summaryrefslogtreecommitdiffstats
path: root/src/factor.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/factor.c')
-rw-r--r--src/factor.c2662
1 files changed, 2662 insertions, 0 deletions
diff --git a/src/factor.c b/src/factor.c
new file mode 100644
index 0000000..c47250a
--- /dev/null
+++ b/src/factor.c
@@ -0,0 +1,2662 @@
+/* factor -- print prime factors of n.
+ Copyright (C) 1986-2023 Free Software Foundation, Inc.
+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation, either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <https://www.gnu.org/licenses/>. */
+
+/* Originally written by Paul Rubin <phr@ocf.berkeley.edu>.
+ Adapted for GNU, fixed to factor UINT_MAX by Jim Meyering.
+ Arbitrary-precision code adapted by James Youngman from Torbjörn
+ Granlund's factorize.c, from GNU MP version 4.2.2.
+ In 2012, the core was rewritten by Torbjörn Granlund and Niels Möller.
+ Contains code from GNU MP. */
+
+/* Efficiently factor numbers that fit in one or two words (word = uintmax_t),
+ or, with GMP, numbers of any size.
+
+ Code organization:
+
+ There are several variants of many functions, for handling one word, two
+ words, and GMP's mpz_t type. If the one-word variant is called foo, the
+ two-word variant will be foo2, and the one for mpz_t will be mp_foo. In
+ some cases, the plain function variants will handle both one-word and
+ two-word numbers, evidenced by function arguments.
+
+ The factoring code for two words will fall into the code for one word when
+ progress allows that.
+
+ Algorithm:
+
+ (1) Perform trial division using a small primes table, but without hardware
+ division since the primes table store inverses modulo the word base.
+ (The GMP variant of this code doesn't make use of the precomputed
+ inverses, but instead relies on GMP for fast divisibility testing.)
+ (2) Check the nature of any non-factored part using Miller-Rabin for
+ detecting composites, and Lucas for detecting primes.
+ (3) Factor any remaining composite part using the Pollard-Brent rho
+ algorithm or if USE_SQUFOF is defined to 1, try that first.
+ Status of found factors are checked again using Miller-Rabin and Lucas.
+
+ We prefer using Hensel norm in the divisions, not the more familiar
+ Euclidean norm, since the former leads to much faster code. In the
+ Pollard-Brent rho code and the prime testing code, we use Montgomery's
+ trick of multiplying all n-residues by the word base, allowing cheap Hensel
+ reductions mod n.
+
+ The GMP code uses an algorithm that can be considerably slower;
+ for example, on a circa-2017 Intel Xeon Silver 4116, factoring
+ 2^{127}-3 takes about 50 ms with the two-word algorithm but would
+ take about 750 ms with the GMP code.
+
+ Improvements:
+
+ * Use modular inverses also for exact division in the Lucas code, and
+ elsewhere. A problem is to locate the inverses not from an index, but
+ from a prime. We might instead compute the inverse on-the-fly.
+
+ * Tune trial division table size (not forgetting that this is a standalone
+ program where the table will be read from secondary storage for
+ each invocation).
+
+ * Implement less naive powm, using k-ary exponentiation for k = 3 or
+ perhaps k = 4.
+
+ * Try to speed trial division code for single uintmax_t numbers, i.e., the
+ code using DIVBLOCK. It currently runs at 2 cycles per prime (Intel SBR,
+ IBR), 3 cycles per prime (AMD Stars) and 5 cycles per prime (AMD BD) when
+ using gcc 4.6 and 4.7. Some software pipelining should help; 1, 2, and 4
+ respectively cycles ought to be possible.
+
+ * The redcify function could be vastly improved by using (plain Euclidean)
+ pre-inversion (such as GMP's invert_limb) and udiv_qrnnd_preinv (from
+ GMP's gmp-impl.h). The redcify2 function could be vastly improved using
+ similar methods. These functions currently dominate run time when using
+ the -w option.
+*/
+
+/* Whether to recursively factor to prove primality,
+ or run faster probabilistic tests. */
+#ifndef PROVE_PRIMALITY
+# define PROVE_PRIMALITY 1
+#endif
+
+/* Faster for certain ranges but less general. */
+#ifndef USE_SQUFOF
+# define USE_SQUFOF 0
+#endif
+
+/* Output SQUFOF statistics. */
+#ifndef STAT_SQUFOF
+# define STAT_SQUFOF 0
+#endif
+
+
+#include <config.h>
+#include <getopt.h>
+#include <stdio.h>
+#include <gmp.h>
+
+#include "system.h"
+#include "assure.h"
+#include "full-write.h"
+#include "quote.h"
+#include "readtokens.h"
+#include "xstrtol.h"
+
+/* The official name of this program (e.g., no 'g' prefix). */
+#define PROGRAM_NAME "factor"
+
+#define AUTHORS \
+ proper_name ("Paul Rubin"), \
+ proper_name_lite ("Torbjorn Granlund", "Torbj\303\266rn Granlund"), \
+ proper_name_lite ("Niels Moller", "Niels M\303\266ller")
+
+/* Token delimiters when reading from a file. */
+#define DELIM "\n\t "
+
+#ifndef USE_LONGLONG_H
+/* With the way we use longlong.h, it's only safe to use
+ when UWtype = UHWtype, as there were various cases
+ (as can be seen in the history for longlong.h) where
+ for example, _LP64 was required to enable W_TYPE_SIZE==64 code,
+ to avoid compile time or run time issues. */
+# if LONG_MAX == INTMAX_MAX
+# define USE_LONGLONG_H 1
+# endif
+#endif
+
+#if USE_LONGLONG_H
+
+/* Make definitions for longlong.h to make it do what it can do for us */
+
+/* bitcount for uintmax_t */
+# if UINTMAX_MAX == UINT32_MAX
+# define W_TYPE_SIZE 32
+# elif UINTMAX_MAX == UINT64_MAX
+# define W_TYPE_SIZE 64
+# elif UINTMAX_MAX == UINT128_MAX
+# define W_TYPE_SIZE 128
+# endif
+
+# define UWtype uintmax_t
+# define UHWtype unsigned long int
+# undef UDWtype
+# if HAVE_ATTRIBUTE_MODE
+typedef unsigned int UQItype __attribute__ ((mode (QI)));
+typedef int SItype __attribute__ ((mode (SI)));
+typedef unsigned int USItype __attribute__ ((mode (SI)));
+typedef int DItype __attribute__ ((mode (DI)));
+typedef unsigned int UDItype __attribute__ ((mode (DI)));
+# else
+typedef unsigned char UQItype;
+typedef long SItype;
+typedef unsigned long int USItype;
+# if HAVE_LONG_LONG_INT
+typedef long long int DItype;
+typedef unsigned long long int UDItype;
+# else /* Assume `long' gives us a wide enough type. Needed for hppa2.0w. */
+typedef long int DItype;
+typedef unsigned long int UDItype;
+# endif
+# endif
+# define LONGLONG_STANDALONE /* Don't require GMP's longlong.h mdep files */
+# define ASSERT(x) /* FIXME make longlong.h really standalone */
+# define __GMP_DECLSPEC /* FIXME make longlong.h really standalone */
+# define __clz_tab factor_clz_tab /* Rename to avoid glibc collision */
+# ifndef __GMP_GNUC_PREREQ
+# define __GMP_GNUC_PREREQ(a,b) 1
+# endif
+
+/* These stub macros are only used in longlong.h in certain system compiler
+ combinations, so ensure usage to avoid -Wunused-macros warnings. */
+# if __GMP_GNUC_PREREQ (1,1) && defined __clz_tab
+ASSERT (1)
+__GMP_DECLSPEC
+# endif
+
+# if _ARCH_PPC
+# define HAVE_HOST_CPU_FAMILY_powerpc 1
+# endif
+# include "longlong.h"
+# ifdef COUNT_LEADING_ZEROS_NEED_CLZ_TAB
+const unsigned char factor_clz_tab[129] =
+{
+ 1,2,3,3,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
+ 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
+ 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
+ 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
+ 9
+};
+# endif
+
+#else /* not USE_LONGLONG_H */
+
+# define W_TYPE_SIZE (8 * sizeof (uintmax_t))
+# define __ll_B ((uintmax_t) 1 << (W_TYPE_SIZE / 2))
+# define __ll_lowpart(t) ((uintmax_t) (t) & (__ll_B - 1))
+# define __ll_highpart(t) ((uintmax_t) (t) >> (W_TYPE_SIZE / 2))
+
+#endif
+
+#if !defined __clz_tab && !defined UHWtype
+/* Without this seemingly useless conditional, gcc -Wunused-macros
+ warns that each of the two tested macros is unused on Fedora 18.
+ FIXME: this is just an ugly band-aid. Fix it properly. */
+#endif
+
+/* 2*3*5*7*11...*101 is 128 bits, and has 26 prime factors */
+#define MAX_NFACTS 26
+
+enum
+{
+ DEV_DEBUG_OPTION = CHAR_MAX + 1
+};
+
+static struct option const long_options[] =
+{
+ {"exponents", no_argument, nullptr, 'h'},
+ {"-debug", no_argument, nullptr, DEV_DEBUG_OPTION},
+ {GETOPT_HELP_OPTION_DECL},
+ {GETOPT_VERSION_OPTION_DECL},
+ {nullptr, 0, nullptr, 0}
+};
+
+/* If true, use p^e output format. */
+static bool print_exponents;
+
+struct factors
+{
+ uintmax_t plarge[2]; /* Can have a single large factor */
+ uintmax_t p[MAX_NFACTS];
+ unsigned char e[MAX_NFACTS];
+ unsigned char nfactors;
+};
+
+struct mp_factors
+{
+ mpz_t *p;
+ unsigned long int *e;
+ idx_t nfactors;
+};
+
+static void factor (uintmax_t, uintmax_t, struct factors *);
+
+#ifndef umul_ppmm
+# define umul_ppmm(w1, w0, u, v) \
+ do { \
+ uintmax_t __x0, __x1, __x2, __x3; \
+ unsigned long int __ul, __vl, __uh, __vh; \
+ uintmax_t __u = (u), __v = (v); \
+ \
+ __ul = __ll_lowpart (__u); \
+ __uh = __ll_highpart (__u); \
+ __vl = __ll_lowpart (__v); \
+ __vh = __ll_highpart (__v); \
+ \
+ __x0 = (uintmax_t) __ul * __vl; \
+ __x1 = (uintmax_t) __ul * __vh; \
+ __x2 = (uintmax_t) __uh * __vl; \
+ __x3 = (uintmax_t) __uh * __vh; \
+ \
+ __x1 += __ll_highpart (__x0);/* This can't give carry. */ \
+ __x1 += __x2; /* But this indeed can. */ \
+ if (__x1 < __x2) /* Did we get it? */ \
+ __x3 += __ll_B; /* Yes, add it in the proper pos. */ \
+ \
+ (w1) = __x3 + __ll_highpart (__x1); \
+ (w0) = (__x1 << W_TYPE_SIZE / 2) + __ll_lowpart (__x0); \
+ } while (0)
+#endif
+
+#if !defined udiv_qrnnd || defined UDIV_NEEDS_NORMALIZATION
+/* Define our own, not needing normalization. This function is
+ currently not performance critical, so keep it simple. Similar to
+ the mod macro below. */
+# undef udiv_qrnnd
+# define udiv_qrnnd(q, r, n1, n0, d) \
+ do { \
+ uintmax_t __d1, __d0, __q, __r1, __r0; \
+ \
+ __d1 = (d); __d0 = 0; \
+ __r1 = (n1); __r0 = (n0); \
+ affirm (__r1 < __d1); \
+ __q = 0; \
+ for (int __i = W_TYPE_SIZE; __i > 0; __i--) \
+ { \
+ rsh2 (__d1, __d0, __d1, __d0, 1); \
+ __q <<= 1; \
+ if (ge2 (__r1, __r0, __d1, __d0)) \
+ { \
+ __q++; \
+ sub_ddmmss (__r1, __r0, __r1, __r0, __d1, __d0); \
+ } \
+ } \
+ (r) = __r0; \
+ (q) = __q; \
+ } while (0)
+#endif
+
+#if !defined add_ssaaaa
+# define add_ssaaaa(sh, sl, ah, al, bh, bl) \
+ do { \
+ uintmax_t _add_x; \
+ _add_x = (al) + (bl); \
+ (sh) = (ah) + (bh) + (_add_x < (al)); \
+ (sl) = _add_x; \
+ } while (0)
+#endif
+
+#define rsh2(rh, rl, ah, al, cnt) \
+ do { \
+ (rl) = ((ah) << (W_TYPE_SIZE - (cnt))) | ((al) >> (cnt)); \
+ (rh) = (ah) >> (cnt); \
+ } while (0)
+
+#define lsh2(rh, rl, ah, al, cnt) \
+ do { \
+ (rh) = ((ah) << cnt) | ((al) >> (W_TYPE_SIZE - (cnt))); \
+ (rl) = (al) << (cnt); \
+ } while (0)
+
+#define ge2(ah, al, bh, bl) \
+ ((ah) > (bh) || ((ah) == (bh) && (al) >= (bl)))
+
+#define gt2(ah, al, bh, bl) \
+ ((ah) > (bh) || ((ah) == (bh) && (al) > (bl)))
+
+#ifndef sub_ddmmss
+# define sub_ddmmss(rh, rl, ah, al, bh, bl) \
+ do { \
+ uintmax_t _cy; \
+ _cy = (al) < (bl); \
+ (rl) = (al) - (bl); \
+ (rh) = (ah) - (bh) - _cy; \
+ } while (0)
+#endif
+
+#ifndef count_leading_zeros
+# define count_leading_zeros(count, x) do { \
+ uintmax_t __clz_x = (x); \
+ int __clz_c; \
+ for (__clz_c = 0; \
+ (__clz_x & ((uintmax_t) 0xff << (W_TYPE_SIZE - 8))) == 0; \
+ __clz_c += 8) \
+ __clz_x <<= 8; \
+ for (; (intmax_t)__clz_x >= 0; __clz_c++) \
+ __clz_x <<= 1; \
+ (count) = __clz_c; \
+ } while (0)
+#endif
+
+#ifndef count_trailing_zeros
+# define count_trailing_zeros(count, x) do { \
+ uintmax_t __ctz_x = (x); \
+ int __ctz_c = 0; \
+ while ((__ctz_x & 1) == 0) \
+ { \
+ __ctz_x >>= 1; \
+ __ctz_c++; \
+ } \
+ (count) = __ctz_c; \
+ } while (0)
+#endif
+
+/* Requires that a < n and b <= n */
+#define submod(r,a,b,n) \
+ do { \
+ uintmax_t _t = - (uintmax_t) (a < b); \
+ (r) = ((n) & _t) + (a) - (b); \
+ } while (0)
+
+#define addmod(r,a,b,n) \
+ submod ((r), (a), ((n) - (b)), (n))
+
+/* Modular two-word addition and subtraction. For performance reasons, the
+ most significant bit of n1 must be clear. The destination variables must be
+ distinct from the mod operand. */
+#define addmod2(r1, r0, a1, a0, b1, b0, n1, n0) \
+ do { \
+ add_ssaaaa ((r1), (r0), (a1), (a0), (b1), (b0)); \
+ if (ge2 ((r1), (r0), (n1), (n0))) \
+ sub_ddmmss ((r1), (r0), (r1), (r0), (n1), (n0)); \
+ } while (0)
+#define submod2(r1, r0, a1, a0, b1, b0, n1, n0) \
+ do { \
+ sub_ddmmss ((r1), (r0), (a1), (a0), (b1), (b0)); \
+ if ((intmax_t) (r1) < 0) \
+ add_ssaaaa ((r1), (r0), (r1), (r0), (n1), (n0)); \
+ } while (0)
+
+#define HIGHBIT_TO_MASK(x) \
+ (((intmax_t)-1 >> 1) < 0 \
+ ? (uintmax_t)((intmax_t)(x) >> (W_TYPE_SIZE - 1)) \
+ : ((x) & ((uintmax_t) 1 << (W_TYPE_SIZE - 1)) \
+ ? UINTMAX_MAX : (uintmax_t) 0))
+
+/* Compute r = a mod d, where r = <*t1,retval>, a = <a1,a0>, d = <d1,d0>.
+ Requires that d1 != 0. */
+static uintmax_t
+mod2 (uintmax_t *r1, uintmax_t a1, uintmax_t a0, uintmax_t d1, uintmax_t d0)
+{
+ int cntd, cnta;
+
+ affirm (d1 != 0);
+
+ if (a1 == 0)
+ {
+ *r1 = 0;
+ return a0;
+ }
+
+ count_leading_zeros (cntd, d1);
+ count_leading_zeros (cnta, a1);
+ int cnt = cntd - cnta;
+ lsh2 (d1, d0, d1, d0, cnt);
+ for (int i = 0; i < cnt; i++)
+ {
+ if (ge2 (a1, a0, d1, d0))
+ sub_ddmmss (a1, a0, a1, a0, d1, d0);
+ rsh2 (d1, d0, d1, d0, 1);
+ }
+
+ *r1 = a1;
+ return a0;
+}
+
+ATTRIBUTE_CONST
+static uintmax_t
+gcd_odd (uintmax_t a, uintmax_t b)
+{
+ if ((b & 1) == 0)
+ {
+ uintmax_t t = b;
+ b = a;
+ a = t;
+ }
+ if (a == 0)
+ return b;
+
+ /* Take out least significant one bit, to make room for sign */
+ b >>= 1;
+
+ for (;;)
+ {
+ uintmax_t t;
+ uintmax_t bgta;
+
+ while ((a & 1) == 0)
+ a >>= 1;
+ a >>= 1;
+
+ t = a - b;
+ if (t == 0)
+ return (a << 1) + 1;
+
+ bgta = HIGHBIT_TO_MASK (t);
+
+ /* b <-- min (a, b) */
+ b += (bgta & t);
+
+ /* a <-- |a - b| */
+ a = (t ^ bgta) - bgta;
+ }
+}
+
+static uintmax_t
+gcd2_odd (uintmax_t *r1, uintmax_t a1, uintmax_t a0, uintmax_t b1, uintmax_t b0)
+{
+ affirm (b0 & 1);
+
+ if ((a0 | a1) == 0)
+ {
+ *r1 = b1;
+ return b0;
+ }
+
+ while ((a0 & 1) == 0)
+ rsh2 (a1, a0, a1, a0, 1);
+
+ for (;;)
+ {
+ if ((b1 | a1) == 0)
+ {
+ *r1 = 0;
+ return gcd_odd (b0, a0);
+ }
+
+ if (gt2 (a1, a0, b1, b0))
+ {
+ sub_ddmmss (a1, a0, a1, a0, b1, b0);
+ do
+ rsh2 (a1, a0, a1, a0, 1);
+ while ((a0 & 1) == 0);
+ }
+ else if (gt2 (b1, b0, a1, a0))
+ {
+ sub_ddmmss (b1, b0, b1, b0, a1, a0);
+ do
+ rsh2 (b1, b0, b1, b0, 1);
+ while ((b0 & 1) == 0);
+ }
+ else
+ break;
+ }
+
+ *r1 = a1;
+ return a0;
+}
+
+static void
+factor_insert_multiplicity (struct factors *factors,
+ uintmax_t prime, int m)
+{
+ int nfactors = factors->nfactors;
+ uintmax_t *p = factors->p;
+ unsigned char *e = factors->e;
+
+ /* Locate position for insert new or increment e. */
+ int i;
+ for (i = nfactors - 1; i >= 0; i--)
+ {
+ if (p[i] <= prime)
+ break;
+ }
+
+ if (i < 0 || p[i] != prime)
+ {
+ for (int j = nfactors - 1; j > i; j--)
+ {
+ p[j + 1] = p[j];
+ e[j + 1] = e[j];
+ }
+ p[i + 1] = prime;
+ e[i + 1] = m;
+ factors->nfactors = nfactors + 1;
+ }
+ else
+ {
+ e[i] += m;
+ }
+}
+
+#define factor_insert(f, p) factor_insert_multiplicity (f, p, 1)
+
+static void
+factor_insert_large (struct factors *factors,
+ uintmax_t p1, uintmax_t p0)
+{
+ if (p1 > 0)
+ {
+ affirm (factors->plarge[1] == 0);
+ factors->plarge[0] = p0;
+ factors->plarge[1] = p1;
+ }
+ else
+ factor_insert (factors, p0);
+}
+
+#ifndef mpz_inits
+
+# include <stdarg.h>
+
+# define mpz_inits(...) mpz_va_init (mpz_init, __VA_ARGS__)
+# define mpz_clears(...) mpz_va_init (mpz_clear, __VA_ARGS__)
+
+static void
+mpz_va_init (void (*mpz_single_init)(mpz_t), ...)
+{
+ va_list ap;
+
+ va_start (ap, mpz_single_init);
+
+ mpz_t *mpz;
+ while ((mpz = va_arg (ap, mpz_t *)))
+ mpz_single_init (*mpz);
+
+ va_end (ap);
+}
+#endif
+
+static void mp_factor (mpz_t, struct mp_factors *);
+
+static void
+mp_factor_init (struct mp_factors *factors)
+{
+ factors->p = nullptr;
+ factors->e = nullptr;
+ factors->nfactors = 0;
+}
+
+static void
+mp_factor_clear (struct mp_factors *factors)
+{
+ for (idx_t i = 0; i < factors->nfactors; i++)
+ mpz_clear (factors->p[i]);
+
+ free (factors->p);
+ free (factors->e);
+}
+
+static void
+mp_factor_insert (struct mp_factors *factors, mpz_t prime)
+{
+ idx_t nfactors = factors->nfactors;
+ mpz_t *p = factors->p;
+ unsigned long int *e = factors->e;
+ ptrdiff_t i;
+
+ /* Locate position for insert new or increment e. */
+ for (i = nfactors - 1; i >= 0; i--)
+ {
+ if (mpz_cmp (p[i], prime) <= 0)
+ break;
+ }
+
+ if (i < 0 || mpz_cmp (p[i], prime) != 0)
+ {
+ p = xireallocarray (p, nfactors + 1, sizeof p[0]);
+ e = xireallocarray (e, nfactors + 1, sizeof e[0]);
+
+ mpz_init (p[nfactors]);
+ for (long j = nfactors - 1; j > i; j--)
+ {
+ mpz_set (p[j + 1], p[j]);
+ e[j + 1] = e[j];
+ }
+ mpz_set (p[i + 1], prime);
+ e[i + 1] = 1;
+
+ factors->p = p;
+ factors->e = e;
+ factors->nfactors = nfactors + 1;
+ }
+ else
+ {
+ e[i] += 1;
+ }
+}
+
+static void
+mp_factor_insert_ui (struct mp_factors *factors, unsigned long int prime)
+{
+ mpz_t pz;
+
+ mpz_init_set_ui (pz, prime);
+ mp_factor_insert (factors, pz);
+ mpz_clear (pz);
+}
+
+
+/* Number of bits in an uintmax_t. */
+enum { W = sizeof (uintmax_t) * CHAR_BIT };
+
+/* Verify that uintmax_t does not have holes in its representation. */
+static_assert (UINTMAX_MAX >> (W - 1) == 1);
+
+#define P(a,b,c,d) a,
+static const unsigned char primes_diff[] = {
+#include "primes.h"
+0,0,0,0,0,0,0 /* 7 sentinels for 8-way loop */
+};
+#undef P
+
+#define PRIMES_PTAB_ENTRIES \
+ (sizeof (primes_diff) / sizeof (primes_diff[0]) - 8 + 1)
+
+#define P(a,b,c,d) b,
+static const unsigned char primes_diff8[] = {
+#include "primes.h"
+0,0,0,0,0,0,0 /* 7 sentinels for 8-way loop */
+};
+#undef P
+
+struct primes_dtab
+{
+ uintmax_t binv, lim;
+};
+
+#define P(a,b,c,d) {c,d},
+static const struct primes_dtab primes_dtab[] = {
+#include "primes.h"
+{1,0},{1,0},{1,0},{1,0},{1,0},{1,0},{1,0} /* 7 sentinels for 8-way loop */
+};
+#undef P
+
+/* Verify that uintmax_t is not wider than
+ the integers used to generate primes.h. */
+static_assert (W <= WIDE_UINT_BITS);
+
+/* debugging for developers. Enables devmsg().
+ This flag is used only in the GMP code. */
+static bool dev_debug = false;
+
+/* Prove primality or run probabilistic tests. */
+static bool flag_prove_primality = PROVE_PRIMALITY;
+
+/* Number of Miller-Rabin tests to run when not proving primality. */
+#define MR_REPS 25
+
+static void
+factor_insert_refind (struct factors *factors, uintmax_t p, int i, int off)
+{
+ for (int j = 0; j < off; j++)
+ p += primes_diff[i + j];
+ factor_insert (factors, p);
+}
+
+/* Trial division with odd primes uses the following trick.
+
+ Let p be an odd prime, and B = 2^{W_TYPE_SIZE}. For simplicity,
+ consider the case t < B (this is the second loop below).
+
+ From our tables we get
+
+ binv = p^{-1} (mod B)
+ lim = floor ((B-1) / p).
+
+ First assume that t is a multiple of p, t = q * p. Then 0 <= q <= lim
+ (and all quotients in this range occur for some t).
+
+ Then t = q * p is true also (mod B), and p is invertible we get
+
+ q = t * binv (mod B).
+
+ Next, assume that t is *not* divisible by p. Since multiplication
+ by binv (mod B) is a one-to-one mapping,
+
+ t * binv (mod B) > lim,
+
+ because all the smaller values are already taken.
+
+ This can be summed up by saying that the function
+
+ q(t) = binv * t (mod B)
+
+ is a permutation of the range 0 <= t < B, with the curious property
+ that it maps the multiples of p onto the range 0 <= q <= lim, in
+ order, and the non-multiples of p onto the range lim < q < B.
+ */
+
+static uintmax_t
+factor_using_division (uintmax_t *t1p, uintmax_t t1, uintmax_t t0,
+ struct factors *factors)
+{
+ if (t0 % 2 == 0)
+ {
+ int cnt;
+
+ if (t0 == 0)
+ {
+ count_trailing_zeros (cnt, t1);
+ t0 = t1 >> cnt;
+ t1 = 0;
+ cnt += W_TYPE_SIZE;
+ }
+ else
+ {
+ count_trailing_zeros (cnt, t0);
+ rsh2 (t1, t0, t1, t0, cnt);
+ }
+
+ factor_insert_multiplicity (factors, 2, cnt);
+ }
+
+ uintmax_t p = 3;
+ idx_t i;
+ for (i = 0; t1 > 0 && i < PRIMES_PTAB_ENTRIES; i++)
+ {
+ for (;;)
+ {
+ uintmax_t q1, q0, hi;
+ MAYBE_UNUSED uintmax_t lo;
+
+ q0 = t0 * primes_dtab[i].binv;
+ umul_ppmm (hi, lo, q0, p);
+ if (hi > t1)
+ break;
+ hi = t1 - hi;
+ q1 = hi * primes_dtab[i].binv;
+ if (LIKELY (q1 > primes_dtab[i].lim))
+ break;
+ t1 = q1; t0 = q0;
+ factor_insert (factors, p);
+ }
+ p += primes_diff[i + 1];
+ }
+ if (t1p)
+ *t1p = t1;
+
+#define DIVBLOCK(I) \
+ do { \
+ for (;;) \
+ { \
+ q = t0 * pd[I].binv; \
+ if (LIKELY (q > pd[I].lim)) \
+ break; \
+ t0 = q; \
+ factor_insert_refind (factors, p, i + 1, I); \
+ } \
+ } while (0)
+
+ for (; i < PRIMES_PTAB_ENTRIES; i += 8)
+ {
+ uintmax_t q;
+ const struct primes_dtab *pd = &primes_dtab[i];
+ DIVBLOCK (0);
+ DIVBLOCK (1);
+ DIVBLOCK (2);
+ DIVBLOCK (3);
+ DIVBLOCK (4);
+ DIVBLOCK (5);
+ DIVBLOCK (6);
+ DIVBLOCK (7);
+
+ p += primes_diff8[i];
+ if (p * p > t0)
+ break;
+ }
+
+ return t0;
+}
+
+static void
+mp_factor_using_division (mpz_t t, struct mp_factors *factors)
+{
+ mpz_t q;
+ mp_bitcnt_t p;
+
+ devmsg ("[trial division] ");
+
+ mpz_init (q);
+
+ p = mpz_scan1 (t, 0);
+ mpz_fdiv_q_2exp (t, t, p);
+ while (p)
+ {
+ mp_factor_insert_ui (factors, 2);
+ --p;
+ }
+
+ unsigned long int d = 3;
+ for (idx_t i = 1; i <= PRIMES_PTAB_ENTRIES;)
+ {
+ if (! mpz_divisible_ui_p (t, d))
+ {
+ d += primes_diff[i++];
+ if (mpz_cmp_ui (t, d * d) < 0)
+ break;
+ }
+ else
+ {
+ mpz_tdiv_q_ui (t, t, d);
+ mp_factor_insert_ui (factors, d);
+ }
+ }
+
+ mpz_clear (q);
+}
+
+/* Entry i contains (2i+1)^(-1) mod 2^8. */
+static const unsigned char binvert_table[128] =
+{
+ 0x01, 0xAB, 0xCD, 0xB7, 0x39, 0xA3, 0xC5, 0xEF,
+ 0xF1, 0x1B, 0x3D, 0xA7, 0x29, 0x13, 0x35, 0xDF,
+ 0xE1, 0x8B, 0xAD, 0x97, 0x19, 0x83, 0xA5, 0xCF,
+ 0xD1, 0xFB, 0x1D, 0x87, 0x09, 0xF3, 0x15, 0xBF,
+ 0xC1, 0x6B, 0x8D, 0x77, 0xF9, 0x63, 0x85, 0xAF,
+ 0xB1, 0xDB, 0xFD, 0x67, 0xE9, 0xD3, 0xF5, 0x9F,
+ 0xA1, 0x4B, 0x6D, 0x57, 0xD9, 0x43, 0x65, 0x8F,
+ 0x91, 0xBB, 0xDD, 0x47, 0xC9, 0xB3, 0xD5, 0x7F,
+ 0x81, 0x2B, 0x4D, 0x37, 0xB9, 0x23, 0x45, 0x6F,
+ 0x71, 0x9B, 0xBD, 0x27, 0xA9, 0x93, 0xB5, 0x5F,
+ 0x61, 0x0B, 0x2D, 0x17, 0x99, 0x03, 0x25, 0x4F,
+ 0x51, 0x7B, 0x9D, 0x07, 0x89, 0x73, 0x95, 0x3F,
+ 0x41, 0xEB, 0x0D, 0xF7, 0x79, 0xE3, 0x05, 0x2F,
+ 0x31, 0x5B, 0x7D, 0xE7, 0x69, 0x53, 0x75, 0x1F,
+ 0x21, 0xCB, 0xED, 0xD7, 0x59, 0xC3, 0xE5, 0x0F,
+ 0x11, 0x3B, 0x5D, 0xC7, 0x49, 0x33, 0x55, 0xFF
+};
+
+/* Compute n^(-1) mod B, using a Newton iteration. */
+#define binv(inv,n) \
+ do { \
+ uintmax_t __n = (n); \
+ uintmax_t __inv; \
+ \
+ __inv = binvert_table[(__n / 2) & 0x7F]; /* 8 */ \
+ if (W_TYPE_SIZE > 8) __inv = 2 * __inv - __inv * __inv * __n; \
+ if (W_TYPE_SIZE > 16) __inv = 2 * __inv - __inv * __inv * __n; \
+ if (W_TYPE_SIZE > 32) __inv = 2 * __inv - __inv * __inv * __n; \
+ \
+ if (W_TYPE_SIZE > 64) \
+ { \
+ int __invbits = 64; \
+ do { \
+ __inv = 2 * __inv - __inv * __inv * __n; \
+ __invbits *= 2; \
+ } while (__invbits < W_TYPE_SIZE); \
+ } \
+ \
+ (inv) = __inv; \
+ } while (0)
+
+/* q = u / d, assuming d|u. */
+#define divexact_21(q1, q0, u1, u0, d) \
+ do { \
+ uintmax_t _di, _q0; \
+ binv (_di, (d)); \
+ _q0 = (u0) * _di; \
+ if ((u1) >= (d)) \
+ { \
+ uintmax_t _p1; \
+ MAYBE_UNUSED intmax_t _p0; \
+ umul_ppmm (_p1, _p0, _q0, d); \
+ (q1) = ((u1) - _p1) * _di; \
+ (q0) = _q0; \
+ } \
+ else \
+ { \
+ (q0) = _q0; \
+ (q1) = 0; \
+ } \
+ } while (0)
+
+/* x B (mod n). */
+#define redcify(r_prim, r, n) \
+ do { \
+ MAYBE_UNUSED uintmax_t _redcify_q; \
+ udiv_qrnnd (_redcify_q, r_prim, r, 0, n); \
+ } while (0)
+
+/* x B^2 (mod n). Requires x > 0, n1 < B/2. */
+#define redcify2(r1, r0, x, n1, n0) \
+ do { \
+ uintmax_t _r1, _r0, _i; \
+ if ((x) < (n1)) \
+ { \
+ _r1 = (x); _r0 = 0; \
+ _i = W_TYPE_SIZE; \
+ } \
+ else \
+ { \
+ _r1 = 0; _r0 = (x); \
+ _i = 2 * W_TYPE_SIZE; \
+ } \
+ while (_i-- > 0) \
+ { \
+ lsh2 (_r1, _r0, _r1, _r0, 1); \
+ if (ge2 (_r1, _r0, (n1), (n0))) \
+ sub_ddmmss (_r1, _r0, _r1, _r0, (n1), (n0)); \
+ } \
+ (r1) = _r1; \
+ (r0) = _r0; \
+ } while (0)
+
+/* Modular two-word multiplication, r = a * b mod m, with mi = m^(-1) mod B.
+ Both a and b must be in redc form, the result will be in redc form too. */
+static inline uintmax_t
+mulredc (uintmax_t a, uintmax_t b, uintmax_t m, uintmax_t mi)
+{
+ uintmax_t rh, rl, q, th, xh;
+ MAYBE_UNUSED uintmax_t tl;
+
+ umul_ppmm (rh, rl, a, b);
+ q = rl * mi;
+ umul_ppmm (th, tl, q, m);
+ xh = rh - th;
+ if (rh < th)
+ xh += m;
+
+ return xh;
+}
+
+/* Modular two-word multiplication, r = a * b mod m, with mi = m^(-1) mod B.
+ Both a and b must be in redc form, the result will be in redc form too.
+ For performance reasons, the most significant bit of m must be clear. */
+static uintmax_t
+mulredc2 (uintmax_t *r1p,
+ uintmax_t a1, uintmax_t a0, uintmax_t b1, uintmax_t b0,
+ uintmax_t m1, uintmax_t m0, uintmax_t mi)
+{
+ uintmax_t r1, r0, q, p1, t1, t0, s1, s0;
+ MAYBE_UNUSED uintmax_t p0;
+ mi = -mi;
+ affirm ((a1 >> (W_TYPE_SIZE - 1)) == 0);
+ affirm ((b1 >> (W_TYPE_SIZE - 1)) == 0);
+ affirm ((m1 >> (W_TYPE_SIZE - 1)) == 0);
+
+ /* First compute a0 * <b1, b0> B^{-1}
+ +-----+
+ |a0 b0|
+ +--+--+--+
+ |a0 b1|
+ +--+--+--+
+ |q0 m0|
+ +--+--+--+
+ |q0 m1|
+ -+--+--+--+
+ |r1|r0| 0|
+ +--+--+--+
+ */
+ umul_ppmm (t1, t0, a0, b0);
+ umul_ppmm (r1, r0, a0, b1);
+ q = mi * t0;
+ umul_ppmm (p1, p0, q, m0);
+ umul_ppmm (s1, s0, q, m1);
+ r0 += (t0 != 0); /* Carry */
+ add_ssaaaa (r1, r0, r1, r0, 0, p1);
+ add_ssaaaa (r1, r0, r1, r0, 0, t1);
+ add_ssaaaa (r1, r0, r1, r0, s1, s0);
+
+ /* Next, (a1 * <b1, b0> + <r1, r0> B^{-1}
+ +-----+
+ |a1 b0|
+ +--+--+
+ |r1|r0|
+ +--+--+--+
+ |a1 b1|
+ +--+--+--+
+ |q1 m0|
+ +--+--+--+
+ |q1 m1|
+ -+--+--+--+
+ |r1|r0| 0|
+ +--+--+--+
+ */
+ umul_ppmm (t1, t0, a1, b0);
+ umul_ppmm (s1, s0, a1, b1);
+ add_ssaaaa (t1, t0, t1, t0, 0, r0);
+ q = mi * t0;
+ add_ssaaaa (r1, r0, s1, s0, 0, r1);
+ umul_ppmm (p1, p0, q, m0);
+ umul_ppmm (s1, s0, q, m1);
+ r0 += (t0 != 0); /* Carry */
+ add_ssaaaa (r1, r0, r1, r0, 0, p1);
+ add_ssaaaa (r1, r0, r1, r0, 0, t1);
+ add_ssaaaa (r1, r0, r1, r0, s1, s0);
+
+ if (ge2 (r1, r0, m1, m0))
+ sub_ddmmss (r1, r0, r1, r0, m1, m0);
+
+ *r1p = r1;
+ return r0;
+}
+
+ATTRIBUTE_CONST
+static uintmax_t
+powm (uintmax_t b, uintmax_t e, uintmax_t n, uintmax_t ni, uintmax_t one)
+{
+ uintmax_t y = one;
+
+ if (e & 1)
+ y = b;
+
+ while (e != 0)
+ {
+ b = mulredc (b, b, n, ni);
+ e >>= 1;
+
+ if (e & 1)
+ y = mulredc (y, b, n, ni);
+ }
+
+ return y;
+}
+
+static uintmax_t
+powm2 (uintmax_t *r1m,
+ const uintmax_t *bp, const uintmax_t *ep, const uintmax_t *np,
+ uintmax_t ni, const uintmax_t *one)
+{
+ uintmax_t r1, r0, b1, b0, n1, n0;
+ int i;
+ uintmax_t e;
+
+ b0 = bp[0];
+ b1 = bp[1];
+ n0 = np[0];
+ n1 = np[1];
+
+ r0 = one[0];
+ r1 = one[1];
+
+ for (e = ep[0], i = W_TYPE_SIZE; i > 0; i--, e >>= 1)
+ {
+ if (e & 1)
+ {
+ r0 = mulredc2 (r1m, r1, r0, b1, b0, n1, n0, ni);
+ r1 = *r1m;
+ }
+ b0 = mulredc2 (r1m, b1, b0, b1, b0, n1, n0, ni);
+ b1 = *r1m;
+ }
+ for (e = ep[1]; e > 0; e >>= 1)
+ {
+ if (e & 1)
+ {
+ r0 = mulredc2 (r1m, r1, r0, b1, b0, n1, n0, ni);
+ r1 = *r1m;
+ }
+ b0 = mulredc2 (r1m, b1, b0, b1, b0, n1, n0, ni);
+ b1 = *r1m;
+ }
+ *r1m = r1;
+ return r0;
+}
+
+ATTRIBUTE_CONST
+static bool
+millerrabin (uintmax_t n, uintmax_t ni, uintmax_t b, uintmax_t q,
+ int k, uintmax_t one)
+{
+ uintmax_t y = powm (b, q, n, ni, one);
+
+ uintmax_t nm1 = n - one; /* -1, but in redc representation. */
+
+ if (y == one || y == nm1)
+ return true;
+
+ for (int i = 1; i < k; i++)
+ {
+ y = mulredc (y, y, n, ni);
+
+ if (y == nm1)
+ return true;
+ if (y == one)
+ return false;
+ }
+ return false;
+}
+
+ATTRIBUTE_PURE static bool
+millerrabin2 (const uintmax_t *np, uintmax_t ni, const uintmax_t *bp,
+ const uintmax_t *qp, int k, const uintmax_t *one)
+{
+ uintmax_t y1, y0, nm1_1, nm1_0, r1m;
+
+ y0 = powm2 (&r1m, bp, qp, np, ni, one);
+ y1 = r1m;
+
+ if (y0 == one[0] && y1 == one[1])
+ return true;
+
+ sub_ddmmss (nm1_1, nm1_0, np[1], np[0], one[1], one[0]);
+
+ if (y0 == nm1_0 && y1 == nm1_1)
+ return true;
+
+ for (int i = 1; i < k; i++)
+ {
+ y0 = mulredc2 (&r1m, y1, y0, y1, y0, np[1], np[0], ni);
+ y1 = r1m;
+
+ if (y0 == nm1_0 && y1 == nm1_1)
+ return true;
+ if (y0 == one[0] && y1 == one[1])
+ return false;
+ }
+ return false;
+}
+
+static bool
+mp_millerrabin (mpz_srcptr n, mpz_srcptr nm1, mpz_ptr x, mpz_ptr y,
+ mpz_srcptr q, mp_bitcnt_t k)
+{
+ mpz_powm (y, x, q, n);
+
+ if (mpz_cmp_ui (y, 1) == 0 || mpz_cmp (y, nm1) == 0)
+ return true;
+
+ for (mp_bitcnt_t i = 1; i < k; i++)
+ {
+ mpz_powm_ui (y, y, 2, n);
+ if (mpz_cmp (y, nm1) == 0)
+ return true;
+ if (mpz_cmp_ui (y, 1) == 0)
+ return false;
+ }
+ return false;
+}
+
+/* Lucas' prime test. The number of iterations vary greatly, up to a few dozen
+ have been observed. The average seem to be about 2. */
+static bool ATTRIBUTE_PURE
+prime_p (uintmax_t n)
+{
+ mp_bitcnt_t k;
+ bool is_prime;
+ uintmax_t a_prim, one, ni;
+ struct factors factors;
+
+ if (n <= 1)
+ return false;
+
+ /* We have already cast out small primes. */
+ if (n < (uintmax_t) FIRST_OMITTED_PRIME * FIRST_OMITTED_PRIME)
+ return true;
+
+ /* Precomputation for Miller-Rabin. */
+ uintmax_t q = n - 1;
+ for (k = 0; (q & 1) == 0; k++)
+ q >>= 1;
+
+ uintmax_t a = 2;
+ binv (ni, n); /* ni <- 1/n mod B */
+ redcify (one, 1, n);
+ addmod (a_prim, one, one, n); /* i.e., redcify a = 2 */
+
+ /* Perform a Miller-Rabin test, finds most composites quickly. */
+ if (!millerrabin (n, ni, a_prim, q, k, one))
+ return false;
+
+ if (flag_prove_primality)
+ {
+ /* Factor n-1 for Lucas. */
+ factor (0, n - 1, &factors);
+ }
+
+ /* Loop until Lucas proves our number prime, or Miller-Rabin proves our
+ number composite. */
+ for (idx_t r = 0; r < PRIMES_PTAB_ENTRIES; r++)
+ {
+ if (flag_prove_primality)
+ {
+ is_prime = true;
+ for (int i = 0; i < factors.nfactors && is_prime; i++)
+ {
+ is_prime
+ = powm (a_prim, (n - 1) / factors.p[i], n, ni, one) != one;
+ }
+ }
+ else
+ {
+ /* After enough Miller-Rabin runs, be content. */
+ is_prime = (r == MR_REPS - 1);
+ }
+
+ if (is_prime)
+ return true;
+
+ a += primes_diff[r]; /* Establish new base. */
+
+ /* The following is equivalent to redcify (a_prim, a, n). It runs faster
+ on most processors, since it avoids udiv_qrnnd. If we go down the
+ udiv_qrnnd_preinv path, this code should be replaced. */
+ {
+ uintmax_t s1, s0;
+ umul_ppmm (s1, s0, one, a);
+ if (LIKELY (s1 == 0))
+ a_prim = s0 % n;
+ else
+ {
+ MAYBE_UNUSED uintmax_t dummy;
+ udiv_qrnnd (dummy, a_prim, s1, s0, n);
+ }
+ }
+
+ if (!millerrabin (n, ni, a_prim, q, k, one))
+ return false;
+ }
+
+ affirm (!"Lucas prime test failure. This should not happen");
+}
+
+static bool ATTRIBUTE_PURE
+prime2_p (uintmax_t n1, uintmax_t n0)
+{
+ uintmax_t q[2], nm1[2];
+ uintmax_t a_prim[2];
+ uintmax_t one[2];
+ uintmax_t na[2];
+ uintmax_t ni;
+ int k;
+ struct factors factors;
+
+ if (n1 == 0)
+ return prime_p (n0);
+
+ nm1[1] = n1 - (n0 == 0);
+ nm1[0] = n0 - 1;
+ if (nm1[0] == 0)
+ {
+ count_trailing_zeros (k, nm1[1]);
+
+ q[0] = nm1[1] >> k;
+ q[1] = 0;
+ k += W_TYPE_SIZE;
+ }
+ else
+ {
+ count_trailing_zeros (k, nm1[0]);
+ rsh2 (q[1], q[0], nm1[1], nm1[0], k);
+ }
+
+ uintmax_t a = 2;
+ binv (ni, n0);
+ redcify2 (one[1], one[0], 1, n1, n0);
+ addmod2 (a_prim[1], a_prim[0], one[1], one[0], one[1], one[0], n1, n0);
+
+ /* FIXME: Use scalars or pointers in arguments? Some consistency needed. */
+ na[0] = n0;
+ na[1] = n1;
+
+ if (!millerrabin2 (na, ni, a_prim, q, k, one))
+ return false;
+
+ if (flag_prove_primality)
+ {
+ /* Factor n-1 for Lucas. */
+ factor (nm1[1], nm1[0], &factors);
+ }
+
+ /* Loop until Lucas proves our number prime, or Miller-Rabin proves our
+ number composite. */
+ for (idx_t r = 0; r < PRIMES_PTAB_ENTRIES; r++)
+ {
+ bool is_prime;
+ uintmax_t e[2], y[2];
+
+ if (flag_prove_primality)
+ {
+ is_prime = true;
+ if (factors.plarge[1])
+ {
+ uintmax_t pi;
+ binv (pi, factors.plarge[0]);
+ e[0] = pi * nm1[0];
+ e[1] = 0;
+ y[0] = powm2 (&y[1], a_prim, e, na, ni, one);
+ is_prime = (y[0] != one[0] || y[1] != one[1]);
+ }
+ for (int i = 0; i < factors.nfactors && is_prime; i++)
+ {
+ /* FIXME: We always have the factor 2. Do we really need to
+ handle it here? We have done the same powering as part
+ of millerrabin. */
+ if (factors.p[i] == 2)
+ rsh2 (e[1], e[0], nm1[1], nm1[0], 1);
+ else
+ divexact_21 (e[1], e[0], nm1[1], nm1[0], factors.p[i]);
+ y[0] = powm2 (&y[1], a_prim, e, na, ni, one);
+ is_prime = (y[0] != one[0] || y[1] != one[1]);
+ }
+ }
+ else
+ {
+ /* After enough Miller-Rabin runs, be content. */
+ is_prime = (r == MR_REPS - 1);
+ }
+
+ if (is_prime)
+ return true;
+
+ a += primes_diff[r]; /* Establish new base. */
+ redcify2 (a_prim[1], a_prim[0], a, n1, n0);
+
+ if (!millerrabin2 (na, ni, a_prim, q, k, one))
+ return false;
+ }
+
+ affirm (!"Lucas prime test failure. This should not happen");
+}
+
+static bool
+mp_prime_p (mpz_t n)
+{
+ bool is_prime;
+ mpz_t q, a, nm1, tmp;
+ struct mp_factors factors;
+
+ if (mpz_cmp_ui (n, 1) <= 0)
+ return false;
+
+ /* We have already cast out small primes. */
+ if (mpz_cmp_ui (n, (long) FIRST_OMITTED_PRIME * FIRST_OMITTED_PRIME) < 0)
+ return true;
+
+ mpz_inits (q, a, nm1, tmp, nullptr);
+
+ /* Precomputation for Miller-Rabin. */
+ mpz_sub_ui (nm1, n, 1);
+
+ /* Find q and k, where q is odd and n = 1 + 2**k * q. */
+ mp_bitcnt_t k = mpz_scan1 (nm1, 0);
+ mpz_tdiv_q_2exp (q, nm1, k);
+
+ mpz_set_ui (a, 2);
+
+ /* Perform a Miller-Rabin test, finds most composites quickly. */
+ if (!mp_millerrabin (n, nm1, a, tmp, q, k))
+ {
+ is_prime = false;
+ goto ret2;
+ }
+
+ if (flag_prove_primality)
+ {
+ /* Factor n-1 for Lucas. */
+ mpz_set (tmp, nm1);
+ mp_factor (tmp, &factors);
+ }
+
+ /* Loop until Lucas proves our number prime, or Miller-Rabin proves our
+ number composite. */
+ for (idx_t r = 0; r < PRIMES_PTAB_ENTRIES; r++)
+ {
+ if (flag_prove_primality)
+ {
+ is_prime = true;
+ for (idx_t i = 0; i < factors.nfactors && is_prime; i++)
+ {
+ mpz_divexact (tmp, nm1, factors.p[i]);
+ mpz_powm (tmp, a, tmp, n);
+ is_prime = mpz_cmp_ui (tmp, 1) != 0;
+ }
+ }
+ else
+ {
+ /* After enough Miller-Rabin runs, be content. */
+ is_prime = (r == MR_REPS - 1);
+ }
+
+ if (is_prime)
+ goto ret1;
+
+ mpz_add_ui (a, a, primes_diff[r]); /* Establish new base. */
+
+ if (!mp_millerrabin (n, nm1, a, tmp, q, k))
+ {
+ is_prime = false;
+ goto ret1;
+ }
+ }
+
+ affirm (!"Lucas prime test failure. This should not happen");
+
+ ret1:
+ if (flag_prove_primality)
+ mp_factor_clear (&factors);
+ ret2:
+ mpz_clears (q, a, nm1, tmp, nullptr);
+
+ return is_prime;
+}
+
+static void
+factor_using_pollard_rho (uintmax_t n, unsigned long int a,
+ struct factors *factors)
+{
+ uintmax_t x, z, y, P, t, ni, g;
+
+ unsigned long int k = 1;
+ unsigned long int l = 1;
+
+ redcify (P, 1, n);
+ addmod (x, P, P, n); /* i.e., redcify(2) */
+ y = z = x;
+
+ while (n != 1)
+ {
+ affirm (a < n);
+
+ binv (ni, n); /* FIXME: when could we use old 'ni' value? */
+
+ for (;;)
+ {
+ do
+ {
+ x = mulredc (x, x, n, ni);
+ addmod (x, x, a, n);
+
+ submod (t, z, x, n);
+ P = mulredc (P, t, n, ni);
+
+ if (k % 32 == 1)
+ {
+ if (gcd_odd (P, n) != 1)
+ goto factor_found;
+ y = x;
+ }
+ }
+ while (--k != 0);
+
+ z = x;
+ k = l;
+ l = 2 * l;
+ for (unsigned long int i = 0; i < k; i++)
+ {
+ x = mulredc (x, x, n, ni);
+ addmod (x, x, a, n);
+ }
+ y = x;
+ }
+
+ factor_found:
+ do
+ {
+ y = mulredc (y, y, n, ni);
+ addmod (y, y, a, n);
+
+ submod (t, z, y, n);
+ g = gcd_odd (t, n);
+ }
+ while (g == 1);
+
+ if (n == g)
+ {
+ /* Found n itself as factor. Restart with different params. */
+ factor_using_pollard_rho (n, a + 1, factors);
+ return;
+ }
+
+ n = n / g;
+
+ if (!prime_p (g))
+ factor_using_pollard_rho (g, a + 1, factors);
+ else
+ factor_insert (factors, g);
+
+ if (prime_p (n))
+ {
+ factor_insert (factors, n);
+ break;
+ }
+
+ x = x % n;
+ z = z % n;
+ y = y % n;
+ }
+}
+
+static void
+factor_using_pollard_rho2 (uintmax_t n1, uintmax_t n0, unsigned long int a,
+ struct factors *factors)
+{
+ uintmax_t x1, x0, z1, z0, y1, y0, P1, P0, t1, t0, ni, g1, g0, r1m;
+
+ unsigned long int k = 1;
+ unsigned long int l = 1;
+
+ redcify2 (P1, P0, 1, n1, n0);
+ addmod2 (x1, x0, P1, P0, P1, P0, n1, n0); /* i.e., redcify(2) */
+ y1 = z1 = x1;
+ y0 = z0 = x0;
+
+ while (n1 != 0 || n0 != 1)
+ {
+ binv (ni, n0);
+
+ for (;;)
+ {
+ do
+ {
+ x0 = mulredc2 (&r1m, x1, x0, x1, x0, n1, n0, ni);
+ x1 = r1m;
+ addmod2 (x1, x0, x1, x0, 0, (uintmax_t) a, n1, n0);
+
+ submod2 (t1, t0, z1, z0, x1, x0, n1, n0);
+ P0 = mulredc2 (&r1m, P1, P0, t1, t0, n1, n0, ni);
+ P1 = r1m;
+
+ if (k % 32 == 1)
+ {
+ g0 = gcd2_odd (&g1, P1, P0, n1, n0);
+ if (g1 != 0 || g0 != 1)
+ goto factor_found;
+ y1 = x1; y0 = x0;
+ }
+ }
+ while (--k != 0);
+
+ z1 = x1; z0 = x0;
+ k = l;
+ l = 2 * l;
+ for (unsigned long int i = 0; i < k; i++)
+ {
+ x0 = mulredc2 (&r1m, x1, x0, x1, x0, n1, n0, ni);
+ x1 = r1m;
+ addmod2 (x1, x0, x1, x0, 0, (uintmax_t) a, n1, n0);
+ }
+ y1 = x1; y0 = x0;
+ }
+
+ factor_found:
+ do
+ {
+ y0 = mulredc2 (&r1m, y1, y0, y1, y0, n1, n0, ni);
+ y1 = r1m;
+ addmod2 (y1, y0, y1, y0, 0, (uintmax_t) a, n1, n0);
+
+ submod2 (t1, t0, z1, z0, y1, y0, n1, n0);
+ g0 = gcd2_odd (&g1, t1, t0, n1, n0);
+ }
+ while (g1 == 0 && g0 == 1);
+
+ if (g1 == 0)
+ {
+ /* The found factor is one word, and > 1. */
+ divexact_21 (n1, n0, n1, n0, g0); /* n = n / g */
+
+ if (!prime_p (g0))
+ factor_using_pollard_rho (g0, a + 1, factors);
+ else
+ factor_insert (factors, g0);
+ }
+ else
+ {
+ /* The found factor is two words. This is highly unlikely, thus hard
+ to trigger. Please be careful before you change this code! */
+ uintmax_t ginv;
+
+ if (n1 == g1 && n0 == g0)
+ {
+ /* Found n itself as factor. Restart with different params. */
+ factor_using_pollard_rho2 (n1, n0, a + 1, factors);
+ return;
+ }
+
+ /* Compute n = n / g. Since the result will fit one word,
+ we can compute the quotient modulo B, ignoring the high
+ divisor word. */
+ binv (ginv, g0);
+ n0 = ginv * n0;
+ n1 = 0;
+
+ if (!prime2_p (g1, g0))
+ factor_using_pollard_rho2 (g1, g0, a + 1, factors);
+ else
+ factor_insert_large (factors, g1, g0);
+ }
+
+ if (n1 == 0)
+ {
+ if (prime_p (n0))
+ {
+ factor_insert (factors, n0);
+ break;
+ }
+
+ factor_using_pollard_rho (n0, a, factors);
+ return;
+ }
+
+ if (prime2_p (n1, n0))
+ {
+ factor_insert_large (factors, n1, n0);
+ break;
+ }
+
+ x0 = mod2 (&x1, x1, x0, n1, n0);
+ z0 = mod2 (&z1, z1, z0, n1, n0);
+ y0 = mod2 (&y1, y1, y0, n1, n0);
+ }
+}
+
+static void
+mp_factor_using_pollard_rho (mpz_t n, unsigned long int a,
+ struct mp_factors *factors)
+{
+ mpz_t x, z, y, P;
+ mpz_t t, t2;
+
+ devmsg ("[pollard-rho (%lu)] ", a);
+
+ mpz_inits (t, t2, nullptr);
+ mpz_init_set_si (y, 2);
+ mpz_init_set_si (x, 2);
+ mpz_init_set_si (z, 2);
+ mpz_init_set_ui (P, 1);
+
+ unsigned long long int k = 1;
+ unsigned long long int l = 1;
+
+ while (mpz_cmp_ui (n, 1) != 0)
+ {
+ for (;;)
+ {
+ do
+ {
+ mpz_mul (t, x, x);
+ mpz_mod (x, t, n);
+ mpz_add_ui (x, x, a);
+
+ mpz_sub (t, z, x);
+ mpz_mul (t2, P, t);
+ mpz_mod (P, t2, n);
+
+ if (k % 32 == 1)
+ {
+ mpz_gcd (t, P, n);
+ if (mpz_cmp_ui (t, 1) != 0)
+ goto factor_found;
+ mpz_set (y, x);
+ }
+ }
+ while (--k != 0);
+
+ mpz_set (z, x);
+ k = l;
+ l = 2 * l;
+ for (unsigned long long int i = 0; i < k; i++)
+ {
+ mpz_mul (t, x, x);
+ mpz_mod (x, t, n);
+ mpz_add_ui (x, x, a);
+ }
+ mpz_set (y, x);
+ }
+
+ factor_found:
+ do
+ {
+ mpz_mul (t, y, y);
+ mpz_mod (y, t, n);
+ mpz_add_ui (y, y, a);
+
+ mpz_sub (t, z, y);
+ mpz_gcd (t, t, n);
+ }
+ while (mpz_cmp_ui (t, 1) == 0);
+
+ mpz_divexact (n, n, t); /* divide by t, before t is overwritten */
+
+ if (!mp_prime_p (t))
+ {
+ devmsg ("[composite factor--restarting pollard-rho] ");
+ mp_factor_using_pollard_rho (t, a + 1, factors);
+ }
+ else
+ {
+ mp_factor_insert (factors, t);
+ }
+
+ if (mp_prime_p (n))
+ {
+ mp_factor_insert (factors, n);
+ break;
+ }
+
+ mpz_mod (x, x, n);
+ mpz_mod (z, z, n);
+ mpz_mod (y, y, n);
+ }
+
+ mpz_clears (P, t2, t, z, x, y, nullptr);
+}
+
+#if USE_SQUFOF
+/* FIXME: Maybe better to use an iteration converging to 1/sqrt(n)? If
+ algorithm is replaced, consider also returning the remainder. */
+ATTRIBUTE_CONST
+static uintmax_t
+isqrt (uintmax_t n)
+{
+ uintmax_t x;
+ int c;
+ if (n == 0)
+ return 0;
+
+ count_leading_zeros (c, n);
+
+ /* Make x > sqrt(n). This will be invariant through the loop. */
+ x = (uintmax_t) 1 << ((W_TYPE_SIZE + 1 - c) >> 1);
+
+ for (;;)
+ {
+ uintmax_t y = (x + n / x) / 2;
+ if (y >= x)
+ return x;
+
+ x = y;
+ }
+}
+
+ATTRIBUTE_CONST
+static uintmax_t
+isqrt2 (uintmax_t nh, uintmax_t nl)
+{
+ int shift;
+ uintmax_t x;
+
+ /* Ensures the remainder fits in an uintmax_t. */
+ affirm (nh < ((uintmax_t) 1 << (W_TYPE_SIZE - 2)));
+
+ if (nh == 0)
+ return isqrt (nl);
+
+ count_leading_zeros (shift, nh);
+ shift &= ~1;
+
+ /* Make x > sqrt (n). */
+ x = isqrt ((nh << shift) + (nl >> (W_TYPE_SIZE - shift))) + 1;
+ x <<= (W_TYPE_SIZE - shift) >> 1;
+
+ /* Do we need more than one iteration? */
+ for (;;)
+ {
+ MAYBE_UNUSED uintmax_t r;
+ uintmax_t q, y;
+ udiv_qrnnd (q, r, nh, nl, x);
+ y = (x + q) / 2;
+
+ if (y >= x)
+ {
+ uintmax_t hi, lo;
+ umul_ppmm (hi, lo, x + 1, x + 1);
+ affirm (gt2 (hi, lo, nh, nl));
+
+ umul_ppmm (hi, lo, x, x);
+ affirm (ge2 (nh, nl, hi, lo));
+ sub_ddmmss (hi, lo, nh, nl, hi, lo);
+ affirm (hi == 0);
+
+ return x;
+ }
+
+ x = y;
+ }
+}
+
+/* MAGIC[N] has a bit i set iff i is a quadratic residue mod N. */
+# define MAGIC64 0x0202021202030213ULL
+# define MAGIC63 0x0402483012450293ULL
+# define MAGIC65 0x218a019866014613ULL
+# define MAGIC11 0x23b
+
+/* Return the square root if the input is a square, otherwise 0. */
+ATTRIBUTE_CONST
+static uintmax_t
+is_square (uintmax_t x)
+{
+ /* Uses the tests suggested by Cohen. Excludes 99% of the non-squares before
+ computing the square root. */
+ if (((MAGIC64 >> (x & 63)) & 1)
+ && ((MAGIC63 >> (x % 63)) & 1)
+ /* Both 0 and 64 are squares mod (65). */
+ && ((MAGIC65 >> ((x % 65) & 63)) & 1)
+ && ((MAGIC11 >> (x % 11) & 1)))
+ {
+ uintmax_t r = isqrt (x);
+ if (r * r == x)
+ return r;
+ }
+ return 0;
+}
+
+/* invtab[i] = floor (0x10000 / (0x100 + i) */
+static short const invtab[0x81] =
+ {
+ 0x200,
+ 0x1fc, 0x1f8, 0x1f4, 0x1f0, 0x1ec, 0x1e9, 0x1e5, 0x1e1,
+ 0x1de, 0x1da, 0x1d7, 0x1d4, 0x1d0, 0x1cd, 0x1ca, 0x1c7,
+ 0x1c3, 0x1c0, 0x1bd, 0x1ba, 0x1b7, 0x1b4, 0x1b2, 0x1af,
+ 0x1ac, 0x1a9, 0x1a6, 0x1a4, 0x1a1, 0x19e, 0x19c, 0x199,
+ 0x197, 0x194, 0x192, 0x18f, 0x18d, 0x18a, 0x188, 0x186,
+ 0x183, 0x181, 0x17f, 0x17d, 0x17a, 0x178, 0x176, 0x174,
+ 0x172, 0x170, 0x16e, 0x16c, 0x16a, 0x168, 0x166, 0x164,
+ 0x162, 0x160, 0x15e, 0x15c, 0x15a, 0x158, 0x157, 0x155,
+ 0x153, 0x151, 0x150, 0x14e, 0x14c, 0x14a, 0x149, 0x147,
+ 0x146, 0x144, 0x142, 0x141, 0x13f, 0x13e, 0x13c, 0x13b,
+ 0x139, 0x138, 0x136, 0x135, 0x133, 0x132, 0x130, 0x12f,
+ 0x12e, 0x12c, 0x12b, 0x129, 0x128, 0x127, 0x125, 0x124,
+ 0x123, 0x121, 0x120, 0x11f, 0x11e, 0x11c, 0x11b, 0x11a,
+ 0x119, 0x118, 0x116, 0x115, 0x114, 0x113, 0x112, 0x111,
+ 0x10f, 0x10e, 0x10d, 0x10c, 0x10b, 0x10a, 0x109, 0x108,
+ 0x107, 0x106, 0x105, 0x104, 0x103, 0x102, 0x101, 0x100,
+ };
+
+/* Compute q = [u/d], r = u mod d. Avoids slow hardware division for the case
+ that q < 0x40; here it instead uses a table of (Euclidean) inverses. */
+# define div_smallq(q, r, u, d) \
+ do { \
+ if ((u) / 0x40 < (d)) \
+ { \
+ int _cnt; \
+ uintmax_t _dinv, _mask, _q, _r; \
+ count_leading_zeros (_cnt, (d)); \
+ _r = (u); \
+ if (UNLIKELY (_cnt > (W_TYPE_SIZE - 8))) \
+ { \
+ _dinv = invtab[((d) << (_cnt + 8 - W_TYPE_SIZE)) - 0x80]; \
+ _q = _dinv * _r >> (8 + W_TYPE_SIZE - _cnt); \
+ } \
+ else \
+ { \
+ _dinv = invtab[((d) >> (W_TYPE_SIZE - 8 - _cnt)) - 0x7f]; \
+ _q = _dinv * (_r >> (W_TYPE_SIZE - 3 - _cnt)) >> 11; \
+ } \
+ _r -= _q * (d); \
+ \
+ _mask = -(uintmax_t) (_r >= (d)); \
+ (r) = _r - (_mask & (d)); \
+ (q) = _q - _mask; \
+ affirm ((q) * (d) + (r) == u); \
+ } \
+ else \
+ { \
+ uintmax_t _q = (u) / (d); \
+ (r) = (u) - _q * (d); \
+ (q) = _q; \
+ } \
+ } while (0)
+
+/* Notes: Example N = 22117019. After first phase we find Q1 = 6314, Q
+ = 3025, P = 1737, representing F_{18} = (-6314, 2 * 1737, 3025),
+ with 3025 = 55^2.
+
+ Constructing the square root, we get Q1 = 55, Q = 8653, P = 4652,
+ representing G_0 = (-55, 2 * 4652, 8653).
+
+ In the notation of the paper:
+
+ S_{-1} = 55, S_0 = 8653, R_0 = 4652
+
+ Put
+
+ t_0 = floor([q_0 + R_0] / S0) = 1
+ R_1 = t_0 * S_0 - R_0 = 4001
+ S_1 = S_{-1} +t_0 (R_0 - R_1) = 706
+*/
+
+/* Multipliers, in order of efficiency:
+ 0.7268 3*5*7*11 = 1155 = 3 (mod 4)
+ 0.7317 3*5*7 = 105 = 1
+ 0.7820 3*5*11 = 165 = 1
+ 0.7872 3*5 = 15 = 3
+ 0.8101 3*7*11 = 231 = 3
+ 0.8155 3*7 = 21 = 1
+ 0.8284 5*7*11 = 385 = 1
+ 0.8339 5*7 = 35 = 3
+ 0.8716 3*11 = 33 = 1
+ 0.8774 3 = 3 = 3
+ 0.8913 5*11 = 55 = 3
+ 0.8972 5 = 5 = 1
+ 0.9233 7*11 = 77 = 1
+ 0.9295 7 = 7 = 3
+ 0.9934 11 = 11 = 3
+*/
+# define QUEUE_SIZE 50
+#endif
+
+#if STAT_SQUFOF
+# define Q_FREQ_SIZE 50
+/* Element 0 keeps the total */
+static int q_freq[Q_FREQ_SIZE + 1];
+#endif
+
+#if USE_SQUFOF
+/* Return true on success. Expected to fail only for numbers
+ >= 2^{2*W_TYPE_SIZE - 2}, or close to that limit. */
+static bool
+factor_using_squfof (uintmax_t n1, uintmax_t n0, struct factors *factors)
+{
+ /* Uses algorithm and notation from
+
+ SQUARE FORM FACTORIZATION
+ JASON E. GOWER AND SAMUEL S. WAGSTAFF, JR.
+
+ https://homes.cerias.purdue.edu/~ssw/squfof.pdf
+ */
+
+ static short const multipliers_1[] =
+ { /* = 1 (mod 4) */
+ 105, 165, 21, 385, 33, 5, 77, 1, 0
+ };
+ static short const multipliers_3[] =
+ { /* = 3 (mod 4) */
+ 1155, 15, 231, 35, 3, 55, 7, 11, 0
+ };
+
+ struct { uintmax_t Q; uintmax_t P; } queue[QUEUE_SIZE];
+
+ if (n1 >= ((uintmax_t) 1 << (W_TYPE_SIZE - 2)))
+ return false;
+
+ uintmax_t sqrt_n = isqrt2 (n1, n0);
+
+ if (n0 == sqrt_n * sqrt_n)
+ {
+ uintmax_t p1, p0;
+
+ umul_ppmm (p1, p0, sqrt_n, sqrt_n);
+ affirm (p0 == n0);
+
+ if (n1 == p1)
+ {
+ if (prime_p (sqrt_n))
+ factor_insert_multiplicity (factors, sqrt_n, 2);
+ else
+ {
+ struct factors f;
+
+ f.nfactors = 0;
+ if (!factor_using_squfof (0, sqrt_n, &f))
+ {
+ /* Try pollard rho instead */
+ factor_using_pollard_rho (sqrt_n, 1, &f);
+ }
+ /* Duplicate the new factors */
+ for (unsigned int i = 0; i < f.nfactors; i++)
+ factor_insert_multiplicity (factors, f.p[i], 2 * f.e[i]);
+ }
+ return true;
+ }
+ }
+
+ /* Select multipliers so we always get n * mu = 3 (mod 4) */
+ for (short const *m = (n0 % 4 == 1) ? multipliers_3 : multipliers_1;
+ *m; m++)
+ {
+ uintmax_t S, Dh, Dl, Q1, Q, P, L, L1, B;
+ unsigned int i;
+ unsigned int mu = *m;
+ int qpos = 0;
+
+ affirm (mu * n0 % 4 == 3);
+
+ /* In the notation of the paper, with mu * n == 3 (mod 4), we
+ get \Delta = 4 mu * n, and the paper's \mu is 2 mu. As far as
+ I understand it, the necessary bound is 4 \mu^3 < n, or 32
+ mu^3 < n.
+
+ However, this seems insufficient: With n = 37243139 and mu =
+ 105, we get a trivial factor, from the square 38809 = 197^2,
+ without any corresponding Q earlier in the iteration.
+
+ Requiring 64 mu^3 < n seems sufficient. */
+ if (n1 == 0)
+ {
+ if ((uintmax_t) mu * mu * mu >= n0 / 64)
+ continue;
+ }
+ else
+ {
+ if (n1 > ((uintmax_t) 1 << (W_TYPE_SIZE - 2)) / mu)
+ continue;
+ }
+ umul_ppmm (Dh, Dl, n0, mu);
+ Dh += n1 * mu;
+
+ affirm (Dl % 4 != 1);
+ affirm (Dh < (uintmax_t) 1 << (W_TYPE_SIZE - 2));
+
+ S = isqrt2 (Dh, Dl);
+
+ Q1 = 1;
+ P = S;
+
+ /* Square root remainder fits in one word, so ignore high part. */
+ Q = Dl - P * P;
+ /* FIXME: When can this differ from floor (sqrt (2 * sqrt (D)))? */
+ L = isqrt (2 * S);
+ B = 2 * L;
+ L1 = mu * 2 * L;
+
+ /* The form is (+/- Q1, 2P, -/+ Q), of discriminant 4 (P^2 + Q Q1) =
+ 4 D. */
+
+ for (i = 0; i <= B; i++)
+ {
+ uintmax_t q, P1, t, rem;
+
+ div_smallq (q, rem, S + P, Q);
+ P1 = S - rem; /* P1 = q*Q - P */
+
+ affirm (q > 0 && Q > 0);
+
+# if STAT_SQUFOF
+ q_freq[0]++;
+ q_freq[MIN (q, Q_FREQ_SIZE)]++;
+# endif
+
+ if (Q <= L1)
+ {
+ uintmax_t g = Q;
+
+ if ((Q & 1) == 0)
+ g /= 2;
+
+ g /= gcd_odd (g, mu);
+
+ if (g <= L)
+ {
+ if (qpos >= QUEUE_SIZE)
+ error (EXIT_FAILURE, 0, _("squfof queue overflow"));
+ queue[qpos].Q = g;
+ queue[qpos].P = P % g;
+ qpos++;
+ }
+ }
+
+ /* I think the difference can be either sign, but mod
+ 2^W_TYPE_SIZE arithmetic should be fine. */
+ t = Q1 + q * (P - P1);
+ Q1 = Q;
+ Q = t;
+ P = P1;
+
+ if ((i & 1) == 0)
+ {
+ uintmax_t r = is_square (Q);
+ if (r)
+ {
+ for (int j = 0; j < qpos; j++)
+ {
+ if (queue[j].Q == r)
+ {
+ if (r == 1)
+ /* Traversed entire cycle. */
+ goto next_multiplier;
+
+ /* Need the absolute value for divisibility test. */
+ if (P >= queue[j].P)
+ t = P - queue[j].P;
+ else
+ t = queue[j].P - P;
+ if (t % r == 0)
+ {
+ /* Delete entries up to and including entry
+ j, which matched. */
+ memmove (queue, queue + j + 1,
+ (qpos - j - 1) * sizeof (queue[0]));
+ qpos -= (j + 1);
+ }
+ goto next_i;
+ }
+ }
+
+ /* We have found a square form, which should give a
+ factor. */
+ Q1 = r;
+ affirm (S >= P); /* What signs are possible? */
+ P += r * ((S - P) / r);
+
+ /* Note: Paper says (N - P*P) / Q1, that seems incorrect
+ for the case D = 2N. */
+ /* Compute Q = (D - P*P) / Q1, but we need double
+ precision. */
+ uintmax_t hi, lo;
+ umul_ppmm (hi, lo, P, P);
+ sub_ddmmss (hi, lo, Dh, Dl, hi, lo);
+ udiv_qrnnd (Q, rem, hi, lo, Q1);
+ affirm (rem == 0);
+
+ for (;;)
+ {
+ /* Note: There appears to by a typo in the paper,
+ Step 4a in the algorithm description says q <--
+ floor([S+P]/\hat Q), but looking at the equations
+ in Sec. 3.1, it should be q <-- floor([S+P] / Q).
+ (In this code, \hat Q is Q1). */
+ div_smallq (q, rem, S + P, Q);
+ P1 = S - rem; /* P1 = q*Q - P */
+
+# if STAT_SQUFOF
+ q_freq[0]++;
+ q_freq[MIN (q, Q_FREQ_SIZE)]++;
+# endif
+ if (P == P1)
+ break;
+ t = Q1 + q * (P - P1);
+ Q1 = Q;
+ Q = t;
+ P = P1;
+ }
+
+ if ((Q & 1) == 0)
+ Q /= 2;
+ Q /= gcd_odd (Q, mu);
+
+ affirm (Q > 1 && (n1 || Q < n0));
+
+ if (prime_p (Q))
+ factor_insert (factors, Q);
+ else if (!factor_using_squfof (0, Q, factors))
+ factor_using_pollard_rho (Q, 2, factors);
+
+ divexact_21 (n1, n0, n1, n0, Q);
+
+ if (prime2_p (n1, n0))
+ factor_insert_large (factors, n1, n0);
+ else
+ {
+ if (!factor_using_squfof (n1, n0, factors))
+ {
+ if (n1 == 0)
+ factor_using_pollard_rho (n0, 1, factors);
+ else
+ factor_using_pollard_rho2 (n1, n0, 1, factors);
+ }
+ }
+
+ return true;
+ }
+ }
+ next_i:;
+ }
+ next_multiplier:;
+ }
+ return false;
+}
+#endif
+
+/* Compute the prime factors of the 128-bit number (T1,T0), and put the
+ results in FACTORS. */
+static void
+factor (uintmax_t t1, uintmax_t t0, struct factors *factors)
+{
+ factors->nfactors = 0;
+ factors->plarge[1] = 0;
+
+ if (t1 == 0 && t0 < 2)
+ return;
+
+ t0 = factor_using_division (&t1, t1, t0, factors);
+
+ if (t1 == 0 && t0 < 2)
+ return;
+
+ if (prime2_p (t1, t0))
+ factor_insert_large (factors, t1, t0);
+ else
+ {
+#if USE_SQUFOF
+ if (factor_using_squfof (t1, t0, factors))
+ return;
+#endif
+
+ if (t1 == 0)
+ factor_using_pollard_rho (t0, 1, factors);
+ else
+ factor_using_pollard_rho2 (t1, t0, 1, factors);
+ }
+}
+
+/* Use Pollard-rho to compute the prime factors of
+ arbitrary-precision T, and put the results in FACTORS. */
+static void
+mp_factor (mpz_t t, struct mp_factors *factors)
+{
+ mp_factor_init (factors);
+
+ if (mpz_sgn (t) != 0)
+ {
+ mp_factor_using_division (t, factors);
+
+ if (mpz_cmp_ui (t, 1) != 0)
+ {
+ devmsg ("[is number prime?] ");
+ if (mp_prime_p (t))
+ mp_factor_insert (factors, t);
+ else
+ mp_factor_using_pollard_rho (t, 1, factors);
+ }
+ }
+}
+
+static strtol_error
+strto2uintmax (uintmax_t *hip, uintmax_t *lop, char const *s)
+{
+ int lo_carry;
+ uintmax_t hi = 0, lo = 0;
+
+ strtol_error err = LONGINT_INVALID;
+
+ /* Initial scan for invalid digits. */
+ char const *p = s;
+ for (;;)
+ {
+ unsigned char c = *p++;
+ if (c == 0)
+ break;
+
+ if (UNLIKELY (!ISDIGIT (c)))
+ {
+ err = LONGINT_INVALID;
+ break;
+ }
+
+ err = LONGINT_OK; /* we've seen at least one valid digit */
+ }
+
+ while (err == LONGINT_OK)
+ {
+ unsigned char c = *s++;
+ if (c == 0)
+ break;
+
+ c -= '0';
+
+ if (UNLIKELY (hi > ~(uintmax_t)0 / 10))
+ {
+ err = LONGINT_OVERFLOW;
+ break;
+ }
+ hi = 10 * hi;
+
+ lo_carry = (lo >> (W_TYPE_SIZE - 3)) + (lo >> (W_TYPE_SIZE - 1));
+ lo_carry += 10 * lo < 2 * lo;
+
+ lo = 10 * lo;
+ lo += c;
+
+ lo_carry += lo < c;
+ hi += lo_carry;
+ if (UNLIKELY (hi < lo_carry))
+ {
+ err = LONGINT_OVERFLOW;
+ break;
+ }
+ }
+
+ *hip = hi;
+ *lop = lo;
+
+ return err;
+}
+
+/* Structure and routines for buffering and outputting full lines,
+ to support parallel operation efficiently. */
+static struct lbuf_
+{
+ char *buf;
+ char *end;
+} lbuf;
+
+/* 512 is chosen to give good performance,
+ and also is the max guaranteed size that
+ consumers can read atomically through pipes.
+ Also it's big enough to cater for max line length
+ even with 128 bit uintmax_t. */
+#define FACTOR_PIPE_BUF 512
+
+static void
+lbuf_alloc (void)
+{
+ if (lbuf.buf)
+ return;
+
+ /* Double to ensure enough space for
+ previous numbers + next number. */
+ lbuf.buf = xmalloc (FACTOR_PIPE_BUF * 2);
+ lbuf.end = lbuf.buf;
+}
+
+/* Write complete LBUF to standard output. */
+static void
+lbuf_flush (void)
+{
+ size_t size = lbuf.end - lbuf.buf;
+ if (full_write (STDOUT_FILENO, lbuf.buf, size) != size)
+ write_error ();
+ lbuf.end = lbuf.buf;
+}
+
+/* Add a character C to LBUF and if it's a newline
+ and enough bytes are already buffered,
+ then write atomically to standard output. */
+static void
+lbuf_putc (char c)
+{
+ *lbuf.end++ = c;
+
+ if (c == '\n')
+ {
+ size_t buffered = lbuf.end - lbuf.buf;
+
+ /* Provide immediate output for interactive use. */
+ static int line_buffered = -1;
+ if (line_buffered == -1)
+ line_buffered = isatty (STDIN_FILENO) || isatty (STDOUT_FILENO);
+ if (line_buffered)
+ lbuf_flush ();
+ else if (buffered >= FACTOR_PIPE_BUF)
+ {
+ /* Write output in <= PIPE_BUF chunks
+ so consumers can read atomically. */
+ char const *tend = lbuf.end;
+
+ /* Since a umaxint_t's factors must fit in 512
+ we're guaranteed to find a newline here. */
+ char *tlend = lbuf.buf + FACTOR_PIPE_BUF;
+ while (*--tlend != '\n');
+ tlend++;
+
+ lbuf.end = tlend;
+ lbuf_flush ();
+
+ /* Buffer the remainder. */
+ memcpy (lbuf.buf, tlend, tend - tlend);
+ lbuf.end = lbuf.buf + (tend - tlend);
+ }
+ }
+}
+
+/* Buffer an int to the internal LBUF. */
+static void
+lbuf_putint (uintmax_t i, size_t min_width)
+{
+ char buf[INT_BUFSIZE_BOUND (uintmax_t)];
+ char const *umaxstr = umaxtostr (i, buf);
+ size_t width = sizeof (buf) - (umaxstr - buf) - 1;
+ size_t z = width;
+
+ for (; z < min_width; z++)
+ *lbuf.end++ = '0';
+
+ memcpy (lbuf.end, umaxstr, width);
+ lbuf.end += width;
+}
+
+static void
+print_uintmaxes (uintmax_t t1, uintmax_t t0)
+{
+ uintmax_t q, r;
+
+ if (t1 == 0)
+ lbuf_putint (t0, 0);
+ else
+ {
+ /* Use very plain code here since it seems hard to write fast code
+ without assuming a specific word size. */
+ q = t1 / 1000000000;
+ r = t1 % 1000000000;
+ udiv_qrnnd (t0, r, r, t0, 1000000000);
+ print_uintmaxes (q, t0);
+ lbuf_putint (r, 9);
+ }
+}
+
+/* Single-precision factoring */
+static void
+print_factors_single (uintmax_t t1, uintmax_t t0)
+{
+ struct factors factors;
+
+ print_uintmaxes (t1, t0);
+ lbuf_putc (':');
+
+ factor (t1, t0, &factors);
+
+ for (int j = 0; j < factors.nfactors; j++)
+ for (int k = 0; k < factors.e[j]; k++)
+ {
+ lbuf_putc (' ');
+ print_uintmaxes (0, factors.p[j]);
+ if (print_exponents && factors.e[j] > 1)
+ {
+ lbuf_putc ('^');
+ lbuf_putint (factors.e[j], 0);
+ break;
+ }
+ }
+
+ if (factors.plarge[1])
+ {
+ lbuf_putc (' ');
+ print_uintmaxes (factors.plarge[1], factors.plarge[0]);
+ }
+
+ lbuf_putc ('\n');
+}
+
+/* Emit the factors of the indicated number. If we have the option of using
+ either algorithm, we select on the basis of the length of the number.
+ For longer numbers, we prefer the MP algorithm even if the native algorithm
+ has enough digits, because the algorithm is better. The turnover point
+ depends on the value. */
+static bool
+print_factors (char const *input)
+{
+ /* Skip initial spaces and '+'. */
+ char const *str = input;
+ while (*str == ' ')
+ str++;
+ str += *str == '+';
+
+ uintmax_t t1, t0;
+
+ /* Try converting the number to one or two words. If it fails, use GMP or
+ print an error message. The 2nd condition checks that the most
+ significant bit of the two-word number is clear, in a typesize neutral
+ way. */
+ strtol_error err = strto2uintmax (&t1, &t0, str);
+
+ switch (err)
+ {
+ case LONGINT_OK:
+ if (((t1 << 1) >> 1) == t1)
+ {
+ devmsg ("[using single-precision arithmetic] ");
+ print_factors_single (t1, t0);
+ return true;
+ }
+ break;
+
+ case LONGINT_OVERFLOW:
+ /* Try GMP. */
+ break;
+
+ default:
+ error (0, 0, _("%s is not a valid positive integer"), quote (input));
+ return false;
+ }
+
+ devmsg ("[using arbitrary-precision arithmetic] ");
+ mpz_t t;
+ struct mp_factors factors;
+
+ mpz_init_set_str (t, str, 10);
+
+ mpz_out_str (stdout, 10, t);
+ putchar (':');
+ mp_factor (t, &factors);
+
+ for (idx_t j = 0; j < factors.nfactors; j++)
+ for (unsigned long int k = 0; k < factors.e[j]; k++)
+ {
+ putchar (' ');
+ mpz_out_str (stdout, 10, factors.p[j]);
+ if (print_exponents && factors.e[j] > 1)
+ {
+ printf ("^%lu", factors.e[j]);
+ break;
+ }
+ }
+
+ mp_factor_clear (&factors);
+ mpz_clear (t);
+ putchar ('\n');
+ fflush (stdout);
+ return true;
+}
+
+void
+usage (int status)
+{
+ if (status != EXIT_SUCCESS)
+ emit_try_help ();
+ else
+ {
+ printf (_("\
+Usage: %s [OPTION] [NUMBER]...\n\
+"),
+ program_name);
+ fputs (_("\
+Print the prime factors of each specified integer NUMBER. If none\n\
+are specified on the command line, read them from standard input.\n\
+\n\
+"), stdout);
+ fputs ("\
+ -h, --exponents print repeated factors in form p^e unless e is 1\n\
+", stdout);
+ fputs (HELP_OPTION_DESCRIPTION, stdout);
+ fputs (VERSION_OPTION_DESCRIPTION, stdout);
+ emit_ancillary_info (PROGRAM_NAME);
+ }
+ exit (status);
+}
+
+static bool
+do_stdin (void)
+{
+ bool ok = true;
+ token_buffer tokenbuffer;
+
+ init_tokenbuffer (&tokenbuffer);
+
+ while (true)
+ {
+ size_t token_length = readtoken (stdin, DELIM, sizeof (DELIM) - 1,
+ &tokenbuffer);
+ if (token_length == (size_t) -1)
+ {
+ if (ferror (stdin))
+ error (EXIT_FAILURE, errno, _("error reading input"));
+ break;
+ }
+
+ ok &= print_factors (tokenbuffer.buffer);
+ }
+ free (tokenbuffer.buffer);
+
+ return ok;
+}
+
+int
+main (int argc, char **argv)
+{
+ initialize_main (&argc, &argv);
+ set_program_name (argv[0]);
+ setlocale (LC_ALL, "");
+ bindtextdomain (PACKAGE, LOCALEDIR);
+ textdomain (PACKAGE);
+
+ lbuf_alloc ();
+ atexit (close_stdout);
+ atexit (lbuf_flush);
+
+ int c;
+ while ((c = getopt_long (argc, argv, "h", long_options, nullptr)) != -1)
+ {
+ switch (c)
+ {
+ case 'h': /* NetBSD used -h for this functionality first. */
+ print_exponents = true;
+ break;
+
+ case DEV_DEBUG_OPTION:
+ dev_debug = true;
+ break;
+
+ case_GETOPT_HELP_CHAR;
+
+ case_GETOPT_VERSION_CHAR (PROGRAM_NAME, AUTHORS);
+
+ default:
+ usage (EXIT_FAILURE);
+ }
+ }
+
+#if STAT_SQUFOF
+ memset (q_freq, 0, sizeof (q_freq));
+#endif
+
+ bool ok;
+ if (argc <= optind)
+ ok = do_stdin ();
+ else
+ {
+ ok = true;
+ for (int i = optind; i < argc; i++)
+ if (! print_factors (argv[i]))
+ ok = false;
+ }
+
+#if STAT_SQUFOF
+ if (q_freq[0] > 0)
+ {
+ double acc_f;
+ printf ("q freq. cum. freq.(total: %d)\n", q_freq[0]);
+ for (int i = 1, acc_f = 0.0; i <= Q_FREQ_SIZE; i++)
+ {
+ double f = (double) q_freq[i] / q_freq[0];
+ acc_f += f;
+ printf ("%s%d %.2f%% %.2f%%\n", i == Q_FREQ_SIZE ? ">=" : "", i,
+ 100.0 * f, 100.0 * acc_f);
+ }
+ }
+#endif
+
+ return ok ? EXIT_SUCCESS : EXIT_FAILURE;
+}