1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
|
/* Copyright (c) 2005-2018 Dovecot authors, see the included COPYING file */
#include "lib.h"
#include "array.h"
#include "seq-range-array.h"
static bool seq_range_is_overflowed(const ARRAY_TYPE(seq_range) *array)
{
const struct seq_range *range;
unsigned int count;
range = array_get(array, &count);
return count == 1 && range[0].seq1 == 0 &&
range[0].seq2 == (uint32_t)-1;
}
static bool ATTR_NOWARN_UNUSED_RESULT
seq_range_lookup(const ARRAY_TYPE(seq_range) *array,
uint32_t seq, unsigned int *idx_r)
{
const struct seq_range *data;
unsigned int idx, left_idx, right_idx, count;
data = array_get(array, &count);
i_assert(count < INT_MAX);
idx = 0; left_idx = 0; right_idx = count;
while (left_idx < right_idx) {
idx = (left_idx + right_idx) / 2;
if (data[idx].seq1 <= seq) {
if (data[idx].seq2 >= seq) {
/* it's already in the range */
*idx_r = idx;
return TRUE;
}
left_idx = idx+1;
} else {
right_idx = idx;
}
}
if (left_idx > idx)
idx++;
*idx_r = idx;
return FALSE;
}
static bool
seq_range_array_add_slow_path(ARRAY_TYPE(seq_range) *array, uint32_t seq)
{
struct seq_range *data, value;
unsigned int idx, count;
value.seq1 = value.seq2 = seq;
data = array_get_modifiable(array, &count);
/* somewhere in the middle, array is sorted so find it with
binary search */
if (seq_range_lookup(array, seq, &idx))
return TRUE;
/* idx == count couldn't happen because we already handle it above */
i_assert(idx < count && data[idx].seq1 >= seq);
i_assert(data[idx].seq1 > seq || data[idx].seq2 < seq);
if (data[idx].seq1 == seq+1) {
data[idx].seq1 = seq;
if (idx > 0 && data[idx-1].seq2 == seq-1) {
/* merge */
data[idx-1].seq2 = data[idx].seq2;
array_delete(array, idx, 1);
}
} else {
if (idx > 0 && data[idx-1].seq2 == seq-1)
idx--;
if (data[idx].seq2 == seq-1) {
i_assert(idx+1 < count); /* already handled above */
data[idx].seq2 = seq;
if (data[idx+1].seq1 == seq+1) {
/* merge */
data[idx+1].seq1 = data[idx].seq1;
array_delete(array, idx, 1);
}
} else {
array_insert(array, idx, &value, 1);
}
}
return FALSE;
}
bool seq_range_array_add(ARRAY_TYPE(seq_range) *array, uint32_t seq)
{
struct seq_range *data, value;
unsigned int count;
bool exists = FALSE;
value.seq1 = value.seq2 = seq;
data = array_get_modifiable(array, &count);
/* quick checks */
if (count == 0)
array_push_back(array, &value);
else if (data[count-1].seq2 < seq) {
if (data[count-1].seq2 == seq-1) {
/* grow last range */
data[count-1].seq2 = seq;
} else {
array_push_back(array, &value);
}
} else if (data[0].seq1 > seq) {
if (data[0].seq1-1 == seq) {
/* grow down first range */
data[0].seq1 = seq;
} else {
array_push_front(array, &value);
}
} else {
exists = seq_range_array_add_slow_path(array, seq);
}
i_assert(!seq_range_is_overflowed(array));
return exists;
}
void seq_range_array_add_with_init(ARRAY_TYPE(seq_range) *array,
unsigned int init_count, uint32_t seq)
{
if (!array_is_created(array))
i_array_init(array, init_count);
seq_range_array_add(array, seq);
}
static void
seq_range_array_add_range_internal(ARRAY_TYPE(seq_range) *array,
uint32_t seq1, uint32_t seq2,
unsigned int *r_count)
{
struct seq_range *data, value;
unsigned int idx1, idx2, count;
seq_range_lookup(array, seq1, &idx1);
seq_range_lookup(array, seq2, &idx2);
data = array_get_modifiable(array, &count);
if (r_count != NULL) {
/* Find number we're adding by counting the number we're
not adding, and subtracting that from the nominal range. */
unsigned int added = seq2+1 - seq1;
unsigned int countidx2 = idx2;
unsigned int overcounted = 0u, notadded = 0u;
unsigned int i;
if (idx1 == count) {
/* not in a range as too far right */
} else if (seq1 < data[idx1].seq1) {
/* not in a range, to the left of a real range */
} else {
/* count the whole of this range, which is an overcount */
overcounted += seq1 - data[idx1].seq1;
/* fencepost check: equality means the whole range is valid,
therefore there's no overcounting. Result = 0 overcount */
}
if (idx2 == count) {
/* not in a range as too far right */
} else if (seq2 < data[idx2].seq1) {
/* not in a range, to the left of a real range */
} else {
/* count the whole of this range, which is an overcount */
overcounted += data[idx2].seq2 - seq2;
countidx2++; /* may become == count i.e. past the end */
/* fencepost check: equality means the whole range is valid,
therefore there's no overcounting. Result = 0 overcount. */
}
/* Now count how many we're not adding */
for (i = idx1; i < countidx2; i++)
notadded += data[i].seq2+1 - data[i].seq1;
/* Maybe the not added tally included some over-counting too */
added -= (notadded - overcounted);
*r_count = added;
}
if (idx1 > 0 && data[idx1-1].seq2+1 == seq1)
idx1--;
if (idx1 == idx2 &&
(idx2 == count || (seq2 < (uint32_t)-1 && data[idx2].seq1 > seq2+1)) &&
(idx1 == 0 || data[idx1-1].seq2 < seq1-1)) {
/* no overlapping */
value.seq1 = seq1;
value.seq2 = seq2;
array_insert(array, idx1, &value, 1);
} else {
i_assert(idx1 < count);
if (seq1 < data[idx1].seq1)
data[idx1].seq1 = seq1;
if (seq2 > data[idx1].seq2) {
/* merge */
if (idx2 == count ||
data[idx2].seq1 > seq2+1)
idx2--;
if (seq2 >= data[idx2].seq2) {
data[idx1].seq2 = seq2;
} else {
data[idx1].seq2 = data[idx2].seq2;
}
array_delete(array, idx1 + 1, idx2 - idx1);
}
}
i_assert(!seq_range_is_overflowed(array));
}
void seq_range_array_add_range(ARRAY_TYPE(seq_range) *array,
uint32_t seq1, uint32_t seq2)
{
seq_range_array_add_range_internal(array, seq1, seq2, NULL);
}
unsigned int seq_range_array_add_range_count(ARRAY_TYPE(seq_range) *array,
uint32_t seq1, uint32_t seq2)
{
unsigned int count;
seq_range_array_add_range_internal(array, seq1, seq2, &count);
return count;
}
void seq_range_array_merge(ARRAY_TYPE(seq_range) *dest,
const ARRAY_TYPE(seq_range) *src)
{
const struct seq_range *range;
if (array_count(dest) == 0) {
array_append_array(dest, src);
return;
}
array_foreach(src, range)
seq_range_array_add_range(dest, range->seq1, range->seq2);
}
void seq_range_array_merge_n(ARRAY_TYPE(seq_range) *dest,
const ARRAY_TYPE(seq_range) *src,
unsigned int count)
{
const struct seq_range *src_range;
unsigned int src_idx, src_count;
unsigned int merge_count = count;
src_range = array_get(src, &src_count);
for (src_idx = 0; src_idx < src_count && merge_count > 0; src_idx++) {
uint32_t first_seq = src_range[src_idx].seq1;
uint32_t last_seq = src_range[src_idx].seq2;
unsigned int idx_count = last_seq - first_seq + 1;
if (idx_count > merge_count) {
last_seq = first_seq + merge_count - 1;
merge_count = 0;
} else {
merge_count -= idx_count;
}
seq_range_array_add_range(dest, first_seq, last_seq);
}
}
bool seq_range_array_remove(ARRAY_TYPE(seq_range) *array, uint32_t seq)
{
struct seq_range *data, value;
unsigned int idx, left_idx, right_idx, count;
if (!array_is_created(array))
return FALSE;
data = array_get_modifiable(array, &count);
if (count == 0)
return FALSE;
/* quick checks */
if (seq > data[count-1].seq2 || seq < data[0].seq1) {
/* outside the range */
return FALSE;
}
if (data[count-1].seq2 == seq) {
/* shrink last range */
if (data[count-1].seq1 != data[count-1].seq2)
data[count-1].seq2--;
else
array_delete(array, count-1, 1);
return TRUE;
}
if (data[0].seq1 == seq) {
/* shrink up first range */
if (data[0].seq1 != data[0].seq2)
data[0].seq1++;
else
array_pop_front(array);
return TRUE;
}
/* somewhere in the middle, array is sorted so find it with
binary search */
i_assert(count < INT_MAX);
left_idx = 0; right_idx = count;
while (left_idx < right_idx) {
idx = (left_idx + right_idx) / 2;
if (data[idx].seq1 > seq)
right_idx = idx;
else if (data[idx].seq2 < seq)
left_idx = idx+1;
else {
/* found it */
if (data[idx].seq1 == seq) {
if (data[idx].seq1 == data[idx].seq2) {
/* a single sequence range.
remove it entirely */
array_delete(array, idx, 1);
} else {
/* shrink the range */
data[idx].seq1++;
}
} else if (data[idx].seq2 == seq) {
/* shrink the range */
data[idx].seq2--;
} else {
/* split the sequence range */
value.seq1 = seq + 1;
value.seq2 = data[idx].seq2;
data[idx].seq2 = seq - 1;
array_insert(array, idx + 1, &value, 1);
}
return TRUE;
}
}
return FALSE;
}
unsigned int seq_range_array_remove_range(ARRAY_TYPE(seq_range) *array,
uint32_t seq1, uint32_t seq2)
{
const struct seq_range *data;
unsigned int idx, idx2, count, remove_count = 0;
/* remove first and last. this makes sure that everything between
can simply be deleted with array_delete().
FIXME: it would be faster if we did only one binary lookup here
and handled the splitting ourself.. */
if (seq_range_array_remove(array, seq1))
remove_count++;
if (seq1 == seq2)
return remove_count;
seq1++;
if (seq_range_array_remove(array, seq2--))
remove_count++;
if (seq1 > seq2)
return remove_count;
/* find the beginning */
data = array_get(array, &count);
seq_range_lookup(array, seq1, &idx);
if (idx == count)
return remove_count;
i_assert(data[idx].seq1 >= seq1);
for (idx2 = idx; idx2 < count; idx2++) {
if (data[idx2].seq1 > seq2)
break;
i_assert(UINT_MAX - remove_count >= seq_range_length(&data[idx2]));
remove_count += seq_range_length(&data[idx2]);
}
array_delete(array, idx, idx2-idx);
return remove_count;
}
unsigned int seq_range_array_remove_seq_range(ARRAY_TYPE(seq_range) *dest,
const ARRAY_TYPE(seq_range) *src)
{
unsigned int count, full_count = 0;
const struct seq_range *src_range;
array_foreach(src, src_range) {
count = seq_range_array_remove_range(dest, src_range->seq1,
src_range->seq2);
i_assert(UINT_MAX - full_count >= count);
full_count += count;
}
return full_count;
}
void seq_range_array_remove_nth(ARRAY_TYPE(seq_range) *array,
uint32_t n, uint32_t count)
{
struct seq_range_iter iter;
uint32_t seq1, seq2;
if (count == 0)
return;
seq_range_array_iter_init(&iter, array);
if (!seq_range_array_iter_nth(&iter, n, &seq1)) {
/* n points beyond array */
return;
}
if (count-1 >= (uint32_t)-1 - n ||
!seq_range_array_iter_nth(&iter, n + (count-1), &seq2)) {
/* count points beyond array */
seq2 = (uint32_t)-1;
}
seq_range_array_remove_range(array, seq1, seq2);
}
unsigned int seq_range_array_intersect(ARRAY_TYPE(seq_range) *dest,
const ARRAY_TYPE(seq_range) *src)
{
const struct seq_range *src_range;
unsigned int i, count, remove_count, full_count = 0;
uint32_t last_seq = 0;
src_range = array_get(src, &count);
for (i = 0; i < count; i++) {
if (last_seq + 1 < src_range[i].seq1) {
remove_count = seq_range_array_remove_range(dest,
last_seq + 1, src_range[i].seq1 - 1);
i_assert(UINT_MAX - full_count >= remove_count);
full_count += remove_count;
}
last_seq = src_range[i].seq2;
}
if (last_seq != (uint32_t)-1) {
remove_count = seq_range_array_remove_range(dest, last_seq + 1,
(uint32_t)-1);
i_assert(UINT_MAX - full_count >= remove_count);
full_count += remove_count;
}
return full_count;
}
bool seq_range_exists(const ARRAY_TYPE(seq_range) *array, uint32_t seq)
{
unsigned int idx;
return seq_range_lookup(array, seq, &idx);
}
bool seq_range_array_have_common(const ARRAY_TYPE(seq_range) *array1,
const ARRAY_TYPE(seq_range) *array2)
{
const struct seq_range *range1, *range2;
unsigned int i1, i2, count1, count2;
range1 = array_get(array1, &count1);
range2 = array_get(array2, &count2);
for (i1 = i2 = 0; i1 < count1 && i2 < count2; ) {
if (range1[i1].seq1 <= range2[i2].seq2 &&
range1[i1].seq2 >= range2[i2].seq1)
return TRUE;
if (range1[i1].seq1 < range2[i2].seq1)
i1++;
else
i2++;
}
return FALSE;
}
unsigned int seq_range_count(const ARRAY_TYPE(seq_range) *array)
{
const struct seq_range *range;
unsigned int seq_count = 0;
array_foreach(array, range) {
i_assert(UINT_MAX - seq_count >= seq_range_length(range));
seq_count += seq_range_length(range);
}
return seq_count;
}
void seq_range_array_invert(ARRAY_TYPE(seq_range) *array,
uint32_t min_seq, uint32_t max_seq)
{
struct seq_range *range, value;
unsigned int i, count;
uint32_t prev_min_seq;
if (array_is_created(array))
range = array_get_modifiable(array, &count);
else {
range = NULL;
count = 0;
}
if (count == 0) {
/* empty -> full */
if (!array_is_created(array))
i_array_init(array, 4);
value.seq1 = min_seq;
value.seq2 = max_seq;
array_push_back(array, &value);
return;
}
i_assert(range[0].seq1 >= min_seq);
i_assert(range[count-1].seq2 <= max_seq);
if (range[0].seq1 == min_seq && range[0].seq2 == max_seq) {
/* full -> empty */
array_clear(array);
return;
}
for (i = 0; i < count; ) {
prev_min_seq = min_seq;
min_seq = range[i].seq2;
if (range[i].seq1 == prev_min_seq) {
array_delete(array, i, 1);
range = array_get_modifiable(array, &count);
} else {
range[i].seq2 = range[i].seq1 - 1;
range[i].seq1 = prev_min_seq;
i++;
}
if (min_seq >= max_seq) {
/* max_seq is reached. the rest of the array should be
empty. we'll return here, because min_seq++ may
wrap to 0. */
i_assert(min_seq == max_seq);
i_assert(i == count);
return;
}
min_seq++;
}
if (min_seq <= max_seq) {
value.seq1 = min_seq;
value.seq2 = max_seq;
array_push_back(array, &value);
}
}
void seq_range_array_iter_init(struct seq_range_iter *iter_r,
const ARRAY_TYPE(seq_range) *array)
{
i_zero(iter_r);
iter_r->array = array;
}
bool seq_range_array_iter_nth(struct seq_range_iter *iter, unsigned int n,
uint32_t *seq_r)
{
const struct seq_range *range;
unsigned int i, count, diff;
if (n < iter->prev_n) {
/* iterating backwards, don't bother optimizing */
iter->prev_n = 0;
iter->prev_idx = 0;
}
range = array_get(iter->array, &count);
for (i = iter->prev_idx; i < count; i++) {
diff = range[i].seq2 - range[i].seq1;
if (n <= iter->prev_n + diff) {
i_assert(n >= iter->prev_n);
*seq_r = range[i].seq1 + (n - iter->prev_n);
iter->prev_idx = i;
return TRUE;
}
iter->prev_n += diff + 1;
}
iter->prev_idx = i;
return FALSE;
}
|