diff options
Diffstat (limited to 'src/factor.c')
-rw-r--r-- | src/factor.c | 2662 |
1 files changed, 2662 insertions, 0 deletions
diff --git a/src/factor.c b/src/factor.c new file mode 100644 index 0000000..c47250a --- /dev/null +++ b/src/factor.c @@ -0,0 +1,2662 @@ +/* factor -- print prime factors of n. + Copyright (C) 1986-2023 Free Software Foundation, Inc. + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <https://www.gnu.org/licenses/>. */ + +/* Originally written by Paul Rubin <phr@ocf.berkeley.edu>. + Adapted for GNU, fixed to factor UINT_MAX by Jim Meyering. + Arbitrary-precision code adapted by James Youngman from Torbjörn + Granlund's factorize.c, from GNU MP version 4.2.2. + In 2012, the core was rewritten by Torbjörn Granlund and Niels Möller. + Contains code from GNU MP. */ + +/* Efficiently factor numbers that fit in one or two words (word = uintmax_t), + or, with GMP, numbers of any size. + + Code organization: + + There are several variants of many functions, for handling one word, two + words, and GMP's mpz_t type. If the one-word variant is called foo, the + two-word variant will be foo2, and the one for mpz_t will be mp_foo. In + some cases, the plain function variants will handle both one-word and + two-word numbers, evidenced by function arguments. + + The factoring code for two words will fall into the code for one word when + progress allows that. + + Algorithm: + + (1) Perform trial division using a small primes table, but without hardware + division since the primes table store inverses modulo the word base. + (The GMP variant of this code doesn't make use of the precomputed + inverses, but instead relies on GMP for fast divisibility testing.) + (2) Check the nature of any non-factored part using Miller-Rabin for + detecting composites, and Lucas for detecting primes. + (3) Factor any remaining composite part using the Pollard-Brent rho + algorithm or if USE_SQUFOF is defined to 1, try that first. + Status of found factors are checked again using Miller-Rabin and Lucas. + + We prefer using Hensel norm in the divisions, not the more familiar + Euclidean norm, since the former leads to much faster code. In the + Pollard-Brent rho code and the prime testing code, we use Montgomery's + trick of multiplying all n-residues by the word base, allowing cheap Hensel + reductions mod n. + + The GMP code uses an algorithm that can be considerably slower; + for example, on a circa-2017 Intel Xeon Silver 4116, factoring + 2^{127}-3 takes about 50 ms with the two-word algorithm but would + take about 750 ms with the GMP code. + + Improvements: + + * Use modular inverses also for exact division in the Lucas code, and + elsewhere. A problem is to locate the inverses not from an index, but + from a prime. We might instead compute the inverse on-the-fly. + + * Tune trial division table size (not forgetting that this is a standalone + program where the table will be read from secondary storage for + each invocation). + + * Implement less naive powm, using k-ary exponentiation for k = 3 or + perhaps k = 4. + + * Try to speed trial division code for single uintmax_t numbers, i.e., the + code using DIVBLOCK. It currently runs at 2 cycles per prime (Intel SBR, + IBR), 3 cycles per prime (AMD Stars) and 5 cycles per prime (AMD BD) when + using gcc 4.6 and 4.7. Some software pipelining should help; 1, 2, and 4 + respectively cycles ought to be possible. + + * The redcify function could be vastly improved by using (plain Euclidean) + pre-inversion (such as GMP's invert_limb) and udiv_qrnnd_preinv (from + GMP's gmp-impl.h). The redcify2 function could be vastly improved using + similar methods. These functions currently dominate run time when using + the -w option. +*/ + +/* Whether to recursively factor to prove primality, + or run faster probabilistic tests. */ +#ifndef PROVE_PRIMALITY +# define PROVE_PRIMALITY 1 +#endif + +/* Faster for certain ranges but less general. */ +#ifndef USE_SQUFOF +# define USE_SQUFOF 0 +#endif + +/* Output SQUFOF statistics. */ +#ifndef STAT_SQUFOF +# define STAT_SQUFOF 0 +#endif + + +#include <config.h> +#include <getopt.h> +#include <stdio.h> +#include <gmp.h> + +#include "system.h" +#include "assure.h" +#include "full-write.h" +#include "quote.h" +#include "readtokens.h" +#include "xstrtol.h" + +/* The official name of this program (e.g., no 'g' prefix). */ +#define PROGRAM_NAME "factor" + +#define AUTHORS \ + proper_name ("Paul Rubin"), \ + proper_name_lite ("Torbjorn Granlund", "Torbj\303\266rn Granlund"), \ + proper_name_lite ("Niels Moller", "Niels M\303\266ller") + +/* Token delimiters when reading from a file. */ +#define DELIM "\n\t " + +#ifndef USE_LONGLONG_H +/* With the way we use longlong.h, it's only safe to use + when UWtype = UHWtype, as there were various cases + (as can be seen in the history for longlong.h) where + for example, _LP64 was required to enable W_TYPE_SIZE==64 code, + to avoid compile time or run time issues. */ +# if LONG_MAX == INTMAX_MAX +# define USE_LONGLONG_H 1 +# endif +#endif + +#if USE_LONGLONG_H + +/* Make definitions for longlong.h to make it do what it can do for us */ + +/* bitcount for uintmax_t */ +# if UINTMAX_MAX == UINT32_MAX +# define W_TYPE_SIZE 32 +# elif UINTMAX_MAX == UINT64_MAX +# define W_TYPE_SIZE 64 +# elif UINTMAX_MAX == UINT128_MAX +# define W_TYPE_SIZE 128 +# endif + +# define UWtype uintmax_t +# define UHWtype unsigned long int +# undef UDWtype +# if HAVE_ATTRIBUTE_MODE +typedef unsigned int UQItype __attribute__ ((mode (QI))); +typedef int SItype __attribute__ ((mode (SI))); +typedef unsigned int USItype __attribute__ ((mode (SI))); +typedef int DItype __attribute__ ((mode (DI))); +typedef unsigned int UDItype __attribute__ ((mode (DI))); +# else +typedef unsigned char UQItype; +typedef long SItype; +typedef unsigned long int USItype; +# if HAVE_LONG_LONG_INT +typedef long long int DItype; +typedef unsigned long long int UDItype; +# else /* Assume `long' gives us a wide enough type. Needed for hppa2.0w. */ +typedef long int DItype; +typedef unsigned long int UDItype; +# endif +# endif +# define LONGLONG_STANDALONE /* Don't require GMP's longlong.h mdep files */ +# define ASSERT(x) /* FIXME make longlong.h really standalone */ +# define __GMP_DECLSPEC /* FIXME make longlong.h really standalone */ +# define __clz_tab factor_clz_tab /* Rename to avoid glibc collision */ +# ifndef __GMP_GNUC_PREREQ +# define __GMP_GNUC_PREREQ(a,b) 1 +# endif + +/* These stub macros are only used in longlong.h in certain system compiler + combinations, so ensure usage to avoid -Wunused-macros warnings. */ +# if __GMP_GNUC_PREREQ (1,1) && defined __clz_tab +ASSERT (1) +__GMP_DECLSPEC +# endif + +# if _ARCH_PPC +# define HAVE_HOST_CPU_FAMILY_powerpc 1 +# endif +# include "longlong.h" +# ifdef COUNT_LEADING_ZEROS_NEED_CLZ_TAB +const unsigned char factor_clz_tab[129] = +{ + 1,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6, + 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, + 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, + 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, + 9 +}; +# endif + +#else /* not USE_LONGLONG_H */ + +# define W_TYPE_SIZE (8 * sizeof (uintmax_t)) +# define __ll_B ((uintmax_t) 1 << (W_TYPE_SIZE / 2)) +# define __ll_lowpart(t) ((uintmax_t) (t) & (__ll_B - 1)) +# define __ll_highpart(t) ((uintmax_t) (t) >> (W_TYPE_SIZE / 2)) + +#endif + +#if !defined __clz_tab && !defined UHWtype +/* Without this seemingly useless conditional, gcc -Wunused-macros + warns that each of the two tested macros is unused on Fedora 18. + FIXME: this is just an ugly band-aid. Fix it properly. */ +#endif + +/* 2*3*5*7*11...*101 is 128 bits, and has 26 prime factors */ +#define MAX_NFACTS 26 + +enum +{ + DEV_DEBUG_OPTION = CHAR_MAX + 1 +}; + +static struct option const long_options[] = +{ + {"exponents", no_argument, nullptr, 'h'}, + {"-debug", no_argument, nullptr, DEV_DEBUG_OPTION}, + {GETOPT_HELP_OPTION_DECL}, + {GETOPT_VERSION_OPTION_DECL}, + {nullptr, 0, nullptr, 0} +}; + +/* If true, use p^e output format. */ +static bool print_exponents; + +struct factors +{ + uintmax_t plarge[2]; /* Can have a single large factor */ + uintmax_t p[MAX_NFACTS]; + unsigned char e[MAX_NFACTS]; + unsigned char nfactors; +}; + +struct mp_factors +{ + mpz_t *p; + unsigned long int *e; + idx_t nfactors; +}; + +static void factor (uintmax_t, uintmax_t, struct factors *); + +#ifndef umul_ppmm +# define umul_ppmm(w1, w0, u, v) \ + do { \ + uintmax_t __x0, __x1, __x2, __x3; \ + unsigned long int __ul, __vl, __uh, __vh; \ + uintmax_t __u = (u), __v = (v); \ + \ + __ul = __ll_lowpart (__u); \ + __uh = __ll_highpart (__u); \ + __vl = __ll_lowpart (__v); \ + __vh = __ll_highpart (__v); \ + \ + __x0 = (uintmax_t) __ul * __vl; \ + __x1 = (uintmax_t) __ul * __vh; \ + __x2 = (uintmax_t) __uh * __vl; \ + __x3 = (uintmax_t) __uh * __vh; \ + \ + __x1 += __ll_highpart (__x0);/* This can't give carry. */ \ + __x1 += __x2; /* But this indeed can. */ \ + if (__x1 < __x2) /* Did we get it? */ \ + __x3 += __ll_B; /* Yes, add it in the proper pos. */ \ + \ + (w1) = __x3 + __ll_highpart (__x1); \ + (w0) = (__x1 << W_TYPE_SIZE / 2) + __ll_lowpart (__x0); \ + } while (0) +#endif + +#if !defined udiv_qrnnd || defined UDIV_NEEDS_NORMALIZATION +/* Define our own, not needing normalization. This function is + currently not performance critical, so keep it simple. Similar to + the mod macro below. */ +# undef udiv_qrnnd +# define udiv_qrnnd(q, r, n1, n0, d) \ + do { \ + uintmax_t __d1, __d0, __q, __r1, __r0; \ + \ + __d1 = (d); __d0 = 0; \ + __r1 = (n1); __r0 = (n0); \ + affirm (__r1 < __d1); \ + __q = 0; \ + for (int __i = W_TYPE_SIZE; __i > 0; __i--) \ + { \ + rsh2 (__d1, __d0, __d1, __d0, 1); \ + __q <<= 1; \ + if (ge2 (__r1, __r0, __d1, __d0)) \ + { \ + __q++; \ + sub_ddmmss (__r1, __r0, __r1, __r0, __d1, __d0); \ + } \ + } \ + (r) = __r0; \ + (q) = __q; \ + } while (0) +#endif + +#if !defined add_ssaaaa +# define add_ssaaaa(sh, sl, ah, al, bh, bl) \ + do { \ + uintmax_t _add_x; \ + _add_x = (al) + (bl); \ + (sh) = (ah) + (bh) + (_add_x < (al)); \ + (sl) = _add_x; \ + } while (0) +#endif + +#define rsh2(rh, rl, ah, al, cnt) \ + do { \ + (rl) = ((ah) << (W_TYPE_SIZE - (cnt))) | ((al) >> (cnt)); \ + (rh) = (ah) >> (cnt); \ + } while (0) + +#define lsh2(rh, rl, ah, al, cnt) \ + do { \ + (rh) = ((ah) << cnt) | ((al) >> (W_TYPE_SIZE - (cnt))); \ + (rl) = (al) << (cnt); \ + } while (0) + +#define ge2(ah, al, bh, bl) \ + ((ah) > (bh) || ((ah) == (bh) && (al) >= (bl))) + +#define gt2(ah, al, bh, bl) \ + ((ah) > (bh) || ((ah) == (bh) && (al) > (bl))) + +#ifndef sub_ddmmss +# define sub_ddmmss(rh, rl, ah, al, bh, bl) \ + do { \ + uintmax_t _cy; \ + _cy = (al) < (bl); \ + (rl) = (al) - (bl); \ + (rh) = (ah) - (bh) - _cy; \ + } while (0) +#endif + +#ifndef count_leading_zeros +# define count_leading_zeros(count, x) do { \ + uintmax_t __clz_x = (x); \ + int __clz_c; \ + for (__clz_c = 0; \ + (__clz_x & ((uintmax_t) 0xff << (W_TYPE_SIZE - 8))) == 0; \ + __clz_c += 8) \ + __clz_x <<= 8; \ + for (; (intmax_t)__clz_x >= 0; __clz_c++) \ + __clz_x <<= 1; \ + (count) = __clz_c; \ + } while (0) +#endif + +#ifndef count_trailing_zeros +# define count_trailing_zeros(count, x) do { \ + uintmax_t __ctz_x = (x); \ + int __ctz_c = 0; \ + while ((__ctz_x & 1) == 0) \ + { \ + __ctz_x >>= 1; \ + __ctz_c++; \ + } \ + (count) = __ctz_c; \ + } while (0) +#endif + +/* Requires that a < n and b <= n */ +#define submod(r,a,b,n) \ + do { \ + uintmax_t _t = - (uintmax_t) (a < b); \ + (r) = ((n) & _t) + (a) - (b); \ + } while (0) + +#define addmod(r,a,b,n) \ + submod ((r), (a), ((n) - (b)), (n)) + +/* Modular two-word addition and subtraction. For performance reasons, the + most significant bit of n1 must be clear. The destination variables must be + distinct from the mod operand. */ +#define addmod2(r1, r0, a1, a0, b1, b0, n1, n0) \ + do { \ + add_ssaaaa ((r1), (r0), (a1), (a0), (b1), (b0)); \ + if (ge2 ((r1), (r0), (n1), (n0))) \ + sub_ddmmss ((r1), (r0), (r1), (r0), (n1), (n0)); \ + } while (0) +#define submod2(r1, r0, a1, a0, b1, b0, n1, n0) \ + do { \ + sub_ddmmss ((r1), (r0), (a1), (a0), (b1), (b0)); \ + if ((intmax_t) (r1) < 0) \ + add_ssaaaa ((r1), (r0), (r1), (r0), (n1), (n0)); \ + } while (0) + +#define HIGHBIT_TO_MASK(x) \ + (((intmax_t)-1 >> 1) < 0 \ + ? (uintmax_t)((intmax_t)(x) >> (W_TYPE_SIZE - 1)) \ + : ((x) & ((uintmax_t) 1 << (W_TYPE_SIZE - 1)) \ + ? UINTMAX_MAX : (uintmax_t) 0)) + +/* Compute r = a mod d, where r = <*t1,retval>, a = <a1,a0>, d = <d1,d0>. + Requires that d1 != 0. */ +static uintmax_t +mod2 (uintmax_t *r1, uintmax_t a1, uintmax_t a0, uintmax_t d1, uintmax_t d0) +{ + int cntd, cnta; + + affirm (d1 != 0); + + if (a1 == 0) + { + *r1 = 0; + return a0; + } + + count_leading_zeros (cntd, d1); + count_leading_zeros (cnta, a1); + int cnt = cntd - cnta; + lsh2 (d1, d0, d1, d0, cnt); + for (int i = 0; i < cnt; i++) + { + if (ge2 (a1, a0, d1, d0)) + sub_ddmmss (a1, a0, a1, a0, d1, d0); + rsh2 (d1, d0, d1, d0, 1); + } + + *r1 = a1; + return a0; +} + +ATTRIBUTE_CONST +static uintmax_t +gcd_odd (uintmax_t a, uintmax_t b) +{ + if ((b & 1) == 0) + { + uintmax_t t = b; + b = a; + a = t; + } + if (a == 0) + return b; + + /* Take out least significant one bit, to make room for sign */ + b >>= 1; + + for (;;) + { + uintmax_t t; + uintmax_t bgta; + + while ((a & 1) == 0) + a >>= 1; + a >>= 1; + + t = a - b; + if (t == 0) + return (a << 1) + 1; + + bgta = HIGHBIT_TO_MASK (t); + + /* b <-- min (a, b) */ + b += (bgta & t); + + /* a <-- |a - b| */ + a = (t ^ bgta) - bgta; + } +} + +static uintmax_t +gcd2_odd (uintmax_t *r1, uintmax_t a1, uintmax_t a0, uintmax_t b1, uintmax_t b0) +{ + affirm (b0 & 1); + + if ((a0 | a1) == 0) + { + *r1 = b1; + return b0; + } + + while ((a0 & 1) == 0) + rsh2 (a1, a0, a1, a0, 1); + + for (;;) + { + if ((b1 | a1) == 0) + { + *r1 = 0; + return gcd_odd (b0, a0); + } + + if (gt2 (a1, a0, b1, b0)) + { + sub_ddmmss (a1, a0, a1, a0, b1, b0); + do + rsh2 (a1, a0, a1, a0, 1); + while ((a0 & 1) == 0); + } + else if (gt2 (b1, b0, a1, a0)) + { + sub_ddmmss (b1, b0, b1, b0, a1, a0); + do + rsh2 (b1, b0, b1, b0, 1); + while ((b0 & 1) == 0); + } + else + break; + } + + *r1 = a1; + return a0; +} + +static void +factor_insert_multiplicity (struct factors *factors, + uintmax_t prime, int m) +{ + int nfactors = factors->nfactors; + uintmax_t *p = factors->p; + unsigned char *e = factors->e; + + /* Locate position for insert new or increment e. */ + int i; + for (i = nfactors - 1; i >= 0; i--) + { + if (p[i] <= prime) + break; + } + + if (i < 0 || p[i] != prime) + { + for (int j = nfactors - 1; j > i; j--) + { + p[j + 1] = p[j]; + e[j + 1] = e[j]; + } + p[i + 1] = prime; + e[i + 1] = m; + factors->nfactors = nfactors + 1; + } + else + { + e[i] += m; + } +} + +#define factor_insert(f, p) factor_insert_multiplicity (f, p, 1) + +static void +factor_insert_large (struct factors *factors, + uintmax_t p1, uintmax_t p0) +{ + if (p1 > 0) + { + affirm (factors->plarge[1] == 0); + factors->plarge[0] = p0; + factors->plarge[1] = p1; + } + else + factor_insert (factors, p0); +} + +#ifndef mpz_inits + +# include <stdarg.h> + +# define mpz_inits(...) mpz_va_init (mpz_init, __VA_ARGS__) +# define mpz_clears(...) mpz_va_init (mpz_clear, __VA_ARGS__) + +static void +mpz_va_init (void (*mpz_single_init)(mpz_t), ...) +{ + va_list ap; + + va_start (ap, mpz_single_init); + + mpz_t *mpz; + while ((mpz = va_arg (ap, mpz_t *))) + mpz_single_init (*mpz); + + va_end (ap); +} +#endif + +static void mp_factor (mpz_t, struct mp_factors *); + +static void +mp_factor_init (struct mp_factors *factors) +{ + factors->p = nullptr; + factors->e = nullptr; + factors->nfactors = 0; +} + +static void +mp_factor_clear (struct mp_factors *factors) +{ + for (idx_t i = 0; i < factors->nfactors; i++) + mpz_clear (factors->p[i]); + + free (factors->p); + free (factors->e); +} + +static void +mp_factor_insert (struct mp_factors *factors, mpz_t prime) +{ + idx_t nfactors = factors->nfactors; + mpz_t *p = factors->p; + unsigned long int *e = factors->e; + ptrdiff_t i; + + /* Locate position for insert new or increment e. */ + for (i = nfactors - 1; i >= 0; i--) + { + if (mpz_cmp (p[i], prime) <= 0) + break; + } + + if (i < 0 || mpz_cmp (p[i], prime) != 0) + { + p = xireallocarray (p, nfactors + 1, sizeof p[0]); + e = xireallocarray (e, nfactors + 1, sizeof e[0]); + + mpz_init (p[nfactors]); + for (long j = nfactors - 1; j > i; j--) + { + mpz_set (p[j + 1], p[j]); + e[j + 1] = e[j]; + } + mpz_set (p[i + 1], prime); + e[i + 1] = 1; + + factors->p = p; + factors->e = e; + factors->nfactors = nfactors + 1; + } + else + { + e[i] += 1; + } +} + +static void +mp_factor_insert_ui (struct mp_factors *factors, unsigned long int prime) +{ + mpz_t pz; + + mpz_init_set_ui (pz, prime); + mp_factor_insert (factors, pz); + mpz_clear (pz); +} + + +/* Number of bits in an uintmax_t. */ +enum { W = sizeof (uintmax_t) * CHAR_BIT }; + +/* Verify that uintmax_t does not have holes in its representation. */ +static_assert (UINTMAX_MAX >> (W - 1) == 1); + +#define P(a,b,c,d) a, +static const unsigned char primes_diff[] = { +#include "primes.h" +0,0,0,0,0,0,0 /* 7 sentinels for 8-way loop */ +}; +#undef P + +#define PRIMES_PTAB_ENTRIES \ + (sizeof (primes_diff) / sizeof (primes_diff[0]) - 8 + 1) + +#define P(a,b,c,d) b, +static const unsigned char primes_diff8[] = { +#include "primes.h" +0,0,0,0,0,0,0 /* 7 sentinels for 8-way loop */ +}; +#undef P + +struct primes_dtab +{ + uintmax_t binv, lim; +}; + +#define P(a,b,c,d) {c,d}, +static const struct primes_dtab primes_dtab[] = { +#include "primes.h" +{1,0},{1,0},{1,0},{1,0},{1,0},{1,0},{1,0} /* 7 sentinels for 8-way loop */ +}; +#undef P + +/* Verify that uintmax_t is not wider than + the integers used to generate primes.h. */ +static_assert (W <= WIDE_UINT_BITS); + +/* debugging for developers. Enables devmsg(). + This flag is used only in the GMP code. */ +static bool dev_debug = false; + +/* Prove primality or run probabilistic tests. */ +static bool flag_prove_primality = PROVE_PRIMALITY; + +/* Number of Miller-Rabin tests to run when not proving primality. */ +#define MR_REPS 25 + +static void +factor_insert_refind (struct factors *factors, uintmax_t p, int i, int off) +{ + for (int j = 0; j < off; j++) + p += primes_diff[i + j]; + factor_insert (factors, p); +} + +/* Trial division with odd primes uses the following trick. + + Let p be an odd prime, and B = 2^{W_TYPE_SIZE}. For simplicity, + consider the case t < B (this is the second loop below). + + From our tables we get + + binv = p^{-1} (mod B) + lim = floor ((B-1) / p). + + First assume that t is a multiple of p, t = q * p. Then 0 <= q <= lim + (and all quotients in this range occur for some t). + + Then t = q * p is true also (mod B), and p is invertible we get + + q = t * binv (mod B). + + Next, assume that t is *not* divisible by p. Since multiplication + by binv (mod B) is a one-to-one mapping, + + t * binv (mod B) > lim, + + because all the smaller values are already taken. + + This can be summed up by saying that the function + + q(t) = binv * t (mod B) + + is a permutation of the range 0 <= t < B, with the curious property + that it maps the multiples of p onto the range 0 <= q <= lim, in + order, and the non-multiples of p onto the range lim < q < B. + */ + +static uintmax_t +factor_using_division (uintmax_t *t1p, uintmax_t t1, uintmax_t t0, + struct factors *factors) +{ + if (t0 % 2 == 0) + { + int cnt; + + if (t0 == 0) + { + count_trailing_zeros (cnt, t1); + t0 = t1 >> cnt; + t1 = 0; + cnt += W_TYPE_SIZE; + } + else + { + count_trailing_zeros (cnt, t0); + rsh2 (t1, t0, t1, t0, cnt); + } + + factor_insert_multiplicity (factors, 2, cnt); + } + + uintmax_t p = 3; + idx_t i; + for (i = 0; t1 > 0 && i < PRIMES_PTAB_ENTRIES; i++) + { + for (;;) + { + uintmax_t q1, q0, hi; + MAYBE_UNUSED uintmax_t lo; + + q0 = t0 * primes_dtab[i].binv; + umul_ppmm (hi, lo, q0, p); + if (hi > t1) + break; + hi = t1 - hi; + q1 = hi * primes_dtab[i].binv; + if (LIKELY (q1 > primes_dtab[i].lim)) + break; + t1 = q1; t0 = q0; + factor_insert (factors, p); + } + p += primes_diff[i + 1]; + } + if (t1p) + *t1p = t1; + +#define DIVBLOCK(I) \ + do { \ + for (;;) \ + { \ + q = t0 * pd[I].binv; \ + if (LIKELY (q > pd[I].lim)) \ + break; \ + t0 = q; \ + factor_insert_refind (factors, p, i + 1, I); \ + } \ + } while (0) + + for (; i < PRIMES_PTAB_ENTRIES; i += 8) + { + uintmax_t q; + const struct primes_dtab *pd = &primes_dtab[i]; + DIVBLOCK (0); + DIVBLOCK (1); + DIVBLOCK (2); + DIVBLOCK (3); + DIVBLOCK (4); + DIVBLOCK (5); + DIVBLOCK (6); + DIVBLOCK (7); + + p += primes_diff8[i]; + if (p * p > t0) + break; + } + + return t0; +} + +static void +mp_factor_using_division (mpz_t t, struct mp_factors *factors) +{ + mpz_t q; + mp_bitcnt_t p; + + devmsg ("[trial division] "); + + mpz_init (q); + + p = mpz_scan1 (t, 0); + mpz_fdiv_q_2exp (t, t, p); + while (p) + { + mp_factor_insert_ui (factors, 2); + --p; + } + + unsigned long int d = 3; + for (idx_t i = 1; i <= PRIMES_PTAB_ENTRIES;) + { + if (! mpz_divisible_ui_p (t, d)) + { + d += primes_diff[i++]; + if (mpz_cmp_ui (t, d * d) < 0) + break; + } + else + { + mpz_tdiv_q_ui (t, t, d); + mp_factor_insert_ui (factors, d); + } + } + + mpz_clear (q); +} + +/* Entry i contains (2i+1)^(-1) mod 2^8. */ +static const unsigned char binvert_table[128] = +{ + 0x01, 0xAB, 0xCD, 0xB7, 0x39, 0xA3, 0xC5, 0xEF, + 0xF1, 0x1B, 0x3D, 0xA7, 0x29, 0x13, 0x35, 0xDF, + 0xE1, 0x8B, 0xAD, 0x97, 0x19, 0x83, 0xA5, 0xCF, + 0xD1, 0xFB, 0x1D, 0x87, 0x09, 0xF3, 0x15, 0xBF, + 0xC1, 0x6B, 0x8D, 0x77, 0xF9, 0x63, 0x85, 0xAF, + 0xB1, 0xDB, 0xFD, 0x67, 0xE9, 0xD3, 0xF5, 0x9F, + 0xA1, 0x4B, 0x6D, 0x57, 0xD9, 0x43, 0x65, 0x8F, + 0x91, 0xBB, 0xDD, 0x47, 0xC9, 0xB3, 0xD5, 0x7F, + 0x81, 0x2B, 0x4D, 0x37, 0xB9, 0x23, 0x45, 0x6F, + 0x71, 0x9B, 0xBD, 0x27, 0xA9, 0x93, 0xB5, 0x5F, + 0x61, 0x0B, 0x2D, 0x17, 0x99, 0x03, 0x25, 0x4F, + 0x51, 0x7B, 0x9D, 0x07, 0x89, 0x73, 0x95, 0x3F, + 0x41, 0xEB, 0x0D, 0xF7, 0x79, 0xE3, 0x05, 0x2F, + 0x31, 0x5B, 0x7D, 0xE7, 0x69, 0x53, 0x75, 0x1F, + 0x21, 0xCB, 0xED, 0xD7, 0x59, 0xC3, 0xE5, 0x0F, + 0x11, 0x3B, 0x5D, 0xC7, 0x49, 0x33, 0x55, 0xFF +}; + +/* Compute n^(-1) mod B, using a Newton iteration. */ +#define binv(inv,n) \ + do { \ + uintmax_t __n = (n); \ + uintmax_t __inv; \ + \ + __inv = binvert_table[(__n / 2) & 0x7F]; /* 8 */ \ + if (W_TYPE_SIZE > 8) __inv = 2 * __inv - __inv * __inv * __n; \ + if (W_TYPE_SIZE > 16) __inv = 2 * __inv - __inv * __inv * __n; \ + if (W_TYPE_SIZE > 32) __inv = 2 * __inv - __inv * __inv * __n; \ + \ + if (W_TYPE_SIZE > 64) \ + { \ + int __invbits = 64; \ + do { \ + __inv = 2 * __inv - __inv * __inv * __n; \ + __invbits *= 2; \ + } while (__invbits < W_TYPE_SIZE); \ + } \ + \ + (inv) = __inv; \ + } while (0) + +/* q = u / d, assuming d|u. */ +#define divexact_21(q1, q0, u1, u0, d) \ + do { \ + uintmax_t _di, _q0; \ + binv (_di, (d)); \ + _q0 = (u0) * _di; \ + if ((u1) >= (d)) \ + { \ + uintmax_t _p1; \ + MAYBE_UNUSED intmax_t _p0; \ + umul_ppmm (_p1, _p0, _q0, d); \ + (q1) = ((u1) - _p1) * _di; \ + (q0) = _q0; \ + } \ + else \ + { \ + (q0) = _q0; \ + (q1) = 0; \ + } \ + } while (0) + +/* x B (mod n). */ +#define redcify(r_prim, r, n) \ + do { \ + MAYBE_UNUSED uintmax_t _redcify_q; \ + udiv_qrnnd (_redcify_q, r_prim, r, 0, n); \ + } while (0) + +/* x B^2 (mod n). Requires x > 0, n1 < B/2. */ +#define redcify2(r1, r0, x, n1, n0) \ + do { \ + uintmax_t _r1, _r0, _i; \ + if ((x) < (n1)) \ + { \ + _r1 = (x); _r0 = 0; \ + _i = W_TYPE_SIZE; \ + } \ + else \ + { \ + _r1 = 0; _r0 = (x); \ + _i = 2 * W_TYPE_SIZE; \ + } \ + while (_i-- > 0) \ + { \ + lsh2 (_r1, _r0, _r1, _r0, 1); \ + if (ge2 (_r1, _r0, (n1), (n0))) \ + sub_ddmmss (_r1, _r0, _r1, _r0, (n1), (n0)); \ + } \ + (r1) = _r1; \ + (r0) = _r0; \ + } while (0) + +/* Modular two-word multiplication, r = a * b mod m, with mi = m^(-1) mod B. + Both a and b must be in redc form, the result will be in redc form too. */ +static inline uintmax_t +mulredc (uintmax_t a, uintmax_t b, uintmax_t m, uintmax_t mi) +{ + uintmax_t rh, rl, q, th, xh; + MAYBE_UNUSED uintmax_t tl; + + umul_ppmm (rh, rl, a, b); + q = rl * mi; + umul_ppmm (th, tl, q, m); + xh = rh - th; + if (rh < th) + xh += m; + + return xh; +} + +/* Modular two-word multiplication, r = a * b mod m, with mi = m^(-1) mod B. + Both a and b must be in redc form, the result will be in redc form too. + For performance reasons, the most significant bit of m must be clear. */ +static uintmax_t +mulredc2 (uintmax_t *r1p, + uintmax_t a1, uintmax_t a0, uintmax_t b1, uintmax_t b0, + uintmax_t m1, uintmax_t m0, uintmax_t mi) +{ + uintmax_t r1, r0, q, p1, t1, t0, s1, s0; + MAYBE_UNUSED uintmax_t p0; + mi = -mi; + affirm ((a1 >> (W_TYPE_SIZE - 1)) == 0); + affirm ((b1 >> (W_TYPE_SIZE - 1)) == 0); + affirm ((m1 >> (W_TYPE_SIZE - 1)) == 0); + + /* First compute a0 * <b1, b0> B^{-1} + +-----+ + |a0 b0| + +--+--+--+ + |a0 b1| + +--+--+--+ + |q0 m0| + +--+--+--+ + |q0 m1| + -+--+--+--+ + |r1|r0| 0| + +--+--+--+ + */ + umul_ppmm (t1, t0, a0, b0); + umul_ppmm (r1, r0, a0, b1); + q = mi * t0; + umul_ppmm (p1, p0, q, m0); + umul_ppmm (s1, s0, q, m1); + r0 += (t0 != 0); /* Carry */ + add_ssaaaa (r1, r0, r1, r0, 0, p1); + add_ssaaaa (r1, r0, r1, r0, 0, t1); + add_ssaaaa (r1, r0, r1, r0, s1, s0); + + /* Next, (a1 * <b1, b0> + <r1, r0> B^{-1} + +-----+ + |a1 b0| + +--+--+ + |r1|r0| + +--+--+--+ + |a1 b1| + +--+--+--+ + |q1 m0| + +--+--+--+ + |q1 m1| + -+--+--+--+ + |r1|r0| 0| + +--+--+--+ + */ + umul_ppmm (t1, t0, a1, b0); + umul_ppmm (s1, s0, a1, b1); + add_ssaaaa (t1, t0, t1, t0, 0, r0); + q = mi * t0; + add_ssaaaa (r1, r0, s1, s0, 0, r1); + umul_ppmm (p1, p0, q, m0); + umul_ppmm (s1, s0, q, m1); + r0 += (t0 != 0); /* Carry */ + add_ssaaaa (r1, r0, r1, r0, 0, p1); + add_ssaaaa (r1, r0, r1, r0, 0, t1); + add_ssaaaa (r1, r0, r1, r0, s1, s0); + + if (ge2 (r1, r0, m1, m0)) + sub_ddmmss (r1, r0, r1, r0, m1, m0); + + *r1p = r1; + return r0; +} + +ATTRIBUTE_CONST +static uintmax_t +powm (uintmax_t b, uintmax_t e, uintmax_t n, uintmax_t ni, uintmax_t one) +{ + uintmax_t y = one; + + if (e & 1) + y = b; + + while (e != 0) + { + b = mulredc (b, b, n, ni); + e >>= 1; + + if (e & 1) + y = mulredc (y, b, n, ni); + } + + return y; +} + +static uintmax_t +powm2 (uintmax_t *r1m, + const uintmax_t *bp, const uintmax_t *ep, const uintmax_t *np, + uintmax_t ni, const uintmax_t *one) +{ + uintmax_t r1, r0, b1, b0, n1, n0; + int i; + uintmax_t e; + + b0 = bp[0]; + b1 = bp[1]; + n0 = np[0]; + n1 = np[1]; + + r0 = one[0]; + r1 = one[1]; + + for (e = ep[0], i = W_TYPE_SIZE; i > 0; i--, e >>= 1) + { + if (e & 1) + { + r0 = mulredc2 (r1m, r1, r0, b1, b0, n1, n0, ni); + r1 = *r1m; + } + b0 = mulredc2 (r1m, b1, b0, b1, b0, n1, n0, ni); + b1 = *r1m; + } + for (e = ep[1]; e > 0; e >>= 1) + { + if (e & 1) + { + r0 = mulredc2 (r1m, r1, r0, b1, b0, n1, n0, ni); + r1 = *r1m; + } + b0 = mulredc2 (r1m, b1, b0, b1, b0, n1, n0, ni); + b1 = *r1m; + } + *r1m = r1; + return r0; +} + +ATTRIBUTE_CONST +static bool +millerrabin (uintmax_t n, uintmax_t ni, uintmax_t b, uintmax_t q, + int k, uintmax_t one) +{ + uintmax_t y = powm (b, q, n, ni, one); + + uintmax_t nm1 = n - one; /* -1, but in redc representation. */ + + if (y == one || y == nm1) + return true; + + for (int i = 1; i < k; i++) + { + y = mulredc (y, y, n, ni); + + if (y == nm1) + return true; + if (y == one) + return false; + } + return false; +} + +ATTRIBUTE_PURE static bool +millerrabin2 (const uintmax_t *np, uintmax_t ni, const uintmax_t *bp, + const uintmax_t *qp, int k, const uintmax_t *one) +{ + uintmax_t y1, y0, nm1_1, nm1_0, r1m; + + y0 = powm2 (&r1m, bp, qp, np, ni, one); + y1 = r1m; + + if (y0 == one[0] && y1 == one[1]) + return true; + + sub_ddmmss (nm1_1, nm1_0, np[1], np[0], one[1], one[0]); + + if (y0 == nm1_0 && y1 == nm1_1) + return true; + + for (int i = 1; i < k; i++) + { + y0 = mulredc2 (&r1m, y1, y0, y1, y0, np[1], np[0], ni); + y1 = r1m; + + if (y0 == nm1_0 && y1 == nm1_1) + return true; + if (y0 == one[0] && y1 == one[1]) + return false; + } + return false; +} + +static bool +mp_millerrabin (mpz_srcptr n, mpz_srcptr nm1, mpz_ptr x, mpz_ptr y, + mpz_srcptr q, mp_bitcnt_t k) +{ + mpz_powm (y, x, q, n); + + if (mpz_cmp_ui (y, 1) == 0 || mpz_cmp (y, nm1) == 0) + return true; + + for (mp_bitcnt_t i = 1; i < k; i++) + { + mpz_powm_ui (y, y, 2, n); + if (mpz_cmp (y, nm1) == 0) + return true; + if (mpz_cmp_ui (y, 1) == 0) + return false; + } + return false; +} + +/* Lucas' prime test. The number of iterations vary greatly, up to a few dozen + have been observed. The average seem to be about 2. */ +static bool ATTRIBUTE_PURE +prime_p (uintmax_t n) +{ + mp_bitcnt_t k; + bool is_prime; + uintmax_t a_prim, one, ni; + struct factors factors; + + if (n <= 1) + return false; + + /* We have already cast out small primes. */ + if (n < (uintmax_t) FIRST_OMITTED_PRIME * FIRST_OMITTED_PRIME) + return true; + + /* Precomputation for Miller-Rabin. */ + uintmax_t q = n - 1; + for (k = 0; (q & 1) == 0; k++) + q >>= 1; + + uintmax_t a = 2; + binv (ni, n); /* ni <- 1/n mod B */ + redcify (one, 1, n); + addmod (a_prim, one, one, n); /* i.e., redcify a = 2 */ + + /* Perform a Miller-Rabin test, finds most composites quickly. */ + if (!millerrabin (n, ni, a_prim, q, k, one)) + return false; + + if (flag_prove_primality) + { + /* Factor n-1 for Lucas. */ + factor (0, n - 1, &factors); + } + + /* Loop until Lucas proves our number prime, or Miller-Rabin proves our + number composite. */ + for (idx_t r = 0; r < PRIMES_PTAB_ENTRIES; r++) + { + if (flag_prove_primality) + { + is_prime = true; + for (int i = 0; i < factors.nfactors && is_prime; i++) + { + is_prime + = powm (a_prim, (n - 1) / factors.p[i], n, ni, one) != one; + } + } + else + { + /* After enough Miller-Rabin runs, be content. */ + is_prime = (r == MR_REPS - 1); + } + + if (is_prime) + return true; + + a += primes_diff[r]; /* Establish new base. */ + + /* The following is equivalent to redcify (a_prim, a, n). It runs faster + on most processors, since it avoids udiv_qrnnd. If we go down the + udiv_qrnnd_preinv path, this code should be replaced. */ + { + uintmax_t s1, s0; + umul_ppmm (s1, s0, one, a); + if (LIKELY (s1 == 0)) + a_prim = s0 % n; + else + { + MAYBE_UNUSED uintmax_t dummy; + udiv_qrnnd (dummy, a_prim, s1, s0, n); + } + } + + if (!millerrabin (n, ni, a_prim, q, k, one)) + return false; + } + + affirm (!"Lucas prime test failure. This should not happen"); +} + +static bool ATTRIBUTE_PURE +prime2_p (uintmax_t n1, uintmax_t n0) +{ + uintmax_t q[2], nm1[2]; + uintmax_t a_prim[2]; + uintmax_t one[2]; + uintmax_t na[2]; + uintmax_t ni; + int k; + struct factors factors; + + if (n1 == 0) + return prime_p (n0); + + nm1[1] = n1 - (n0 == 0); + nm1[0] = n0 - 1; + if (nm1[0] == 0) + { + count_trailing_zeros (k, nm1[1]); + + q[0] = nm1[1] >> k; + q[1] = 0; + k += W_TYPE_SIZE; + } + else + { + count_trailing_zeros (k, nm1[0]); + rsh2 (q[1], q[0], nm1[1], nm1[0], k); + } + + uintmax_t a = 2; + binv (ni, n0); + redcify2 (one[1], one[0], 1, n1, n0); + addmod2 (a_prim[1], a_prim[0], one[1], one[0], one[1], one[0], n1, n0); + + /* FIXME: Use scalars or pointers in arguments? Some consistency needed. */ + na[0] = n0; + na[1] = n1; + + if (!millerrabin2 (na, ni, a_prim, q, k, one)) + return false; + + if (flag_prove_primality) + { + /* Factor n-1 for Lucas. */ + factor (nm1[1], nm1[0], &factors); + } + + /* Loop until Lucas proves our number prime, or Miller-Rabin proves our + number composite. */ + for (idx_t r = 0; r < PRIMES_PTAB_ENTRIES; r++) + { + bool is_prime; + uintmax_t e[2], y[2]; + + if (flag_prove_primality) + { + is_prime = true; + if (factors.plarge[1]) + { + uintmax_t pi; + binv (pi, factors.plarge[0]); + e[0] = pi * nm1[0]; + e[1] = 0; + y[0] = powm2 (&y[1], a_prim, e, na, ni, one); + is_prime = (y[0] != one[0] || y[1] != one[1]); + } + for (int i = 0; i < factors.nfactors && is_prime; i++) + { + /* FIXME: We always have the factor 2. Do we really need to + handle it here? We have done the same powering as part + of millerrabin. */ + if (factors.p[i] == 2) + rsh2 (e[1], e[0], nm1[1], nm1[0], 1); + else + divexact_21 (e[1], e[0], nm1[1], nm1[0], factors.p[i]); + y[0] = powm2 (&y[1], a_prim, e, na, ni, one); + is_prime = (y[0] != one[0] || y[1] != one[1]); + } + } + else + { + /* After enough Miller-Rabin runs, be content. */ + is_prime = (r == MR_REPS - 1); + } + + if (is_prime) + return true; + + a += primes_diff[r]; /* Establish new base. */ + redcify2 (a_prim[1], a_prim[0], a, n1, n0); + + if (!millerrabin2 (na, ni, a_prim, q, k, one)) + return false; + } + + affirm (!"Lucas prime test failure. This should not happen"); +} + +static bool +mp_prime_p (mpz_t n) +{ + bool is_prime; + mpz_t q, a, nm1, tmp; + struct mp_factors factors; + + if (mpz_cmp_ui (n, 1) <= 0) + return false; + + /* We have already cast out small primes. */ + if (mpz_cmp_ui (n, (long) FIRST_OMITTED_PRIME * FIRST_OMITTED_PRIME) < 0) + return true; + + mpz_inits (q, a, nm1, tmp, nullptr); + + /* Precomputation for Miller-Rabin. */ + mpz_sub_ui (nm1, n, 1); + + /* Find q and k, where q is odd and n = 1 + 2**k * q. */ + mp_bitcnt_t k = mpz_scan1 (nm1, 0); + mpz_tdiv_q_2exp (q, nm1, k); + + mpz_set_ui (a, 2); + + /* Perform a Miller-Rabin test, finds most composites quickly. */ + if (!mp_millerrabin (n, nm1, a, tmp, q, k)) + { + is_prime = false; + goto ret2; + } + + if (flag_prove_primality) + { + /* Factor n-1 for Lucas. */ + mpz_set (tmp, nm1); + mp_factor (tmp, &factors); + } + + /* Loop until Lucas proves our number prime, or Miller-Rabin proves our + number composite. */ + for (idx_t r = 0; r < PRIMES_PTAB_ENTRIES; r++) + { + if (flag_prove_primality) + { + is_prime = true; + for (idx_t i = 0; i < factors.nfactors && is_prime; i++) + { + mpz_divexact (tmp, nm1, factors.p[i]); + mpz_powm (tmp, a, tmp, n); + is_prime = mpz_cmp_ui (tmp, 1) != 0; + } + } + else + { + /* After enough Miller-Rabin runs, be content. */ + is_prime = (r == MR_REPS - 1); + } + + if (is_prime) + goto ret1; + + mpz_add_ui (a, a, primes_diff[r]); /* Establish new base. */ + + if (!mp_millerrabin (n, nm1, a, tmp, q, k)) + { + is_prime = false; + goto ret1; + } + } + + affirm (!"Lucas prime test failure. This should not happen"); + + ret1: + if (flag_prove_primality) + mp_factor_clear (&factors); + ret2: + mpz_clears (q, a, nm1, tmp, nullptr); + + return is_prime; +} + +static void +factor_using_pollard_rho (uintmax_t n, unsigned long int a, + struct factors *factors) +{ + uintmax_t x, z, y, P, t, ni, g; + + unsigned long int k = 1; + unsigned long int l = 1; + + redcify (P, 1, n); + addmod (x, P, P, n); /* i.e., redcify(2) */ + y = z = x; + + while (n != 1) + { + affirm (a < n); + + binv (ni, n); /* FIXME: when could we use old 'ni' value? */ + + for (;;) + { + do + { + x = mulredc (x, x, n, ni); + addmod (x, x, a, n); + + submod (t, z, x, n); + P = mulredc (P, t, n, ni); + + if (k % 32 == 1) + { + if (gcd_odd (P, n) != 1) + goto factor_found; + y = x; + } + } + while (--k != 0); + + z = x; + k = l; + l = 2 * l; + for (unsigned long int i = 0; i < k; i++) + { + x = mulredc (x, x, n, ni); + addmod (x, x, a, n); + } + y = x; + } + + factor_found: + do + { + y = mulredc (y, y, n, ni); + addmod (y, y, a, n); + + submod (t, z, y, n); + g = gcd_odd (t, n); + } + while (g == 1); + + if (n == g) + { + /* Found n itself as factor. Restart with different params. */ + factor_using_pollard_rho (n, a + 1, factors); + return; + } + + n = n / g; + + if (!prime_p (g)) + factor_using_pollard_rho (g, a + 1, factors); + else + factor_insert (factors, g); + + if (prime_p (n)) + { + factor_insert (factors, n); + break; + } + + x = x % n; + z = z % n; + y = y % n; + } +} + +static void +factor_using_pollard_rho2 (uintmax_t n1, uintmax_t n0, unsigned long int a, + struct factors *factors) +{ + uintmax_t x1, x0, z1, z0, y1, y0, P1, P0, t1, t0, ni, g1, g0, r1m; + + unsigned long int k = 1; + unsigned long int l = 1; + + redcify2 (P1, P0, 1, n1, n0); + addmod2 (x1, x0, P1, P0, P1, P0, n1, n0); /* i.e., redcify(2) */ + y1 = z1 = x1; + y0 = z0 = x0; + + while (n1 != 0 || n0 != 1) + { + binv (ni, n0); + + for (;;) + { + do + { + x0 = mulredc2 (&r1m, x1, x0, x1, x0, n1, n0, ni); + x1 = r1m; + addmod2 (x1, x0, x1, x0, 0, (uintmax_t) a, n1, n0); + + submod2 (t1, t0, z1, z0, x1, x0, n1, n0); + P0 = mulredc2 (&r1m, P1, P0, t1, t0, n1, n0, ni); + P1 = r1m; + + if (k % 32 == 1) + { + g0 = gcd2_odd (&g1, P1, P0, n1, n0); + if (g1 != 0 || g0 != 1) + goto factor_found; + y1 = x1; y0 = x0; + } + } + while (--k != 0); + + z1 = x1; z0 = x0; + k = l; + l = 2 * l; + for (unsigned long int i = 0; i < k; i++) + { + x0 = mulredc2 (&r1m, x1, x0, x1, x0, n1, n0, ni); + x1 = r1m; + addmod2 (x1, x0, x1, x0, 0, (uintmax_t) a, n1, n0); + } + y1 = x1; y0 = x0; + } + + factor_found: + do + { + y0 = mulredc2 (&r1m, y1, y0, y1, y0, n1, n0, ni); + y1 = r1m; + addmod2 (y1, y0, y1, y0, 0, (uintmax_t) a, n1, n0); + + submod2 (t1, t0, z1, z0, y1, y0, n1, n0); + g0 = gcd2_odd (&g1, t1, t0, n1, n0); + } + while (g1 == 0 && g0 == 1); + + if (g1 == 0) + { + /* The found factor is one word, and > 1. */ + divexact_21 (n1, n0, n1, n0, g0); /* n = n / g */ + + if (!prime_p (g0)) + factor_using_pollard_rho (g0, a + 1, factors); + else + factor_insert (factors, g0); + } + else + { + /* The found factor is two words. This is highly unlikely, thus hard + to trigger. Please be careful before you change this code! */ + uintmax_t ginv; + + if (n1 == g1 && n0 == g0) + { + /* Found n itself as factor. Restart with different params. */ + factor_using_pollard_rho2 (n1, n0, a + 1, factors); + return; + } + + /* Compute n = n / g. Since the result will fit one word, + we can compute the quotient modulo B, ignoring the high + divisor word. */ + binv (ginv, g0); + n0 = ginv * n0; + n1 = 0; + + if (!prime2_p (g1, g0)) + factor_using_pollard_rho2 (g1, g0, a + 1, factors); + else + factor_insert_large (factors, g1, g0); + } + + if (n1 == 0) + { + if (prime_p (n0)) + { + factor_insert (factors, n0); + break; + } + + factor_using_pollard_rho (n0, a, factors); + return; + } + + if (prime2_p (n1, n0)) + { + factor_insert_large (factors, n1, n0); + break; + } + + x0 = mod2 (&x1, x1, x0, n1, n0); + z0 = mod2 (&z1, z1, z0, n1, n0); + y0 = mod2 (&y1, y1, y0, n1, n0); + } +} + +static void +mp_factor_using_pollard_rho (mpz_t n, unsigned long int a, + struct mp_factors *factors) +{ + mpz_t x, z, y, P; + mpz_t t, t2; + + devmsg ("[pollard-rho (%lu)] ", a); + + mpz_inits (t, t2, nullptr); + mpz_init_set_si (y, 2); + mpz_init_set_si (x, 2); + mpz_init_set_si (z, 2); + mpz_init_set_ui (P, 1); + + unsigned long long int k = 1; + unsigned long long int l = 1; + + while (mpz_cmp_ui (n, 1) != 0) + { + for (;;) + { + do + { + mpz_mul (t, x, x); + mpz_mod (x, t, n); + mpz_add_ui (x, x, a); + + mpz_sub (t, z, x); + mpz_mul (t2, P, t); + mpz_mod (P, t2, n); + + if (k % 32 == 1) + { + mpz_gcd (t, P, n); + if (mpz_cmp_ui (t, 1) != 0) + goto factor_found; + mpz_set (y, x); + } + } + while (--k != 0); + + mpz_set (z, x); + k = l; + l = 2 * l; + for (unsigned long long int i = 0; i < k; i++) + { + mpz_mul (t, x, x); + mpz_mod (x, t, n); + mpz_add_ui (x, x, a); + } + mpz_set (y, x); + } + + factor_found: + do + { + mpz_mul (t, y, y); + mpz_mod (y, t, n); + mpz_add_ui (y, y, a); + + mpz_sub (t, z, y); + mpz_gcd (t, t, n); + } + while (mpz_cmp_ui (t, 1) == 0); + + mpz_divexact (n, n, t); /* divide by t, before t is overwritten */ + + if (!mp_prime_p (t)) + { + devmsg ("[composite factor--restarting pollard-rho] "); + mp_factor_using_pollard_rho (t, a + 1, factors); + } + else + { + mp_factor_insert (factors, t); + } + + if (mp_prime_p (n)) + { + mp_factor_insert (factors, n); + break; + } + + mpz_mod (x, x, n); + mpz_mod (z, z, n); + mpz_mod (y, y, n); + } + + mpz_clears (P, t2, t, z, x, y, nullptr); +} + +#if USE_SQUFOF +/* FIXME: Maybe better to use an iteration converging to 1/sqrt(n)? If + algorithm is replaced, consider also returning the remainder. */ +ATTRIBUTE_CONST +static uintmax_t +isqrt (uintmax_t n) +{ + uintmax_t x; + int c; + if (n == 0) + return 0; + + count_leading_zeros (c, n); + + /* Make x > sqrt(n). This will be invariant through the loop. */ + x = (uintmax_t) 1 << ((W_TYPE_SIZE + 1 - c) >> 1); + + for (;;) + { + uintmax_t y = (x + n / x) / 2; + if (y >= x) + return x; + + x = y; + } +} + +ATTRIBUTE_CONST +static uintmax_t +isqrt2 (uintmax_t nh, uintmax_t nl) +{ + int shift; + uintmax_t x; + + /* Ensures the remainder fits in an uintmax_t. */ + affirm (nh < ((uintmax_t) 1 << (W_TYPE_SIZE - 2))); + + if (nh == 0) + return isqrt (nl); + + count_leading_zeros (shift, nh); + shift &= ~1; + + /* Make x > sqrt (n). */ + x = isqrt ((nh << shift) + (nl >> (W_TYPE_SIZE - shift))) + 1; + x <<= (W_TYPE_SIZE - shift) >> 1; + + /* Do we need more than one iteration? */ + for (;;) + { + MAYBE_UNUSED uintmax_t r; + uintmax_t q, y; + udiv_qrnnd (q, r, nh, nl, x); + y = (x + q) / 2; + + if (y >= x) + { + uintmax_t hi, lo; + umul_ppmm (hi, lo, x + 1, x + 1); + affirm (gt2 (hi, lo, nh, nl)); + + umul_ppmm (hi, lo, x, x); + affirm (ge2 (nh, nl, hi, lo)); + sub_ddmmss (hi, lo, nh, nl, hi, lo); + affirm (hi == 0); + + return x; + } + + x = y; + } +} + +/* MAGIC[N] has a bit i set iff i is a quadratic residue mod N. */ +# define MAGIC64 0x0202021202030213ULL +# define MAGIC63 0x0402483012450293ULL +# define MAGIC65 0x218a019866014613ULL +# define MAGIC11 0x23b + +/* Return the square root if the input is a square, otherwise 0. */ +ATTRIBUTE_CONST +static uintmax_t +is_square (uintmax_t x) +{ + /* Uses the tests suggested by Cohen. Excludes 99% of the non-squares before + computing the square root. */ + if (((MAGIC64 >> (x & 63)) & 1) + && ((MAGIC63 >> (x % 63)) & 1) + /* Both 0 and 64 are squares mod (65). */ + && ((MAGIC65 >> ((x % 65) & 63)) & 1) + && ((MAGIC11 >> (x % 11) & 1))) + { + uintmax_t r = isqrt (x); + if (r * r == x) + return r; + } + return 0; +} + +/* invtab[i] = floor (0x10000 / (0x100 + i) */ +static short const invtab[0x81] = + { + 0x200, + 0x1fc, 0x1f8, 0x1f4, 0x1f0, 0x1ec, 0x1e9, 0x1e5, 0x1e1, + 0x1de, 0x1da, 0x1d7, 0x1d4, 0x1d0, 0x1cd, 0x1ca, 0x1c7, + 0x1c3, 0x1c0, 0x1bd, 0x1ba, 0x1b7, 0x1b4, 0x1b2, 0x1af, + 0x1ac, 0x1a9, 0x1a6, 0x1a4, 0x1a1, 0x19e, 0x19c, 0x199, + 0x197, 0x194, 0x192, 0x18f, 0x18d, 0x18a, 0x188, 0x186, + 0x183, 0x181, 0x17f, 0x17d, 0x17a, 0x178, 0x176, 0x174, + 0x172, 0x170, 0x16e, 0x16c, 0x16a, 0x168, 0x166, 0x164, + 0x162, 0x160, 0x15e, 0x15c, 0x15a, 0x158, 0x157, 0x155, + 0x153, 0x151, 0x150, 0x14e, 0x14c, 0x14a, 0x149, 0x147, + 0x146, 0x144, 0x142, 0x141, 0x13f, 0x13e, 0x13c, 0x13b, + 0x139, 0x138, 0x136, 0x135, 0x133, 0x132, 0x130, 0x12f, + 0x12e, 0x12c, 0x12b, 0x129, 0x128, 0x127, 0x125, 0x124, + 0x123, 0x121, 0x120, 0x11f, 0x11e, 0x11c, 0x11b, 0x11a, + 0x119, 0x118, 0x116, 0x115, 0x114, 0x113, 0x112, 0x111, + 0x10f, 0x10e, 0x10d, 0x10c, 0x10b, 0x10a, 0x109, 0x108, + 0x107, 0x106, 0x105, 0x104, 0x103, 0x102, 0x101, 0x100, + }; + +/* Compute q = [u/d], r = u mod d. Avoids slow hardware division for the case + that q < 0x40; here it instead uses a table of (Euclidean) inverses. */ +# define div_smallq(q, r, u, d) \ + do { \ + if ((u) / 0x40 < (d)) \ + { \ + int _cnt; \ + uintmax_t _dinv, _mask, _q, _r; \ + count_leading_zeros (_cnt, (d)); \ + _r = (u); \ + if (UNLIKELY (_cnt > (W_TYPE_SIZE - 8))) \ + { \ + _dinv = invtab[((d) << (_cnt + 8 - W_TYPE_SIZE)) - 0x80]; \ + _q = _dinv * _r >> (8 + W_TYPE_SIZE - _cnt); \ + } \ + else \ + { \ + _dinv = invtab[((d) >> (W_TYPE_SIZE - 8 - _cnt)) - 0x7f]; \ + _q = _dinv * (_r >> (W_TYPE_SIZE - 3 - _cnt)) >> 11; \ + } \ + _r -= _q * (d); \ + \ + _mask = -(uintmax_t) (_r >= (d)); \ + (r) = _r - (_mask & (d)); \ + (q) = _q - _mask; \ + affirm ((q) * (d) + (r) == u); \ + } \ + else \ + { \ + uintmax_t _q = (u) / (d); \ + (r) = (u) - _q * (d); \ + (q) = _q; \ + } \ + } while (0) + +/* Notes: Example N = 22117019. After first phase we find Q1 = 6314, Q + = 3025, P = 1737, representing F_{18} = (-6314, 2 * 1737, 3025), + with 3025 = 55^2. + + Constructing the square root, we get Q1 = 55, Q = 8653, P = 4652, + representing G_0 = (-55, 2 * 4652, 8653). + + In the notation of the paper: + + S_{-1} = 55, S_0 = 8653, R_0 = 4652 + + Put + + t_0 = floor([q_0 + R_0] / S0) = 1 + R_1 = t_0 * S_0 - R_0 = 4001 + S_1 = S_{-1} +t_0 (R_0 - R_1) = 706 +*/ + +/* Multipliers, in order of efficiency: + 0.7268 3*5*7*11 = 1155 = 3 (mod 4) + 0.7317 3*5*7 = 105 = 1 + 0.7820 3*5*11 = 165 = 1 + 0.7872 3*5 = 15 = 3 + 0.8101 3*7*11 = 231 = 3 + 0.8155 3*7 = 21 = 1 + 0.8284 5*7*11 = 385 = 1 + 0.8339 5*7 = 35 = 3 + 0.8716 3*11 = 33 = 1 + 0.8774 3 = 3 = 3 + 0.8913 5*11 = 55 = 3 + 0.8972 5 = 5 = 1 + 0.9233 7*11 = 77 = 1 + 0.9295 7 = 7 = 3 + 0.9934 11 = 11 = 3 +*/ +# define QUEUE_SIZE 50 +#endif + +#if STAT_SQUFOF +# define Q_FREQ_SIZE 50 +/* Element 0 keeps the total */ +static int q_freq[Q_FREQ_SIZE + 1]; +#endif + +#if USE_SQUFOF +/* Return true on success. Expected to fail only for numbers + >= 2^{2*W_TYPE_SIZE - 2}, or close to that limit. */ +static bool +factor_using_squfof (uintmax_t n1, uintmax_t n0, struct factors *factors) +{ + /* Uses algorithm and notation from + + SQUARE FORM FACTORIZATION + JASON E. GOWER AND SAMUEL S. WAGSTAFF, JR. + + https://homes.cerias.purdue.edu/~ssw/squfof.pdf + */ + + static short const multipliers_1[] = + { /* = 1 (mod 4) */ + 105, 165, 21, 385, 33, 5, 77, 1, 0 + }; + static short const multipliers_3[] = + { /* = 3 (mod 4) */ + 1155, 15, 231, 35, 3, 55, 7, 11, 0 + }; + + struct { uintmax_t Q; uintmax_t P; } queue[QUEUE_SIZE]; + + if (n1 >= ((uintmax_t) 1 << (W_TYPE_SIZE - 2))) + return false; + + uintmax_t sqrt_n = isqrt2 (n1, n0); + + if (n0 == sqrt_n * sqrt_n) + { + uintmax_t p1, p0; + + umul_ppmm (p1, p0, sqrt_n, sqrt_n); + affirm (p0 == n0); + + if (n1 == p1) + { + if (prime_p (sqrt_n)) + factor_insert_multiplicity (factors, sqrt_n, 2); + else + { + struct factors f; + + f.nfactors = 0; + if (!factor_using_squfof (0, sqrt_n, &f)) + { + /* Try pollard rho instead */ + factor_using_pollard_rho (sqrt_n, 1, &f); + } + /* Duplicate the new factors */ + for (unsigned int i = 0; i < f.nfactors; i++) + factor_insert_multiplicity (factors, f.p[i], 2 * f.e[i]); + } + return true; + } + } + + /* Select multipliers so we always get n * mu = 3 (mod 4) */ + for (short const *m = (n0 % 4 == 1) ? multipliers_3 : multipliers_1; + *m; m++) + { + uintmax_t S, Dh, Dl, Q1, Q, P, L, L1, B; + unsigned int i; + unsigned int mu = *m; + int qpos = 0; + + affirm (mu * n0 % 4 == 3); + + /* In the notation of the paper, with mu * n == 3 (mod 4), we + get \Delta = 4 mu * n, and the paper's \mu is 2 mu. As far as + I understand it, the necessary bound is 4 \mu^3 < n, or 32 + mu^3 < n. + + However, this seems insufficient: With n = 37243139 and mu = + 105, we get a trivial factor, from the square 38809 = 197^2, + without any corresponding Q earlier in the iteration. + + Requiring 64 mu^3 < n seems sufficient. */ + if (n1 == 0) + { + if ((uintmax_t) mu * mu * mu >= n0 / 64) + continue; + } + else + { + if (n1 > ((uintmax_t) 1 << (W_TYPE_SIZE - 2)) / mu) + continue; + } + umul_ppmm (Dh, Dl, n0, mu); + Dh += n1 * mu; + + affirm (Dl % 4 != 1); + affirm (Dh < (uintmax_t) 1 << (W_TYPE_SIZE - 2)); + + S = isqrt2 (Dh, Dl); + + Q1 = 1; + P = S; + + /* Square root remainder fits in one word, so ignore high part. */ + Q = Dl - P * P; + /* FIXME: When can this differ from floor (sqrt (2 * sqrt (D)))? */ + L = isqrt (2 * S); + B = 2 * L; + L1 = mu * 2 * L; + + /* The form is (+/- Q1, 2P, -/+ Q), of discriminant 4 (P^2 + Q Q1) = + 4 D. */ + + for (i = 0; i <= B; i++) + { + uintmax_t q, P1, t, rem; + + div_smallq (q, rem, S + P, Q); + P1 = S - rem; /* P1 = q*Q - P */ + + affirm (q > 0 && Q > 0); + +# if STAT_SQUFOF + q_freq[0]++; + q_freq[MIN (q, Q_FREQ_SIZE)]++; +# endif + + if (Q <= L1) + { + uintmax_t g = Q; + + if ((Q & 1) == 0) + g /= 2; + + g /= gcd_odd (g, mu); + + if (g <= L) + { + if (qpos >= QUEUE_SIZE) + error (EXIT_FAILURE, 0, _("squfof queue overflow")); + queue[qpos].Q = g; + queue[qpos].P = P % g; + qpos++; + } + } + + /* I think the difference can be either sign, but mod + 2^W_TYPE_SIZE arithmetic should be fine. */ + t = Q1 + q * (P - P1); + Q1 = Q; + Q = t; + P = P1; + + if ((i & 1) == 0) + { + uintmax_t r = is_square (Q); + if (r) + { + for (int j = 0; j < qpos; j++) + { + if (queue[j].Q == r) + { + if (r == 1) + /* Traversed entire cycle. */ + goto next_multiplier; + + /* Need the absolute value for divisibility test. */ + if (P >= queue[j].P) + t = P - queue[j].P; + else + t = queue[j].P - P; + if (t % r == 0) + { + /* Delete entries up to and including entry + j, which matched. */ + memmove (queue, queue + j + 1, + (qpos - j - 1) * sizeof (queue[0])); + qpos -= (j + 1); + } + goto next_i; + } + } + + /* We have found a square form, which should give a + factor. */ + Q1 = r; + affirm (S >= P); /* What signs are possible? */ + P += r * ((S - P) / r); + + /* Note: Paper says (N - P*P) / Q1, that seems incorrect + for the case D = 2N. */ + /* Compute Q = (D - P*P) / Q1, but we need double + precision. */ + uintmax_t hi, lo; + umul_ppmm (hi, lo, P, P); + sub_ddmmss (hi, lo, Dh, Dl, hi, lo); + udiv_qrnnd (Q, rem, hi, lo, Q1); + affirm (rem == 0); + + for (;;) + { + /* Note: There appears to by a typo in the paper, + Step 4a in the algorithm description says q <-- + floor([S+P]/\hat Q), but looking at the equations + in Sec. 3.1, it should be q <-- floor([S+P] / Q). + (In this code, \hat Q is Q1). */ + div_smallq (q, rem, S + P, Q); + P1 = S - rem; /* P1 = q*Q - P */ + +# if STAT_SQUFOF + q_freq[0]++; + q_freq[MIN (q, Q_FREQ_SIZE)]++; +# endif + if (P == P1) + break; + t = Q1 + q * (P - P1); + Q1 = Q; + Q = t; + P = P1; + } + + if ((Q & 1) == 0) + Q /= 2; + Q /= gcd_odd (Q, mu); + + affirm (Q > 1 && (n1 || Q < n0)); + + if (prime_p (Q)) + factor_insert (factors, Q); + else if (!factor_using_squfof (0, Q, factors)) + factor_using_pollard_rho (Q, 2, factors); + + divexact_21 (n1, n0, n1, n0, Q); + + if (prime2_p (n1, n0)) + factor_insert_large (factors, n1, n0); + else + { + if (!factor_using_squfof (n1, n0, factors)) + { + if (n1 == 0) + factor_using_pollard_rho (n0, 1, factors); + else + factor_using_pollard_rho2 (n1, n0, 1, factors); + } + } + + return true; + } + } + next_i:; + } + next_multiplier:; + } + return false; +} +#endif + +/* Compute the prime factors of the 128-bit number (T1,T0), and put the + results in FACTORS. */ +static void +factor (uintmax_t t1, uintmax_t t0, struct factors *factors) +{ + factors->nfactors = 0; + factors->plarge[1] = 0; + + if (t1 == 0 && t0 < 2) + return; + + t0 = factor_using_division (&t1, t1, t0, factors); + + if (t1 == 0 && t0 < 2) + return; + + if (prime2_p (t1, t0)) + factor_insert_large (factors, t1, t0); + else + { +#if USE_SQUFOF + if (factor_using_squfof (t1, t0, factors)) + return; +#endif + + if (t1 == 0) + factor_using_pollard_rho (t0, 1, factors); + else + factor_using_pollard_rho2 (t1, t0, 1, factors); + } +} + +/* Use Pollard-rho to compute the prime factors of + arbitrary-precision T, and put the results in FACTORS. */ +static void +mp_factor (mpz_t t, struct mp_factors *factors) +{ + mp_factor_init (factors); + + if (mpz_sgn (t) != 0) + { + mp_factor_using_division (t, factors); + + if (mpz_cmp_ui (t, 1) != 0) + { + devmsg ("[is number prime?] "); + if (mp_prime_p (t)) + mp_factor_insert (factors, t); + else + mp_factor_using_pollard_rho (t, 1, factors); + } + } +} + +static strtol_error +strto2uintmax (uintmax_t *hip, uintmax_t *lop, char const *s) +{ + int lo_carry; + uintmax_t hi = 0, lo = 0; + + strtol_error err = LONGINT_INVALID; + + /* Initial scan for invalid digits. */ + char const *p = s; + for (;;) + { + unsigned char c = *p++; + if (c == 0) + break; + + if (UNLIKELY (!ISDIGIT (c))) + { + err = LONGINT_INVALID; + break; + } + + err = LONGINT_OK; /* we've seen at least one valid digit */ + } + + while (err == LONGINT_OK) + { + unsigned char c = *s++; + if (c == 0) + break; + + c -= '0'; + + if (UNLIKELY (hi > ~(uintmax_t)0 / 10)) + { + err = LONGINT_OVERFLOW; + break; + } + hi = 10 * hi; + + lo_carry = (lo >> (W_TYPE_SIZE - 3)) + (lo >> (W_TYPE_SIZE - 1)); + lo_carry += 10 * lo < 2 * lo; + + lo = 10 * lo; + lo += c; + + lo_carry += lo < c; + hi += lo_carry; + if (UNLIKELY (hi < lo_carry)) + { + err = LONGINT_OVERFLOW; + break; + } + } + + *hip = hi; + *lop = lo; + + return err; +} + +/* Structure and routines for buffering and outputting full lines, + to support parallel operation efficiently. */ +static struct lbuf_ +{ + char *buf; + char *end; +} lbuf; + +/* 512 is chosen to give good performance, + and also is the max guaranteed size that + consumers can read atomically through pipes. + Also it's big enough to cater for max line length + even with 128 bit uintmax_t. */ +#define FACTOR_PIPE_BUF 512 + +static void +lbuf_alloc (void) +{ + if (lbuf.buf) + return; + + /* Double to ensure enough space for + previous numbers + next number. */ + lbuf.buf = xmalloc (FACTOR_PIPE_BUF * 2); + lbuf.end = lbuf.buf; +} + +/* Write complete LBUF to standard output. */ +static void +lbuf_flush (void) +{ + size_t size = lbuf.end - lbuf.buf; + if (full_write (STDOUT_FILENO, lbuf.buf, size) != size) + write_error (); + lbuf.end = lbuf.buf; +} + +/* Add a character C to LBUF and if it's a newline + and enough bytes are already buffered, + then write atomically to standard output. */ +static void +lbuf_putc (char c) +{ + *lbuf.end++ = c; + + if (c == '\n') + { + size_t buffered = lbuf.end - lbuf.buf; + + /* Provide immediate output for interactive use. */ + static int line_buffered = -1; + if (line_buffered == -1) + line_buffered = isatty (STDIN_FILENO) || isatty (STDOUT_FILENO); + if (line_buffered) + lbuf_flush (); + else if (buffered >= FACTOR_PIPE_BUF) + { + /* Write output in <= PIPE_BUF chunks + so consumers can read atomically. */ + char const *tend = lbuf.end; + + /* Since a umaxint_t's factors must fit in 512 + we're guaranteed to find a newline here. */ + char *tlend = lbuf.buf + FACTOR_PIPE_BUF; + while (*--tlend != '\n'); + tlend++; + + lbuf.end = tlend; + lbuf_flush (); + + /* Buffer the remainder. */ + memcpy (lbuf.buf, tlend, tend - tlend); + lbuf.end = lbuf.buf + (tend - tlend); + } + } +} + +/* Buffer an int to the internal LBUF. */ +static void +lbuf_putint (uintmax_t i, size_t min_width) +{ + char buf[INT_BUFSIZE_BOUND (uintmax_t)]; + char const *umaxstr = umaxtostr (i, buf); + size_t width = sizeof (buf) - (umaxstr - buf) - 1; + size_t z = width; + + for (; z < min_width; z++) + *lbuf.end++ = '0'; + + memcpy (lbuf.end, umaxstr, width); + lbuf.end += width; +} + +static void +print_uintmaxes (uintmax_t t1, uintmax_t t0) +{ + uintmax_t q, r; + + if (t1 == 0) + lbuf_putint (t0, 0); + else + { + /* Use very plain code here since it seems hard to write fast code + without assuming a specific word size. */ + q = t1 / 1000000000; + r = t1 % 1000000000; + udiv_qrnnd (t0, r, r, t0, 1000000000); + print_uintmaxes (q, t0); + lbuf_putint (r, 9); + } +} + +/* Single-precision factoring */ +static void +print_factors_single (uintmax_t t1, uintmax_t t0) +{ + struct factors factors; + + print_uintmaxes (t1, t0); + lbuf_putc (':'); + + factor (t1, t0, &factors); + + for (int j = 0; j < factors.nfactors; j++) + for (int k = 0; k < factors.e[j]; k++) + { + lbuf_putc (' '); + print_uintmaxes (0, factors.p[j]); + if (print_exponents && factors.e[j] > 1) + { + lbuf_putc ('^'); + lbuf_putint (factors.e[j], 0); + break; + } + } + + if (factors.plarge[1]) + { + lbuf_putc (' '); + print_uintmaxes (factors.plarge[1], factors.plarge[0]); + } + + lbuf_putc ('\n'); +} + +/* Emit the factors of the indicated number. If we have the option of using + either algorithm, we select on the basis of the length of the number. + For longer numbers, we prefer the MP algorithm even if the native algorithm + has enough digits, because the algorithm is better. The turnover point + depends on the value. */ +static bool +print_factors (char const *input) +{ + /* Skip initial spaces and '+'. */ + char const *str = input; + while (*str == ' ') + str++; + str += *str == '+'; + + uintmax_t t1, t0; + + /* Try converting the number to one or two words. If it fails, use GMP or + print an error message. The 2nd condition checks that the most + significant bit of the two-word number is clear, in a typesize neutral + way. */ + strtol_error err = strto2uintmax (&t1, &t0, str); + + switch (err) + { + case LONGINT_OK: + if (((t1 << 1) >> 1) == t1) + { + devmsg ("[using single-precision arithmetic] "); + print_factors_single (t1, t0); + return true; + } + break; + + case LONGINT_OVERFLOW: + /* Try GMP. */ + break; + + default: + error (0, 0, _("%s is not a valid positive integer"), quote (input)); + return false; + } + + devmsg ("[using arbitrary-precision arithmetic] "); + mpz_t t; + struct mp_factors factors; + + mpz_init_set_str (t, str, 10); + + mpz_out_str (stdout, 10, t); + putchar (':'); + mp_factor (t, &factors); + + for (idx_t j = 0; j < factors.nfactors; j++) + for (unsigned long int k = 0; k < factors.e[j]; k++) + { + putchar (' '); + mpz_out_str (stdout, 10, factors.p[j]); + if (print_exponents && factors.e[j] > 1) + { + printf ("^%lu", factors.e[j]); + break; + } + } + + mp_factor_clear (&factors); + mpz_clear (t); + putchar ('\n'); + fflush (stdout); + return true; +} + +void +usage (int status) +{ + if (status != EXIT_SUCCESS) + emit_try_help (); + else + { + printf (_("\ +Usage: %s [OPTION] [NUMBER]...\n\ +"), + program_name); + fputs (_("\ +Print the prime factors of each specified integer NUMBER. If none\n\ +are specified on the command line, read them from standard input.\n\ +\n\ +"), stdout); + fputs ("\ + -h, --exponents print repeated factors in form p^e unless e is 1\n\ +", stdout); + fputs (HELP_OPTION_DESCRIPTION, stdout); + fputs (VERSION_OPTION_DESCRIPTION, stdout); + emit_ancillary_info (PROGRAM_NAME); + } + exit (status); +} + +static bool +do_stdin (void) +{ + bool ok = true; + token_buffer tokenbuffer; + + init_tokenbuffer (&tokenbuffer); + + while (true) + { + size_t token_length = readtoken (stdin, DELIM, sizeof (DELIM) - 1, + &tokenbuffer); + if (token_length == (size_t) -1) + { + if (ferror (stdin)) + error (EXIT_FAILURE, errno, _("error reading input")); + break; + } + + ok &= print_factors (tokenbuffer.buffer); + } + free (tokenbuffer.buffer); + + return ok; +} + +int +main (int argc, char **argv) +{ + initialize_main (&argc, &argv); + set_program_name (argv[0]); + setlocale (LC_ALL, ""); + bindtextdomain (PACKAGE, LOCALEDIR); + textdomain (PACKAGE); + + lbuf_alloc (); + atexit (close_stdout); + atexit (lbuf_flush); + + int c; + while ((c = getopt_long (argc, argv, "h", long_options, nullptr)) != -1) + { + switch (c) + { + case 'h': /* NetBSD used -h for this functionality first. */ + print_exponents = true; + break; + + case DEV_DEBUG_OPTION: + dev_debug = true; + break; + + case_GETOPT_HELP_CHAR; + + case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS); + + default: + usage (EXIT_FAILURE); + } + } + +#if STAT_SQUFOF + memset (q_freq, 0, sizeof (q_freq)); +#endif + + bool ok; + if (argc <= optind) + ok = do_stdin (); + else + { + ok = true; + for (int i = optind; i < argc; i++) + if (! print_factors (argv[i])) + ok = false; + } + +#if STAT_SQUFOF + if (q_freq[0] > 0) + { + double acc_f; + printf ("q freq. cum. freq.(total: %d)\n", q_freq[0]); + for (int i = 1, acc_f = 0.0; i <= Q_FREQ_SIZE; i++) + { + double f = (double) q_freq[i] / q_freq[0]; + acc_f += f; + printf ("%s%d %.2f%% %.2f%%\n", i == Q_FREQ_SIZE ? ">=" : "", i, + 100.0 * f, 100.0 * acc_f); + } + } +#endif + + return ok ? EXIT_SUCCESS : EXIT_FAILURE; +} |