}
/// Parse the given regular expressions using a default configuration and
/// build a multi-NFA from them.
///
/// If you want a non-default configuration, then use the NFA
/// [`Compiler`] with a [`Config`].
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re = PikeVM::new_many(&["[0-9]+", "[a-z]+"])?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let expected = Some(Match::must(1, 0..3));
/// re.captures(&mut cache, b"foo12345bar", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<NFA, BuildError> {
NFA::compiler().build_many(patterns)
}
/// Returns an NFA with a single regex pattern that always matches at every
/// position.
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match};
///
/// let re = PikeVM::new_from_nfa(NFA::always_match())?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let expected = Some(Match::must(0, 0..0));
/// re.captures(&mut cache, b"", &mut caps);
/// assert_eq!(expected, caps.get_match());
/// re.captures(&mut cache, b"foo", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn always_match() -> NFA {
// We could use NFA::new("") here and we'd get the same semantics, but
// hand-assembling the NFA (as below) does the same thing with a fewer
// number of states. It also avoids needing the 'syntax' feature
// enabled.
//
// Technically all we need is the "match" state, but we add the
// "capture" states so that the PikeVM can use this NFA.
//
// The unwraps below are OK because we add so few states that they will
// never exhaust any default limits in any environment.
let mut builder = Builder::new();
let pid = builder.start_pattern().unwrap();
assert_eq!(pid.as_usize(), 0);
let start_id =
builder.add_capture_start(StateID::ZERO, 0, None).unwrap();
let end_id = builder.add_capture_end(StateID::ZERO, 0).unwrap();
let match_id = builder.add_match().unwrap();
builder.patch(start_id, end_id).unwrap();
builder.patch(end_id, match_id).unwrap();
let pid = builder.finish_pattern(start_id).unwrap();
assert_eq!(pid.as_usize(), 0);
builder.build(start_id, start_id).unwrap()
}
/// Returns an NFA that never matches at any position.
///
/// This is a convenience routine for creating an NFA with zero patterns.
///
/// # Example
///
/// ```
/// use regex_automata::nfa::thompson::{NFA, pikevm::PikeVM};
///
/// let re = PikeVM::new_from_nfa(NFA::never_match())?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// re.captures(&mut cache, b"", &mut caps);
/// assert!(!caps.is_match());
/// re.captures(&mut cache, b"foo", &mut caps);
/// assert!(!caps.is_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn never_match() -> NFA {
// This always succeeds because it only requires one NFA state, which
// will never exhaust any (default) limits.
let mut builder = Builder::new();
let sid = builder.add_fail().unwrap();
builder.build(sid, sid).unwrap()
}
/// Return a default configuration for an `NFA`.
///
/// This is a convenience routine to avoid needing to import the `Config`
/// type when customizing the construction of an NFA.
///
/// # Example
///
/// This example shows how to build an NFA with a small size limit that
/// results in a compilation error for any regex that tries to use more
/// heap memory than the configured limit.
///
/// ```
/// use regex_automata::nfa::thompson::{NFA, pikevm::PikeVM};
///
/// let result = PikeVM::builder()
/// .thompson(NFA::config().nfa_size_limit(Some(1_000)))
/// // Remember, \w is Unicode-aware by default and thus huge.
/// .build(r"\w+");
/// assert!(result.is_err());
/// ```
#[cfg(feature = "syntax")]
pub fn config() -> Config {
Config::new()
}
/// Return a compiler for configuring the construction of an `NFA`.
///
/// This is a convenience routine to avoid needing to import the
/// [`Compiler`] type in common cases.
///
/// # Example
///
/// This example shows how to build an NFA that is permitted match invalid
/// UTF-8. Without the additional syntax configuration here, compilation of
/// `(?-u:.)` would fail because it is permitted to match invalid UTF-8.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// util::syntax,
/// Match,
/// };
///
/// let re = PikeVM::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .build(r"[a-z]+(?-u:.)")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let expected = Some(Match::must(0, 1..5));
/// re.captures(&mut cache, b"\xFFabc\xFF", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn compiler() -> Compiler {
Compiler::new()
}
/// Returns an iterator over all pattern identifiers in this NFA.
///
/// Pattern IDs are allocated in sequential order starting from zero,
/// where the order corresponds to the order of patterns provided to the
/// [`NFA::new_many`] constructor.
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, PatternID};
///
/// let nfa = NFA::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?;
/// let pids: Vec<PatternID> = nfa.patterns().collect();
/// assert_eq!(pids, vec![
/// PatternID::must(0),
/// PatternID::must(1),
/// PatternID::must(2),
/// ]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn patterns(&self) -> PatternIter<'_> {
PatternIter {
it: PatternID::iter(self.pattern_len()),
_marker: core::marker::PhantomData,
}
}
/// Returns the total number of regex patterns in this NFA.
///
/// This may return zero if the NFA was constructed with no patterns. In
/// this case, the NFA can never produce a match for any input.
///
/// This is guaranteed to be no bigger than [`PatternID::LIMIT`] because
/// NFA construction will fail if too many patterns are added.
///
/// It is always true that `nfa.patterns().count() == nfa.pattern_len()`.
///
/// # Example
///
/// ```
/// use regex_automata::nfa::thompson::NFA;
///
/// let nfa = NFA::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?;
/// assert_eq!(3, nfa.pattern_len());
///
/// let nfa = NFA::never_match();
/// assert_eq!(0, nfa.pattern_len());
///
/// let nfa = NFA::always_match();
/// assert_eq!(1, nfa.pattern_len());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn pattern_len(&self) -> usize {
self.0.start_pattern.len()
}
/// Return the state identifier of the initial anchored state of this NFA.
///
/// The returned identifier is guaranteed to be a valid index into the
/// slice returned by [`NFA::states`], and is also a valid argument to
/// [`NFA::state`].
///
/// # Example
///
/// This example shows a somewhat contrived example where we can easily
/// predict the anchored starting state.
///
/// ```
/// use regex_automata::nfa::thompson::{NFA, State, WhichCaptures};
///
/// let nfa = NFA::compiler()
/// .configure(NFA::config().which_captures(WhichCaptures::None))
/// .build("a")?;
/// let state = nfa.state(nfa.start_anchored());
/// match *state {
/// State::ByteRange { trans } => {
/// assert_eq!(b'a', trans.start);
/// assert_eq!(b'a', trans.end);
/// }
/// _ => unreachable!("unexpected state"),
/// }
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn start_anchored(&self) -> StateID {
self.0.start_anchored
}
/// Return the state identifier of the initial unanchored state of this
/// NFA.
///
/// This is equivalent to the identifier returned by
/// [`NFA::start_anchored`] when the NFA has no unanchored starting state.
///
/// The returned identifier is guaranteed to be a valid index into the
/// slice returned by [`NFA::states`], and is also a valid argument to
/// [`NFA::state`].
///
/// # Example
///
/// This example shows that the anchored and unanchored starting states
/// are equivalent when an anchored NFA is built.
///
/// ```
/// use regex_automata::nfa::thompson::NFA;
///
/// let nfa = NFA::new("^a")?;
/// assert_eq!(nfa.start_anchored(), nfa.start_unanchored());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn start_unanchored(&self) -> StateID {
self.0.start_unanchored
}
/// Return the state identifier of the initial anchored state for the given
/// pattern, or `None` if there is no pattern corresponding to the given
/// identifier.
///
/// If one uses the starting state for a particular pattern, then the only
/// match that can be returned is for the corresponding pattern.
///
/// The returned identifier is guaranteed to be a valid index into the
/// slice returned by [`NFA::states`], and is also a valid argument to
/// [`NFA::state`].
///
/// # Errors
///
/// If the pattern doesn't exist in this NFA, then this returns an error.
/// This occurs when `pid.as_usize() >= nfa.pattern_len()`.
///
/// # Example
///
/// This example shows that the anchored and unanchored starting states
/// are equivalent when an anchored NFA is built.
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, PatternID};
///
/// let nfa = NFA::new_many(&["^a", "^b"])?;
/// // The anchored and unanchored states for the entire NFA are the same,
/// // since all of the patterns are anchored.
/// assert_eq!(nfa.start_anchored(), nfa.start_unanchored());
/// // But the anchored starting states for each pattern are distinct,
/// // because these starting states can only lead to matches for the
/// // corresponding pattern.
/// let anchored = Some(nfa.start_anchored());
/// assert_ne!(anchored, nfa.start_pattern(PatternID::must(0)));
/// assert_ne!(anchored, nfa.start_pattern(PatternID::must(1)));
/// // Requesting a pattern not in the NFA will result in None:
/// assert_eq!(None, nfa.start_pattern(PatternID::must(2)));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn start_pattern(&self, pid: PatternID) -> Option<StateID> {
self.0.start_pattern.get(pid.as_usize()).copied()
}
/// Get the byte class set for this NFA.
///
/// A byte class set is a partitioning of this NFA's alphabet into
/// equivalence classes. Any two bytes in the same equivalence class are
/// guaranteed to never discriminate between a match or a non-match. (The
/// partitioning may not be minimal.)
///
/// Byte classes are used internally by this crate when building DFAs.
/// Namely, among other optimizations, they enable a space optimization
/// where the DFA's internal alphabet is defined over the equivalence
/// classes of bytes instead of all possible byte values. The former is
/// often quite a bit smaller than the latter, which permits the DFA to use
/// less space for its transition table.
#[inline]
pub(crate) fn byte_class_set(&self) -> &ByteClassSet {
&self.0.byte_class_set
}
/// Get the byte classes for this NFA.
///
/// Byte classes represent a partitioning of this NFA's alphabet into
/// equivalence classes. Any two bytes in the same equivalence class are
/// guaranteed to never discriminate between a match or a non-match. (The
/// partitioning may not be minimal.)
///
/// Byte classes are used internally by this crate when building DFAs.
/// Namely, among other optimizations, they enable a space optimization
/// where the DFA's internal alphabet is defined over the equivalence
/// classes of bytes instead of all possible byte values. The former is
/// often quite a bit smaller than the latter, which permits the DFA to use
/// less space for its transition table.
///
/// # Example
///
/// This example shows how to query the class of various bytes.
///
/// ```
/// use regex_automata::nfa::thompson::NFA;
///
/// let nfa = NFA::new("[a-z]+")?;
/// let classes = nfa.byte_classes();
/// // 'a' and 'z' are in the same class for this regex.
/// assert_eq!(classes.get(b'a'), classes.get(b'z'));
/// // But 'a' and 'A' are not.
/// assert_ne!(classes.get(b'a'), classes.get(b'A'));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn byte_classes(&self) -> &ByteClasses {
&self.0.byte_classes
}
/// Return a reference to the NFA state corresponding to the given ID.
///
/// This is a convenience routine for `nfa.states()[id]`.
///
/// # Panics
///
/// This panics when the given identifier does not reference a valid state.
/// That is, when `id.as_usize() >= nfa.states().len()`.
///
/// # Example
///
/// The anchored state for a pattern will typically correspond to a
/// capturing state for that pattern. (Although, this is not an API
/// guarantee!)
///
/// ```
/// use regex_automata::{nfa::thompson::{NFA, State}, PatternID};
///
/// let nfa = NFA::new("a")?;
/// let state = nfa.state(nfa.start_pattern(PatternID::ZERO).unwrap());
/// match *state {
/// State::Capture { slot, .. } => {
/// assert_eq!(0, slot.as_usize());
/// }
/// _ => unreachable!("unexpected state"),
/// }
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn state(&self, id: StateID) -> &State {
&self.states()[id]
}
/// Returns a slice of all states in this NFA.
///
/// The slice returned is indexed by `StateID`. This provides a convenient
/// way to access states while following transitions among those states.
///
/// # Example
///
/// This demonstrates that disabling UTF-8 mode can shrink the size of the
/// NFA considerably in some cases, especially when using Unicode character
/// classes.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::nfa::thompson::NFA;
///
/// let nfa_unicode = NFA::new(r"\w")?;
/// let nfa_ascii = NFA::new(r"(?-u)\w")?;
/// // Yes, a factor of 45 difference. No lie.
/// assert!(40 * nfa_ascii.states().len() < nfa_unicode.states().len());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn states(&self) -> &[State] {
&self.0.states
}
/// Returns the capturing group info for this NFA.
///
/// The [`GroupInfo`] provides a way to map to and from capture index
/// and capture name for each pattern. It also provides a mapping from
/// each of the capturing groups in every pattern to their corresponding
/// slot offsets encoded in [`State::Capture`] states.
///
/// Note that `GroupInfo` uses reference counting internally, such that
/// cloning a `GroupInfo` is very cheap.
///
/// # Example
///
/// This example shows how to get a list of all capture group names for
/// a particular pattern.
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, PatternID};
///
/// let nfa = NFA::new(r"(a)(?P<foo>b)(c)(d)(?P<bar>e)")?;
/// // The first is the implicit group that is always unnammed. The next
/// // 5 groups are the explicit groups found in the concrete syntax above.
/// let expected = vec![None, None, Some("foo"), None, None, Some("bar")];
/// let got: Vec<Option<&str>> =
/// nfa.group_info().pattern_names(PatternID::ZERO).collect();
/// assert_eq!(expected, got);
///
/// // Using an invalid pattern ID will result in nothing yielded.
/// let got = nfa.group_info().pattern_names(PatternID::must(999)).count();
/// assert_eq!(0, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn group_info(&self) -> &GroupInfo {
&self.0.group_info()
}
/// Returns true if and only if this NFA has at least one
/// [`Capture`](State::Capture) in its sequence of states.
///
/// This is useful as a way to perform a quick test before attempting
/// something that does or does not require capture states. For example,
/// some regex engines (like the PikeVM) require capture states in order to
/// work at all.
///
/// # Example
///
/// This example shows a few different NFAs and whether they have captures
/// or not.
///
/// ```
/// use regex_automata::nfa::thompson::{NFA, WhichCaptures};
///
/// // Obviously has capture states.
/// let nfa = NFA::new("(a)")?;
/// assert!(nfa.has_capture());
///
/// // Less obviously has capture states, because every pattern has at
/// // least one anonymous capture group corresponding to the match for the
/// // entire pattern.
/// let nfa = NFA::new("a")?;
/// assert!(nfa.has_capture());
///
/// // Other than hand building your own NFA, this is the only way to build
/// // an NFA without capturing groups. In general, you should only do this
/// // if you don't intend to use any of the NFA-oriented regex engines.
/// // Overall, capturing groups don't have many downsides. Although they
/// // can add a bit of noise to simple NFAs, so it can be nice to disable
/// // them for debugging purposes.
/// //
/// // Notice that 'has_capture' is false here even when we have an
/// // explicit capture group in the pattern.
/// let nfa = NFA::compiler()
/// .configure(NFA::config().which_captures(WhichCaptures::None))
/// .build("(a)")?;
/// assert!(!nfa.has_capture());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn has_capture(&self) -> bool {
self.0.has_capture
}
/// Returns true if and only if this NFA can match the empty string.
/// When it returns false, all possible matches are guaranteed to have a
/// non-zero length.
///
/// This is useful as cheap way to know whether code needs to handle the
/// case of a zero length match. This is particularly important when UTF-8
/// modes are enabled, as when UTF-8 mode is enabled, empty matches that
/// split a codepoint must never be reported. This extra handling can
/// sometimes be costly, and since regexes matching an empty string are
/// somewhat rare, it can be beneficial to treat such regexes specially.
///
/// # Example
///
/// This example shows a few different NFAs and whether they match the
/// empty string or not. Notice the empty string isn't merely a matter
/// of a string of length literally `0`, but rather, whether a match can
/// occur between specific pairs of bytes.
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, util::syntax};
///
/// // The empty regex matches the empty string.
/// let nfa = NFA::new("")?;
/// assert!(nfa.has_empty(), "empty matches empty");
/// // The '+' repetition operator requires at least one match, and so
/// // does not match the empty string.
/// let nfa = NFA::new("a+")?;
/// assert!(!nfa.has_empty(), "+ does not match empty");
/// // But the '*' repetition operator does.
/// let nfa = NFA::new("a*")?;
/// assert!(nfa.has_empty(), "* does match empty");
/// // And wrapping '+' in an operator that can match an empty string also
/// // causes it to match the empty string too.
/// let nfa = NFA::new("(a+)*")?;
/// assert!(nfa.has_empty(), "+ inside of * matches empty");
///
/// // If a regex is just made of a look-around assertion, even if the
/// // assertion requires some kind of non-empty string around it (such as
/// // \b), then it is still treated as if it matches the empty string.
/// // Namely, if a match occurs of just a look-around assertion, then the
/// // match returned is empty.
/// let nfa = NFA::compiler()
/// .syntax(syntax::Config::new().utf8(false))
/// .build(r"^$\A\z\b\B(?-u:\b\B)")?;
/// assert!(nfa.has_empty(), "assertions match empty");
/// // Even when an assertion is wrapped in a '+', it still matches the
/// // empty string.
/// let nfa = NFA::new(r"\b+")?;
/// assert!(nfa.has_empty(), "+ of an assertion matches empty");
///
/// // An alternation with even one branch that can match the empty string
/// // is also said to match the empty string overall.
/// let nfa = NFA::new("foo|(bar)?|quux")?;
/// assert!(nfa.has_empty(), "alternations can match empty");
///
/// // An NFA that matches nothing does not match the empty string.
/// let nfa = NFA::new("[a&&b]")?;
/// assert!(!nfa.has_empty(), "never matching means not matching empty");
/// // But if it's wrapped in something that doesn't require a match at
/// // all, then it can match the empty string!
/// let nfa = NFA::new("[a&&b]*")?;
/// assert!(nfa.has_empty(), "* on never-match still matches empty");
/// // Since a '+' requires a match, using it on something that can never
/// // match will itself produce a regex that can never match anything,
/// // and thus does not match the empty string.
/// let nfa = NFA::new("[a&&b]+")?;
/// assert!(!nfa.has_empty(), "+ on never-match still matches nothing");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn has_empty(&self) -> bool {
self.0.has_empty
}
/// Whether UTF-8 mode is enabled for this NFA or not.
///
/// When UTF-8 mode is enabled, all matches reported by a regex engine
/// derived from this NFA are guaranteed to correspond to spans of valid
/// UTF-8. This includes zero-width matches. For example, the regex engine
/// must guarantee that the empty regex will not match at the positions
/// between code units in the UTF-8 encoding of a single codepoint.
///
/// See [`Config::utf8`] for more information.
///
/// This is enabled by default.
///
/// # Example
///
/// This example shows how UTF-8 mode can impact the match spans that may
/// be reported in certain cases.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{self, pikevm::PikeVM},
/// Match, Input,
/// };
///
/// let re = PikeVM::new("")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// // UTF-8 mode is enabled by default.
/// let mut input = Input::new("☃");
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 0..0)), caps.get_match());
///
/// // Even though an empty regex matches at 1..1, our next match is
/// // 3..3 because 1..1 and 2..2 split the snowman codepoint (which is
/// // three bytes long).
/// input.set_start(1);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 3..3)), caps.get_match());
///
/// // But if we disable UTF-8, then we'll get matches at 1..1 and 2..2:
/// let re = PikeVM::builder()
/// .thompson(thompson::Config::new().utf8(false))
/// .build("")?;
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 1..1)), caps.get_match());
///
/// input.set_start(2);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 2..2)), caps.get_match());
///
/// input.set_start(3);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 3..3)), caps.get_match());
///
/// input.set_start(4);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(None, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn is_utf8(&self) -> bool {
self.0.utf8
}
/// Returns true when this NFA is meant to be matched in reverse.
///
/// Generally speaking, when this is true, it means the NFA is supposed to
/// be used in conjunction with moving backwards through the haystack. That
/// is, from a higher memory address to a lower memory address.
///
/// It is often the case that lower level routines dealing with an NFA
/// don't need to care about whether it is "meant" to be matched in reverse
/// or not. However, there are some specific cases where it matters. For
/// example, the implementation of CRLF-aware `^` and `$` line anchors
/// needs to know whether the search is in the forward or reverse
/// direction. In the forward direction, neither `^` nor `$` should match
/// when a `\r` has been seen previously and a `\n` is next. However, in
/// the reverse direction, neither `^` nor `$` should match when a `\n`
/// has been seen previously and a `\r` is next. This fundamentally changes
/// how the state machine is constructed, and thus needs to be altered
/// based on the direction of the search.
///
/// This is automatically set when using a [`Compiler`] with a configuration
/// where [`Config::reverse`] is enabled. If you're building your own NFA
/// by hand via a [`Builder`]
#[inline]
pub fn is_reverse(&self) -> bool {
self.0.reverse
}
/// Returns true if and only if all starting states for this NFA correspond
/// to the beginning of an anchored search.
///
/// Typically, an NFA will have both an anchored and an unanchored starting
/// state. Namely, because it tends to be useful to have both and the cost
/// of having an unanchored starting state is almost zero (for an NFA).
/// However, if all patterns in the NFA are themselves anchored, then even
/// the unanchored starting state will correspond to an anchored search
/// since the pattern doesn't permit anything else.
///
/// # Example
///
/// This example shows a few different scenarios where this method's
/// return value varies.
///
/// ```
/// use regex_automata::nfa::thompson::NFA;
///
/// // The unanchored starting state permits matching this pattern anywhere
/// // in a haystack, instead of just at the beginning.
/// let nfa = NFA::new("a")?;
/// assert!(!nfa.is_always_start_anchored());
///
/// // In this case, the pattern is itself anchored, so there is no way
/// // to run an unanchored search.
/// let nfa = NFA::new("^a")?;
/// assert!(nfa.is_always_start_anchored());
///
/// // When multiline mode is enabled, '^' can match at the start of a line
/// // in addition to the start of a haystack, so an unanchored search is
/// // actually possible.
/// let nfa = NFA::new("(?m)^a")?;
/// assert!(!nfa.is_always_start_anchored());
///
/// // Weird cases also work. A pattern is only considered anchored if all
/// // matches may only occur at the start of a haystack.
/// let nfa = NFA::new("(^a)|a")?;
/// assert!(!nfa.is_always_start_anchored());
///
/// // When multiple patterns are present, if they are all anchored, then
/// // the NFA is always anchored too.
/// let nfa = NFA::new_many(&["^a", "^b", "^c"])?;
/// assert!(nfa.is_always_start_anchored());
///
/// // But if one pattern is unanchored, then the NFA must permit an
/// // unanchored search.
/// let nfa = NFA::new_many(&["^a", "b", "^c"])?;
/// assert!(!nfa.is_always_start_anchored());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn is_always_start_anchored(&self) -> bool {
self.start_anchored() == self.start_unanchored()
}
/// Returns the look-around matcher associated with this NFA.
///
/// A look-around matcher determines how to match look-around assertions.
/// In particular, some assertions are configurable. For example, the
/// `(?m:^)` and `(?m:$)` assertions can have their line terminator changed
/// from the default of `\n` to any other byte.
///
/// If the NFA was built using a [`Compiler`], then this matcher
/// can be set via the [`Config::look_matcher`] configuration
/// knob. Otherwise, if you've built an NFA by hand, it is set via
/// [`Builder::set_look_matcher`].
///
/// # Example
///
/// This shows how to change the line terminator for multi-line assertions.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{self, pikevm::PikeVM},
/// util::look::LookMatcher,
/// Match, Input,
/// };
///
/// let mut lookm = LookMatcher::new();
/// lookm.set_line_terminator(b'\x00');
///
/// let re = PikeVM::builder()
/// .thompson(thompson::Config::new().look_matcher(lookm))
/// .build(r"(?m)^[a-z]+$")?;
/// let mut cache = re.create_cache();
///
/// // Multi-line assertions now use NUL as a terminator.
/// assert_eq!(
/// Some(Match::must(0, 1..4)),
/// re.find(&mut cache, b"\x00abc\x00"),
/// );
/// // ... and \n is no longer recognized as a terminator.
/// assert_eq!(
/// None,
/// re.find(&mut cache, b"\nabc\n"),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn look_matcher(&self) -> &LookMatcher {
&self.0.look_matcher
}
/// Returns the union of all look-around assertions used throughout this
/// NFA. When the returned set is empty, it implies that the NFA has no
/// look-around assertions and thus zero conditional epsilon transitions.
///
/// This is useful in some cases enabling optimizations. It is not
/// unusual, for example, for optimizations to be of the form, "for any
/// regex with zero conditional epsilon transitions, do ..." where "..."
/// is some kind of optimization.
///
/// This isn't only helpful for optimizations either. Sometimes look-around
/// assertions are difficult to support. For example, many of the DFAs in
/// this crate don't support Unicode word boundaries or handle them using
/// heuristics. Handling that correctly typically requires some kind of
/// cheap check of whether the NFA has a Unicode word boundary in the first
/// place.
///
/// # Example
///
/// This example shows how this routine varies based on the regex pattern:
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, util::look::Look};
///
/// // No look-around at all.
/// let nfa = NFA::new("a")?;
/// assert!(nfa.look_set_any().is_empty());
///
/// // When multiple patterns are present, since this returns the union,
/// // it will include look-around assertions that only appear in one
/// // pattern.
/// let nfa = NFA::new_many(&["a", "b", "a^b", "c"])?;
/// assert!(nfa.look_set_any().contains(Look::Start));
///
/// // Some groups of assertions have various shortcuts. For example:
/// let nfa = NFA::new(r"(?-u:\b)")?;
/// assert!(nfa.look_set_any().contains_word());
/// assert!(!nfa.look_set_any().contains_word_unicode());
/// assert!(nfa.look_set_any().contains_word_ascii());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn look_set_any(&self) -> LookSet {
self.0.look_set_any
}
/// Returns the union of all prefix look-around assertions for every
/// pattern in this NFA. When the returned set is empty, it implies none of
/// the patterns require moving through a conditional epsilon transition
/// before inspecting the first byte in the haystack.
///
/// This can be useful for determining what kinds of assertions need to be
/// satisfied at the beginning of a search. For example, typically DFAs
/// in this crate will build a distinct starting state for each possible
/// starting configuration that might result in look-around assertions
/// being satisfied differently. However, if the set returned here is
/// empty, then you know that the start state is invariant because there
/// are no conditional epsilon transitions to consider.
///
/// # Example
///
/// This example shows how this routine varies based on the regex pattern:
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, util::look::Look};
///
/// // No look-around at all.
/// let nfa = NFA::new("a")?;
/// assert!(nfa.look_set_prefix_any().is_empty());
///
/// // When multiple patterns are present, since this returns the union,
/// // it will include look-around assertions that only appear in one
/// // pattern. But it will only include assertions that are in the prefix
/// // of a pattern. For example, this includes '^' but not '$' even though
/// // '$' does appear.
/// let nfa = NFA::new_many(&["a", "b", "^ab$", "c"])?;
/// assert!(nfa.look_set_prefix_any().contains(Look::Start));
/// assert!(!nfa.look_set_prefix_any().contains(Look::End));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn look_set_prefix_any(&self) -> LookSet {
self.0.look_set_prefix_any
}
// FIXME: The `look_set_prefix_all` computation was not correct, and it
// seemed a little tricky to fix it. Since I wasn't actually using it for
// anything, I just decided to remove it in the run up to the regex 1.9
// release. If you need this, please file an issue.
/*
/// Returns the intersection of all prefix look-around assertions for every
/// pattern in this NFA. When the returned set is empty, it implies at
/// least one of the patterns does not require moving through a conditional
/// epsilon transition before inspecting the first byte in the haystack.
/// Conversely, when the set contains an assertion, it implies that every
/// pattern in the NFA also contains that assertion in its prefix.
///
/// This can be useful for determining what kinds of assertions need to be
/// satisfied at the beginning of a search. For example, if you know that
/// [`Look::Start`] is in the prefix intersection set returned here, then
/// you know that all searches, regardless of input configuration, will be
/// anchored.
///
/// # Example
///
/// This example shows how this routine varies based on the regex pattern:
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, util::look::Look};
///
/// // No look-around at all.
/// let nfa = NFA::new("a")?;
/// assert!(nfa.look_set_prefix_all().is_empty());
///
/// // When multiple patterns are present, since this returns the
/// // intersection, it will only include assertions present in every
/// // prefix, and only the prefix.
/// let nfa = NFA::new_many(&["^a$", "^b$", "$^ab$", "^c$"])?;
/// assert!(nfa.look_set_prefix_all().contains(Look::Start));
/// assert!(!nfa.look_set_prefix_all().contains(Look::End));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn look_set_prefix_all(&self) -> LookSet {
self.0.look_set_prefix_all
}
*/
/// Returns the memory usage, in bytes, of this NFA.
///
/// This does **not** include the stack size used up by this NFA. To
/// compute that, use `std::mem::size_of::<NFA>()`.
///
/// # Example
///
/// This example shows that large Unicode character classes can use quite
/// a bit of memory.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::nfa::thompson::NFA;
///
/// let nfa_unicode = NFA::new(r"\w")?;
/// let nfa_ascii = NFA::new(r"(?-u:\w)")?;
///
/// assert!(10 * nfa_ascii.memory_usage() < nfa_unicode.memory_usage());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn memory_usage(&self) -> usize {
use core::mem::size_of;
size_of::<Inner>() // allocated on the heap via Arc
+ self.0.states.len() * size_of::<State>()
+ self.0.start_pattern.len() * size_of::<StateID>()
+ self.0.group_info.memory_usage()
+ self.0.memory_extra
}
}
impl fmt::Debug for NFA {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
/// The "inner" part of the NFA. We split this part out so that we can easily
/// wrap it in an `Arc` above in the definition of `NFA`.
///
/// See builder.rs for the code that actually builds this type. This module
/// does provide (internal) mutable methods for adding things to this
/// NFA before finalizing it, but the high level construction process is
/// controlled by the builder abstraction. (Which is complicated enough to
/// get its own module.)
#[derive(Default)]
pub(super) struct Inner {
/// The state sequence. This sequence is guaranteed to be indexable by all
/// starting state IDs, and it is also guaranteed to contain at most one
/// `Match` state for each pattern compiled into this NFA. (A pattern may
/// not have a corresponding `Match` state if a `Match` state is impossible
/// to reach.)
states: Vec<State>,
/// The anchored starting state of this NFA.
start_anchored: StateID,
/// The unanchored starting state of this NFA.
start_unanchored: StateID,
/// The starting states for each individual pattern. Starting at any
/// of these states will result in only an anchored search for the
/// corresponding pattern. The vec is indexed by pattern ID. When the NFA
/// contains a single regex, then `start_pattern[0]` and `start_anchored`
/// are always equivalent.
start_pattern: Vec<StateID>,
/// Info about the capturing groups in this NFA. This is responsible for
/// mapping groups to slots, mapping groups to names and names to groups.
group_info: GroupInfo,
/// A representation of equivalence classes over the transitions in this
/// NFA. Two bytes in the same equivalence class must not discriminate
/// between a match or a non-match. This map can be used to shrink the
/// total size of a DFA's transition table with a small match-time cost.
///
/// Note that the NFA's transitions are *not* defined in terms of these
/// equivalence classes. The NFA's transitions are defined on the original
/// byte values. For the most part, this is because they wouldn't really
/// help the NFA much since the NFA already uses a sparse representation
/// to represent transitions. Byte classes are most effective in a dense
/// representation.
byte_class_set: ByteClassSet,
/// This is generated from `byte_class_set`, and essentially represents the
/// same thing but supports different access patterns. Namely, this permits
/// looking up the equivalence class of a byte very cheaply.
///
/// Ideally we would just store this, but because of annoying code
/// structure reasons, we keep both this and `byte_class_set` around for
/// now. I think I would prefer that `byte_class_set` were computed in the
/// `Builder`, but right now, we compute it as states are added to the
/// `NFA`.
byte_classes: ByteClasses,
/// Whether this NFA has a `Capture` state anywhere.
has_capture: bool,
/// When the empty string is in the language matched by this NFA.
has_empty: bool,
/// Whether UTF-8 mode is enabled for this NFA. Briefly, this means that
/// all non-empty matches produced by this NFA correspond to spans of valid
/// UTF-8, and any empty matches produced by this NFA that split a UTF-8
/// encoded codepoint should be filtered out by the corresponding regex
/// engine.
utf8: bool,
/// Whether this NFA is meant to be matched in reverse or not.
reverse: bool,
/// The matcher to be used for look-around assertions.
look_matcher: LookMatcher,
/// The union of all look-around assertions that occur anywhere within
/// this NFA. If this set is empty, then it means there are precisely zero
/// conditional epsilon transitions in the NFA.
look_set_any: LookSet,
/// The union of all look-around assertions that occur as a zero-length
/// prefix for any of the patterns in this NFA.
look_set_prefix_any: LookSet,
/*
/// The intersection of all look-around assertions that occur as a
/// zero-length prefix for any of the patterns in this NFA.
look_set_prefix_all: LookSet,
*/
/// Heap memory used indirectly by NFA states and other things (like the
/// various capturing group representations above). Since each state
/// might use a different amount of heap, we need to keep track of this
/// incrementally.
memory_extra: usize,
}
impl Inner {
/// Runs any last finalization bits and turns this into a full NFA.
pub(super) fn into_nfa(mut self) -> NFA {
self.byte_classes = self.byte_class_set.byte_classes();
// Do epsilon closure from the start state of every pattern in order
// to compute various properties such as look-around assertions and
// whether the empty string can be matched.
let mut stack = vec![];
let mut seen = SparseSet::new(self.states.len());
for &start_id in self.start_pattern.iter() {
stack.push(start_id);
seen.clear();
// let mut prefix_all = LookSet::full();
let mut prefix_any = LookSet::empty();
while let Some(sid) = stack.pop() {
if !seen.insert(sid) {
continue;
}
match self.states[sid] {
State::ByteRange { .. }
| State::Dense { .. }
| State::Fail => continue,
State::Sparse(_) => {
// This snippet below will rewrite this sparse state
// as a dense state. By doing it here, we apply this
// optimization to all hot "sparse" states since these
// are the states that are reachable from the start
// state via an epsilon closure.
//
// Unfortunately, this optimization did not seem to
// help much in some very limited ad hoc benchmarking.
//
// I left the 'Dense' state type in place in case we
// want to revisit this, but I suspect the real way
// to make forward progress is a more fundamental
// rearchitecting of how data in the NFA is laid out.
// I think we should consider a single contiguous
// allocation instead of all this indirection and
// potential heap allocations for every state. But this
// is a large re-design and will require API breaking
// changes.
// self.memory_extra -= self.states[sid].memory_usage();
// let trans = DenseTransitions::from_sparse(sparse);
// self.states[sid] = State::Dense(trans);
// self.memory_extra += self.states[sid].memory_usage();
continue;
}
State::Match { .. } => self.has_empty = true,
State::Look { look, next } => {
prefix_any = prefix_any.insert(look);
stack.push(next);
}
State::Union { ref alternates } => {
// Order doesn't matter here, since we're just dealing
// with look-around sets. But if we do richer analysis
// here that needs to care about preference order, then
// this should be done in reverse.
stack.extend(alternates.iter());
}
State::BinaryUnion { alt1, alt2 } => {
stack.push(alt2);
stack.push(alt1);
}
State::Capture { next, .. } => {
stack.push(next);
}
}
}
self.look_set_prefix_any =
self.look_set_prefix_any.union(prefix_any);
}
NFA(Arc::new(self))
}
/// Returns the capturing group info for this NFA.
pub(super) fn group_info(&self) -> &GroupInfo {
&self.group_info
}
/// Add the given state to this NFA after allocating a fresh identifier for
/// it.
///
/// This panics if too many states are added such that a fresh identifier
/// could not be created. (Currently, the only caller of this routine is
/// a `Builder`, and it upholds this invariant.)
pub(super) fn add(&mut self, state: State) -> StateID {
match state {
State::ByteRange { ref trans } => {
self.byte_class_set.set_range(trans.start, trans.end);
}
State::Sparse(ref sparse) => {
for trans in sparse.transitions.iter() {
self.byte_class_set.set_range(trans.start, trans.end);
}
}
State::Dense { .. } => unreachable!(),
State::Look { look, .. } => {
self.look_matcher
.add_to_byteset(look, &mut self.byte_class_set);
self.look_set_any = self.look_set_any.insert(look);
}
State::Capture { .. } => {
self.has_capture = true;
}
State::Union { .. }
| State::BinaryUnion { .. }
| State::Fail
| State::Match { .. } => {}
}
let id = StateID::new(self.states.len()).unwrap();
self.memory_extra += state.memory_usage();
self.states.push(state);
id
}
/// Set the starting state identifiers for this NFA.
///
/// `start_anchored` and `start_unanchored` may be equivalent. When they
/// are, then the NFA can only execute anchored searches. This might
/// occur, for example, for patterns that are unconditionally anchored.
/// e.g., `^foo`.
pub(super) fn set_starts(
&mut self,
start_anchored: StateID,
start_unanchored: StateID,
start_pattern: &[StateID],
) {
self.start_anchored = start_anchored;
self.start_unanchored = start_unanchored;
self.start_pattern = start_pattern.to_vec();
}
/// Sets the UTF-8 mode of this NFA.
pub(super) fn set_utf8(&mut self, yes: bool) {
self.utf8 = yes;
}
/// Sets the reverse mode of this NFA.
pub(super) fn set_reverse(&mut self, yes: bool) {
self.reverse = yes;
}
/// Sets the look-around assertion matcher for this NFA.
pub(super) fn set_look_matcher(&mut self, m: LookMatcher) {
self.look_matcher = m;
}
/// Set the capturing groups for this NFA.
///
/// The given slice should contain the capturing groups for each pattern,
/// The capturing groups in turn should correspond to the total number of
/// capturing groups in the pattern, including the anonymous first capture
/// group for each pattern. If a capturing group does have a name, then it
/// should be provided as a Arc<str>.
///
/// This returns an error if a corresponding `GroupInfo` could not be
/// built.
pub(super) fn set_captures(
&mut self,
captures: &[Vec<Option<Arc<str>>>],
) -> Result<(), GroupInfoError> {
self.group_info = GroupInfo::new(
captures.iter().map(|x| x.iter().map(|y| y.as_ref())),
)?;
Ok(())
}
/// Remap the transitions in every state of this NFA using the given map.
/// The given map should be indexed according to state ID namespace used by
/// the transitions of the states currently in this NFA.
///
/// This is particularly useful to the NFA builder, since it is convenient
/// to add NFA states in order to produce their final IDs. Then, after all
/// of the intermediate "empty" states (unconditional epsilon transitions)
/// have been removed from the builder's representation, we can re-map all
/// of the transitions in the states already added to their final IDs.
pub(super) fn remap(&mut self, old_to_new: &[StateID]) {
for state in &mut self.states {
state.remap(old_to_new);
}
self.start_anchored = old_to_new[self.start_anchored];
self.start_unanchored = old_to_new[self.start_unanchored];
for id in self.start_pattern.iter_mut() {
*id = old_to_new[*id];
}
}
}
impl fmt::Debug for Inner {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "thompson::NFA(")?;
for (sid, state) in self.states.iter().with_state_ids() {
let status = if sid == self.start_anchored {
'^'
} else if sid == self.start_unanchored {
'>'
} else {
' '
};
writeln!(f, "{}{:06?}: {:?}", status, sid.as_usize(), state)?;
}
let pattern_len = self.start_pattern.len();
if pattern_len > 1 {
writeln!(f, "")?;
for pid in 0..pattern_len {
let sid = self.start_pattern[pid];
writeln!(f, "START({:06?}): {:?}", pid, sid.as_usize())?;
}
}
writeln!(f, "")?;
writeln!(
f,
"transition equivalence classes: {:?}",
self.byte_classes,
)?;
writeln!(f, ")")?;
Ok(())
}
}
/// A state in an NFA.
///
/// In theory, it can help to conceptualize an `NFA` as a graph consisting of
/// `State`s. Each `State` contains its complete set of outgoing transitions.
///
/// In practice, it can help to conceptualize an `NFA` as a sequence of
/// instructions for a virtual machine. Each `State` says what to do and where
/// to go next.
///
/// Strictly speaking, the practical interpretation is the most correct one,
/// because of the [`Capture`](State::Capture) state. Namely, a `Capture`
/// state always forwards execution to another state unconditionally. Its only
/// purpose is to cause a side effect: the recording of the current input
/// position at a particular location in memory. In this sense, an `NFA`
/// has more power than a theoretical non-deterministic finite automaton.
///
/// For most uses of this crate, it is likely that one may never even need to
/// be aware of this type at all. The main use cases for looking at `State`s
/// directly are if you need to write your own search implementation or if you
/// need to do some kind of analysis on the NFA.
#[derive(Clone, Eq, PartialEq)]
pub enum State {
/// A state with a single transition that can only be taken if the current
/// input symbol is in a particular range of bytes.
ByteRange {
/// The transition from this state to the next.
trans: Transition,
},
/// A state with possibly many transitions represented in a sparse fashion.
/// Transitions are non-overlapping and ordered lexicographically by input
/// range.
///
/// In practice, this is used for encoding UTF-8 automata. Its presence is
/// primarily an optimization that avoids many additional unconditional
/// epsilon transitions (via [`Union`](State::Union) states), and thus
/// decreases the overhead of traversing the NFA. This can improve both
/// matching time and DFA construction time.
Sparse(SparseTransitions),
/// A dense representation of a state with multiple transitions.
Dense(DenseTransitions),
/// A conditional epsilon transition satisfied via some sort of
/// look-around. Look-around is limited to anchor and word boundary
/// assertions.
///
/// Look-around states are meant to be evaluated while performing epsilon
/// closure (computing the set of states reachable from a particular state
/// via only epsilon transitions). If the current position in the haystack
/// satisfies the look-around assertion, then you're permitted to follow
/// that epsilon transition.
Look {
/// The look-around assertion that must be satisfied before moving
/// to `next`.
look: Look,
/// The state to transition to if the look-around assertion is
/// satisfied.
next: StateID,
},
/// An alternation such that there exists an epsilon transition to all
/// states in `alternates`, where matches found via earlier transitions
/// are preferred over later transitions.
Union {
/// An ordered sequence of unconditional epsilon transitions to other
/// states. Transitions earlier in the sequence are preferred over
/// transitions later in the sequence.
alternates: Box<[StateID]>,
},
/// An alternation such that there exists precisely two unconditional
/// epsilon transitions, where matches found via `alt1` are preferred over
/// matches found via `alt2`.
///
/// This state exists as a common special case of Union where there are
/// only two alternates. In this case, we don't need any allocations to
/// represent the state. This saves a bit of memory and also saves an
/// additional memory access when traversing the NFA.
BinaryUnion {
/// An unconditional epsilon transition to another NFA state. This
/// is preferred over `alt2`.
alt1: StateID,
/// An unconditional epsilon transition to another NFA state. Matches
/// reported via this transition should only be reported if no matches
/// were found by following `alt1`.
alt2: StateID,
},
/// An empty state that records a capture location.
///
/// From the perspective of finite automata, this is precisely equivalent
/// to an unconditional epsilon transition, but serves the purpose of
/// instructing NFA simulations to record additional state when the finite
/// state machine passes through this epsilon transition.
///
/// `slot` in this context refers to the specific capture group slot
/// offset that is being recorded. Each capturing group has two slots
/// corresponding to the start and end of the matching portion of that
/// group.
///
/// The pattern ID and capture group index are also included in this state
/// in case they are useful. But mostly, all you'll need is `next` and
/// `slot`.
Capture {
/// The state to transition to, unconditionally.
next: StateID,
/// The pattern ID that this capture belongs to.
pattern_id: PatternID,
/// The capture group index that this capture belongs to. Capture group
/// indices are local to each pattern. For example, when capturing
/// groups are enabled, every pattern has a capture group at index
/// `0`.
group_index: SmallIndex,
/// The slot index for this capture. Every capturing group has two
/// slots: one for the start haystack offset and one for the end
/// haystack offset. Unlike capture group indices, slot indices are
/// global across all patterns in this NFA. That is, each slot belongs
/// to a single pattern, but there is only one slot at index `i`.
slot: SmallIndex,
},
/// A state that cannot be transitioned out of. This is useful for cases
/// where you want to prevent matching from occurring. For example, if your
/// regex parser permits empty character classes, then one could choose
/// a `Fail` state to represent them. (An empty character class can be
/// thought of as an empty set. Since nothing is in an empty set, they can
/// never match anything.)
Fail,
/// A match state. There is at least one such occurrence of this state for
/// each regex that can match that is in this NFA.
Match {
/// The matching pattern ID.
pattern_id: PatternID,
},
}
impl State {
/// Returns true if and only if this state contains one or more epsilon
/// transitions.
///
/// In practice, a state has no outgoing transitions (like `Match`), has
/// only non-epsilon transitions (like `ByteRange`) or has only epsilon
/// transitions (like `Union`).
///
/// # Example
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{State, Transition},
/// util::primitives::{PatternID, StateID, SmallIndex},
/// };
///
/// // Capture states are epsilon transitions.
/// let state = State::Capture {
/// next: StateID::ZERO,
/// pattern_id: PatternID::ZERO,
/// group_index: SmallIndex::ZERO,
/// slot: SmallIndex::ZERO,
/// };
/// assert!(state.is_epsilon());
///
/// // ByteRange states are not.
/// let state = State::ByteRange {
/// trans: Transition { start: b'a', end: b'z', next: StateID::ZERO },
/// };
/// assert!(!state.is_epsilon());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn is_epsilon(&self) -> bool {
match *self {
State::ByteRange { .. }
| State::Sparse { .. }
| State::Dense { .. }
| State::Fail
| State::Match { .. } => false,
State::Look { .. }
| State::Union { .. }
| State::BinaryUnion { .. }
| State::Capture { .. } => true,
}
}
/// Returns the heap memory usage of this NFA state in bytes.
fn memory_usage(&self) -> usize {
match *self {
State::ByteRange { .. }
| State::Look { .. }
| State::BinaryUnion { .. }
| State::Capture { .. }
| State::Match { .. }
| State::Fail => 0,
State::Sparse(SparseTransitions { ref transitions }) => {
transitions.len() * mem::size_of::<Transition>()
}
State::Dense { .. } => 256 * mem::size_of::<StateID>(),
State::Union { ref alternates } => {
alternates.len() * mem::size_of::<StateID>()
}
}
}
/// Remap the transitions in this state using the given map. Namely, the
/// given map should be indexed according to the transitions currently
/// in this state.
///
/// This is used during the final phase of the NFA compiler, which turns
/// its intermediate NFA into the final NFA.
fn remap(&mut self, remap: &[StateID]) {
match *self {
State::ByteRange { ref mut trans } => {
trans.next = remap[trans.next]
}
State::Sparse(SparseTransitions { ref mut transitions }) => {
for t in transitions.iter_mut() {
t.next = remap[t.next];
}
}
State::Dense(DenseTransitions { ref mut transitions }) => {
for sid in transitions.iter_mut() {
*sid = remap[*sid];
}
}
State::Look { ref mut next, .. } => *next = remap[*next],
State::Union { ref mut alternates } => {
for alt in alternates.iter_mut() {
*alt = remap[*alt];
}
}
State::BinaryUnion { ref mut alt1, ref mut alt2 } => {
*alt1 = remap[*alt1];
*alt2 = remap[*alt2];
}
State::Capture { ref mut next, .. } => *next = remap[*next],
State::Fail => {}
State::Match { .. } => {}
}
}
}
impl fmt::Debug for State {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
State::ByteRange { ref trans } => trans.fmt(f),
State::Sparse(SparseTransitions { ref transitions }) => {
let rs = transitions
.iter()
.map(|t| format!("{:?}", t))
.collect::<Vec<String>>()
.join(", ");
write!(f, "sparse({})", rs)
}
State::Dense(ref dense) => {
write!(f, "dense(")?;
for (i, t) in dense.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
write!(f, "{:?}", t)?;
}
write!(f, ")")
}
State::Look { ref look, next } => {
write!(f, "{:?} => {:?}", look, next.as_usize())
}
State::Union { ref alternates } => {
let alts = alternates
.iter()
.map(|id| format!("{:?}", id.as_usize()))
.collect::<Vec<String>>()
.join(", ");
write!(f, "union({})", alts)
}
State::BinaryUnion { alt1, alt2 } => {
write!(
f,
"binary-union({}, {})",
alt1.as_usize(),
alt2.as_usize()
)
}
State::Capture { next, pattern_id, group_index, slot } => {
write!(
f,
"capture(pid={:?}, group={:?}, slot={:?}) => {:?}",
pattern_id.as_usize(),
group_index.as_usize(),
slot.as_usize(),
next.as_usize(),
)
}
State::Fail => write!(f, "FAIL"),
State::Match { pattern_id } => {
write!(f, "MATCH({:?})", pattern_id.as_usize())
}
}
}
}
/// A sequence of transitions used to represent a sparse state.
///
/// This is the primary representation of a [`Sparse`](State::Sparse) state.
/// It corresponds to a sorted sequence of transitions with non-overlapping
/// byte ranges. If the byte at the current position in the haystack matches
/// one of the byte ranges, then the finite state machine should take the
/// corresponding transition.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct SparseTransitions {
/// The sorted sequence of non-overlapping transitions.
pub transitions: Box<[Transition]>,
}
impl SparseTransitions {
/// This follows the matching transition for a particular byte.
///
/// The matching transition is found by looking for a matching byte
/// range (there is at most one) corresponding to the position `at` in
/// `haystack`.
///
/// If `at >= haystack.len()`, then this returns `None`.
#[inline]
pub fn matches(&self, haystack: &[u8], at: usize) -> Option<StateID> {
haystack.get(at).and_then(|&b| self.matches_byte(b))
}
/// This follows the matching transition for any member of the alphabet.
///
/// The matching transition is found by looking for a matching byte
/// range (there is at most one) corresponding to the position `at` in
/// `haystack`. If the given alphabet unit is [`EOI`](alphabet::Unit::eoi),
/// then this always returns `None`.
#[inline]
pub(crate) fn matches_unit(
&self,
unit: alphabet::Unit,
) -> Option<StateID> {
unit.as_u8().map_or(None, |byte| self.matches_byte(byte))
}
/// This follows the matching transition for a particular byte.
///
/// The matching transition is found by looking for a matching byte range
/// (there is at most one) corresponding to the byte given.
#[inline]
pub fn matches_byte(&self, byte: u8) -> Option<StateID> {
for t in self.transitions.iter() {
if t.start > byte {
break;
} else if t.matches_byte(byte) {
return Some(t.next);
}
}
None
/*
// This is an alternative implementation that uses binary search. In
// some ad hoc experiments, like
//
// regex-cli find match pikevm -b -p '\b\w+\b' non-ascii-file
//
// I could not observe any improvement, and in fact, things seemed to
// be a bit slower. I can see an improvement in at least one benchmark:
//
// regex-cli find match pikevm -b -p '\pL{100}' all-codepoints-utf8
//
// Where total search time goes from 3.2s to 2.4s when using binary
// search.
self.transitions
.binary_search_by(|t| {
if t.end < byte {
core::cmp::Ordering::Less
} else if t.start > byte {
core::cmp::Ordering::Greater
} else {
core::cmp::Ordering::Equal
}
})
.ok()
.map(|i| self.transitions[i].next)
*/
}
}
/// A sequence of transitions used to represent a dense state.
///
/// This is the primary representation of a [`Dense`](State::Dense) state. It
/// provides constant time matching. That is, given a byte in a haystack and
/// a `DenseTransitions`, one can determine if the state matches in constant
/// time.
///
/// This is in contrast to `SparseTransitions`, whose time complexity is
/// necessarily bigger than constant time. Also in contrast, `DenseTransitions`
/// usually requires (much) more heap memory.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct DenseTransitions {
/// A dense representation of this state's transitions on the heap. This
/// always has length 256.
pub transitions: Box<[StateID]>,
}
impl DenseTransitions {
/// This follows the matching transition for a particular byte.
///
/// The matching transition is found by looking for a transition that
/// doesn't correspond to `StateID::ZERO` for the byte `at` the given
/// position in `haystack`.
///
/// If `at >= haystack.len()`, then this returns `None`.
#[inline]
pub fn matches(&self, haystack: &[u8], at: usize) -> Option<StateID> {
haystack.get(at).and_then(|&b| self.matches_byte(b))
}
/// This follows the matching transition for any member of the alphabet.
///
/// The matching transition is found by looking for a transition that
/// doesn't correspond to `StateID::ZERO` for the byte `at` the given
/// position in `haystack`.
///
/// If `at >= haystack.len()` or if the given alphabet unit is
/// [`EOI`](alphabet::Unit::eoi), then this returns `None`.
#[inline]
pub(crate) fn matches_unit(
&self,
unit: alphabet::Unit,
) -> Option<StateID> {
unit.as_u8().map_or(None, |byte| self.matches_byte(byte))
}
/// This follows the matching transition for a particular byte.
///
/// The matching transition is found by looking for a transition that
/// doesn't correspond to `StateID::ZERO` for the given `byte`.
///
/// If `at >= haystack.len()`, then this returns `None`.
#[inline]
pub fn matches_byte(&self, byte: u8) -> Option<StateID> {
let next = self.transitions[usize::from(byte)];
if next == StateID::ZERO {
None
} else {
Some(next)
}
}
/*
/// The dense state optimization isn't currently enabled, so permit a
/// little bit of dead code.
pub(crate) fn from_sparse(sparse: &SparseTransitions) -> DenseTransitions {
let mut dense = vec![StateID::ZERO; 256];
for t in sparse.transitions.iter() {
for b in t.start..=t.end {
dense[usize::from(b)] = t.next;
}
}
DenseTransitions { transitions: dense.into_boxed_slice() }
}
*/
/// Returns an iterator over all transitions that don't point to
/// `StateID::ZERO`.
pub(crate) fn iter(&self) -> impl Iterator<Item = Transition> + '_ {
use crate::util::int::Usize;
self.transitions
.iter()
.enumerate()
.filter(|&(_, &sid)| sid != StateID::ZERO)
.map(|(byte, &next)| Transition {
start: byte.as_u8(),
end: byte.as_u8(),
next,
})
}
}
/// A single transition to another state.
///
/// This transition may only be followed if the current byte in the haystack
/// falls in the inclusive range of bytes specified.
#[derive(Clone, Copy, Eq, Hash, PartialEq)]
pub struct Transition {
/// The inclusive start of the byte range.
pub start: u8,
/// The inclusive end of the byte range.
pub end: u8,
/// The identifier of the state to transition to.
pub next: StateID,
}
impl Transition {
/// Returns true if the position `at` in `haystack` falls in this
/// transition's range of bytes.
///
/// If `at >= haystack.len()`, then this returns `false`.
pub fn matches(&self, haystack: &[u8], at: usize) -> bool {
haystack.get(at).map_or(false, |&b| self.matches_byte(b))
}
/// Returns true if the given alphabet unit falls in this transition's
/// range of bytes. If the given unit is [`EOI`](alphabet::Unit::eoi), then
/// this returns `false`.
pub fn matches_unit(&self, unit: alphabet::Unit) -> bool {
unit.as_u8().map_or(false, |byte| self.matches_byte(byte))
}
/// Returns true if the given byte falls in this transition's range of
/// bytes.
pub fn matches_byte(&self, byte: u8) -> bool {
self.start <= byte && byte <= self.end
}
}
impl fmt::Debug for Transition {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use crate::util::escape::DebugByte;
let Transition { start, end, next } = *self;
if self.start == self.end {
write!(f, "{:?} => {:?}", DebugByte(start), next.as_usize())
} else {
write!(
f,
"{:?}-{:?} => {:?}",
DebugByte(start),
DebugByte(end),
next.as_usize(),
)
}
}
}
/// An iterator over all pattern IDs in an NFA.
///
/// This iterator is created by [`NFA::patterns`].
///
/// The lifetime parameter `'a` refers to the lifetime of the NFA from which
/// this pattern iterator was created.
#[derive(Debug)]
pub struct PatternIter<'a> {
it: PatternIDIter,
/// We explicitly associate a lifetime with this iterator even though we
/// don't actually borrow anything from the NFA. We do this for backward
/// compatibility purposes. If we ever do need to borrow something from
/// the NFA, then we can and just get rid of this marker without breaking
/// the public API.
_marker: core::marker::PhantomData<&'a ()>,
}
impl<'a> Iterator for PatternIter<'a> {
type Item = PatternID;
fn next(&mut self) -> Option<PatternID> {
self.it.next()
}
}
#[cfg(all(test, feature = "nfa-pikevm"))]
mod tests {
use super::*;
use crate::{nfa::thompson::pikevm::PikeVM, Input};
// This asserts that an NFA state doesn't have its size changed. It is
// *really* easy to accidentally increase the size, and thus potentially
// dramatically increase the memory usage of every NFA.
//
// This assert doesn't mean we absolutely cannot increase the size of an
// NFA state. We can. It's just here to make sure we do it knowingly and
// intentionally.
#[test]
fn state_has_small_size() {
#[cfg(target_pointer_width = "64")]
assert_eq!(24, core::mem::size_of::<State>());
#[cfg(target_pointer_width = "32")]
assert_eq!(20, core::mem::size_of::<State>());
}
#[test]
fn always_match() {
let re = PikeVM::new_from_nfa(NFA::always_match()).unwrap();
let mut cache = re.create_cache();
let mut caps = re.create_captures();
let mut find = |haystack, start, end| {
let input = Input::new(haystack).range(start..end);
re.search(&mut cache, &input, &mut caps);
caps.get_match().map(|m| m.end())
};
assert_eq!(Some(0), find("", 0, 0));
assert_eq!(Some(0), find("a", 0, 1));
assert_eq!(Some(1), find("a", 1, 1));
assert_eq!(Some(0), find("ab", 0, 2));
assert_eq!(Some(1), find("ab", 1, 2));
assert_eq!(Some(2), find("ab", 2, 2));
}
#[test]
fn never_match() {
let re = PikeVM::new_from_nfa(NFA::never_match()).unwrap();
let mut cache = re.create_cache();
let mut caps = re.create_captures();
let mut find = |haystack, start, end| {
let input = Input::new(haystack).range(start..end);
re.search(&mut cache, &input, &mut caps);
caps.get_match().map(|m| m.end())
};
assert_eq!(None, find("", 0, 0));
assert_eq!(None, find("a", 0, 1));
assert_eq!(None, find("a", 1, 1));
assert_eq!(None, find("ab", 0, 2));
assert_eq!(None, find("ab", 1, 2));
assert_eq!(None, find("ab", 2, 2));
}
}
|