1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
/* Copyright (c) 2001-2018 Dovecot authors, see the included COPYING file */
/* Unit tests for bit twiddles library */
#include "test-lib.h"
#include <stdio.h>
static void test_bits_unsigned_minus(void)
{
test_begin("bits_unsigned_minus()");
// 32 bit
test_assert(UNSIGNED_MINUS(0x00000000U) == 0x00000000U);
test_assert(UNSIGNED_MINUS(0x00000001U) == 0xffffffffU);
test_assert(UNSIGNED_MINUS(0x00000002U) == 0xfffffffeU);
test_assert(UNSIGNED_MINUS(0x00000003U) == 0xfffffffdU);
//..
test_assert(UNSIGNED_MINUS(0x7fffffffU) == 0x80000001U);
test_assert(UNSIGNED_MINUS(0x80000000U) == 0x80000000U);
test_assert(UNSIGNED_MINUS(0x80000001U) == 0x7fffffffU);
//..
test_assert(UNSIGNED_MINUS(0xffffffffU) == 0x00000001U);
test_assert(UNSIGNED_MINUS(0xfffffffeU) == 0x00000002U);
test_assert(UNSIGNED_MINUS(0xfffffffdU) == 0x00000003U);
// 64 bit
test_assert(UNSIGNED_MINUS(0x0000000000000000ULL) == 0x0000000000000000ULL);
test_assert(UNSIGNED_MINUS(0x0000000000000001ULL) == 0xffffffffffffffffULL);
test_assert(UNSIGNED_MINUS(0x0000000000000002ULL) == 0xfffffffffffffffeULL);
test_assert(UNSIGNED_MINUS(0x0000000000000003ULL) == 0xfffffffffffffffdULL);
//..
test_assert(UNSIGNED_MINUS(0x7fffffffffffffffULL) == 0x8000000000000001ULL);
test_assert(UNSIGNED_MINUS(0x8000000000000000ULL) == 0x8000000000000000ULL);
test_assert(UNSIGNED_MINUS(0x8000000000000001ULL) == 0x7fffffffffffffffULL);
//..
test_assert(UNSIGNED_MINUS(0xffffffffffffffffULL) == 0x0000000000000001ULL);
test_assert(UNSIGNED_MINUS(0xfffffffffffffffeULL) == 0x0000000000000002ULL);
test_assert(UNSIGNED_MINUS(0xfffffffffffffffdULL) == 0x0000000000000003ULL);
test_end();
}
/* nearest_power(0) = error bits_requiredXX(0) = 0
nearest_power(1) = 1 = 1<<0 bits_requiredXX(1) = 1
nearest_power(2) = 2 = 1<<1 bits_requiredXX(2) = 2
nearest_power(3) = 4 = 1<<2 bits_requiredXX(3) = 2
nearest_power(4) = 4 = 1<<2 bits_requiredXX(4) = 3
nearest_power(5) = 8 = 1<<3 bits_requiredXX(5) = 3
nearest_power(7) = 8 = 1<<3 bits_requiredXX(7) = 3
nearest_power(8) = 8 = 1<<3 bits_requiredXX(8) = 4
*/
/* nearest_power(num) == 1ULL << bits_required64(num-1) */
static void test_nearest_power(void)
{
unsigned int b;
size_t num;
test_begin("nearest_power()");
test_assert(nearest_power(1)==1);
test_assert(nearest_power(2)==2);
for (b = 2; b < CHAR_BIT*sizeof(size_t) - 1; ++b) {
/* b=2 tests 3,4,5; b=3 tests 7,8,9; ... b=30 tests ~1G */
num = (size_t)1 << b;
test_assert_idx(nearest_power(num-1) == num, b);
test_assert_idx(nearest_power(num ) == num, b);
test_assert_idx(nearest_power(num+1) == num<<1, b);
}
/* With 32-bit size_t, now: b=31 tests 2G-1, 2G, not 2G+1. */
num = (size_t)1 << b;
test_assert_idx(nearest_power(num-1) == num, b);
test_assert_idx(nearest_power(num ) == num, b);
/* i_assert()s: test_assert_idx(nearest_power(num+1) == num<<1, b); */
test_end();
}
static void test_bits_is_power_of_two(void)
{
test_begin("bits_is_power_of_two()");
for (unsigned int i = 0; i < 64; i++)
test_assert_idx(bits_is_power_of_two(1ULL << i), i);
for (unsigned int i = 2; i < 64; i++) {
test_assert_idx(!bits_is_power_of_two((1ULL << i) - 1), i);
test_assert_idx(!bits_is_power_of_two((1ULL << i) + 1), i);
}
test_assert(!bits_is_power_of_two(0));
test_assert(!bits_is_power_of_two(0xffffffffffffffffULL));
test_assert( bits_is_power_of_two(0x8000000000000000ULL));
test_end();
}
static void test_bits_requiredXX(void)
{
/* As ..64 depends on ..32 and tests it twice,
* and ..32 depends on ..16 and tests it twice,
* etc., we only test ..64
*/
unsigned int b;
test_begin("bits_requiredXX()");
test_assert(bits_required64(0) == 0);
test_assert(bits_required64(1) == 1);
test_assert(bits_required64(2) == 2);
for (b = 2; b < 64; ++b) {
/* b=2 tests 3,4,5; b=3 tests 7,8,9; ... */
uint64_t num = 1ULL << b;
test_assert_idx(bits_required64(num-1) == b, b);
test_assert_idx(bits_required64(num ) == b+1, b);
test_assert_idx(bits_required64(num+1) == b+1, b);
}
test_end();
}
static void test_sum_overflows(void)
{
#define MAX64 (uint64_t)-1
static const struct {
uint64_t a, b;
bool overflows;
} tests[] = {
{ MAX64-1, 1, FALSE },
{ MAX64, 1, TRUE },
{ MAX64-1, 1, FALSE },
{ MAX64-1, 2, TRUE },
{ MAX64-1, MAX64-1, TRUE },
{ MAX64-1, MAX64, TRUE },
{ MAX64, MAX64, TRUE }
};
unsigned int i;
test_begin("UINT64_SUM_OVERFLOWS");
for (i = 0; i < N_ELEMENTS(tests); i++)
test_assert(UINT64_SUM_OVERFLOWS(tests[i].a, tests[i].b) == tests[i].overflows);
test_end();
}
static void ATTR_NO_SANITIZE_INTEGER ATTR_NO_SANITIZE_IMPLICIT_CONVERSION
test_bits_fraclog(void)
{
unsigned int fracbits;
for (fracbits = 0; fracbits < 6; fracbits++) {
static char name[] = "fraclog x-bit";
name[8] = '0'+ fracbits;
test_begin(name);
unsigned int i;
unsigned int last_end = ~0u;
for (i = 0; i < BITS_FRACLOG_BUCKETS(fracbits); i++) {
unsigned int start = bits_fraclog_bucket_start(i, fracbits);
unsigned int end = bits_fraclog_bucket_end(i, fracbits);
test_assert_idx(start == last_end + 1, i);
last_end = end;
test_assert_idx(bits_fraclog(start, fracbits) == i, i);
test_assert_idx(bits_fraclog(end, fracbits) == i, i);
}
test_assert_idx(last_end == ~0u, fracbits);
test_end();
}
}
/* The compiler *should* generate different code when the fracbits parameter
is a compile-time constant, so we also need to check that's the case.
*/
static void ATTR_NO_SANITIZE_INTEGER ATTR_NO_SANITIZE_IMPLICIT_CONVERSION
test_bits_fraclog_const(void)
{
#define FRACBITS 2
#define STR2(s) #s
#define STR(s) STR2(s)
test_begin("fraclog constant " STR(FRACBITS) " bit");
unsigned int i;
unsigned int last_end = ~0u;
for (i = 0; i < BITS_FRACLOG_BUCKETS(FRACBITS); i++) {
unsigned int start = bits_fraclog_bucket_start(i, FRACBITS);
unsigned int end = bits_fraclog_bucket_end(i, FRACBITS);
test_assert_idx(start == last_end + 1, i);
last_end = end;
test_assert_idx(bits_fraclog(start, FRACBITS) == i, i);
test_assert_idx(bits_fraclog(end, FRACBITS) == i, i);
}
test_assert(last_end == ~0u);
test_end();
}
static void test_bits_rotl32(void)
{
test_begin("bits_rotl32");
test_assert(bits_rotl32(0x1c00000eU, 3) == 0xe0000070U);
test_assert(bits_rotl32(0xe0000070U, 5) == 0x00000e1cU);
test_assert(bits_rotl32(0x00000e1cU, 0) == 0x00000e1cU);
test_assert(bits_rotl32(0x1c00000eU, 3 + 32) == 0xe0000070U);
test_end();
}
static void test_bits_rotl64(void)
{
test_begin("bits_rotl64");
test_assert(bits_rotl64(0x1c0000000000000eUL, 3) == 0xe000000000000070UL);
test_assert(bits_rotl64(0xe000000000000070UL, 5) == 0x0000000000000e1cUL);
test_assert(bits_rotl64(0x0000000000000e1cUL, 0) == 0x0000000000000e1cUL);
test_assert(bits_rotl64(0x1c0000000000000eUL, 3 + 64) == 0xe000000000000070UL);
test_end();
}
static void test_bits_rotr32(void)
{
test_begin("bits_rotr32");
test_assert(bits_rotr32(0x1c00000eU, 3) == 0xc3800001U);
test_assert(bits_rotr32(0xc3800001U, 5) == 0x0e1c0000U);
test_assert(bits_rotr32(0x00000e1cU, 0) == 0x00000e1cU);
test_assert(bits_rotr32(0x1c00000eU, 3 + 32) == 0xc3800001U);
test_end();
}
static void test_bits_rotr64(void)
{
test_begin("bits_rotr64");
test_assert(bits_rotr64(0x1c0000000000000eUL, 3) == 0xc380000000000001UL);
test_assert(bits_rotr64(0xc380000000000001UL, 5) == 0x0e1c000000000000UL);
test_assert(bits_rotr64(0x0000000000000e1cUL, 0) == 0x0000000000000e1cUL);
test_assert(bits_rotr64(0x1c0000000000000eUL, 3 + 64) == 0xc380000000000001UL);
test_end();
}
static void test_bit_tests(void)
{
test_begin("HAS_..._BITS() macro tests");
test_assert(HAS_NO_BITS(1,0));
test_assert(HAS_NO_BITS(2,~2U));
test_assert(!HAS_NO_BITS(2,2));
/* OUCH - this vacuously true expression fails. However, if you are
dumb enough to use 0 as bits, then it will also fail in the verbose
case that this macro replaces, it's not a regression. */
/* test_assert(HAS_ANY_BITS(6,0)); */
test_assert(HAS_ANY_BITS(3,1));
test_assert(HAS_ANY_BITS(2,3));
test_assert(!HAS_ANY_BITS(7,~(7U|128U)));
test_assert(HAS_ALL_BITS(0,0));
test_assert(HAS_ALL_BITS(30,14));
test_assert(!HAS_ALL_BITS(~1U,~0U));
/* Trap double-evaluation */
unsigned int v=10,b=2;
test_assert(!HAS_NO_BITS(v++, b++) && v==11 && b==3);
test_assert(HAS_ANY_BITS(v++, b++) && v==12 && b==4);
test_assert(HAS_ALL_BITS(v++, b++) && v==13 && b==5);
test_end();
}
void test_bits(void)
{
test_bits_unsigned_minus();
test_nearest_power();
test_bits_is_power_of_two();
test_bits_requiredXX();
test_bits_fraclog();
test_bits_fraclog_const();
test_bits_rotl32();
test_bits_rotr32();
test_bits_rotl64();
test_bits_rotr64();
test_sum_overflows();
test_bit_tests();
}
|