summaryrefslogtreecommitdiffstats
path: root/debian/vendor-h2o/deps/brotli/enc/cluster.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-30 02:50:01 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-30 02:50:01 +0000
commit91275eb478ceb58083426099b6da3f4c7e189f19 (patch)
tree260f7d2fa77408b38c5cea96b320b9b0b6713ff2 /debian/vendor-h2o/deps/brotli/enc/cluster.h
parentMerging upstream version 1.9.4. (diff)
downloaddnsdist-91275eb478ceb58083426099b6da3f4c7e189f19.tar.xz
dnsdist-91275eb478ceb58083426099b6da3f4c7e189f19.zip
Merging debian version 1.9.4-1.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'debian/vendor-h2o/deps/brotli/enc/cluster.h')
-rw-r--r--debian/vendor-h2o/deps/brotli/enc/cluster.h297
1 files changed, 0 insertions, 297 deletions
diff --git a/debian/vendor-h2o/deps/brotli/enc/cluster.h b/debian/vendor-h2o/deps/brotli/enc/cluster.h
deleted file mode 100644
index 4f6c06e..0000000
--- a/debian/vendor-h2o/deps/brotli/enc/cluster.h
+++ /dev/null
@@ -1,297 +0,0 @@
-/* Copyright 2013 Google Inc. All Rights Reserved.
-
- Distributed under MIT license.
- See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
-*/
-
-// Functions for clustering similar histograms together.
-
-#ifndef BROTLI_ENC_CLUSTER_H_
-#define BROTLI_ENC_CLUSTER_H_
-
-#include <math.h>
-#include <algorithm>
-#include <map>
-#include <utility>
-#include <vector>
-
-#include "./bit_cost.h"
-#include "./entropy_encode.h"
-#include "./fast_log.h"
-#include "./histogram.h"
-#include "./port.h"
-#include "./types.h"
-
-namespace brotli {
-
-struct HistogramPair {
- uint32_t idx1;
- uint32_t idx2;
- double cost_combo;
- double cost_diff;
-};
-
-inline bool operator<(const HistogramPair& p1, const HistogramPair& p2) {
- if (p1.cost_diff != p2.cost_diff) {
- return p1.cost_diff > p2.cost_diff;
- }
- return (p1.idx2 - p1.idx1) > (p2.idx2 - p2.idx1);
-}
-
-// Returns entropy reduction of the context map when we combine two clusters.
-inline double ClusterCostDiff(size_t size_a, size_t size_b) {
- size_t size_c = size_a + size_b;
- return static_cast<double>(size_a) * FastLog2(size_a) +
- static_cast<double>(size_b) * FastLog2(size_b) -
- static_cast<double>(size_c) * FastLog2(size_c);
-}
-
-// Computes the bit cost reduction by combining out[idx1] and out[idx2] and if
-// it is below a threshold, stores the pair (idx1, idx2) in the *pairs queue.
-template<typename HistogramType>
-void CompareAndPushToQueue(const HistogramType* out,
- const uint32_t* cluster_size,
- uint32_t idx1, uint32_t idx2,
- std::vector<HistogramPair>* pairs) {
- if (idx1 == idx2) {
- return;
- }
- if (idx2 < idx1) {
- uint32_t t = idx2;
- idx2 = idx1;
- idx1 = t;
- }
- bool store_pair = false;
- HistogramPair p;
- p.idx1 = idx1;
- p.idx2 = idx2;
- p.cost_diff = 0.5 * ClusterCostDiff(cluster_size[idx1], cluster_size[idx2]);
- p.cost_diff -= out[idx1].bit_cost_;
- p.cost_diff -= out[idx2].bit_cost_;
-
- if (out[idx1].total_count_ == 0) {
- p.cost_combo = out[idx2].bit_cost_;
- store_pair = true;
- } else if (out[idx2].total_count_ == 0) {
- p.cost_combo = out[idx1].bit_cost_;
- store_pair = true;
- } else {
- double threshold = pairs->empty() ? 1e99 :
- std::max(0.0, (*pairs)[0].cost_diff);
- HistogramType combo = out[idx1];
- combo.AddHistogram(out[idx2]);
- double cost_combo = PopulationCost(combo);
- if (cost_combo < threshold - p.cost_diff) {
- p.cost_combo = cost_combo;
- store_pair = true;
- }
- }
- if (store_pair) {
- p.cost_diff += p.cost_combo;
- if (!pairs->empty() && (pairs->front() < p)) {
- // Replace the top of the queue if needed.
- pairs->push_back(pairs->front());
- pairs->front() = p;
- } else {
- pairs->push_back(p);
- }
- }
-}
-
-template<typename HistogramType>
-void HistogramCombine(HistogramType* out,
- uint32_t* cluster_size,
- uint32_t* symbols,
- size_t symbols_size,
- size_t max_clusters) {
- double cost_diff_threshold = 0.0;
- size_t min_cluster_size = 1;
-
- // Uniquify the list of symbols.
- std::vector<uint32_t> clusters(symbols, symbols + symbols_size);
- std::sort(clusters.begin(), clusters.end());
- std::vector<uint32_t>::iterator last =
- std::unique(clusters.begin(), clusters.end());
- clusters.resize(static_cast<size_t>(last - clusters.begin()));
-
- // We maintain a heap of histogram pairs, ordered by the bit cost reduction.
- std::vector<HistogramPair> pairs;
- for (size_t idx1 = 0; idx1 < clusters.size(); ++idx1) {
- for (size_t idx2 = idx1 + 1; idx2 < clusters.size(); ++idx2) {
- CompareAndPushToQueue(out, cluster_size, clusters[idx1], clusters[idx2],
- &pairs);
- }
- }
-
- while (clusters.size() > min_cluster_size) {
- if (pairs[0].cost_diff >= cost_diff_threshold) {
- cost_diff_threshold = 1e99;
- min_cluster_size = max_clusters;
- continue;
- }
- // Take the best pair from the top of heap.
- uint32_t best_idx1 = pairs[0].idx1;
- uint32_t best_idx2 = pairs[0].idx2;
- out[best_idx1].AddHistogram(out[best_idx2]);
- out[best_idx1].bit_cost_ = pairs[0].cost_combo;
- cluster_size[best_idx1] += cluster_size[best_idx2];
- for (size_t i = 0; i < symbols_size; ++i) {
- if (symbols[i] == best_idx2) {
- symbols[i] = best_idx1;
- }
- }
- for (std::vector<uint32_t>::iterator cluster = clusters.begin();
- cluster != clusters.end(); ++cluster) {
- if (*cluster >= best_idx2) {
- clusters.erase(cluster);
- break;
- }
- }
-
- // Remove pairs intersecting the just combined best pair.
- size_t copy_to_idx = 0;
- for (size_t i = 0; i < pairs.size(); ++i) {
- HistogramPair& p = pairs[i];
- if (p.idx1 == best_idx1 || p.idx2 == best_idx1 ||
- p.idx1 == best_idx2 || p.idx2 == best_idx2) {
- // Remove invalid pair from the queue.
- continue;
- }
- if (pairs.front() < p) {
- // Replace the top of the queue if needed.
- HistogramPair front = pairs.front();
- pairs.front() = p;
- pairs[copy_to_idx] = front;
- } else {
- pairs[copy_to_idx] = p;
- }
- ++copy_to_idx;
- }
- pairs.resize(copy_to_idx);
-
- // Push new pairs formed with the combined histogram to the heap.
- for (size_t i = 0; i < clusters.size(); ++i) {
- CompareAndPushToQueue(out, cluster_size, best_idx1, clusters[i], &pairs);
- }
- }
-}
-
-// -----------------------------------------------------------------------------
-// Histogram refinement
-
-// What is the bit cost of moving histogram from cur_symbol to candidate.
-template<typename HistogramType>
-double HistogramBitCostDistance(const HistogramType& histogram,
- const HistogramType& candidate) {
- if (histogram.total_count_ == 0) {
- return 0.0;
- }
- HistogramType tmp = histogram;
- tmp.AddHistogram(candidate);
- return PopulationCost(tmp) - candidate.bit_cost_;
-}
-
-// Find the best 'out' histogram for each of the 'in' histograms.
-// Note: we assume that out[]->bit_cost_ is already up-to-date.
-template<typename HistogramType>
-void HistogramRemap(const HistogramType* in, size_t in_size,
- HistogramType* out, uint32_t* symbols) {
- // Uniquify the list of symbols.
- std::vector<uint32_t> all_symbols(symbols, symbols + in_size);
- std::sort(all_symbols.begin(), all_symbols.end());
- std::vector<uint32_t>::iterator last =
- std::unique(all_symbols.begin(), all_symbols.end());
- all_symbols.resize(static_cast<size_t>(last - all_symbols.begin()));
-
- for (size_t i = 0; i < in_size; ++i) {
- uint32_t best_out = i == 0 ? symbols[0] : symbols[i - 1];
- double best_bits = HistogramBitCostDistance(in[i], out[best_out]);
- for (std::vector<uint32_t>::const_iterator k = all_symbols.begin();
- k != all_symbols.end(); ++k) {
- const double cur_bits = HistogramBitCostDistance(in[i], out[*k]);
- if (cur_bits < best_bits) {
- best_bits = cur_bits;
- best_out = *k;
- }
- }
- symbols[i] = best_out;
- }
-
-
- // Recompute each out based on raw and symbols.
- for (std::vector<uint32_t>::const_iterator k = all_symbols.begin();
- k != all_symbols.end(); ++k) {
- out[*k].Clear();
- }
- for (size_t i = 0; i < in_size; ++i) {
- out[symbols[i]].AddHistogram(in[i]);
- }
-}
-
-// Reorder histograms in *out so that the new symbols in *symbols come in
-// increasing order.
-template<typename HistogramType>
-void HistogramReindex(std::vector<HistogramType>* out,
- std::vector<uint32_t>* symbols) {
- std::vector<HistogramType> tmp(*out);
- std::map<uint32_t, uint32_t> new_index;
- uint32_t next_index = 0;
- for (size_t i = 0; i < symbols->size(); ++i) {
- if (new_index.find((*symbols)[i]) == new_index.end()) {
- new_index[(*symbols)[i]] = next_index;
- (*out)[next_index] = tmp[(*symbols)[i]];
- ++next_index;
- }
- }
- out->resize(next_index);
- for (size_t i = 0; i < symbols->size(); ++i) {
- (*symbols)[i] = new_index[(*symbols)[i]];
- }
-}
-
-// Clusters similar histograms in 'in' together, the selected histograms are
-// placed in 'out', and for each index in 'in', *histogram_symbols will
-// indicate which of the 'out' histograms is the best approximation.
-template<typename HistogramType>
-void ClusterHistograms(const std::vector<HistogramType>& in,
- size_t num_contexts, size_t num_blocks,
- size_t max_histograms,
- std::vector<HistogramType>* out,
- std::vector<uint32_t>* histogram_symbols) {
- const size_t in_size = num_contexts * num_blocks;
- assert(in_size == in.size());
- std::vector<uint32_t> cluster_size(in_size, 1);
- out->resize(in_size);
- histogram_symbols->resize(in_size);
- for (size_t i = 0; i < in_size; ++i) {
- (*out)[i] = in[i];
- (*out)[i].bit_cost_ = PopulationCost(in[i]);
- (*histogram_symbols)[i] = static_cast<uint32_t>(i);
- }
-
-
- const size_t max_input_histograms = 64;
- for (size_t i = 0; i < in_size; i += max_input_histograms) {
- size_t num_to_combine = std::min(in_size - i, max_input_histograms);
- HistogramCombine(&(*out)[0], &cluster_size[0],
- &(*histogram_symbols)[i], num_to_combine,
- max_histograms);
- }
-
- // Collapse similar histograms.
- HistogramCombine(&(*out)[0], &cluster_size[0],
- &(*histogram_symbols)[0], in_size,
- max_histograms);
-
- // Find the optimal map from original histograms to the final ones.
- HistogramRemap(&in[0], in_size, &(*out)[0], &(*histogram_symbols)[0]);
-
- // Convert the context map to a canonical form.
- HistogramReindex(out, histogram_symbols);
-
-}
-
-
-} // namespace brotli
-
-#endif // BROTLI_ENC_CLUSTER_H_