diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 01:47:29 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-19 01:47:29 +0000 |
commit | 0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d (patch) | |
tree | a31f07c9bcca9d56ce61e9a1ffd30ef350d513aa /gfx/skia/skia/src/opts/SkRasterPipeline_opts.h | |
parent | Initial commit. (diff) | |
download | firefox-esr-0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d.tar.xz firefox-esr-0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d.zip |
Adding upstream version 115.8.0esr.upstream/115.8.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'gfx/skia/skia/src/opts/SkRasterPipeline_opts.h')
-rw-r--r-- | gfx/skia/skia/src/opts/SkRasterPipeline_opts.h | 5666 |
1 files changed, 5666 insertions, 0 deletions
diff --git a/gfx/skia/skia/src/opts/SkRasterPipeline_opts.h b/gfx/skia/skia/src/opts/SkRasterPipeline_opts.h new file mode 100644 index 0000000000..fa47902e47 --- /dev/null +++ b/gfx/skia/skia/src/opts/SkRasterPipeline_opts.h @@ -0,0 +1,5666 @@ +/* + * Copyright 2018 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef SkRasterPipeline_opts_DEFINED +#define SkRasterPipeline_opts_DEFINED + +#include "include/core/SkData.h" +#include "include/core/SkTypes.h" +#include "include/private/base/SkMalloc.h" +#include "modules/skcms/skcms.h" +#include "src/base/SkUtils.h" // unaligned_{load,store} +#include "src/core/SkRasterPipeline.h" +#include <cstdint> + +// Every function in this file should be marked static and inline using SI. +#if defined(__clang__) || defined(__GNUC__) + #define SI __attribute__((always_inline)) static inline +#else + #define SI static inline +#endif + +template <typename Dst, typename Src> +SI Dst widen_cast(const Src& src) { + static_assert(sizeof(Dst) > sizeof(Src)); + static_assert(std::is_trivially_copyable<Dst>::value); + static_assert(std::is_trivially_copyable<Src>::value); + Dst dst; + memcpy(&dst, &src, sizeof(Src)); + return dst; +} + +struct Ctx { + SkRasterPipelineStage* fStage; + + template <typename T> + operator T*() { + return (T*)fStage->ctx; + } +}; + +using NoCtx = const void*; + +#if defined(SK_ARM_HAS_NEON) + #define JUMPER_IS_NEON +#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX + #define JUMPER_IS_SKX +#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 + #define JUMPER_IS_HSW +#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX + #define JUMPER_IS_AVX +#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 + #define JUMPER_IS_SSE41 +#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 + #define JUMPER_IS_SSE2 +#else + #define JUMPER_IS_SCALAR +#endif + +// Older Clangs seem to crash when generating non-optimized NEON code for ARMv7. +#if defined(__clang__) && !defined(__OPTIMIZE__) && defined(SK_CPU_ARM32) + // Apple Clang 9 and vanilla Clang 5 are fine, and may even be conservative. + #if defined(__apple_build_version__) && __clang_major__ < 9 + #define JUMPER_IS_SCALAR + #elif __clang_major__ < 5 + #define JUMPER_IS_SCALAR + #endif + + #if defined(JUMPER_IS_NEON) && defined(JUMPER_IS_SCALAR) + #undef JUMPER_IS_NEON + #endif +#endif + +#if defined(JUMPER_IS_SCALAR) + #include <math.h> +#elif defined(JUMPER_IS_NEON) + #include <arm_neon.h> +#else + #include <immintrin.h> +#endif + +#if !defined(__clang__) && !defined(JUMPER_IS_SCALAR) +#include "src/base/SkVx.h" +#endif + +#ifdef __clang__ +#define SK_ASSUME(cond) __builtin_assume(cond) +#elif defined(__GNUC__) +#define SK_ASSUME(cond) ((cond) ? (void)0 : __builtin_unreachable()) +#elif defined(_MSC_VER) +#define SK_ASSUME(cond) __assume(cond) +#else +#define SK_ASSUME(cond) ((void)0) +#endif + +#if defined(__clang__) || defined(__GNUC__) +#define SK_EXPECT(exp, p) __builtin_expect(exp, p) +#else +#define SK_EXPECT(exp, p) (exp) +#endif + +#ifdef __clang__ +#define SK_VECTORTYPE(type, size) type __attribute__((ext_vector_type(size))) +#else +#define SK_VECTORTYPE(type, size) skvx::Vec<size, type> +#endif + +#if defined(JUMPER_IS_SCALAR) +#define SK_CONVERTVECTOR(vec, type) ((type)(vec)) +#elif defined(__clang__) +#define SK_CONVERTVECTOR(vec, type) __builtin_convertvector(vec, type) +#else +#define SK_CONVERTVECTOR(vec, type) skvx::cast<typename type::elem_type>(vec) +#endif + +// Notes: +// * rcp_fast and rcp_precise both produce a reciprocal, but rcp_fast is an estimate with at least +// 12 bits of precision while rcp_precise should be accurate for float size. For ARM rcp_precise +// requires 2 Newton-Raphson refinement steps because its estimate has 8 bit precision, and for +// Intel this requires one additional step because its estimate has 12 bit precision. + +namespace SK_OPTS_NS { +#if defined(JUMPER_IS_SCALAR) + // This path should lead to portable scalar code. + using F = float ; + using I32 = int32_t; + using U64 = uint64_t; + using U32 = uint32_t; + using U16 = uint16_t; + using U8 = uint8_t ; + + SI F min(F a, F b) { return fminf(a,b); } + SI I32 min(I32 a, I32 b) { return a < b ? a : b; } + SI U32 min(U32 a, U32 b) { return a < b ? a : b; } + SI F max(F a, F b) { return fmaxf(a,b); } + SI I32 max(I32 a, I32 b) { return a > b ? a : b; } + SI U32 max(U32 a, U32 b) { return a > b ? a : b; } + + SI F mad(F f, F m, F a) { return f*m+a; } + SI F abs_ (F v) { return fabsf(v); } + SI I32 abs_ (I32 v) { return v < 0 ? -v : v; } + SI F floor_(F v) { return floorf(v); } + SI F ceil_(F v) { return ceilf(v); } + SI F rcp_fast(F v) { return 1.0f / v; } + SI F rsqrt (F v) { return 1.0f / sqrtf(v); } + SI F sqrt_ (F v) { return sqrtf(v); } + SI F rcp_precise (F v) { return 1.0f / v; } + + SI U32 round (F v, F scale) { return (uint32_t)(v*scale + 0.5f); } + SI U16 pack(U32 v) { return (U16)v; } + SI U8 pack(U16 v) { return (U8)v; } + + SI F if_then_else(I32 c, F t, F e) { return c ? t : e; } + SI bool any(I32 c) { return c != 0; } + SI bool all(I32 c) { return c != 0; } + + template <typename T> + SI T gather(const T* p, U32 ix) { return p[ix]; } + + template <typename T> + SI void scatter_masked(T src, T* dst, U32 ix, I32 mask) { + dst[ix] = mask ? src : dst[ix]; + } + + SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) { + *r = ptr[0]; + *g = ptr[1]; + } + SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) { + ptr[0] = r; + ptr[1] = g; + } + SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { + *r = ptr[0]; + *g = ptr[1]; + *b = ptr[2]; + } + SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { + *r = ptr[0]; + *g = ptr[1]; + *b = ptr[2]; + *a = ptr[3]; + } + SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { + ptr[0] = r; + ptr[1] = g; + ptr[2] = b; + ptr[3] = a; + } + + SI void load2(const float* ptr, size_t tail, F* r, F* g) { + *r = ptr[0]; + *g = ptr[1]; + } + SI void store2(float* ptr, size_t tail, F r, F g) { + ptr[0] = r; + ptr[1] = g; + } + SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) { + *r = ptr[0]; + *g = ptr[1]; + *b = ptr[2]; + *a = ptr[3]; + } + SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) { + ptr[0] = r; + ptr[1] = g; + ptr[2] = b; + ptr[3] = a; + } + +#elif defined(JUMPER_IS_NEON) + // Since we know we're using Clang, we can use its vector extensions. + template <typename T> using V = SK_VECTORTYPE(T, 4); + using F = V<float >; + using I32 = V< int32_t>; + using U64 = V<uint64_t>; + using U32 = V<uint32_t>; + using U16 = V<uint16_t>; + using U8 = V<uint8_t >; + + // We polyfill a few routines that Clang doesn't build into ext_vector_types. + SI F min(F a, F b) { return vminq_f32(a,b); } + SI I32 min(I32 a, I32 b) { return vminq_s32(a,b); } + SI U32 min(U32 a, U32 b) { return vminq_u32(a,b); } + SI F max(F a, F b) { return vmaxq_f32(a,b); } + SI I32 max(I32 a, I32 b) { return vmaxq_s32(a,b); } + SI U32 max(U32 a, U32 b) { return vmaxq_u32(a,b); } + + SI F abs_ (F v) { return vabsq_f32(v); } + SI I32 abs_ (I32 v) { return vabsq_s32(v); } + SI F rcp_fast(F v) { auto e = vrecpeq_f32 (v); return vrecpsq_f32 (v,e ) * e; } + SI F rcp_precise (F v) { float32x4_t e = rcp_fast(v); return vrecpsq_f32(v,e) * e; } + SI F rsqrt (F v) { auto e = vrsqrteq_f32(v); return vrsqrtsq_f32(v,e*e) * e; } + + SI U16 pack(U32 v) { return SK_CONVERTVECTOR(v, U16); } + SI U8 pack(U16 v) { return SK_CONVERTVECTOR(v, U8); } + + SI F if_then_else(I32 c, F t, F e) { return vbslq_f32(vreinterpretq_u32_s32(c),t,e); } + + #if defined(SK_CPU_ARM64) + SI bool any(I32 c) { return vmaxvq_u32(vreinterpretq_u32_s32(c)) != 0; } + SI bool all(I32 c) { return vminvq_u32(vreinterpretq_u32_s32(c)) != 0; } + + SI F mad(F f, F m, F a) { return vfmaq_f32(a,f,m); } + SI F floor_(F v) { return vrndmq_f32(v); } + SI F ceil_(F v) { return vrndpq_f32(v); } + SI F sqrt_(F v) { return vsqrtq_f32(v); } + SI U32 round(F v, F scale) { return vcvtnq_u32_f32(v*scale); } + #else + SI bool any(I32 c) { return c[0] | c[1] | c[2] | c[3]; } + SI bool all(I32 c) { return c[0] & c[1] & c[2] & c[3]; } + + SI F mad(F f, F m, F a) { return vmlaq_f32(a,f,m); } + SI F floor_(F v) { + F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); + return roundtrip - if_then_else(roundtrip > v, 1, 0); + } + + SI F ceil_(F v) { + F roundtrip = vcvtq_f32_s32(vcvtq_s32_f32(v)); + return roundtrip + if_then_else(roundtrip < v, 1, 0); + } + + SI F sqrt_(F v) { + auto e = vrsqrteq_f32(v); // Estimate and two refinement steps for e = rsqrt(v). + e *= vrsqrtsq_f32(v,e*e); + e *= vrsqrtsq_f32(v,e*e); + return v*F(e); // sqrt(v) == v*rsqrt(v). + } + + SI U32 round(F v, F scale) { + return vcvtq_u32_f32(mad(v,scale,0.5f)); + } + #endif + + template <typename T> + SI V<T> gather(const T* p, U32 ix) { + return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; + } + template <typename V, typename S> + SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) { + V before = gather(dst, ix); + V after = if_then_else(mask, src, before); + dst[ix[0]] = after[0]; + dst[ix[1]] = after[1]; + dst[ix[2]] = after[2]; + dst[ix[3]] = after[3]; + } + SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) { + uint16x4x2_t rg; + if (SK_EXPECT(tail,0)) { + if ( true ) { rg = vld2_lane_u16(ptr + 0, rg, 0); } + if (tail > 1) { rg = vld2_lane_u16(ptr + 2, rg, 1); } + if (tail > 2) { rg = vld2_lane_u16(ptr + 4, rg, 2); } + } else { + rg = vld2_u16(ptr); + } + *r = rg.val[0]; + *g = rg.val[1]; + } + SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) { + if (SK_EXPECT(tail,0)) { + if ( true ) { vst2_lane_u16(ptr + 0, (uint16x4x2_t{{r,g}}), 0); } + if (tail > 1) { vst2_lane_u16(ptr + 2, (uint16x4x2_t{{r,g}}), 1); } + if (tail > 2) { vst2_lane_u16(ptr + 4, (uint16x4x2_t{{r,g}}), 2); } + } else { + vst2_u16(ptr, (uint16x4x2_t{{r,g}})); + } + } + SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { + uint16x4x3_t rgb; + if (SK_EXPECT(tail,0)) { + if ( true ) { rgb = vld3_lane_u16(ptr + 0, rgb, 0); } + if (tail > 1) { rgb = vld3_lane_u16(ptr + 3, rgb, 1); } + if (tail > 2) { rgb = vld3_lane_u16(ptr + 6, rgb, 2); } + } else { + rgb = vld3_u16(ptr); + } + *r = rgb.val[0]; + *g = rgb.val[1]; + *b = rgb.val[2]; + } + SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { + uint16x4x4_t rgba; + if (SK_EXPECT(tail,0)) { + if ( true ) { rgba = vld4_lane_u16(ptr + 0, rgba, 0); } + if (tail > 1) { rgba = vld4_lane_u16(ptr + 4, rgba, 1); } + if (tail > 2) { rgba = vld4_lane_u16(ptr + 8, rgba, 2); } + } else { + rgba = vld4_u16(ptr); + } + *r = rgba.val[0]; + *g = rgba.val[1]; + *b = rgba.val[2]; + *a = rgba.val[3]; + } + + SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { + if (SK_EXPECT(tail,0)) { + if ( true ) { vst4_lane_u16(ptr + 0, (uint16x4x4_t{{r,g,b,a}}), 0); } + if (tail > 1) { vst4_lane_u16(ptr + 4, (uint16x4x4_t{{r,g,b,a}}), 1); } + if (tail > 2) { vst4_lane_u16(ptr + 8, (uint16x4x4_t{{r,g,b,a}}), 2); } + } else { + vst4_u16(ptr, (uint16x4x4_t{{r,g,b,a}})); + } + } + SI void load2(const float* ptr, size_t tail, F* r, F* g) { + float32x4x2_t rg; + if (SK_EXPECT(tail,0)) { + if ( true ) { rg = vld2q_lane_f32(ptr + 0, rg, 0); } + if (tail > 1) { rg = vld2q_lane_f32(ptr + 2, rg, 1); } + if (tail > 2) { rg = vld2q_lane_f32(ptr + 4, rg, 2); } + } else { + rg = vld2q_f32(ptr); + } + *r = rg.val[0]; + *g = rg.val[1]; + } + SI void store2(float* ptr, size_t tail, F r, F g) { + if (SK_EXPECT(tail,0)) { + if ( true ) { vst2q_lane_f32(ptr + 0, (float32x4x2_t{{r,g}}), 0); } + if (tail > 1) { vst2q_lane_f32(ptr + 2, (float32x4x2_t{{r,g}}), 1); } + if (tail > 2) { vst2q_lane_f32(ptr + 4, (float32x4x2_t{{r,g}}), 2); } + } else { + vst2q_f32(ptr, (float32x4x2_t{{r,g}})); + } + } + SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) { + float32x4x4_t rgba; + if (SK_EXPECT(tail,0)) { + if ( true ) { rgba = vld4q_lane_f32(ptr + 0, rgba, 0); } + if (tail > 1) { rgba = vld4q_lane_f32(ptr + 4, rgba, 1); } + if (tail > 2) { rgba = vld4q_lane_f32(ptr + 8, rgba, 2); } + } else { + rgba = vld4q_f32(ptr); + } + *r = rgba.val[0]; + *g = rgba.val[1]; + *b = rgba.val[2]; + *a = rgba.val[3]; + } + SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) { + if (SK_EXPECT(tail,0)) { + if ( true ) { vst4q_lane_f32(ptr + 0, (float32x4x4_t{{r,g,b,a}}), 0); } + if (tail > 1) { vst4q_lane_f32(ptr + 4, (float32x4x4_t{{r,g,b,a}}), 1); } + if (tail > 2) { vst4q_lane_f32(ptr + 8, (float32x4x4_t{{r,g,b,a}}), 2); } + } else { + vst4q_f32(ptr, (float32x4x4_t{{r,g,b,a}})); + } + } + +#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + // These are __m256 and __m256i, but friendlier and strongly-typed. + template <typename T> using V = SK_VECTORTYPE(T, 8); + using F = V<float >; + using I32 = V< int32_t>; + using U64 = V<uint64_t>; + using U32 = V<uint32_t>; + using U16 = V<uint16_t>; + using U8 = V<uint8_t >; + + SI F mad(F f, F m, F a) { return _mm256_fmadd_ps(f, m, a); } + + SI F min(F a, F b) { return _mm256_min_ps(a,b); } + SI I32 min(I32 a, I32 b) { return _mm256_min_epi32(a,b); } + SI U32 min(U32 a, U32 b) { return _mm256_min_epu32(a,b); } + SI F max(F a, F b) { return _mm256_max_ps(a,b); } + SI I32 max(I32 a, I32 b) { return _mm256_max_epi32(a,b); } + SI U32 max(U32 a, U32 b) { return _mm256_max_epu32(a,b); } + + SI F abs_ (F v) { return _mm256_and_ps(v, 0-v); } + SI I32 abs_ (I32 v) { return _mm256_abs_epi32(v); } + SI F floor_(F v) { return _mm256_floor_ps(v); } + SI F ceil_(F v) { return _mm256_ceil_ps(v); } + SI F rcp_fast(F v) { return _mm256_rcp_ps (v); } + SI F rsqrt (F v) { return _mm256_rsqrt_ps(v); } + SI F sqrt_ (F v) { return _mm256_sqrt_ps (v); } + SI F rcp_precise (F v) { + F e = rcp_fast(v); + return _mm256_mul_ps(_mm256_fnmadd_ps(v, e, _mm256_set1_ps(2.0f)), e); + } + + SI U32 round (F v, F scale) { return _mm256_cvtps_epi32(v*scale); } + SI U16 pack(U32 v) { + return _mm_packus_epi32(_mm256_extractf128_si256(v, 0), + _mm256_extractf128_si256(v, 1)); + } + SI U8 pack(U16 v) { + auto r = _mm_packus_epi16(v,v); + return sk_unaligned_load<U8>(&r); + } + + SI F if_then_else(I32 c, F t, F e) { return _mm256_blendv_ps(e, t, _mm256_castsi256_ps(c)); } + // NOTE: This version of 'all' only works with mask values (true == all bits set) + SI bool any(I32 c) { return !_mm256_testz_si256(c, _mm256_set1_epi32(-1)); } + SI bool all(I32 c) { return _mm256_testc_si256(c, _mm256_set1_epi32(-1)); } + + template <typename T> + SI V<T> gather(const T* p, U32 ix) { + return { p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]], + p[ix[4]], p[ix[5]], p[ix[6]], p[ix[7]], }; + } + SI F gather(const float* p, U32 ix) { return _mm256_i32gather_ps (p, ix, 4); } + SI U32 gather(const uint32_t* p, U32 ix) { return _mm256_i32gather_epi32((const int*)p, ix, 4); } + SI U64 gather(const uint64_t* p, U32 ix) { + __m256i parts[] = { + _mm256_i32gather_epi64((const long long int*)p, _mm256_extracti128_si256(ix,0), 8), + _mm256_i32gather_epi64((const long long int*)p, _mm256_extracti128_si256(ix,1), 8), + }; + return sk_bit_cast<U64>(parts); + } + template <typename V, typename S> + SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) { + V before = gather(dst, ix); + V after = if_then_else(mask, src, before); + dst[ix[0]] = after[0]; + dst[ix[1]] = after[1]; + dst[ix[2]] = after[2]; + dst[ix[3]] = after[3]; + dst[ix[4]] = after[4]; + dst[ix[5]] = after[5]; + dst[ix[6]] = after[6]; + dst[ix[7]] = after[7]; + } + + SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) { + U16 _0123, _4567; + if (SK_EXPECT(tail,0)) { + _0123 = _4567 = _mm_setzero_si128(); + auto* d = &_0123; + if (tail > 3) { + *d = _mm_loadu_si128(((__m128i*)ptr) + 0); + tail -= 4; + ptr += 8; + d = &_4567; + } + bool high = false; + if (tail > 1) { + *d = _mm_loadl_epi64((__m128i*)ptr); + tail -= 2; + ptr += 4; + high = true; + } + if (tail > 0) { + (*d)[high ? 4 : 0] = *(ptr + 0); + (*d)[high ? 5 : 1] = *(ptr + 1); + } + } else { + _0123 = _mm_loadu_si128(((__m128i*)ptr) + 0); + _4567 = _mm_loadu_si128(((__m128i*)ptr) + 1); + } + *r = _mm_packs_epi32(_mm_srai_epi32(_mm_slli_epi32(_0123, 16), 16), + _mm_srai_epi32(_mm_slli_epi32(_4567, 16), 16)); + *g = _mm_packs_epi32(_mm_srai_epi32(_0123, 16), + _mm_srai_epi32(_4567, 16)); + } + SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) { + auto _0123 = _mm_unpacklo_epi16(r, g), + _4567 = _mm_unpackhi_epi16(r, g); + if (SK_EXPECT(tail,0)) { + const auto* s = &_0123; + if (tail > 3) { + _mm_storeu_si128((__m128i*)ptr, *s); + s = &_4567; + tail -= 4; + ptr += 8; + } + bool high = false; + if (tail > 1) { + _mm_storel_epi64((__m128i*)ptr, *s); + ptr += 4; + tail -= 2; + high = true; + } + if (tail > 0) { + if (high) { + *(int32_t*)ptr = _mm_extract_epi32(*s, 2); + } else { + *(int32_t*)ptr = _mm_cvtsi128_si32(*s); + } + } + } else { + _mm_storeu_si128((__m128i*)ptr + 0, _0123); + _mm_storeu_si128((__m128i*)ptr + 1, _4567); + } + } + + SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { + __m128i _0,_1,_2,_3,_4,_5,_6,_7; + if (SK_EXPECT(tail,0)) { + auto load_rgb = [](const uint16_t* src) { + auto v = _mm_cvtsi32_si128(*(const uint32_t*)src); + return _mm_insert_epi16(v, src[2], 2); + }; + _1 = _2 = _3 = _4 = _5 = _6 = _7 = _mm_setzero_si128(); + if ( true ) { _0 = load_rgb(ptr + 0); } + if (tail > 1) { _1 = load_rgb(ptr + 3); } + if (tail > 2) { _2 = load_rgb(ptr + 6); } + if (tail > 3) { _3 = load_rgb(ptr + 9); } + if (tail > 4) { _4 = load_rgb(ptr + 12); } + if (tail > 5) { _5 = load_rgb(ptr + 15); } + if (tail > 6) { _6 = load_rgb(ptr + 18); } + } else { + // Load 0+1, 2+3, 4+5 normally, and 6+7 backed up 4 bytes so we don't run over. + auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) ; + auto _23 = _mm_loadu_si128((const __m128i*)(ptr + 6)) ; + auto _45 = _mm_loadu_si128((const __m128i*)(ptr + 12)) ; + auto _67 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 16)), 4); + _0 = _01; _1 = _mm_srli_si128(_01, 6); + _2 = _23; _3 = _mm_srli_si128(_23, 6); + _4 = _45; _5 = _mm_srli_si128(_45, 6); + _6 = _67; _7 = _mm_srli_si128(_67, 6); + } + + auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx + _13 = _mm_unpacklo_epi16(_1, _3), + _46 = _mm_unpacklo_epi16(_4, _6), + _57 = _mm_unpacklo_epi16(_5, _7); + + auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 + bx0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 xx xx xx xx + rg4567 = _mm_unpacklo_epi16(_46, _57), + bx4567 = _mm_unpackhi_epi16(_46, _57); + + *r = _mm_unpacklo_epi64(rg0123, rg4567); + *g = _mm_unpackhi_epi64(rg0123, rg4567); + *b = _mm_unpacklo_epi64(bx0123, bx4567); + } + SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { + __m128i _01, _23, _45, _67; + if (SK_EXPECT(tail,0)) { + auto src = (const double*)ptr; + _01 = _23 = _45 = _67 = _mm_setzero_si128(); + if (tail > 0) { _01 = _mm_castpd_si128(_mm_loadl_pd(_mm_castsi128_pd(_01), src+0)); } + if (tail > 1) { _01 = _mm_castpd_si128(_mm_loadh_pd(_mm_castsi128_pd(_01), src+1)); } + if (tail > 2) { _23 = _mm_castpd_si128(_mm_loadl_pd(_mm_castsi128_pd(_23), src+2)); } + if (tail > 3) { _23 = _mm_castpd_si128(_mm_loadh_pd(_mm_castsi128_pd(_23), src+3)); } + if (tail > 4) { _45 = _mm_castpd_si128(_mm_loadl_pd(_mm_castsi128_pd(_45), src+4)); } + if (tail > 5) { _45 = _mm_castpd_si128(_mm_loadh_pd(_mm_castsi128_pd(_45), src+5)); } + if (tail > 6) { _67 = _mm_castpd_si128(_mm_loadl_pd(_mm_castsi128_pd(_67), src+6)); } + } else { + _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); + _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); + _45 = _mm_loadu_si128(((__m128i*)ptr) + 2); + _67 = _mm_loadu_si128(((__m128i*)ptr) + 3); + } + + auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2 + _13 = _mm_unpackhi_epi16(_01, _23), // r1 r3 g1 g3 b1 b3 a1 a3 + _46 = _mm_unpacklo_epi16(_45, _67), + _57 = _mm_unpackhi_epi16(_45, _67); + + auto rg0123 = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 + ba0123 = _mm_unpackhi_epi16(_02, _13), // b0 b1 b2 b3 a0 a1 a2 a3 + rg4567 = _mm_unpacklo_epi16(_46, _57), + ba4567 = _mm_unpackhi_epi16(_46, _57); + + *r = _mm_unpacklo_epi64(rg0123, rg4567); + *g = _mm_unpackhi_epi64(rg0123, rg4567); + *b = _mm_unpacklo_epi64(ba0123, ba4567); + *a = _mm_unpackhi_epi64(ba0123, ba4567); + } + SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { + auto rg0123 = _mm_unpacklo_epi16(r, g), // r0 g0 r1 g1 r2 g2 r3 g3 + rg4567 = _mm_unpackhi_epi16(r, g), // r4 g4 r5 g5 r6 g6 r7 g7 + ba0123 = _mm_unpacklo_epi16(b, a), + ba4567 = _mm_unpackhi_epi16(b, a); + + auto _01 = _mm_unpacklo_epi32(rg0123, ba0123), + _23 = _mm_unpackhi_epi32(rg0123, ba0123), + _45 = _mm_unpacklo_epi32(rg4567, ba4567), + _67 = _mm_unpackhi_epi32(rg4567, ba4567); + + if (SK_EXPECT(tail,0)) { + auto dst = (double*)ptr; + if (tail > 0) { _mm_storel_pd(dst+0, _mm_castsi128_pd(_01)); } + if (tail > 1) { _mm_storeh_pd(dst+1, _mm_castsi128_pd(_01)); } + if (tail > 2) { _mm_storel_pd(dst+2, _mm_castsi128_pd(_23)); } + if (tail > 3) { _mm_storeh_pd(dst+3, _mm_castsi128_pd(_23)); } + if (tail > 4) { _mm_storel_pd(dst+4, _mm_castsi128_pd(_45)); } + if (tail > 5) { _mm_storeh_pd(dst+5, _mm_castsi128_pd(_45)); } + if (tail > 6) { _mm_storel_pd(dst+6, _mm_castsi128_pd(_67)); } + } else { + _mm_storeu_si128((__m128i*)ptr + 0, _01); + _mm_storeu_si128((__m128i*)ptr + 1, _23); + _mm_storeu_si128((__m128i*)ptr + 2, _45); + _mm_storeu_si128((__m128i*)ptr + 3, _67); + } + } + + SI void load2(const float* ptr, size_t tail, F* r, F* g) { + F _0123, _4567; + if (SK_EXPECT(tail, 0)) { + _0123 = _4567 = _mm256_setzero_ps(); + F* d = &_0123; + if (tail > 3) { + *d = _mm256_loadu_ps(ptr); + ptr += 8; + tail -= 4; + d = &_4567; + } + bool high = false; + if (tail > 1) { + *d = _mm256_castps128_ps256(_mm_loadu_ps(ptr)); + ptr += 4; + tail -= 2; + high = true; + } + if (tail > 0) { + *d = high ? _mm256_insertf128_ps(*d, _mm_castsi128_ps(_mm_loadl_epi64((__m128i*)ptr)), 1) + : _mm256_insertf128_ps(*d, _mm_castsi128_ps(_mm_loadl_epi64((__m128i*)ptr)), 0); + } + } else { + _0123 = _mm256_loadu_ps(ptr + 0); + _4567 = _mm256_loadu_ps(ptr + 8); + } + + F _0145 = _mm256_castpd_ps(_mm256_permute2f128_pd(_mm256_castps_pd(_0123), _mm256_castps_pd(_4567), 0x20)), + _2367 = _mm256_castpd_ps(_mm256_permute2f128_pd(_mm256_castps_pd(_0123), _mm256_castps_pd(_4567), 0x31)); + + *r = _mm256_shuffle_ps(_0145, _2367, 0x88); + *g = _mm256_shuffle_ps(_0145, _2367, 0xDD); + } + SI void store2(float* ptr, size_t tail, F r, F g) { + F _0145 = _mm256_unpacklo_ps(r, g), + _2367 = _mm256_unpackhi_ps(r, g); + F _0123 = _mm256_castpd_ps(_mm256_permute2f128_pd(_mm256_castps_pd(_0145), _mm256_castps_pd(_2367), 0x20)), + _4567 = _mm256_castpd_ps(_mm256_permute2f128_pd(_mm256_castps_pd(_0145), _mm256_castps_pd(_2367), 0x31)); + + if (SK_EXPECT(tail, 0)) { + const __m256* s = (__m256*)&_0123; + if (tail > 3) { + _mm256_storeu_ps(ptr, *s); + s = (__m256*)&_4567; + tail -= 4; + ptr += 8; + } + bool high = false; + if (tail > 1) { + _mm_storeu_ps(ptr, _mm256_extractf128_ps(*s, 0)); + ptr += 4; + tail -= 2; + high = true; + } + if (tail > 0) { + *(ptr + 0) = (*s)[ high ? 4 : 0]; + *(ptr + 1) = (*s)[ high ? 5 : 1]; + } + } else { + _mm256_storeu_ps(ptr + 0, _0123); + _mm256_storeu_ps(ptr + 8, _4567); + } + } + + SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) { + F _04, _15, _26, _37; + _04 = _15 = _26 = _37 = 0; + switch (tail) { + case 0: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+28), 1); [[fallthrough]]; + case 7: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+24), 1); [[fallthrough]]; + case 6: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+20), 1); [[fallthrough]]; + case 5: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+16), 1); [[fallthrough]]; + case 4: _37 = _mm256_insertf128_ps(_37, _mm_loadu_ps(ptr+12), 0); [[fallthrough]]; + case 3: _26 = _mm256_insertf128_ps(_26, _mm_loadu_ps(ptr+ 8), 0); [[fallthrough]]; + case 2: _15 = _mm256_insertf128_ps(_15, _mm_loadu_ps(ptr+ 4), 0); [[fallthrough]]; + case 1: _04 = _mm256_insertf128_ps(_04, _mm_loadu_ps(ptr+ 0), 0); + } + + F rg0145 = _mm256_unpacklo_ps(_04,_15), // r0 r1 g0 g1 | r4 r5 g4 g5 + ba0145 = _mm256_unpackhi_ps(_04,_15), + rg2367 = _mm256_unpacklo_ps(_26,_37), + ba2367 = _mm256_unpackhi_ps(_26,_37); + + *r = _mm256_castpd_ps(_mm256_unpacklo_pd(_mm256_castps_pd(rg0145), _mm256_castps_pd(rg2367))); + *g = _mm256_castpd_ps(_mm256_unpackhi_pd(_mm256_castps_pd(rg0145), _mm256_castps_pd(rg2367))); + *b = _mm256_castpd_ps(_mm256_unpacklo_pd(_mm256_castps_pd(ba0145), _mm256_castps_pd(ba2367))); + *a = _mm256_castpd_ps(_mm256_unpackhi_pd(_mm256_castps_pd(ba0145), _mm256_castps_pd(ba2367))); + } + SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) { + F rg0145 = _mm256_unpacklo_ps(r, g), // r0 g0 r1 g1 | r4 g4 r5 g5 + rg2367 = _mm256_unpackhi_ps(r, g), // r2 ... | r6 ... + ba0145 = _mm256_unpacklo_ps(b, a), // b0 a0 b1 a1 | b4 a4 b5 a5 + ba2367 = _mm256_unpackhi_ps(b, a); // b2 ... | b6 ... + + F _04 = _mm256_castpd_ps(_mm256_unpacklo_pd(_mm256_castps_pd(rg0145), _mm256_castps_pd(ba0145))), // r0 g0 b0 a0 | r4 g4 b4 a4 + _15 = _mm256_castpd_ps(_mm256_unpackhi_pd(_mm256_castps_pd(rg0145), _mm256_castps_pd(ba0145))), // r1 ... | r5 ... + _26 = _mm256_castpd_ps(_mm256_unpacklo_pd(_mm256_castps_pd(rg2367), _mm256_castps_pd(ba2367))), // r2 ... | r6 ... + _37 = _mm256_castpd_ps(_mm256_unpackhi_pd(_mm256_castps_pd(rg2367), _mm256_castps_pd(ba2367))); // r3 ... | r7 ... + + if (SK_EXPECT(tail, 0)) { + if (tail > 0) { _mm_storeu_ps(ptr+ 0, _mm256_extractf128_ps(_04, 0)); } + if (tail > 1) { _mm_storeu_ps(ptr+ 4, _mm256_extractf128_ps(_15, 0)); } + if (tail > 2) { _mm_storeu_ps(ptr+ 8, _mm256_extractf128_ps(_26, 0)); } + if (tail > 3) { _mm_storeu_ps(ptr+12, _mm256_extractf128_ps(_37, 0)); } + if (tail > 4) { _mm_storeu_ps(ptr+16, _mm256_extractf128_ps(_04, 1)); } + if (tail > 5) { _mm_storeu_ps(ptr+20, _mm256_extractf128_ps(_15, 1)); } + if (tail > 6) { _mm_storeu_ps(ptr+24, _mm256_extractf128_ps(_26, 1)); } + } else { + F _01 = _mm256_permute2f128_ps(_04, _15, 32), // 32 == 0010 0000 == lo, lo + _23 = _mm256_permute2f128_ps(_26, _37, 32), + _45 = _mm256_permute2f128_ps(_04, _15, 49), // 49 == 0011 0001 == hi, hi + _67 = _mm256_permute2f128_ps(_26, _37, 49); + _mm256_storeu_ps(ptr+ 0, _01); + _mm256_storeu_ps(ptr+ 8, _23); + _mm256_storeu_ps(ptr+16, _45); + _mm256_storeu_ps(ptr+24, _67); + } + } + +#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) +template <typename T> using V = SK_VECTORTYPE(T, 4); + using F = V<float >; + using I32 = V< int32_t>; + using U64 = V<uint64_t>; + using U32 = V<uint32_t>; + using U16 = V<uint16_t>; + using U8 = V<uint8_t >; + + SI F if_then_else(I32 c, F t, F e) { + return _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), t), _mm_andnot_ps(_mm_castsi128_ps(c), e)); + } + + SI F min(F a, F b) { return _mm_min_ps(a,b); } + SI F max(F a, F b) { return _mm_max_ps(a,b); } +#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) + SI I32 min(I32 a, I32 b) { return _mm_min_epi32(a,b); } + SI U32 min(U32 a, U32 b) { return _mm_min_epu32(a,b); } + SI I32 max(I32 a, I32 b) { return _mm_max_epi32(a,b); } + SI U32 max(U32 a, U32 b) { return _mm_max_epu32(a,b); } +#else + SI I32 min(I32 a, I32 b) { + return sk_bit_cast<I32>(if_then_else(sk_bit_cast<I32>(a < b), sk_bit_cast<F>(a), sk_bit_cast<F>(b))); + } + SI U32 min(U32 a, U32 b) { + return sk_bit_cast<U32>(if_then_else(sk_bit_cast<I32>(a < b), sk_bit_cast<F>(a), sk_bit_cast<F>(b))); + } + SI I32 max(I32 a, I32 b) { + return sk_bit_cast<I32>(if_then_else(sk_bit_cast<I32>(a > b), sk_bit_cast<F>(a), sk_bit_cast<F>(b))); + } + SI U32 max(U32 a, U32 b) { + return sk_bit_cast<U32>(if_then_else(sk_bit_cast<I32>(a > b), sk_bit_cast<F>(a), sk_bit_cast<F>(b))); + } +#endif + + SI F mad(F f, F m, F a) { return f*m+a; } + SI F abs_(F v) { return _mm_and_ps(v, 0-v); } +#if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) + SI I32 abs_(I32 v) { return _mm_abs_epi32(v); } +#else + SI I32 abs_(I32 v) { return max(v, -v); } +#endif + SI F rcp_fast(F v) { return _mm_rcp_ps (v); } + SI F rcp_precise (F v) { F e = rcp_fast(v); return e * (2.0f - v * e); } + SI F rsqrt (F v) { return _mm_rsqrt_ps(v); } + SI F sqrt_(F v) { return _mm_sqrt_ps (v); } + + SI U32 round(F v, F scale) { return _mm_cvtps_epi32(v*scale); } + + SI U16 pack(U32 v) { + #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) + auto p = _mm_packus_epi32(v,v); + #else + // Sign extend so that _mm_packs_epi32() does the pack we want. + auto p = _mm_srai_epi32(_mm_slli_epi32(v, 16), 16); + p = _mm_packs_epi32(p,p); + #endif + return sk_unaligned_load<U16>(&p); // We have two copies. Return (the lower) one. + } + SI U8 pack(U16 v) { + auto r = widen_cast<__m128i>(v); + r = _mm_packus_epi16(r,r); + return sk_unaligned_load<U8>(&r); + } + + // NOTE: This only checks the top bit of each lane, and is incorrect with non-mask values. + SI bool any(I32 c) { return _mm_movemask_ps(_mm_castsi128_ps(c)) != 0b0000; } + SI bool all(I32 c) { return _mm_movemask_ps(_mm_castsi128_ps(c)) == 0b1111; } + + SI F floor_(F v) { + #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) + return _mm_floor_ps(v); + #else + F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v)); + return roundtrip - if_then_else(roundtrip > v, 1, 0); + #endif + } + + SI F ceil_(F v) { + #if defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) + return _mm_ceil_ps(v); + #else + F roundtrip = _mm_cvtepi32_ps(_mm_cvttps_epi32(v)); + return roundtrip + if_then_else(roundtrip < v, 1, 0); + #endif + } + + template <typename T> + SI V<T> gather(const T* p, U32 ix) { + return {p[ix[0]], p[ix[1]], p[ix[2]], p[ix[3]]}; + } + template <typename V, typename S> + SI void scatter_masked(V src, S* dst, U32 ix, I32 mask) { + V before = gather(dst, ix); + V after = if_then_else(mask, src, before); + dst[ix[0]] = after[0]; + dst[ix[1]] = after[1]; + dst[ix[2]] = after[2]; + dst[ix[3]] = after[3]; + } + SI void load2(const uint16_t* ptr, size_t tail, U16* r, U16* g) { + __m128i _01; + if (SK_EXPECT(tail,0)) { + _01 = _mm_setzero_si128(); + if (tail > 1) { + _01 = _mm_castpd_si128(_mm_loadl_pd(_mm_castsi128_pd(_01), (const double*)ptr)); // r0 g0 r1 g1 00 00 00 00 + if (tail > 2) { + _01 = _mm_insert_epi16(_01, *(ptr+4), 4); // r0 g0 r1 g1 r2 00 00 00 + _01 = _mm_insert_epi16(_01, *(ptr+5), 5); // r0 g0 r1 g1 r2 g2 00 00 + } + } else { + _01 = _mm_cvtsi32_si128(*(const uint32_t*)ptr); // r0 g0 00 00 00 00 00 00 + } + } else { + _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 r1 g1 r2 g2 r3 g3 + } + auto rg01_23 = _mm_shufflelo_epi16(_01, 0xD8); // r0 r1 g0 g1 r2 g2 r3 g3 + auto rg = _mm_shufflehi_epi16(rg01_23, 0xD8); // r0 r1 g0 g1 r2 r3 g2 g3 + + auto R = _mm_shuffle_epi32(rg, 0x88); // r0 r1 r2 r3 r0 r1 r2 r3 + auto G = _mm_shuffle_epi32(rg, 0xDD); // g0 g1 g2 g3 g0 g1 g2 g3 + *r = sk_unaligned_load<U16>(&R); + *g = sk_unaligned_load<U16>(&G); + } + SI void store2(uint16_t* ptr, size_t tail, U16 r, U16 g) { + U32 rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)); + if (SK_EXPECT(tail, 0)) { + if (tail > 1) { + _mm_storel_epi64((__m128i*)ptr, rg); + if (tail > 2) { + int32_t rgpair = rg[2]; + memcpy(ptr + 4, &rgpair, sizeof(rgpair)); + } + } else { + int32_t rgpair = rg[0]; + memcpy(ptr, &rgpair, sizeof(rgpair)); + } + } else { + _mm_storeu_si128((__m128i*)ptr + 0, rg); + } + } + + SI void load3(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { + __m128i _0, _1, _2, _3; + if (SK_EXPECT(tail,0)) { + _1 = _2 = _3 = _mm_setzero_si128(); + auto load_rgb = [](const uint16_t* src) { + auto v = _mm_cvtsi32_si128(*(const uint32_t*)src); + return _mm_insert_epi16(v, src[2], 2); + }; + if ( true ) { _0 = load_rgb(ptr + 0); } + if (tail > 1) { _1 = load_rgb(ptr + 3); } + if (tail > 2) { _2 = load_rgb(ptr + 6); } + } else { + // Load slightly weirdly to make sure we don't load past the end of 4x48 bits. + auto _01 = _mm_loadu_si128((const __m128i*)(ptr + 0)) , + _23 = _mm_srli_si128(_mm_loadu_si128((const __m128i*)(ptr + 4)), 4); + + // Each _N holds R,G,B for pixel N in its lower 3 lanes (upper 5 are ignored). + _0 = _01; + _1 = _mm_srli_si128(_01, 6); + _2 = _23; + _3 = _mm_srli_si128(_23, 6); + } + + // De-interlace to R,G,B. + auto _02 = _mm_unpacklo_epi16(_0, _2), // r0 r2 g0 g2 b0 b2 xx xx + _13 = _mm_unpacklo_epi16(_1, _3); // r1 r3 g1 g3 b1 b3 xx xx + + auto R = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 + G = _mm_srli_si128(R, 8), + B = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 xx xx xx xx + + *r = sk_unaligned_load<U16>(&R); + *g = sk_unaligned_load<U16>(&G); + *b = sk_unaligned_load<U16>(&B); + } + + SI void load4(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { + __m128i _01, _23; + if (SK_EXPECT(tail,0)) { + _01 = _23 = _mm_setzero_si128(); + auto src = (const double*)ptr; + if ( true ) { _01 = _mm_castpd_si128(_mm_loadl_pd(_mm_castsi128_pd(_01), src + 0)); } // r0 g0 b0 a0 00 00 00 00 + if (tail > 1) { _01 = _mm_castpd_si128(_mm_loadh_pd(_mm_castsi128_pd(_01), src + 1)); } // r0 g0 b0 a0 r1 g1 b1 a1 + if (tail > 2) { _23 = _mm_castpd_si128(_mm_loadl_pd(_mm_castsi128_pd(_23), src + 2)); } // r2 g2 b2 a2 00 00 00 00 + } else { + _01 = _mm_loadu_si128(((__m128i*)ptr) + 0); // r0 g0 b0 a0 r1 g1 b1 a1 + _23 = _mm_loadu_si128(((__m128i*)ptr) + 1); // r2 g2 b2 a2 r3 g3 b3 a3 + } + + auto _02 = _mm_unpacklo_epi16(_01, _23), // r0 r2 g0 g2 b0 b2 a0 a2 + _13 = _mm_unpackhi_epi16(_01, _23); // r1 r3 g1 g3 b1 b3 a1 a3 + + auto rg = _mm_unpacklo_epi16(_02, _13), // r0 r1 r2 r3 g0 g1 g2 g3 + ba = _mm_unpackhi_epi16(_02, _13); // b0 b1 b2 b3 a0 a1 a2 a3 + + *r = sk_unaligned_load<U16>((uint16_t*)&rg + 0); + *g = sk_unaligned_load<U16>((uint16_t*)&rg + 4); + *b = sk_unaligned_load<U16>((uint16_t*)&ba + 0); + *a = sk_unaligned_load<U16>((uint16_t*)&ba + 4); + } + + SI void store4(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { + auto rg = _mm_unpacklo_epi16(widen_cast<__m128i>(r), widen_cast<__m128i>(g)), + ba = _mm_unpacklo_epi16(widen_cast<__m128i>(b), widen_cast<__m128i>(a)); + + if (SK_EXPECT(tail, 0)) { + auto dst = (double*)ptr; + if ( true ) { _mm_storel_pd(dst + 0, _mm_castsi128_pd(_mm_unpacklo_epi32(rg, ba))); } + if (tail > 1) { _mm_storeh_pd(dst + 1, _mm_castsi128_pd(_mm_unpacklo_epi32(rg, ba))); } + if (tail > 2) { _mm_storel_pd(dst + 2, _mm_castsi128_pd(_mm_unpackhi_epi32(rg, ba))); } + } else { + _mm_storeu_si128((__m128i*)ptr + 0, _mm_unpacklo_epi32(rg, ba)); + _mm_storeu_si128((__m128i*)ptr + 1, _mm_unpackhi_epi32(rg, ba)); + } + } + + SI void load2(const float* ptr, size_t tail, F* r, F* g) { + F _01, _23; + if (SK_EXPECT(tail, 0)) { + _01 = _23 = _mm_setzero_ps(); + if ( true ) { _01 = _mm_loadl_pi(_01, (__m64 const*)(ptr + 0)); } + if (tail > 1) { _01 = _mm_loadh_pi(_01, (__m64 const*)(ptr + 2)); } + if (tail > 2) { _23 = _mm_loadl_pi(_23, (__m64 const*)(ptr + 4)); } + } else { + _01 = _mm_loadu_ps(ptr + 0); + _23 = _mm_loadu_ps(ptr + 4); + } + *r = _mm_shuffle_ps(_01, _23, 0x88); + *g = _mm_shuffle_ps(_01, _23, 0xDD); + } + SI void store2(float* ptr, size_t tail, F r, F g) { + F _01 = _mm_unpacklo_ps(r, g), + _23 = _mm_unpackhi_ps(r, g); + if (SK_EXPECT(tail, 0)) { + if ( true ) { _mm_storel_pi((__m64*)(ptr + 0), _01); } + if (tail > 1) { _mm_storeh_pi((__m64*)(ptr + 2), _01); } + if (tail > 2) { _mm_storel_pi((__m64*)(ptr + 4), _23); } + } else { + _mm_storeu_ps(ptr + 0, _01); + _mm_storeu_ps(ptr + 4, _23); + } + } + + SI void load4(const float* ptr, size_t tail, F* r, F* g, F* b, F* a) { + F _0, _1, _2, _3; + if (SK_EXPECT(tail, 0)) { + _1 = _2 = _3 = _mm_setzero_ps(); + if ( true ) { _0 = _mm_loadu_ps(ptr + 0); } + if (tail > 1) { _1 = _mm_loadu_ps(ptr + 4); } + if (tail > 2) { _2 = _mm_loadu_ps(ptr + 8); } + } else { + _0 = _mm_loadu_ps(ptr + 0); + _1 = _mm_loadu_ps(ptr + 4); + _2 = _mm_loadu_ps(ptr + 8); + _3 = _mm_loadu_ps(ptr +12); + } + _MM_TRANSPOSE4_PS(_0,_1,_2,_3); + *r = _0; + *g = _1; + *b = _2; + *a = _3; + } + + SI void store4(float* ptr, size_t tail, F r, F g, F b, F a) { + _MM_TRANSPOSE4_PS(r,g,b,a); + if (SK_EXPECT(tail, 0)) { + if ( true ) { _mm_storeu_ps(ptr + 0, r); } + if (tail > 1) { _mm_storeu_ps(ptr + 4, g); } + if (tail > 2) { _mm_storeu_ps(ptr + 8, b); } + } else { + _mm_storeu_ps(ptr + 0, r); + _mm_storeu_ps(ptr + 4, g); + _mm_storeu_ps(ptr + 8, b); + _mm_storeu_ps(ptr +12, a); + } + } +#endif + +// We need to be a careful with casts. +// (F)x means cast x to float in the portable path, but bit_cast x to float in the others. +// These named casts and bit_cast() are always what they seem to be. +#if defined(JUMPER_IS_SCALAR) + SI F cast (U32 v) { return (F)v; } + SI F cast64(U64 v) { return (F)v; } + SI U32 trunc_(F v) { return (U32)v; } + SI U32 expand(U16 v) { return (U32)v; } + SI U32 expand(U8 v) { return (U32)v; } +#else + SI F cast (U32 v) { return SK_CONVERTVECTOR(sk_bit_cast<I32>(v), F); } + SI F cast64(U64 v) { return SK_CONVERTVECTOR( v, F); } + SI U32 trunc_(F v) { return sk_bit_cast<U32>(SK_CONVERTVECTOR(v, I32)); } + SI U32 expand(U16 v) { return SK_CONVERTVECTOR( v, U32); } + SI U32 expand(U8 v) { return SK_CONVERTVECTOR( v, U32); } +#endif + +SI U32 if_then_else(I32 c, U32 t, U32 e) { + return sk_bit_cast<U32>(if_then_else(c, sk_bit_cast<F>(t), sk_bit_cast<F>(e))); +} + +SI I32 if_then_else(I32 c, I32 t, I32 e) { + return sk_bit_cast<I32>(if_then_else(c, sk_bit_cast<F>(t), sk_bit_cast<F>(e))); +} + +SI U16 bswap(U16 x) { +#if defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) + // Somewhat inexplicably Clang decides to do (x<<8) | (x>>8) in 32-bit lanes + // when generating code for SSE2 and SSE4.1. We'll do it manually... + auto v = widen_cast<__m128i>(x); + v = _mm_slli_epi16(v,8) | _mm_srli_epi16(v,8); + return sk_unaligned_load<U16>(&v); +#else + return (x<<8) | (x>>8); +#endif +} + +SI F fract(F v) { return v - floor_(v); } + +// See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html +SI F approx_log2(F x) { + // e - 127 is a fair approximation of log2(x) in its own right... + F e = cast(sk_bit_cast<U32>(x)) * (1.0f / (1<<23)); + + // ... but using the mantissa to refine its error is _much_ better. + F m = sk_bit_cast<F>((sk_bit_cast<U32>(x) & 0x007fffff) | 0x3f000000); + return e + - 124.225514990f + - 1.498030302f * m + - 1.725879990f / (0.3520887068f + m); +} + +SI F approx_log(F x) { + const float ln2 = 0.69314718f; + return ln2 * approx_log2(x); +} + +SI F approx_pow2(F x) { + F f = fract(x); + return sk_bit_cast<F>(round(1.0f * (1<<23), + x + 121.274057500f + - 1.490129070f * f + + 27.728023300f / (4.84252568f - f))); +} + +SI F approx_exp(F x) { + const float log2_e = 1.4426950408889634074f; + return approx_pow2(log2_e * x); +} + +SI F approx_powf(F x, F y) { + return if_then_else((x == 0)|(x == 1), x + , approx_pow2(approx_log2(x) * y)); +} + +SI F from_half(U16 h) { +#if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \ + && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds. + return vcvt_f32_f16(sk_bit_cast<float16x4_t>(h)); + +#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + return _mm256_cvtph_ps(h); + +#else + // Remember, a half is 1-5-10 (sign-exponent-mantissa) with 15 exponent bias. + U32 sem = expand(h), + s = sem & 0x8000, + em = sem ^ s; + + // Convert to 1-8-23 float with 127 bias, flushing denorm halfs (including zero) to zero. + auto denorm = sk_bit_cast<I32>(em) < 0x0400; // I32 comparison is often quicker, and always safe here. + return if_then_else(denorm, F(0) + , sk_bit_cast<F>( (s<<16) + (em<<13) + ((127-15)<<23) )); +#endif +} + +SI U16 to_half(F f) { +#if defined(JUMPER_IS_NEON) && defined(SK_CPU_ARM64) \ + && !defined(SK_BUILD_FOR_GOOGLE3) // Temporary workaround for some Google3 builds. + return sk_bit_cast<U16>(vcvt_f16_f32(f)); + +#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + return _mm256_cvtps_ph(f, _MM_FROUND_CUR_DIRECTION); + +#else + // Remember, a float is 1-8-23 (sign-exponent-mantissa) with 127 exponent bias. + U32 sem = sk_bit_cast<U32>(f), + s = sem & 0x80000000, + em = sem ^ s; + + // Convert to 1-5-10 half with 15 bias, flushing denorm halfs (including zero) to zero. + auto denorm = sk_bit_cast<I32>(em) < 0x38800000; // I32 comparison is often quicker, and always safe here. + return pack(if_then_else(denorm, U32(0) + , (s>>16) + (em>>13) - ((127-15)<<10))); +#endif +} + +// Our fundamental vector depth is our pixel stride. +static constexpr size_t N = sizeof(F) / sizeof(float); + +// We're finally going to get to what a Stage function looks like! +// tail == 0 ~~> work on a full N pixels +// tail != 0 ~~> work on only the first tail pixels +// tail is always < N. + +// Any custom ABI to use for all (non-externally-facing) stage functions? +// Also decide here whether to use narrow (compromise) or wide (ideal) stages. +#if defined(SK_CPU_ARM32) && defined(JUMPER_IS_NEON) + // This lets us pass vectors more efficiently on 32-bit ARM. + // We can still only pass 16 floats, so best as 4x {r,g,b,a}. + #define ABI __attribute__((pcs("aapcs-vfp"))) + #define JUMPER_NARROW_STAGES 1 +#elif defined(_MSC_VER) + // Even if not vectorized, this lets us pass {r,g,b,a} as registers, + // instead of {b,a} on the stack. Narrow stages work best for __vectorcall. + #define ABI __vectorcall + #define JUMPER_NARROW_STAGES 1 +#elif defined(__x86_64__) || defined(SK_CPU_ARM64) + // These platforms are ideal for wider stages, and their default ABI is ideal. + #define ABI + #define JUMPER_NARROW_STAGES 0 +#else + // 32-bit or unknown... shunt them down the narrow path. + // Odds are these have few registers and are better off there. + #define ABI + #define JUMPER_NARROW_STAGES 1 +#endif + +#if JUMPER_NARROW_STAGES + struct Params { + size_t dx, dy, tail; + F dr,dg,db,da; + }; + using Stage = void(ABI*)(Params*, SkRasterPipelineStage* program, F r, F g, F b, F a); +#else + using Stage = void(ABI*)(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, + F,F,F,F, F,F,F,F); +#endif + +static void start_pipeline(size_t dx, size_t dy, + size_t xlimit, size_t ylimit, + SkRasterPipelineStage* program) { + auto start = (Stage)program->fn; + const size_t x0 = dx; + for (; dy < ylimit; dy++) { + #if JUMPER_NARROW_STAGES + Params params = { x0,dy,0, 0,0,0,0 }; + while (params.dx + N <= xlimit) { + start(¶ms,program, 0,0,0,0); + params.dx += N; + } + if (size_t tail = xlimit - params.dx) { + params.tail = tail; + start(¶ms,program, 0,0,0,0); + } + #else + dx = x0; + while (dx + N <= xlimit) { + start(0,program,dx,dy, 0,0,0,0, 0,0,0,0); + dx += N; + } + if (size_t tail = xlimit - dx) { + start(tail,program,dx,dy, 0,0,0,0, 0,0,0,0); + } + #endif + } +} + +#if SK_HAS_MUSTTAIL + #define JUMPER_MUSTTAIL [[clang::musttail]] +#else + #define JUMPER_MUSTTAIL +#endif + +#if JUMPER_NARROW_STAGES + #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \ + SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \ + F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \ + static void ABI name(Params* params, SkRasterPipelineStage* program, \ + F r, F g, F b, F a) { \ + OFFSET name##_k(Ctx{program},params->dx,params->dy,params->tail, r,g,b,a,\ + params->dr, params->dg, params->db, params->da); \ + INC; \ + auto fn = (Stage)program->fn; \ + MUSTTAIL return fn(params, program, r,g,b,a); \ + } \ + SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \ + F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da) +#else + #define DECLARE_STAGE(name, ARG, STAGE_RET, INC, OFFSET, MUSTTAIL) \ + SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \ + F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da); \ + static void ABI name(size_t tail, SkRasterPipelineStage* program, size_t dx, size_t dy, \ + F r, F g, F b, F a, F dr, F dg, F db, F da) { \ + OFFSET name##_k(Ctx{program},dx,dy,tail, r,g,b,a, dr,dg,db,da); \ + INC; \ + auto fn = (Stage)program->fn; \ + MUSTTAIL return fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \ + } \ + SI STAGE_RET name##_k(ARG, size_t dx, size_t dy, size_t tail, \ + F& r, F& g, F& b, F& a, F& dr, F& dg, F& db, F& da) +#endif + +// A typical stage returns void, always increments the program counter by 1, and lets the optimizer +// decide whether or not tail-calling is appropriate. +#define STAGE(name, arg) \ + DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, /*no musttail*/) + +// A tail stage returns void, always increments the program counter by 1, and uses tail-calling. +// Tail-calling is necessary in SkSL-generated programs, which can be thousands of ops long, and +// could overflow the stack (particularly in debug). +#define STAGE_TAIL(name, arg) \ + DECLARE_STAGE(name, arg, void, ++program, /*no offset*/, JUMPER_MUSTTAIL) + +// A branch stage returns an integer, which is added directly to the program counter, and tailcalls. +#define STAGE_BRANCH(name, arg) \ + DECLARE_STAGE(name, arg, int, /*no increment*/, program +=, JUMPER_MUSTTAIL) + +// just_return() is a simple no-op stage that only exists to end the chain, +// returning back up to start_pipeline(), and from there to the caller. +#if JUMPER_NARROW_STAGES + static void ABI just_return(Params*, SkRasterPipelineStage*, F,F,F,F) {} +#else + static void ABI just_return(size_t, SkRasterPipelineStage*, size_t,size_t, F,F,F,F, F,F,F,F) {} +#endif + +// Note that in release builds, most stages consume no stack (thanks to tail call optimization). +// However: certain builds (especially with non-clang compilers) may fail to optimize tail +// calls, resulting in actual stack frames being generated. +// +// stack_checkpoint() and stack_rewind() are special stages that can be used to manage stack growth. +// If a pipeline contains a stack_checkpoint, followed by any number of stack_rewind (at any point), +// the C++ stack will be reset to the state it was at when the stack_checkpoint was initially hit. +// +// All instances of stack_rewind (as well as the one instance of stack_checkpoint near the start of +// a pipeline) share a single context (of type SkRasterPipeline_RewindCtx). That context holds the +// full state of the mutable registers that are normally passed to the next stage in the program. +// +// stack_rewind is the only stage other than just_return that actually returns (rather than jumping +// to the next stage in the program). Before it does so, it stashes all of the registers in the +// context. This includes the updated `program` pointer. Unlike stages that tail call exactly once, +// stack_checkpoint calls the next stage in the program repeatedly, as long as the `program` in the +// context is overwritten (i.e., as long as a stack_rewind was the reason the pipeline returned, +// rather than a just_return). +// +// Normally, just_return is the only stage that returns, and no other stage does anything after a +// subsequent (called) stage returns, so the stack just unwinds all the way to start_pipeline. +// With stack_checkpoint on the stack, any stack_rewind stages will return all the way up to the +// stack_checkpoint. That grabs the values that would have been passed to the next stage (from the +// context), and continues the linear execution of stages, but has reclaimed all of the stack frames +// pushed before the stack_rewind before doing so. +#if JUMPER_NARROW_STAGES + static void ABI stack_checkpoint(Params* params, SkRasterPipelineStage* program, + F r, F g, F b, F a) { + SkRasterPipeline_RewindCtx* ctx = Ctx{program}; + while (program) { + auto next = (Stage)(++program)->fn; + + ctx->stage = nullptr; + next(params, program, r, g, b, a); + program = ctx->stage; + + if (program) { + r = sk_unaligned_load<F>(ctx->r ); + g = sk_unaligned_load<F>(ctx->g ); + b = sk_unaligned_load<F>(ctx->b ); + a = sk_unaligned_load<F>(ctx->a ); + params->dr = sk_unaligned_load<F>(ctx->dr); + params->dg = sk_unaligned_load<F>(ctx->dg); + params->db = sk_unaligned_load<F>(ctx->db); + params->da = sk_unaligned_load<F>(ctx->da); + } + } + } + static void ABI stack_rewind(Params* params, SkRasterPipelineStage* program, + F r, F g, F b, F a) { + SkRasterPipeline_RewindCtx* ctx = Ctx{program}; + sk_unaligned_store(ctx->r , r ); + sk_unaligned_store(ctx->g , g ); + sk_unaligned_store(ctx->b , b ); + sk_unaligned_store(ctx->a , a ); + sk_unaligned_store(ctx->dr, params->dr); + sk_unaligned_store(ctx->dg, params->dg); + sk_unaligned_store(ctx->db, params->db); + sk_unaligned_store(ctx->da, params->da); + ctx->stage = program; + } +#else + static void ABI stack_checkpoint(size_t tail, SkRasterPipelineStage* program, + size_t dx, size_t dy, + F r, F g, F b, F a, F dr, F dg, F db, F da) { + SkRasterPipeline_RewindCtx* ctx = Ctx{program}; + while (program) { + auto next = (Stage)(++program)->fn; + + ctx->stage = nullptr; + next(tail, program, dx, dy, r, g, b, a, dr, dg, db, da); + program = ctx->stage; + + if (program) { + r = sk_unaligned_load<F>(ctx->r ); + g = sk_unaligned_load<F>(ctx->g ); + b = sk_unaligned_load<F>(ctx->b ); + a = sk_unaligned_load<F>(ctx->a ); + dr = sk_unaligned_load<F>(ctx->dr); + dg = sk_unaligned_load<F>(ctx->dg); + db = sk_unaligned_load<F>(ctx->db); + da = sk_unaligned_load<F>(ctx->da); + } + } + } + static void ABI stack_rewind(size_t tail, SkRasterPipelineStage* program, + size_t dx, size_t dy, + F r, F g, F b, F a, F dr, F dg, F db, F da) { + SkRasterPipeline_RewindCtx* ctx = Ctx{program}; + sk_unaligned_store(ctx->r , r ); + sk_unaligned_store(ctx->g , g ); + sk_unaligned_store(ctx->b , b ); + sk_unaligned_store(ctx->a , a ); + sk_unaligned_store(ctx->dr, dr); + sk_unaligned_store(ctx->dg, dg); + sk_unaligned_store(ctx->db, db); + sk_unaligned_store(ctx->da, da); + ctx->stage = program; + } +#endif + + +// We could start defining normal Stages now. But first, some helper functions. + +// These load() and store() methods are tail-aware, +// but focus mainly on keeping the at-stride tail==0 case fast. + +template <typename V, typename T> +SI V load(const T* src, size_t tail) { +#if !defined(JUMPER_IS_SCALAR) + SK_ASSUME(tail < N); + if (SK_EXPECT(tail, 0)) { + V v{}; // Any inactive lanes are zeroed. + switch (tail) { + case 7: v[6] = src[6]; [[fallthrough]]; + case 6: v[5] = src[5]; [[fallthrough]]; + case 5: v[4] = src[4]; [[fallthrough]]; + case 4: memcpy(&v, src, 4*sizeof(T)); break; + case 3: v[2] = src[2]; [[fallthrough]]; + case 2: memcpy(&v, src, 2*sizeof(T)); break; + case 1: memcpy(&v, src, 1*sizeof(T)); break; + } + return v; + } +#endif + return sk_unaligned_load<V>(src); +} + +template <typename V, typename T> +SI void store(T* dst, V v, size_t tail) { +#if !defined(JUMPER_IS_SCALAR) + SK_ASSUME(tail < N); + if (SK_EXPECT(tail, 0)) { + switch (tail) { + case 7: dst[6] = v[6]; [[fallthrough]]; + case 6: dst[5] = v[5]; [[fallthrough]]; + case 5: dst[4] = v[4]; [[fallthrough]]; + case 4: memcpy(dst, &v, 4*sizeof(T)); break; + case 3: dst[2] = v[2]; [[fallthrough]]; + case 2: memcpy(dst, &v, 2*sizeof(T)); break; + case 1: memcpy(dst, &v, 1*sizeof(T)); break; + } + return; + } +#endif + sk_unaligned_store(dst, v); +} + +SI F from_byte(U8 b) { + return cast(expand(b)) * (1/255.0f); +} +SI F from_short(U16 s) { + return cast(expand(s)) * (1/65535.0f); +} +SI void from_565(U16 _565, F* r, F* g, F* b) { + U32 wide = expand(_565); + *r = cast(wide & (31<<11)) * (1.0f / (31<<11)); + *g = cast(wide & (63<< 5)) * (1.0f / (63<< 5)); + *b = cast(wide & (31<< 0)) * (1.0f / (31<< 0)); +} +SI void from_4444(U16 _4444, F* r, F* g, F* b, F* a) { + U32 wide = expand(_4444); + *r = cast(wide & (15<<12)) * (1.0f / (15<<12)); + *g = cast(wide & (15<< 8)) * (1.0f / (15<< 8)); + *b = cast(wide & (15<< 4)) * (1.0f / (15<< 4)); + *a = cast(wide & (15<< 0)) * (1.0f / (15<< 0)); +} +SI void from_8888(U32 _8888, F* r, F* g, F* b, F* a) { + *r = cast((_8888 ) & 0xff) * (1/255.0f); + *g = cast((_8888 >> 8) & 0xff) * (1/255.0f); + *b = cast((_8888 >> 16) & 0xff) * (1/255.0f); + *a = cast((_8888 >> 24) ) * (1/255.0f); +} +SI void from_88(U16 _88, F* r, F* g) { + U32 wide = expand(_88); + *r = cast((wide ) & 0xff) * (1/255.0f); + *g = cast((wide >> 8) & 0xff) * (1/255.0f); +} +SI void from_1010102(U32 rgba, F* r, F* g, F* b, F* a) { + *r = cast((rgba ) & 0x3ff) * (1/1023.0f); + *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f); + *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f); + *a = cast((rgba >> 30) ) * (1/ 3.0f); +} +SI void from_1010102_xr(U32 rgba, F* r, F* g, F* b, F* a) { + static constexpr float min = -0.752941f; + static constexpr float max = 1.25098f; + static constexpr float range = max - min; + *r = cast((rgba ) & 0x3ff) * (1/1023.0f) * range + min; + *g = cast((rgba >> 10) & 0x3ff) * (1/1023.0f) * range + min; + *b = cast((rgba >> 20) & 0x3ff) * (1/1023.0f) * range + min; + *a = cast((rgba >> 30) ) * (1/ 3.0f); +} +SI void from_1616(U32 _1616, F* r, F* g) { + *r = cast((_1616 ) & 0xffff) * (1/65535.0f); + *g = cast((_1616 >> 16) & 0xffff) * (1/65535.0f); +} +SI void from_16161616(U64 _16161616, F* r, F* g, F* b, F* a) { + *r = cast64((_16161616 ) & 0xffff) * (1/65535.0f); + *g = cast64((_16161616 >> 16) & 0xffff) * (1/65535.0f); + *b = cast64((_16161616 >> 32) & 0xffff) * (1/65535.0f); + *a = cast64((_16161616 >> 48) & 0xffff) * (1/65535.0f); +} + +// Used by load_ and store_ stages to get to the right (dx,dy) starting point of contiguous memory. +template <typename T> +SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) { + return (T*)ctx->pixels + dy*ctx->stride + dx; +} + +// clamp v to [0,limit). +SI F clamp(F v, F limit) { + F inclusive = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 ); // Exclusive -> inclusive. + return min(max(0.0f, v), inclusive); +} + +// clamp to (0,limit). +SI F clamp_ex(F v, F limit) { + const F inclusiveZ = std::numeric_limits<float>::min(), + inclusiveL = sk_bit_cast<F>( sk_bit_cast<U32>(limit) - 1 ); + return min(max(inclusiveZ, v), inclusiveL); +} + +// Bhaskara I's sine approximation +// 16x(pi - x) / (5*pi^2 - 4x(pi - x) +// ... divide by 4 +// 4x(pi - x) / 5*pi^2/4 - x(pi - x) +// +// This is a good approximation only for 0 <= x <= pi, so we use symmetries to get +// radians into that range first. +SI F sin_(F v) { + constexpr float Pi = SK_ScalarPI; + F x = fract(v * (0.5f/Pi)) * (2*Pi); + I32 neg = x > Pi; + x = if_then_else(neg, x - Pi, x); + + F pair = x * (Pi - x); + x = 4.0f * pair / ((5*Pi*Pi/4) - pair); + x = if_then_else(neg, -x, x); + return x; +} + +SI F cos_(F v) { + return sin_(v + (SK_ScalarPI/2)); +} + +/* "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION" + https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf + + approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9 + + Some simplifications: + 1. tan(x) is periodic, -PI/2 < x < PI/2 + 2. tan(x) is odd, so tan(-x) = -tan(x) + 3. Our polynomial approximation is best near zero, so we use the following identity + tan(x) + tan(y) + tan(x + y) = ----------------- + 1 - tan(x)*tan(y) + tan(PI/4) = 1 + + So for x > PI/8, we do the following refactor: + x' = x - PI/4 + + 1 + tan(x') + tan(x) = ------------ + 1 - tan(x') + */ +SI F tan_(F x) { + constexpr float Pi = SK_ScalarPI; + // periodic between -pi/2 ... pi/2 + // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back + x = fract((1/Pi)*x + 0.5f) * Pi - (Pi/2); + + I32 neg = (x < 0.0f); + x = if_then_else(neg, -x, x); + + // minimize total error by shifting if x > pi/8 + I32 use_quotient = (x > (Pi/8)); + x = if_then_else(use_quotient, x - (Pi/4), x); + + // 9th order poly = 4th order(x^2) * x + const float c4 = 62 / 2835.0f; + const float c3 = 17 / 315.0f; + const float c2 = 2 / 15.0f; + const float c1 = 1 / 3.0f; + const float c0 = 1.0f; + F x2 = x * x; + x *= mad(x2, mad(x2, mad(x2, mad(x2, c4, c3), c2), c1), c0); + x = if_then_else(use_quotient, (1+x)/(1-x), x); + x = if_then_else(neg, -x, x); + return x; +} + +/* Use 4th order polynomial approximation from https://arachnoid.com/polysolve/ + with 129 values of x,atan(x) for x:[0...1] + This only works for 0 <= x <= 1 + */ +SI F approx_atan_unit(F x) { + // y = 0.14130025741326729 x⁴ + // - 0.34312835980675116 x³ + // - 0.016172900528248768 x² + // + 1.00376969762003850 x + // - 0.00014758242182738969 + const float c4 = 0.14130025741326729f; + const float c3 = -0.34312835980675116f; + const float c2 = -0.016172900528248768f; + const float c1 = 1.0037696976200385f; + const float c0 = -0.00014758242182738969f; + return mad(x, mad(x, mad(x, mad(x, c4, c3), c2), c1), c0); +} + +// Use identity atan(x) = pi/2 - atan(1/x) for x > 1 +SI F atan_(F x) { + I32 neg = (x < 0.0f); + x = if_then_else(neg, -x, x); + I32 flip = (x > 1.0f); + x = if_then_else(flip, 1/x, x); + x = approx_atan_unit(x); + x = if_then_else(flip, SK_ScalarPI/2 - x, x); + x = if_then_else(neg, -x, x); + return x; +} + +// Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun: +// https://books.google.com/books/content?id=ZboM5tOFWtsC&pg=PA81&img=1&zoom=3&hl=en&bul=1&sig=ACfU3U2M75tG_iGVOS92eQspr14LTq02Nw&ci=0%2C15%2C999%2C1279&edge=0 +// http://screen/8YGJxUGFQ49bVX6 +SI F asin_(F x) { + I32 neg = (x < 0.0f); + x = if_then_else(neg, -x, x); + const float c3 = -0.0187293f; + const float c2 = 0.0742610f; + const float c1 = -0.2121144f; + const float c0 = 1.5707288f; + F poly = mad(x, mad(x, mad(x, c3, c2), c1), c0); + x = SK_ScalarPI/2 - sqrt_(1 - x) * poly; + x = if_then_else(neg, -x, x); + return x; +} + +SI F acos_(F x) { + return SK_ScalarPI/2 - asin_(x); +} + +/* Use identity atan(x) = pi/2 - atan(1/x) for x > 1 + By swapping y,x to ensure the ratio is <= 1, we can safely call atan_unit() + which avoids a 2nd divide instruction if we had instead called atan(). + */ +SI F atan2_(F y0, F x0) { + I32 flip = (abs_(y0) > abs_(x0)); + F y = if_then_else(flip, x0, y0); + F x = if_then_else(flip, y0, x0); + F arg = y/x; + + I32 neg = (arg < 0.0f); + arg = if_then_else(neg, -arg, arg); + + F r = approx_atan_unit(arg); + r = if_then_else(flip, SK_ScalarPI/2 - r, r); + r = if_then_else(neg, -r, r); + + // handle quadrant distinctions + r = if_then_else((y0 >= 0) & (x0 < 0), r + SK_ScalarPI, r); + r = if_then_else((y0 < 0) & (x0 <= 0), r - SK_ScalarPI, r); + // Note: we don't try to handle 0,0 or infinities + return r; +} + +// Used by gather_ stages to calculate the base pointer and a vector of indices to load. +template <typename T> +SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) { + // We use exclusive clamp so that our min value is > 0 because ULP subtraction using U32 would + // produce a NaN if applied to +0.f. + x = clamp_ex(x, ctx->width ); + y = clamp_ex(y, ctx->height); + x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger); + y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger); + *ptr = (const T*)ctx->pixels; + return trunc_(y)*ctx->stride + trunc_(x); +} + +// We often have a nominally [0,1] float value we need to scale and convert to an integer, +// whether for a table lookup or to pack back down into bytes for storage. +// +// In practice, especially when dealing with interesting color spaces, that notionally +// [0,1] float may be out of [0,1] range. Unorms cannot represent that, so we must clamp. +// +// You can adjust the expected input to [0,bias] by tweaking that parameter. +SI U32 to_unorm(F v, F scale, F bias = 1.0f) { + // Any time we use round() we probably want to use to_unorm(). + return round(min(max(0.0f, v), bias), scale); +} + +SI I32 cond_to_mask(I32 cond) { +#if defined(JUMPER_IS_SCALAR) + // In scalar mode, conditions are bools (0 or 1), but we want to store and operate on masks + // (eg, using bitwise operations to select values). + return if_then_else(cond, I32(~0), I32(0)); +#else + // In SIMD mode, our various instruction sets already represent conditions as masks. + return cond; +#endif +} + +SI I32 cond_to_mask(U32 cond) { + return cond_to_mask(sk_bit_cast<I32>(cond)); +} + +// Now finally, normal Stages! + +STAGE(seed_shader, NoCtx) { + static constexpr float iota[] = { + 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f, + 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f, + }; + // It's important for speed to explicitly cast(dx) and cast(dy), + // which has the effect of splatting them to vectors before converting to floats. + // On Intel this breaks a data dependency on previous loop iterations' registers. + r = cast(dx) + sk_unaligned_load<F>(iota); + g = cast(dy) + 0.5f; + b = 1.0f; // This is w=1 for matrix multiplies by the device coords. + a = 0; +} + +STAGE(store_device_xy01, F* dst) { + // This is very similar to `seed_shader + store_src`, but b/a are backwards. + // (sk_FragCoord actually puts w=1 in the w slot.) + static constexpr float iota[] = { + 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f, + 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f, + }; + dst[0] = cast(dx) + sk_unaligned_load<F>(iota); + dst[1] = cast(dy) + 0.5f; + dst[2] = 0.0f; + dst[3] = 1.0f; +} + +STAGE(dither, const float* rate) { + // Get [(dx,dy), (dx+1,dy), (dx+2,dy), ...] loaded up in integer vectors. + uint32_t iota[] = {0,1,2,3,4,5,6,7}; + U32 X = dx + sk_unaligned_load<U32>(iota), + Y = dy; + + // We're doing 8x8 ordered dithering, see https://en.wikipedia.org/wiki/Ordered_dithering. + // In this case n=8 and we're using the matrix that looks like 1/64 x [ 0 48 12 60 ... ]. + + // We only need X and X^Y from here on, so it's easier to just think of that as "Y". + Y ^= X; + + // We'll mix the bottom 3 bits of each of X and Y to make 6 bits, + // for 2^6 == 64 == 8x8 matrix values. If X=abc and Y=def, we make fcebda. + U32 M = (Y & 1) << 5 | (X & 1) << 4 + | (Y & 2) << 2 | (X & 2) << 1 + | (Y & 4) >> 1 | (X & 4) >> 2; + + // Scale that dither to [0,1), then (-0.5,+0.5), here using 63/128 = 0.4921875 as 0.5-epsilon. + // We want to make sure our dither is less than 0.5 in either direction to keep exact values + // like 0 and 1 unchanged after rounding. + F dither = cast(M) * (2/128.0f) - (63/128.0f); + + r += *rate*dither; + g += *rate*dither; + b += *rate*dither; + + r = max(0.0f, min(r, a)); + g = max(0.0f, min(g, a)); + b = max(0.0f, min(b, a)); +} + +// load 4 floats from memory, and splat them into r,g,b,a +STAGE(uniform_color, const SkRasterPipeline_UniformColorCtx* c) { + r = c->r; + g = c->g; + b = c->b; + a = c->a; +} +STAGE(unbounded_uniform_color, const SkRasterPipeline_UniformColorCtx* c) { + r = c->r; + g = c->g; + b = c->b; + a = c->a; +} +// load 4 floats from memory, and splat them into dr,dg,db,da +STAGE(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) { + dr = c->r; + dg = c->g; + db = c->b; + da = c->a; +} + +// splats opaque-black into r,g,b,a +STAGE(black_color, NoCtx) { + r = g = b = 0.0f; + a = 1.0f; +} + +STAGE(white_color, NoCtx) { + r = g = b = a = 1.0f; +} + +// load registers r,g,b,a from context (mirrors store_src) +STAGE(load_src, const float* ptr) { + r = sk_unaligned_load<F>(ptr + 0*N); + g = sk_unaligned_load<F>(ptr + 1*N); + b = sk_unaligned_load<F>(ptr + 2*N); + a = sk_unaligned_load<F>(ptr + 3*N); +} + +// store registers r,g,b,a into context (mirrors load_src) +STAGE(store_src, float* ptr) { + sk_unaligned_store(ptr + 0*N, r); + sk_unaligned_store(ptr + 1*N, g); + sk_unaligned_store(ptr + 2*N, b); + sk_unaligned_store(ptr + 3*N, a); +} +// store registers r,g into context +STAGE(store_src_rg, float* ptr) { + sk_unaligned_store(ptr + 0*N, r); + sk_unaligned_store(ptr + 1*N, g); +} +// load registers r,g from context +STAGE(load_src_rg, float* ptr) { + r = sk_unaligned_load<F>(ptr + 0*N); + g = sk_unaligned_load<F>(ptr + 1*N); +} +// store register a into context +STAGE(store_src_a, float* ptr) { + sk_unaligned_store(ptr, a); +} + +// load registers dr,dg,db,da from context (mirrors store_dst) +STAGE(load_dst, const float* ptr) { + dr = sk_unaligned_load<F>(ptr + 0*N); + dg = sk_unaligned_load<F>(ptr + 1*N); + db = sk_unaligned_load<F>(ptr + 2*N); + da = sk_unaligned_load<F>(ptr + 3*N); +} + +// store registers dr,dg,db,da into context (mirrors load_dst) +STAGE(store_dst, float* ptr) { + sk_unaligned_store(ptr + 0*N, dr); + sk_unaligned_store(ptr + 1*N, dg); + sk_unaligned_store(ptr + 2*N, db); + sk_unaligned_store(ptr + 3*N, da); +} + +// Most blend modes apply the same logic to each channel. +#define BLEND_MODE(name) \ + SI F name##_channel(F s, F d, F sa, F da); \ + STAGE(name, NoCtx) { \ + r = name##_channel(r,dr,a,da); \ + g = name##_channel(g,dg,a,da); \ + b = name##_channel(b,db,a,da); \ + a = name##_channel(a,da,a,da); \ + } \ + SI F name##_channel(F s, F d, F sa, F da) + +SI F inv(F x) { return 1.0f - x; } +SI F two(F x) { return x + x; } + + +BLEND_MODE(clear) { return 0; } +BLEND_MODE(srcatop) { return s*da + d*inv(sa); } +BLEND_MODE(dstatop) { return d*sa + s*inv(da); } +BLEND_MODE(srcin) { return s * da; } +BLEND_MODE(dstin) { return d * sa; } +BLEND_MODE(srcout) { return s * inv(da); } +BLEND_MODE(dstout) { return d * inv(sa); } +BLEND_MODE(srcover) { return mad(d, inv(sa), s); } +BLEND_MODE(dstover) { return mad(s, inv(da), d); } + +BLEND_MODE(modulate) { return s*d; } +BLEND_MODE(multiply) { return s*inv(da) + d*inv(sa) + s*d; } +BLEND_MODE(plus_) { return min(s + d, 1.0f); } // We can clamp to either 1 or sa. +BLEND_MODE(screen) { return s + d - s*d; } +BLEND_MODE(xor_) { return s*inv(da) + d*inv(sa); } +#undef BLEND_MODE + +// Most other blend modes apply the same logic to colors, and srcover to alpha. +#define BLEND_MODE(name) \ + SI F name##_channel(F s, F d, F sa, F da); \ + STAGE(name, NoCtx) { \ + r = name##_channel(r,dr,a,da); \ + g = name##_channel(g,dg,a,da); \ + b = name##_channel(b,db,a,da); \ + a = mad(da, inv(a), a); \ + } \ + SI F name##_channel(F s, F d, F sa, F da) + +BLEND_MODE(darken) { return s + d - max(s*da, d*sa) ; } +BLEND_MODE(lighten) { return s + d - min(s*da, d*sa) ; } +BLEND_MODE(difference) { return s + d - two(min(s*da, d*sa)); } +BLEND_MODE(exclusion) { return s + d - two(s*d); } + +BLEND_MODE(colorburn) { + return if_then_else(d == da, d + s*inv(da), + if_then_else(s == 0, /* s + */ d*inv(sa), + sa*(da - min(da, (da-d)*sa*rcp_fast(s))) + s*inv(da) + d*inv(sa))); +} +BLEND_MODE(colordodge) { + return if_then_else(d == 0, /* d + */ s*inv(da), + if_then_else(s == sa, s + d*inv(sa), + sa*min(da, (d*sa)*rcp_fast(sa - s)) + s*inv(da) + d*inv(sa))); +} +BLEND_MODE(hardlight) { + return s*inv(da) + d*inv(sa) + + if_then_else(two(s) <= sa, two(s*d), sa*da - two((da-d)*(sa-s))); +} +BLEND_MODE(overlay) { + return s*inv(da) + d*inv(sa) + + if_then_else(two(d) <= da, two(s*d), sa*da - two((da-d)*(sa-s))); +} + +BLEND_MODE(softlight) { + F m = if_then_else(da > 0, d / da, F(0)), + s2 = two(s), + m4 = two(two(m)); + + // The logic forks three ways: + // 1. dark src? + // 2. light src, dark dst? + // 3. light src, light dst? + F darkSrc = d*(sa + (s2 - sa)*(1.0f - m)), // Used in case 1. + darkDst = (m4*m4 + m4)*(m - 1.0f) + 7.0f*m, // Used in case 2. + liteDst = sqrt_(m) - m, + liteSrc = d*sa + da*(s2 - sa) * if_then_else(two(two(d)) <= da, darkDst, liteDst); // 2 or 3? + return s*inv(da) + d*inv(sa) + if_then_else(s2 <= sa, darkSrc, liteSrc); // 1 or (2 or 3)? +} +#undef BLEND_MODE + +// We're basing our implemenation of non-separable blend modes on +// https://www.w3.org/TR/compositing-1/#blendingnonseparable. +// and +// https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf +// They're equivalent, but ES' math has been better simplified. +// +// Anything extra we add beyond that is to make the math work with premul inputs. + +SI F sat(F r, F g, F b) { return max(r, max(g,b)) - min(r, min(g,b)); } + +#if defined(SK_USE_LEGACY_RP_LUMINANCE) +SI F lum(F r, F g, F b) { return r*0.30f + g*0.59f + b*0.11f; } +#else +SI F lum(F r, F g, F b) { return mad(r, 0.30f, mad(g, 0.59f, b*0.11f)); } +#endif + +SI void set_sat(F* r, F* g, F* b, F s) { + F mn = min(*r, min(*g,*b)), + mx = max(*r, max(*g,*b)), + sat = mx - mn; + + // Map min channel to 0, max channel to s, and scale the middle proportionally. + auto scale = [=](F c) { + return if_then_else(sat == 0, F(0), (c - mn) * s / sat); + }; + *r = scale(*r); + *g = scale(*g); + *b = scale(*b); +} +SI void set_lum(F* r, F* g, F* b, F l) { + F diff = l - lum(*r, *g, *b); + *r += diff; + *g += diff; + *b += diff; +} +SI void clip_color(F* r, F* g, F* b, F a) { + F mn = min(*r, min(*g, *b)), + mx = max(*r, max(*g, *b)), + l = lum(*r, *g, *b); + + auto clip = [=](F c) { + c = if_then_else(mn < 0 && l != mn, l + (c - l) * ( l) / (l - mn), c); + c = if_then_else(mx > a && l != mx, l + (c - l) * (a - l) / (mx - l), c); + c = max(c, 0.0f); // Sometimes without this we may dip just a little negative. + return c; + }; + *r = clip(*r); + *g = clip(*g); + *b = clip(*b); +} + +STAGE(hue, NoCtx) { + F R = r*a, + G = g*a, + B = b*a; + + set_sat(&R, &G, &B, sat(dr,dg,db)*a); + set_lum(&R, &G, &B, lum(dr,dg,db)*a); + clip_color(&R,&G,&B, a*da); + + r = r*inv(da) + dr*inv(a) + R; + g = g*inv(da) + dg*inv(a) + G; + b = b*inv(da) + db*inv(a) + B; + a = a + da - a*da; +} +STAGE(saturation, NoCtx) { + F R = dr*a, + G = dg*a, + B = db*a; + + set_sat(&R, &G, &B, sat( r, g, b)*da); + set_lum(&R, &G, &B, lum(dr,dg,db)* a); // (This is not redundant.) + clip_color(&R,&G,&B, a*da); + + r = r*inv(da) + dr*inv(a) + R; + g = g*inv(da) + dg*inv(a) + G; + b = b*inv(da) + db*inv(a) + B; + a = a + da - a*da; +} +STAGE(color, NoCtx) { + F R = r*da, + G = g*da, + B = b*da; + + set_lum(&R, &G, &B, lum(dr,dg,db)*a); + clip_color(&R,&G,&B, a*da); + + r = r*inv(da) + dr*inv(a) + R; + g = g*inv(da) + dg*inv(a) + G; + b = b*inv(da) + db*inv(a) + B; + a = a + da - a*da; +} +STAGE(luminosity, NoCtx) { + F R = dr*a, + G = dg*a, + B = db*a; + + set_lum(&R, &G, &B, lum(r,g,b)*da); + clip_color(&R,&G,&B, a*da); + + r = r*inv(da) + dr*inv(a) + R; + g = g*inv(da) + dg*inv(a) + G; + b = b*inv(da) + db*inv(a) + B; + a = a + da - a*da; +} + +STAGE(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); + + U32 dst = load<U32>(ptr, tail); + dr = cast((dst ) & 0xff); + dg = cast((dst >> 8) & 0xff); + db = cast((dst >> 16) & 0xff); + da = cast((dst >> 24) ); + // {dr,dg,db,da} are in [0,255] + // { r, g, b, a} are in [0, 1] (but may be out of gamut) + + r = mad(dr, inv(a), r*255.0f); + g = mad(dg, inv(a), g*255.0f); + b = mad(db, inv(a), b*255.0f); + a = mad(da, inv(a), a*255.0f); + // { r, g, b, a} are now in [0,255] (but may be out of gamut) + + // to_unorm() clamps back to gamut. Scaling by 1 since we're already 255-biased. + dst = to_unorm(r, 1, 255) + | to_unorm(g, 1, 255) << 8 + | to_unorm(b, 1, 255) << 16 + | to_unorm(a, 1, 255) << 24; + store(ptr, dst, tail); +} + +SI F clamp_01_(F v) { return min(max(0.0f, v), 1.0f); } + +STAGE(clamp_01, NoCtx) { + r = clamp_01_(r); + g = clamp_01_(g); + b = clamp_01_(b); + a = clamp_01_(a); +} + +STAGE(clamp_gamut, NoCtx) { + a = min(max(a, 0.0f), 1.0f); + r = min(max(r, 0.0f), a); + g = min(max(g, 0.0f), a); + b = min(max(b, 0.0f), a); +} + +STAGE(set_rgb, const float* rgb) { + r = rgb[0]; + g = rgb[1]; + b = rgb[2]; +} + +STAGE(unbounded_set_rgb, const float* rgb) { + r = rgb[0]; + g = rgb[1]; + b = rgb[2]; +} + +STAGE(swap_rb, NoCtx) { + auto tmp = r; + r = b; + b = tmp; +} +STAGE(swap_rb_dst, NoCtx) { + auto tmp = dr; + dr = db; + db = tmp; +} + +STAGE(move_src_dst, NoCtx) { + dr = r; + dg = g; + db = b; + da = a; +} +STAGE(move_dst_src, NoCtx) { + r = dr; + g = dg; + b = db; + a = da; +} +STAGE(swap_src_dst, NoCtx) { + std::swap(r, dr); + std::swap(g, dg); + std::swap(b, db); + std::swap(a, da); +} + +STAGE(premul, NoCtx) { + r = r * a; + g = g * a; + b = b * a; +} +STAGE(premul_dst, NoCtx) { + dr = dr * da; + dg = dg * da; + db = db * da; +} +STAGE(unpremul, NoCtx) { + float inf = sk_bit_cast<float>(0x7f800000); + auto scale = if_then_else(1.0f/a < inf, 1.0f/a, F(0)); + r *= scale; + g *= scale; + b *= scale; +} +STAGE(unpremul_polar, NoCtx) { + float inf = sk_bit_cast<float>(0x7f800000); + auto scale = if_then_else(1.0f/a < inf, 1.0f/a, F(0)); + g *= scale; + b *= scale; +} + +STAGE(force_opaque , NoCtx) { a = 1; } +STAGE(force_opaque_dst, NoCtx) { da = 1; } + +STAGE(rgb_to_hsl, NoCtx) { + F mx = max(r, max(g,b)), + mn = min(r, min(g,b)), + d = mx - mn, + d_rcp = 1.0f / d; + + F h = (1/6.0f) * + if_then_else(mx == mn, F(0), + if_then_else(mx == r, (g-b)*d_rcp + if_then_else(g < b, F(6.0f), F(0)), + if_then_else(mx == g, (b-r)*d_rcp + 2.0f, + (r-g)*d_rcp + 4.0f))); + + F l = (mx + mn) * 0.5f; + F s = if_then_else(mx == mn, F(0), + d / if_then_else(l > 0.5f, 2.0f-mx-mn, mx+mn)); + + r = h; + g = s; + b = l; +} +STAGE(hsl_to_rgb, NoCtx) { + // See GrRGBToHSLFilterEffect.fp + + F h = r, + s = g, + l = b, + c = (1.0f - abs_(2.0f * l - 1)) * s; + + auto hue_to_rgb = [&](F hue) { + F q = clamp_01_(abs_(fract(hue) * 6.0f - 3.0f) - 1.0f); + return (q - 0.5f) * c + l; + }; + + r = hue_to_rgb(h + 0.0f/3.0f); + g = hue_to_rgb(h + 2.0f/3.0f); + b = hue_to_rgb(h + 1.0f/3.0f); +} + +// Color conversion functions used in gradient interpolation, based on +// https://www.w3.org/TR/css-color-4/#color-conversion-code +STAGE(css_lab_to_xyz, NoCtx) { + constexpr float k = 24389 / 27.0f; + constexpr float e = 216 / 24389.0f; + + F f[3]; + f[1] = (r + 16) * (1 / 116.0f); + f[0] = (g * (1 / 500.0f)) + f[1]; + f[2] = f[1] - (b * (1 / 200.0f)); + + F f_cubed[3] = { f[0]*f[0]*f[0], f[1]*f[1]*f[1], f[2]*f[2]*f[2] }; + + F xyz[3] = { + if_then_else(f_cubed[0] > e, f_cubed[0], (116 * f[0] - 16) * (1 / k)), + if_then_else(r > k * e, f_cubed[1], r * (1 / k)), + if_then_else(f_cubed[2] > e, f_cubed[2], (116 * f[2] - 16) * (1 / k)) + }; + + constexpr float D50[3] = { 0.3457f / 0.3585f, 1.0f, (1.0f - 0.3457f - 0.3585f) / 0.3585f }; + r = xyz[0]*D50[0]; + g = xyz[1]*D50[1]; + b = xyz[2]*D50[2]; +} + +STAGE(css_oklab_to_linear_srgb, NoCtx) { + F l_ = r + 0.3963377774f * g + 0.2158037573f * b, + m_ = r - 0.1055613458f * g - 0.0638541728f * b, + s_ = r - 0.0894841775f * g - 1.2914855480f * b; + + F l = l_*l_*l_, + m = m_*m_*m_, + s = s_*s_*s_; + + r = +4.0767416621f * l - 3.3077115913f * m + 0.2309699292f * s; + g = -1.2684380046f * l + 2.6097574011f * m - 0.3413193965f * s; + b = -0.0041960863f * l - 0.7034186147f * m + 1.7076147010f * s; +} + +// Skia stores all polar colors with hue in the first component, so this "LCH -> Lab" transform +// actually takes "HCL". This is also used to do the same polar transform for OkHCL to OkLAB. +// See similar comments & logic in SkGradientShaderBase.cpp. +STAGE(css_hcl_to_lab, NoCtx) { + F H = r, + C = g, + L = b; + + F hueRadians = H * (SK_FloatPI / 180); + + r = L; + g = C * cos_(hueRadians); + b = C * sin_(hueRadians); +} + +SI F mod_(F x, float y) { + return x - y * floor_(x * (1 / y)); +} + +struct RGB { F r, g, b; }; + +SI RGB css_hsl_to_srgb_(F h, F s, F l) { + h = mod_(h, 360); + + s *= 0.01f; + l *= 0.01f; + + F k[3] = { + mod_(0 + h * (1 / 30.0f), 12), + mod_(8 + h * (1 / 30.0f), 12), + mod_(4 + h * (1 / 30.0f), 12) + }; + F a = s * min(l, 1 - l); + return { + l - a * max(-1.0f, min(min(k[0] - 3.0f, 9.0f - k[0]), 1.0f)), + l - a * max(-1.0f, min(min(k[1] - 3.0f, 9.0f - k[1]), 1.0f)), + l - a * max(-1.0f, min(min(k[2] - 3.0f, 9.0f - k[2]), 1.0f)) + }; +} + +STAGE(css_hsl_to_srgb, NoCtx) { + RGB rgb = css_hsl_to_srgb_(r, g, b); + r = rgb.r; + g = rgb.g; + b = rgb.b; +} + +STAGE(css_hwb_to_srgb, NoCtx) { + g *= 0.01f; + b *= 0.01f; + + F gray = g / (g + b); + + RGB rgb = css_hsl_to_srgb_(r, 100.0f, 50.0f); + rgb.r = rgb.r * (1 - g - b) + g; + rgb.g = rgb.g * (1 - g - b) + g; + rgb.b = rgb.b * (1 - g - b) + g; + + auto isGray = (g + b) >= 1; + + r = if_then_else(isGray, gray, rgb.r); + g = if_then_else(isGray, gray, rgb.g); + b = if_then_else(isGray, gray, rgb.b); +} + +// Derive alpha's coverage from rgb coverage and the values of src and dst alpha. +SI F alpha_coverage_from_rgb_coverage(F a, F da, F cr, F cg, F cb) { + return if_then_else(a < da, min(cr, min(cg,cb)) + , max(cr, max(cg,cb))); +} + +STAGE(scale_1_float, const float* c) { + r = r * *c; + g = g * *c; + b = b * *c; + a = a * *c; +} +STAGE(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy); + + auto scales = load<U8>(ptr, tail); + auto c = from_byte(scales); + + r = r * c; + g = g * c; + b = b * c; + a = a * c; +} +STAGE(scale_565, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); + + F cr,cg,cb; + from_565(load<U16>(ptr, tail), &cr, &cg, &cb); + + F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); + + r = r * cr; + g = g * cg; + b = b * cb; + a = a * ca; +} + +SI F lerp(F from, F to, F t) { + return mad(to-from, t, from); +} + +STAGE(lerp_1_float, const float* c) { + r = lerp(dr, r, *c); + g = lerp(dg, g, *c); + b = lerp(db, b, *c); + a = lerp(da, a, *c); +} +STAGE(scale_native, const float scales[]) { + auto c = sk_unaligned_load<F>(scales); + r = r * c; + g = g * c; + b = b * c; + a = a * c; +} +STAGE(lerp_native, const float scales[]) { + auto c = sk_unaligned_load<F>(scales); + r = lerp(dr, r, c); + g = lerp(dg, g, c); + b = lerp(db, b, c); + a = lerp(da, a, c); +} +STAGE(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy); + + auto scales = load<U8>(ptr, tail); + auto c = from_byte(scales); + + r = lerp(dr, r, c); + g = lerp(dg, g, c); + b = lerp(db, b, c); + a = lerp(da, a, c); +} +STAGE(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); + + F cr,cg,cb; + from_565(load<U16>(ptr, tail), &cr, &cg, &cb); + + F ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); + + r = lerp(dr, r, cr); + g = lerp(dg, g, cg); + b = lerp(db, b, cb); + a = lerp(da, a, ca); +} + +STAGE(emboss, const SkRasterPipeline_EmbossCtx* ctx) { + auto mptr = ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy), + aptr = ptr_at_xy<const uint8_t>(&ctx->add, dx,dy); + + F mul = from_byte(load<U8>(mptr, tail)), + add = from_byte(load<U8>(aptr, tail)); + + r = mad(r, mul, add); + g = mad(g, mul, add); + b = mad(b, mul, add); +} + +STAGE(byte_tables, const SkRasterPipeline_TablesCtx* tables) { + r = from_byte(gather(tables->r, to_unorm(r, 255))); + g = from_byte(gather(tables->g, to_unorm(g, 255))); + b = from_byte(gather(tables->b, to_unorm(b, 255))); + a = from_byte(gather(tables->a, to_unorm(a, 255))); +} + +SI F strip_sign(F x, U32* sign) { + U32 bits = sk_bit_cast<U32>(x); + *sign = bits & 0x80000000; + return sk_bit_cast<F>(bits ^ *sign); +} + +SI F apply_sign(F x, U32 sign) { + return sk_bit_cast<F>(sign | sk_bit_cast<U32>(x)); +} + +STAGE(parametric, const skcms_TransferFunction* ctx) { + auto fn = [&](F v) { + U32 sign; + v = strip_sign(v, &sign); + + F r = if_then_else(v <= ctx->d, mad(ctx->c, v, ctx->f) + , approx_powf(mad(ctx->a, v, ctx->b), ctx->g) + ctx->e); + return apply_sign(r, sign); + }; + r = fn(r); + g = fn(g); + b = fn(b); +} + +STAGE(gamma_, const float* G) { + auto fn = [&](F v) { + U32 sign; + v = strip_sign(v, &sign); + return apply_sign(approx_powf(v, *G), sign); + }; + r = fn(r); + g = fn(g); + b = fn(b); +} + +STAGE(PQish, const skcms_TransferFunction* ctx) { + auto fn = [&](F v) { + U32 sign; + v = strip_sign(v, &sign); + + F r = approx_powf(max(mad(ctx->b, approx_powf(v, ctx->c), ctx->a), 0.0f) + / (mad(ctx->e, approx_powf(v, ctx->c), ctx->d)), + ctx->f); + + return apply_sign(r, sign); + }; + r = fn(r); + g = fn(g); + b = fn(b); +} + +STAGE(HLGish, const skcms_TransferFunction* ctx) { + auto fn = [&](F v) { + U32 sign; + v = strip_sign(v, &sign); + + const float R = ctx->a, G = ctx->b, + a = ctx->c, b = ctx->d, c = ctx->e, + K = ctx->f + 1.0f; + + F r = if_then_else(v*R <= 1, approx_powf(v*R, G) + , approx_exp((v-c)*a) + b); + + return K * apply_sign(r, sign); + }; + r = fn(r); + g = fn(g); + b = fn(b); +} + +STAGE(HLGinvish, const skcms_TransferFunction* ctx) { + auto fn = [&](F v) { + U32 sign; + v = strip_sign(v, &sign); + + const float R = ctx->a, G = ctx->b, + a = ctx->c, b = ctx->d, c = ctx->e, + K = ctx->f + 1.0f; + + v /= K; + F r = if_then_else(v <= 1, R * approx_powf(v, G) + , a * approx_log(v - b) + c); + + return apply_sign(r, sign); + }; + r = fn(r); + g = fn(g); + b = fn(b); +} + +STAGE(load_a8, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy); + + r = g = b = 0.0f; + a = from_byte(load<U8>(ptr, tail)); +} +STAGE(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint8_t>(ctx, dx,dy); + + dr = dg = db = 0.0f; + da = from_byte(load<U8>(ptr, tail)); +} +STAGE(gather_a8, const SkRasterPipeline_GatherCtx* ctx) { + const uint8_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r,g); + r = g = b = 0.0f; + a = from_byte(gather(ptr, ix)); +} +STAGE(store_a8, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy); + + U8 packed = pack(pack(to_unorm(a, 255))); + store(ptr, packed, tail); +} +STAGE(store_r8, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint8_t>(ctx, dx,dy); + + U8 packed = pack(pack(to_unorm(r, 255))); + store(ptr, packed, tail); +} + +STAGE(load_565, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); + + from_565(load<U16>(ptr, tail), &r,&g,&b); + a = 1.0f; +} +STAGE(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); + + from_565(load<U16>(ptr, tail), &dr,&dg,&db); + da = 1.0f; +} +STAGE(gather_565, const SkRasterPipeline_GatherCtx* ctx) { + const uint16_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r,g); + from_565(gather(ptr, ix), &r,&g,&b); + a = 1.0f; +} +STAGE(store_565, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy); + + U16 px = pack( to_unorm(r, 31) << 11 + | to_unorm(g, 63) << 5 + | to_unorm(b, 31) ); + store(ptr, px, tail); +} + +STAGE(load_4444, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); + from_4444(load<U16>(ptr, tail), &r,&g,&b,&a); +} +STAGE(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); + from_4444(load<U16>(ptr, tail), &dr,&dg,&db,&da); +} +STAGE(gather_4444, const SkRasterPipeline_GatherCtx* ctx) { + const uint16_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r,g); + from_4444(gather(ptr, ix), &r,&g,&b,&a); +} +STAGE(store_4444, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy); + U16 px = pack( to_unorm(r, 15) << 12 + | to_unorm(g, 15) << 8 + | to_unorm(b, 15) << 4 + | to_unorm(a, 15) ); + store(ptr, px, tail); +} + +STAGE(load_8888, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy); + from_8888(load<U32>(ptr, tail), &r,&g,&b,&a); +} +STAGE(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy); + from_8888(load<U32>(ptr, tail), &dr,&dg,&db,&da); +} +STAGE(gather_8888, const SkRasterPipeline_GatherCtx* ctx) { + const uint32_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r,g); + from_8888(gather(ptr, ix), &r,&g,&b,&a); +} +STAGE(store_8888, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); + + U32 px = to_unorm(r, 255) + | to_unorm(g, 255) << 8 + | to_unorm(b, 255) << 16 + | to_unorm(a, 255) << 24; + store(ptr, px, tail); +} + +STAGE(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy); + from_88(load<U16>(ptr, tail), &r, &g); + b = 0; + a = 1; +} +STAGE(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy); + from_88(load<U16>(ptr, tail), &dr, &dg); + db = 0; + da = 1; +} +STAGE(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) { + const uint16_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r, g); + from_88(gather(ptr, ix), &r, &g); + b = 0; + a = 1; +} +STAGE(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint16_t>(ctx, dx, dy); + U16 px = pack( to_unorm(r, 255) | to_unorm(g, 255) << 8 ); + store(ptr, px, tail); +} + +STAGE(load_a16, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); + r = g = b = 0; + a = from_short(load<U16>(ptr, tail)); +} +STAGE(load_a16_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy); + dr = dg = db = 0.0f; + da = from_short(load<U16>(ptr, tail)); +} +STAGE(gather_a16, const SkRasterPipeline_GatherCtx* ctx) { + const uint16_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r, g); + r = g = b = 0.0f; + a = from_short(gather(ptr, ix)); +} +STAGE(store_a16, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy); + + U16 px = pack(to_unorm(a, 65535)); + store(ptr, px, tail); +} + +STAGE(load_rg1616, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy); + b = 0; a = 1; + from_1616(load<U32>(ptr, tail), &r,&g); +} +STAGE(load_rg1616_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy); + from_1616(load<U32>(ptr, tail), &dr, &dg); + db = 0; + da = 1; +} +STAGE(gather_rg1616, const SkRasterPipeline_GatherCtx* ctx) { + const uint32_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r, g); + from_1616(gather(ptr, ix), &r, &g); + b = 0; + a = 1; +} +STAGE(store_rg1616, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); + + U32 px = to_unorm(r, 65535) + | to_unorm(g, 65535) << 16; + store(ptr, px, tail); +} + +STAGE(load_16161616, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy); + from_16161616(load<U64>(ptr, tail), &r,&g, &b, &a); +} +STAGE(load_16161616_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint64_t>(ctx, dx, dy); + from_16161616(load<U64>(ptr, tail), &dr, &dg, &db, &da); +} +STAGE(gather_16161616, const SkRasterPipeline_GatherCtx* ctx) { + const uint64_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r, g); + from_16161616(gather(ptr, ix), &r, &g, &b, &a); +} +STAGE(store_16161616, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,4*dy); + + U16 R = pack(to_unorm(r, 65535)), + G = pack(to_unorm(g, 65535)), + B = pack(to_unorm(b, 65535)), + A = pack(to_unorm(a, 65535)); + + store4(ptr,tail, R,G,B,A); +} + + +STAGE(load_1010102, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy); + from_1010102(load<U32>(ptr, tail), &r,&g,&b,&a); +} +STAGE(load_1010102_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy); + from_1010102(load<U32>(ptr, tail), &dr,&dg,&db,&da); +} +STAGE(load_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy); + from_1010102_xr(load<U32>(ptr, tail), &r,&g,&b,&a); +} +STAGE(load_1010102_xr_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint32_t>(ctx, dx,dy); + from_1010102_xr(load<U32>(ptr, tail), &dr,&dg,&db,&da); +} +STAGE(gather_1010102, const SkRasterPipeline_GatherCtx* ctx) { + const uint32_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r,g); + from_1010102(gather(ptr, ix), &r,&g,&b,&a); +} +STAGE(store_1010102, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); + + U32 px = to_unorm(r, 1023) + | to_unorm(g, 1023) << 10 + | to_unorm(b, 1023) << 20 + | to_unorm(a, 3) << 30; + store(ptr, px, tail); +} +STAGE(store_1010102_xr, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); + static constexpr float min = -0.752941f; + static constexpr float max = 1.25098f; + static constexpr float range = max - min; + U32 px = to_unorm((r - min) / range, 1023) + | to_unorm((g - min) / range, 1023) << 10 + | to_unorm((b - min) / range, 1023) << 20 + | to_unorm(a, 3) << 30; + store(ptr, px, tail); +} + +STAGE(load_f16, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy); + + U16 R,G,B,A; + load4((const uint16_t*)ptr,tail, &R,&G,&B,&A); + r = from_half(R); + g = from_half(G); + b = from_half(B); + a = from_half(A); +} +STAGE(load_f16_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint64_t>(ctx, dx,dy); + + U16 R,G,B,A; + load4((const uint16_t*)ptr,tail, &R,&G,&B,&A); + dr = from_half(R); + dg = from_half(G); + db = from_half(B); + da = from_half(A); +} +STAGE(gather_f16, const SkRasterPipeline_GatherCtx* ctx) { + const uint64_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r,g); + auto px = gather(ptr, ix); + + U16 R,G,B,A; + load4((const uint16_t*)&px,0, &R,&G,&B,&A); + r = from_half(R); + g = from_half(G); + b = from_half(B); + a = from_half(A); +} +STAGE(store_f16, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint64_t>(ctx, dx,dy); + store4((uint16_t*)ptr,tail, to_half(r) + , to_half(g) + , to_half(b) + , to_half(a)); +} + +STAGE(store_u16_be, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint16_t>(ctx, 4*dx,dy); + + U16 R = bswap(pack(to_unorm(r, 65535))), + G = bswap(pack(to_unorm(g, 65535))), + B = bswap(pack(to_unorm(b, 65535))), + A = bswap(pack(to_unorm(a, 65535))); + + store4(ptr,tail, R,G,B,A); +} + +STAGE(load_af16, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint16_t>(ctx, dx,dy); + + U16 A = load<U16>((const uint16_t*)ptr, tail); + r = 0; + g = 0; + b = 0; + a = from_half(A); +} +STAGE(load_af16_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint16_t>(ctx, dx, dy); + + U16 A = load<U16>((const uint16_t*)ptr, tail); + dr = dg = db = 0.0f; + da = from_half(A); +} +STAGE(gather_af16, const SkRasterPipeline_GatherCtx* ctx) { + const uint16_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r, g); + r = g = b = 0.0f; + a = from_half(gather(ptr, ix)); +} +STAGE(store_af16, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint16_t>(ctx, dx,dy); + store(ptr, to_half(a), tail); +} + +STAGE(load_rgf16, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy); + + U16 R,G; + load2((const uint16_t*)ptr, tail, &R, &G); + r = from_half(R); + g = from_half(G); + b = 0; + a = 1; +} +STAGE(load_rgf16_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const uint32_t>(ctx, dx, dy); + + U16 R,G; + load2((const uint16_t*)ptr, tail, &R, &G); + dr = from_half(R); + dg = from_half(G); + db = 0; + da = 1; +} +STAGE(gather_rgf16, const SkRasterPipeline_GatherCtx* ctx) { + const uint32_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r, g); + auto px = gather(ptr, ix); + + U16 R,G; + load2((const uint16_t*)&px, 0, &R, &G); + r = from_half(R); + g = from_half(G); + b = 0; + a = 1; +} +STAGE(store_rgf16, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint32_t>(ctx, dx, dy); + store2((uint16_t*)ptr, tail, to_half(r) + , to_half(g)); +} + +STAGE(load_f32, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy); + load4(ptr,tail, &r,&g,&b,&a); +} +STAGE(load_f32_dst, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const float>(ctx, 4*dx,4*dy); + load4(ptr,tail, &dr,&dg,&db,&da); +} +STAGE(gather_f32, const SkRasterPipeline_GatherCtx* ctx) { + const float* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, r,g); + r = gather(ptr, 4*ix + 0); + g = gather(ptr, 4*ix + 1); + b = gather(ptr, 4*ix + 2); + a = gather(ptr, 4*ix + 3); +} +STAGE(store_f32, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<float>(ctx, 4*dx,4*dy); + store4(ptr,tail, r,g,b,a); +} + +STAGE(load_rgf32, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<const float>(ctx, 2*dx,2*dy); + load2(ptr, tail, &r, &g); + b = 0; + a = 1; +} +STAGE(store_rgf32, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<float>(ctx, 2*dx,2*dy); + store2(ptr, tail, r, g); +} + +SI F exclusive_repeat(F v, const SkRasterPipeline_TileCtx* ctx) { + return v - floor_(v*ctx->invScale)*ctx->scale; +} +SI F exclusive_mirror(F v, const SkRasterPipeline_TileCtx* ctx) { + auto limit = ctx->scale; + auto invLimit = ctx->invScale; + + // This is "repeat" over the range 0..2*limit + auto u = v - floor_(v*invLimit*0.5f)*2*limit; + // s will be 0 when moving forward (e.g. [0, limit)) and 1 when moving backward (e.g. + // [limit, 2*limit)). + auto s = floor_(u*invLimit); + // This is the mirror result. + auto m = u - 2*s*(u - limit); + // Apply a bias to m if moving backwards so that we snap consistently at exact integer coords in + // the logical infinite image. This is tested by mirror_tile GM. Note that all values + // that have a non-zero bias applied are > 0. + auto biasInUlps = trunc_(s); + return sk_bit_cast<F>(sk_bit_cast<U32>(m) + ctx->mirrorBiasDir*biasInUlps); +} +// Tile x or y to [0,limit) == [0,limit - 1 ulp] (think, sampling from images). +// The gather stages will hard clamp the output of these stages to [0,limit)... +// we just need to do the basic repeat or mirroring. +STAGE(repeat_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_repeat(r, ctx); } +STAGE(repeat_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_repeat(g, ctx); } +STAGE(mirror_x, const SkRasterPipeline_TileCtx* ctx) { r = exclusive_mirror(r, ctx); } +STAGE(mirror_y, const SkRasterPipeline_TileCtx* ctx) { g = exclusive_mirror(g, ctx); } + +STAGE( clamp_x_1, NoCtx) { r = clamp_01_(r); } +STAGE(repeat_x_1, NoCtx) { r = clamp_01_(r - floor_(r)); } +STAGE(mirror_x_1, NoCtx) { r = clamp_01_(abs_( (r-1.0f) - two(floor_((r-1.0f)*0.5f)) - 1.0f )); } + +STAGE(clamp_x_and_y, const SkRasterPipeline_CoordClampCtx* ctx) { + r = min(ctx->max_x, max(ctx->min_x, r)); + g = min(ctx->max_y, max(ctx->min_y, g)); +} + +// Decal stores a 32bit mask after checking the coordinate (x and/or y) against its domain: +// mask == 0x00000000 if the coordinate(s) are out of bounds +// mask == 0xFFFFFFFF if the coordinate(s) are in bounds +// After the gather stage, the r,g,b,a values are AND'd with this mask, setting them to 0 +// if either of the coordinates were out of bounds. + +STAGE(decal_x, SkRasterPipeline_DecalTileCtx* ctx) { + auto w = ctx->limit_x; + auto e = ctx->inclusiveEdge_x; + auto cond = ((0 < r) & (r < w)) | (r == e); + sk_unaligned_store(ctx->mask, cond_to_mask(cond)); +} +STAGE(decal_y, SkRasterPipeline_DecalTileCtx* ctx) { + auto h = ctx->limit_y; + auto e = ctx->inclusiveEdge_y; + auto cond = ((0 < g) & (g < h)) | (g == e); + sk_unaligned_store(ctx->mask, cond_to_mask(cond)); +} +STAGE(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) { + auto w = ctx->limit_x; + auto h = ctx->limit_y; + auto ex = ctx->inclusiveEdge_x; + auto ey = ctx->inclusiveEdge_y; + auto cond = (((0 < r) & (r < w)) | (r == ex)) + & (((0 < g) & (g < h)) | (g == ey)); + sk_unaligned_store(ctx->mask, cond_to_mask(cond)); +} +STAGE(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) { + auto mask = sk_unaligned_load<U32>(ctx->mask); + r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask); + g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask); + b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask); + a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask); +} + +STAGE(alpha_to_gray, NoCtx) { + r = g = b = a; + a = 1; +} +STAGE(alpha_to_gray_dst, NoCtx) { + dr = dg = db = da; + da = 1; +} +STAGE(alpha_to_red, NoCtx) { + r = a; + a = 1; +} +STAGE(alpha_to_red_dst, NoCtx) { + dr = da; + da = 1; +} + +STAGE(bt709_luminance_or_luma_to_alpha, NoCtx) { + a = r*0.2126f + g*0.7152f + b*0.0722f; + r = g = b = 0; +} +STAGE(bt709_luminance_or_luma_to_rgb, NoCtx) { + r = g = b = r*0.2126f + g*0.7152f + b*0.0722f; +} + +STAGE(matrix_translate, const float* m) { + r += m[0]; + g += m[1]; +} +STAGE(matrix_scale_translate, const float* m) { + r = mad(r,m[0], m[2]); + g = mad(g,m[1], m[3]); +} +STAGE(matrix_2x3, const float* m) { + auto R = mad(r,m[0], mad(g,m[1], m[2])), + G = mad(r,m[3], mad(g,m[4], m[5])); + r = R; + g = G; +} +STAGE(matrix_3x3, const float* m) { + auto R = mad(r,m[0], mad(g,m[3], b*m[6])), + G = mad(r,m[1], mad(g,m[4], b*m[7])), + B = mad(r,m[2], mad(g,m[5], b*m[8])); + r = R; + g = G; + b = B; +} +STAGE(matrix_3x4, const float* m) { + auto R = mad(r,m[0], mad(g,m[3], mad(b,m[6], m[ 9]))), + G = mad(r,m[1], mad(g,m[4], mad(b,m[7], m[10]))), + B = mad(r,m[2], mad(g,m[5], mad(b,m[8], m[11]))); + r = R; + g = G; + b = B; +} +STAGE(matrix_4x5, const float* m) { + auto R = mad(r,m[ 0], mad(g,m[ 1], mad(b,m[ 2], mad(a,m[ 3], m[ 4])))), + G = mad(r,m[ 5], mad(g,m[ 6], mad(b,m[ 7], mad(a,m[ 8], m[ 9])))), + B = mad(r,m[10], mad(g,m[11], mad(b,m[12], mad(a,m[13], m[14])))), + A = mad(r,m[15], mad(g,m[16], mad(b,m[17], mad(a,m[18], m[19])))); + r = R; + g = G; + b = B; + a = A; +} +STAGE(matrix_4x3, const float* m) { + auto X = r, + Y = g; + + r = mad(X, m[0], mad(Y, m[4], m[ 8])); + g = mad(X, m[1], mad(Y, m[5], m[ 9])); + b = mad(X, m[2], mad(Y, m[6], m[10])); + a = mad(X, m[3], mad(Y, m[7], m[11])); +} +STAGE(matrix_perspective, const float* m) { + // N.B. Unlike the other matrix_ stages, this matrix is row-major. + auto R = mad(r,m[0], mad(g,m[1], m[2])), + G = mad(r,m[3], mad(g,m[4], m[5])), + Z = mad(r,m[6], mad(g,m[7], m[8])); + r = R * rcp_precise(Z); + g = G * rcp_precise(Z); +} + +SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t, + F* r, F* g, F* b, F* a) { + F fr, br, fg, bg, fb, bb, fa, ba; +#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + if (c->stopCount <=8) { + fr = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), idx); + br = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), idx); + fg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), idx); + bg = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), idx); + fb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), idx); + bb = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), idx); + fa = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), idx); + ba = _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), idx); + } else +#endif + { + fr = gather(c->fs[0], idx); + br = gather(c->bs[0], idx); + fg = gather(c->fs[1], idx); + bg = gather(c->bs[1], idx); + fb = gather(c->fs[2], idx); + bb = gather(c->bs[2], idx); + fa = gather(c->fs[3], idx); + ba = gather(c->bs[3], idx); + } + + *r = mad(t, fr, br); + *g = mad(t, fg, bg); + *b = mad(t, fb, bb); + *a = mad(t, fa, ba); +} + +STAGE(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) { + auto t = r; + auto idx = trunc_(t * (c->stopCount-1)); + gradient_lookup(c, idx, t, &r, &g, &b, &a); +} + +STAGE(gradient, const SkRasterPipeline_GradientCtx* c) { + auto t = r; + U32 idx = 0; + + // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop. + for (size_t i = 1; i < c->stopCount; i++) { + idx += if_then_else(t >= c->ts[i], U32(1), U32(0)); + } + + gradient_lookup(c, idx, t, &r, &g, &b, &a); +} + +STAGE(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) { + auto t = r; + r = mad(t, c->f[0], c->b[0]); + g = mad(t, c->f[1], c->b[1]); + b = mad(t, c->f[2], c->b[2]); + a = mad(t, c->f[3], c->b[3]); +} + +STAGE(xy_to_unit_angle, NoCtx) { + F X = r, + Y = g; + F xabs = abs_(X), + yabs = abs_(Y); + + F slope = min(xabs, yabs)/max(xabs, yabs); + F s = slope * slope; + + // Use a 7th degree polynomial to approximate atan. + // This was generated using sollya.gforge.inria.fr. + // A float optimized polynomial was generated using the following command. + // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative); + F phi = slope + * (0.15912117063999176025390625f + s + * (-5.185396969318389892578125e-2f + s + * (2.476101927459239959716796875e-2f + s + * (-7.0547382347285747528076171875e-3f)))); + + phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi); + phi = if_then_else(X < 0.0f , 1.0f/2.0f - phi, phi); + phi = if_then_else(Y < 0.0f , 1.0f - phi , phi); + phi = if_then_else(phi != phi , F(0) , phi); // Check for NaN. + r = phi; +} + +STAGE(xy_to_radius, NoCtx) { + F X2 = r * r, + Y2 = g * g; + r = sqrt_(X2 + Y2); +} + +// Please see https://skia.org/dev/design/conical for how our 2pt conical shader works. + +STAGE(negate_x, NoCtx) { r = -r; } + +STAGE(xy_to_2pt_conical_strip, const SkRasterPipeline_2PtConicalCtx* ctx) { + F x = r, y = g, &t = r; + t = x + sqrt_(ctx->fP0 - y*y); // ctx->fP0 = r0 * r0 +} + +STAGE(xy_to_2pt_conical_focal_on_circle, NoCtx) { + F x = r, y = g, &t = r; + t = x + y*y / x; // (x^2 + y^2) / x +} + +STAGE(xy_to_2pt_conical_well_behaved, const SkRasterPipeline_2PtConicalCtx* ctx) { + F x = r, y = g, &t = r; + t = sqrt_(x*x + y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1 +} + +STAGE(xy_to_2pt_conical_greater, const SkRasterPipeline_2PtConicalCtx* ctx) { + F x = r, y = g, &t = r; + t = sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1 +} + +STAGE(xy_to_2pt_conical_smaller, const SkRasterPipeline_2PtConicalCtx* ctx) { + F x = r, y = g, &t = r; + t = -sqrt_(x*x - y*y) - x * ctx->fP0; // ctx->fP0 = 1/r1 +} + +STAGE(alter_2pt_conical_compensate_focal, const SkRasterPipeline_2PtConicalCtx* ctx) { + F& t = r; + t = t + ctx->fP1; // ctx->fP1 = f +} + +STAGE(alter_2pt_conical_unswap, NoCtx) { + F& t = r; + t = 1 - t; +} + +STAGE(mask_2pt_conical_nan, SkRasterPipeline_2PtConicalCtx* c) { + F& t = r; + auto is_degenerate = (t != t); // NaN + t = if_then_else(is_degenerate, F(0), t); + sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate)); +} + +STAGE(mask_2pt_conical_degenerates, SkRasterPipeline_2PtConicalCtx* c) { + F& t = r; + auto is_degenerate = (t <= 0) | (t != t); + t = if_then_else(is_degenerate, F(0), t); + sk_unaligned_store(&c->fMask, cond_to_mask(!is_degenerate)); +} + +STAGE(apply_vector_mask, const uint32_t* ctx) { + const U32 mask = sk_unaligned_load<U32>(ctx); + r = sk_bit_cast<F>(sk_bit_cast<U32>(r) & mask); + g = sk_bit_cast<F>(sk_bit_cast<U32>(g) & mask); + b = sk_bit_cast<F>(sk_bit_cast<U32>(b) & mask); + a = sk_bit_cast<F>(sk_bit_cast<U32>(a) & mask); +} + +SI void save_xy(F* r, F* g, SkRasterPipeline_SamplerCtx* c) { + // Whether bilinear or bicubic, all sample points are at the same fractional offset (fx,fy). + // They're either the 4 corners of a logical 1x1 pixel or the 16 corners of a 3x3 grid + // surrounding (x,y) at (0.5,0.5) off-center. + F fx = fract(*r + 0.5f), + fy = fract(*g + 0.5f); + + // Samplers will need to load x and fx, or y and fy. + sk_unaligned_store(c->x, *r); + sk_unaligned_store(c->y, *g); + sk_unaligned_store(c->fx, fx); + sk_unaligned_store(c->fy, fy); +} + +STAGE(accumulate, const SkRasterPipeline_SamplerCtx* c) { + // Bilinear and bicubic filters are both separable, so we produce independent contributions + // from x and y, multiplying them together here to get each pixel's total scale factor. + auto scale = sk_unaligned_load<F>(c->scalex) + * sk_unaligned_load<F>(c->scaley); + dr = mad(scale, r, dr); + dg = mad(scale, g, dg); + db = mad(scale, b, db); + da = mad(scale, a, da); +} + +// In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center +// are combined in direct proportion to their area overlapping that logical query pixel. +// At positive offsets, the x-axis contribution to that rectangle is fx, or (1-fx) at negative x. +// The y-axis is symmetric. + +template <int kScale> +SI void bilinear_x(SkRasterPipeline_SamplerCtx* ctx, F* x) { + *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f); + F fx = sk_unaligned_load<F>(ctx->fx); + + F scalex; + if (kScale == -1) { scalex = 1.0f - fx; } + if (kScale == +1) { scalex = fx; } + sk_unaligned_store(ctx->scalex, scalex); +} +template <int kScale> +SI void bilinear_y(SkRasterPipeline_SamplerCtx* ctx, F* y) { + *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f); + F fy = sk_unaligned_load<F>(ctx->fy); + + F scaley; + if (kScale == -1) { scaley = 1.0f - fy; } + if (kScale == +1) { scaley = fy; } + sk_unaligned_store(ctx->scaley, scaley); +} + +STAGE(bilinear_setup, SkRasterPipeline_SamplerCtx* ctx) { + save_xy(&r, &g, ctx); + // Init for accumulate + dr = dg = db = da = 0; +} + +STAGE(bilinear_nx, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<-1>(ctx, &r); } +STAGE(bilinear_px, SkRasterPipeline_SamplerCtx* ctx) { bilinear_x<+1>(ctx, &r); } +STAGE(bilinear_ny, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<-1>(ctx, &g); } +STAGE(bilinear_py, SkRasterPipeline_SamplerCtx* ctx) { bilinear_y<+1>(ctx, &g); } + + +// In bicubic interpolation, the 16 pixels and +/- 0.5 and +/- 1.5 offsets from the sample +// pixel center are combined with a non-uniform cubic filter, with higher values near the center. +// +// This helper computes the total weight along one axis (our bicubic filter is separable), given one +// column of the sampling matrix, and a fractional pixel offset. See SkCubicResampler for details. + +SI F bicubic_wts(F t, float A, float B, float C, float D) { + return mad(t, mad(t, mad(t, D, C), B), A); +} + +template <int kScale> +SI void bicubic_x(SkRasterPipeline_SamplerCtx* ctx, F* x) { + *x = sk_unaligned_load<F>(ctx->x) + (kScale * 0.5f); + + F scalex; + if (kScale == -3) { scalex = sk_unaligned_load<F>(ctx->wx[0]); } + if (kScale == -1) { scalex = sk_unaligned_load<F>(ctx->wx[1]); } + if (kScale == +1) { scalex = sk_unaligned_load<F>(ctx->wx[2]); } + if (kScale == +3) { scalex = sk_unaligned_load<F>(ctx->wx[3]); } + sk_unaligned_store(ctx->scalex, scalex); +} +template <int kScale> +SI void bicubic_y(SkRasterPipeline_SamplerCtx* ctx, F* y) { + *y = sk_unaligned_load<F>(ctx->y) + (kScale * 0.5f); + + F scaley; + if (kScale == -3) { scaley = sk_unaligned_load<F>(ctx->wy[0]); } + if (kScale == -1) { scaley = sk_unaligned_load<F>(ctx->wy[1]); } + if (kScale == +1) { scaley = sk_unaligned_load<F>(ctx->wy[2]); } + if (kScale == +3) { scaley = sk_unaligned_load<F>(ctx->wy[3]); } + sk_unaligned_store(ctx->scaley, scaley); +} + +STAGE(bicubic_setup, SkRasterPipeline_SamplerCtx* ctx) { + save_xy(&r, &g, ctx); + + const float* w = ctx->weights; + + F fx = sk_unaligned_load<F>(ctx->fx); + sk_unaligned_store(ctx->wx[0], bicubic_wts(fx, w[0], w[4], w[ 8], w[12])); + sk_unaligned_store(ctx->wx[1], bicubic_wts(fx, w[1], w[5], w[ 9], w[13])); + sk_unaligned_store(ctx->wx[2], bicubic_wts(fx, w[2], w[6], w[10], w[14])); + sk_unaligned_store(ctx->wx[3], bicubic_wts(fx, w[3], w[7], w[11], w[15])); + + F fy = sk_unaligned_load<F>(ctx->fy); + sk_unaligned_store(ctx->wy[0], bicubic_wts(fy, w[0], w[4], w[ 8], w[12])); + sk_unaligned_store(ctx->wy[1], bicubic_wts(fy, w[1], w[5], w[ 9], w[13])); + sk_unaligned_store(ctx->wy[2], bicubic_wts(fy, w[2], w[6], w[10], w[14])); + sk_unaligned_store(ctx->wy[3], bicubic_wts(fy, w[3], w[7], w[11], w[15])); + + // Init for accumulate + dr = dg = db = da = 0; +} + +STAGE(bicubic_n3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-3>(ctx, &r); } +STAGE(bicubic_n1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<-1>(ctx, &r); } +STAGE(bicubic_p1x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+1>(ctx, &r); } +STAGE(bicubic_p3x, SkRasterPipeline_SamplerCtx* ctx) { bicubic_x<+3>(ctx, &r); } + +STAGE(bicubic_n3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-3>(ctx, &g); } +STAGE(bicubic_n1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<-1>(ctx, &g); } +STAGE(bicubic_p1y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+1>(ctx, &g); } +STAGE(bicubic_p3y, SkRasterPipeline_SamplerCtx* ctx) { bicubic_y<+3>(ctx, &g); } + +STAGE(mipmap_linear_init, SkRasterPipeline_MipmapCtx* ctx) { + sk_unaligned_store(ctx->x, r); + sk_unaligned_store(ctx->y, g); +} + +STAGE(mipmap_linear_update, SkRasterPipeline_MipmapCtx* ctx) { + sk_unaligned_store(ctx->r, r); + sk_unaligned_store(ctx->g, g); + sk_unaligned_store(ctx->b, b); + sk_unaligned_store(ctx->a, a); + + r = sk_unaligned_load<F>(ctx->x) * ctx->scaleX; + g = sk_unaligned_load<F>(ctx->y) * ctx->scaleY; +} + +STAGE(mipmap_linear_finish, SkRasterPipeline_MipmapCtx* ctx) { + r = lerp(sk_unaligned_load<F>(ctx->r), r, ctx->lowerWeight); + g = lerp(sk_unaligned_load<F>(ctx->g), g, ctx->lowerWeight); + b = lerp(sk_unaligned_load<F>(ctx->b), b, ctx->lowerWeight); + a = lerp(sk_unaligned_load<F>(ctx->a), a, ctx->lowerWeight); +} + +STAGE(callback, SkRasterPipeline_CallbackCtx* c) { + store4(c->rgba,0, r,g,b,a); + c->fn(c, tail ? tail : N); + load4(c->read_from,0, &r,&g,&b,&a); +} + +// All control flow stages used by SkSL maintain some state in the common registers: +// dr: condition mask +// dg: loop mask +// db: return mask +// da: execution mask (intersection of all three masks) +// After updating dr/dg/db, you must invoke update_execution_mask(). +#define execution_mask() sk_bit_cast<I32>(da) +#define update_execution_mask() da = sk_bit_cast<F>(sk_bit_cast<I32>(dr) & \ + sk_bit_cast<I32>(dg) & \ + sk_bit_cast<I32>(db)) + +STAGE_TAIL(init_lane_masks, NoCtx) { + uint32_t iota[] = {0,1,2,3,4,5,6,7}; + I32 mask = tail ? cond_to_mask(sk_unaligned_load<U32>(iota) < tail) : I32(~0); + dr = dg = db = da = sk_bit_cast<F>(mask); +} + +STAGE_TAIL(load_condition_mask, F* ctx) { + dr = sk_unaligned_load<F>(ctx); + update_execution_mask(); +} + +STAGE_TAIL(store_condition_mask, F* ctx) { + sk_unaligned_store(ctx, dr); +} + +STAGE_TAIL(merge_condition_mask, I32* ptr) { + // Set the condition-mask to the intersection of two adjacent masks at the pointer. + dr = sk_bit_cast<F>(ptr[0] & ptr[1]); + update_execution_mask(); +} + +STAGE_TAIL(load_loop_mask, F* ctx) { + dg = sk_unaligned_load<F>(ctx); + update_execution_mask(); +} + +STAGE_TAIL(store_loop_mask, F* ctx) { + sk_unaligned_store(ctx, dg); +} + +STAGE_TAIL(mask_off_loop_mask, NoCtx) { + // We encountered a break statement. If a lane was active, it should be masked off now, and stay + // masked-off until the termination of the loop. + dg = sk_bit_cast<F>(sk_bit_cast<I32>(dg) & ~execution_mask()); + update_execution_mask(); +} + +STAGE_TAIL(reenable_loop_mask, I32* ptr) { + // Set the loop-mask to the union of the current loop-mask with the mask at the pointer. + dg = sk_bit_cast<F>(sk_bit_cast<I32>(dg) | ptr[0]); + update_execution_mask(); +} + +STAGE_TAIL(merge_loop_mask, I32* ptr) { + // Set the loop-mask to the intersection of the current loop-mask with the mask at the pointer. + // (Note: this behavior subtly differs from merge_condition_mask!) + dg = sk_bit_cast<F>(sk_bit_cast<I32>(dg) & ptr[0]); + update_execution_mask(); +} + +STAGE_TAIL(case_op, SkRasterPipeline_CaseOpCtx* ctx) { + // Check each lane to see if the case value matches the expectation. + I32* actualValue = (I32*)ctx->ptr; + I32 caseMatches = cond_to_mask(*actualValue == ctx->expectedValue); + + // In lanes where we found a match, enable the loop mask... + dg = sk_bit_cast<F>(sk_bit_cast<I32>(dg) | caseMatches); + update_execution_mask(); + + // ... and clear the default-case mask. + I32* defaultMask = actualValue + 1; + *defaultMask &= ~caseMatches; +} + +STAGE_TAIL(load_return_mask, F* ctx) { + db = sk_unaligned_load<F>(ctx); + update_execution_mask(); +} + +STAGE_TAIL(store_return_mask, F* ctx) { + sk_unaligned_store(ctx, db); +} + +STAGE_TAIL(mask_off_return_mask, NoCtx) { + // We encountered a return statement. If a lane was active, it should be masked off now, and + // stay masked-off until the end of the function. + db = sk_bit_cast<F>(sk_bit_cast<I32>(db) & ~execution_mask()); + update_execution_mask(); +} + +STAGE_BRANCH(branch_if_all_lanes_active, SkRasterPipeline_BranchCtx* ctx) { + if (tail) { + uint32_t iota[] = {0,1,2,3,4,5,6,7}; + I32 tailLanes = cond_to_mask(tail <= sk_unaligned_load<U32>(iota)); + return all(execution_mask() | tailLanes) ? ctx->offset : 1; + } else { + return all(execution_mask()) ? ctx->offset : 1; + } +} + +STAGE_BRANCH(branch_if_any_lanes_active, SkRasterPipeline_BranchCtx* ctx) { + return any(execution_mask()) ? ctx->offset : 1; +} + +STAGE_BRANCH(branch_if_no_lanes_active, SkRasterPipeline_BranchCtx* ctx) { + return any(execution_mask()) ? 1 : ctx->offset; +} + +STAGE_BRANCH(jump, SkRasterPipeline_BranchCtx* ctx) { + return ctx->offset; +} + +STAGE_BRANCH(branch_if_no_active_lanes_eq, SkRasterPipeline_BranchIfEqualCtx* ctx) { + // Compare each lane against the expected value... + I32 match = cond_to_mask(*(I32*)ctx->ptr == ctx->value); + // ... but mask off lanes that aren't executing. + match &= execution_mask(); + // If any lanes matched, don't take the branch. + return any(match) ? 1 : ctx->offset; +} + +STAGE_TAIL(zero_slot_unmasked, F* dst) { + // We don't even bother masking off the tail; we're filling slots, not the destination surface. + sk_bzero(dst, sizeof(F) * 1); +} +STAGE_TAIL(zero_2_slots_unmasked, F* dst) { + sk_bzero(dst, sizeof(F) * 2); +} +STAGE_TAIL(zero_3_slots_unmasked, F* dst) { + sk_bzero(dst, sizeof(F) * 3); +} +STAGE_TAIL(zero_4_slots_unmasked, F* dst) { + sk_bzero(dst, sizeof(F) * 4); +} + +STAGE_TAIL(copy_constant, SkRasterPipeline_BinaryOpCtx* ctx) { + const float* src = ctx->src; + F* dst = (F*)ctx->dst; + dst[0] = src[0]; +} +STAGE_TAIL(copy_2_constants, SkRasterPipeline_BinaryOpCtx* ctx) { + const float* src = ctx->src; + F* dst = (F*)ctx->dst; + dst[0] = src[0]; + dst[1] = src[1]; +} +STAGE_TAIL(copy_3_constants, SkRasterPipeline_BinaryOpCtx* ctx) { + const float* src = ctx->src; + F* dst = (F*)ctx->dst; + dst[0] = src[0]; + dst[1] = src[1]; + dst[2] = src[2]; +} +STAGE_TAIL(copy_4_constants, SkRasterPipeline_BinaryOpCtx* ctx) { + const float* src = ctx->src; + F* dst = (F*)ctx->dst; + dst[0] = src[0]; + dst[1] = src[1]; + dst[2] = src[2]; + dst[3] = src[3]; +} + +STAGE_TAIL(copy_slot_unmasked, SkRasterPipeline_BinaryOpCtx* ctx) { + // We don't even bother masking off the tail; we're filling slots, not the destination surface. + memcpy(ctx->dst, ctx->src, sizeof(F) * 1); +} +STAGE_TAIL(copy_2_slots_unmasked, SkRasterPipeline_BinaryOpCtx* ctx) { + memcpy(ctx->dst, ctx->src, sizeof(F) * 2); +} +STAGE_TAIL(copy_3_slots_unmasked, SkRasterPipeline_BinaryOpCtx* ctx) { + memcpy(ctx->dst, ctx->src, sizeof(F) * 3); +} +STAGE_TAIL(copy_4_slots_unmasked, SkRasterPipeline_BinaryOpCtx* ctx) { + memcpy(ctx->dst, ctx->src, sizeof(F) * 4); +} + +template <int NumSlots> +SI void copy_n_slots_masked_fn(SkRasterPipeline_BinaryOpCtx* ctx, I32 mask) { + if (any(mask)) { + // Get pointers to our slots. + F* dst = (F*)ctx->dst; + F* src = (F*)ctx->src; + + // Mask off and copy slots. + for (int count = 0; count < NumSlots; ++count) { + *dst = if_then_else(mask, *src, *dst); + dst += 1; + src += 1; + } + } +} + +STAGE_TAIL(copy_slot_masked, SkRasterPipeline_BinaryOpCtx* ctx) { + copy_n_slots_masked_fn<1>(ctx, execution_mask()); +} +STAGE_TAIL(copy_2_slots_masked, SkRasterPipeline_BinaryOpCtx* ctx) { + copy_n_slots_masked_fn<2>(ctx, execution_mask()); +} +STAGE_TAIL(copy_3_slots_masked, SkRasterPipeline_BinaryOpCtx* ctx) { + copy_n_slots_masked_fn<3>(ctx, execution_mask()); +} +STAGE_TAIL(copy_4_slots_masked, SkRasterPipeline_BinaryOpCtx* ctx) { + copy_n_slots_masked_fn<4>(ctx, execution_mask()); +} + +template <int LoopCount> +SI void shuffle_fn(F* dst, uint16_t* offsets, int numSlots) { + F scratch[16]; + std::byte* src = (std::byte*)dst; + for (int count = 0; count < LoopCount; ++count) { + scratch[count] = *(F*)(src + offsets[count]); + } + // Surprisingly, this switch generates significantly better code than a memcpy (on x86-64) when + // the number of slots is unknown at compile time, and generates roughly identical code when the + // number of slots is hardcoded. Using a switch allows `scratch` to live in ymm0-ymm15 instead + // of being written out to the stack and then read back in. Also, the intrinsic memcpy assumes + // that `numSlots` could be arbitrarily large, and so it emits more code than we need. + switch (numSlots) { + case 16: dst[15] = scratch[15]; [[fallthrough]]; + case 15: dst[14] = scratch[14]; [[fallthrough]]; + case 14: dst[13] = scratch[13]; [[fallthrough]]; + case 13: dst[12] = scratch[12]; [[fallthrough]]; + case 12: dst[11] = scratch[11]; [[fallthrough]]; + case 11: dst[10] = scratch[10]; [[fallthrough]]; + case 10: dst[ 9] = scratch[ 9]; [[fallthrough]]; + case 9: dst[ 8] = scratch[ 8]; [[fallthrough]]; + case 8: dst[ 7] = scratch[ 7]; [[fallthrough]]; + case 7: dst[ 6] = scratch[ 6]; [[fallthrough]]; + case 6: dst[ 5] = scratch[ 5]; [[fallthrough]]; + case 5: dst[ 4] = scratch[ 4]; [[fallthrough]]; + case 4: dst[ 3] = scratch[ 3]; [[fallthrough]]; + case 3: dst[ 2] = scratch[ 2]; [[fallthrough]]; + case 2: dst[ 1] = scratch[ 1]; [[fallthrough]]; + case 1: dst[ 0] = scratch[ 0]; + } +} + +STAGE_TAIL(swizzle_1, SkRasterPipeline_SwizzleCtx* ctx) { + shuffle_fn<1>((F*)ctx->ptr, ctx->offsets, 1); +} +STAGE_TAIL(swizzle_2, SkRasterPipeline_SwizzleCtx* ctx) { + shuffle_fn<2>((F*)ctx->ptr, ctx->offsets, 2); +} +STAGE_TAIL(swizzle_3, SkRasterPipeline_SwizzleCtx* ctx) { + shuffle_fn<3>((F*)ctx->ptr, ctx->offsets, 3); +} +STAGE_TAIL(swizzle_4, SkRasterPipeline_SwizzleCtx* ctx) { + shuffle_fn<4>((F*)ctx->ptr, ctx->offsets, 4); +} +STAGE_TAIL(shuffle, SkRasterPipeline_ShuffleCtx* ctx) { + shuffle_fn<16>((F*)ctx->ptr, ctx->offsets, ctx->count); +} + +template <int NumSlots> +SI void swizzle_copy_masked_fn(F* dst, const F* src, uint16_t* offsets, I32 mask) { + std::byte* dstB = (std::byte*)dst; + for (int count = 0; count < NumSlots; ++count) { + F* dstS = (F*)(dstB + *offsets); + *dstS = if_then_else(mask, *src, *dstS); + offsets += 1; + src += 1; + } +} + +STAGE_TAIL(swizzle_copy_slot_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) { + swizzle_copy_masked_fn<1>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask()); +} +STAGE_TAIL(swizzle_copy_2_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) { + swizzle_copy_masked_fn<2>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask()); +} +STAGE_TAIL(swizzle_copy_3_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) { + swizzle_copy_masked_fn<3>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask()); +} +STAGE_TAIL(swizzle_copy_4_slots_masked, SkRasterPipeline_SwizzleCopyCtx* ctx) { + swizzle_copy_masked_fn<4>((F*)ctx->dst, (F*)ctx->src, ctx->offsets, execution_mask()); +} + +STAGE_TAIL(copy_from_indirect_unmasked, SkRasterPipeline_CopyIndirectCtx* ctx) { + // Clamp the indirect offsets to stay within the limit. + U32 offsets = *(U32*)ctx->indirectOffset; + offsets = min(offsets, ctx->indirectLimit); + + // Scale up the offsets to account for the N lanes per value. + offsets *= N; + + // Adjust the offsets forward so that they fetch from the correct lane. + static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; + offsets += sk_unaligned_load<U32>(iota); + + // Use gather to perform indirect lookups; write the results into `dst`. + const float* src = ctx->src; + F* dst = (F*)ctx->dst; + F* end = dst + ctx->slots; + do { + *dst = gather(src, offsets); + dst += 1; + src += N; + } while (dst != end); +} + +STAGE_TAIL(copy_from_indirect_uniform_unmasked, SkRasterPipeline_CopyIndirectCtx* ctx) { + // Clamp the indirect offsets to stay within the limit. + U32 offsets = *(U32*)ctx->indirectOffset; + offsets = min(offsets, ctx->indirectLimit); + + // Use gather to perform indirect lookups; write the results into `dst`. + const float* src = ctx->src; + F* dst = (F*)ctx->dst; + F* end = dst + ctx->slots; + do { + *dst = gather(src, offsets); + dst += 1; + src += 1; + } while (dst != end); +} + +STAGE_TAIL(copy_to_indirect_masked, SkRasterPipeline_CopyIndirectCtx* ctx) { + // Clamp the indirect offsets to stay within the limit. + U32 offsets = *(U32*)ctx->indirectOffset; + offsets = min(offsets, ctx->indirectLimit); + + // Scale up the offsets to account for the N lanes per value. + offsets *= N; + + // Adjust the offsets forward so that they store into the correct lane. + static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; + offsets += sk_unaligned_load<U32>(iota); + + // Perform indirect, masked writes into `dst`. + const F* src = (F*)ctx->src; + const F* end = src + ctx->slots; + float* dst = ctx->dst; + I32 mask = execution_mask(); + do { + scatter_masked(*src, dst, offsets, mask); + dst += N; + src += 1; + } while (src != end); +} + +STAGE_TAIL(swizzle_copy_to_indirect_masked, SkRasterPipeline_SwizzleCopyIndirectCtx* ctx) { + // Clamp the indirect offsets to stay within the limit. + U32 offsets = *(U32*)ctx->indirectOffset; + offsets = min(offsets, ctx->indirectLimit); + + // Scale up the offsets to account for the N lanes per value. + offsets *= N; + + // Adjust the offsets forward so that they store into the correct lane. + static constexpr uint32_t iota[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; + offsets += sk_unaligned_load<U32>(iota); + + // Perform indirect, masked, swizzled writes into `dst`. + const F* src = (F*)ctx->src; + const F* end = src + ctx->slots; + std::byte* dstB = (std::byte*)ctx->dst; + const uint16_t* swizzle = ctx->offsets; + I32 mask = execution_mask(); + do { + float* dst = (float*)(dstB + *swizzle); + scatter_masked(*src, dst, offsets, mask); + swizzle += 1; + src += 1; + } while (src != end); +} + +// Unary operations take a single input, and overwrite it with their output. +// Unlike binary or ternary operations, we provide variations of 1-4 slots, but don't provide +// an arbitrary-width "n-slot" variation; the Builder can chain together longer sequences manually. +template <typename T, void (*ApplyFn)(T*)> +SI void apply_adjacent_unary(T* dst, T* end) { + do { + ApplyFn(dst); + dst += 1; + } while (dst != end); +} + +SI void bitwise_not_fn(I32* dst) { + *dst = ~*dst; +} + +#if defined(JUMPER_IS_SCALAR) +template <typename T> +SI void cast_to_float_from_fn(T* dst) { + *dst = sk_bit_cast<T>((F)*dst); +} +SI void cast_to_int_from_fn(F* dst) { + *dst = sk_bit_cast<F>((I32)*dst); +} +SI void cast_to_uint_from_fn(F* dst) { + *dst = sk_bit_cast<F>((U32)*dst); +} +#else +template <typename T> +SI void cast_to_float_from_fn(T* dst) { + *dst = sk_bit_cast<T>(SK_CONVERTVECTOR(*dst, F)); +} +SI void cast_to_int_from_fn(F* dst) { + *dst = sk_bit_cast<F>(SK_CONVERTVECTOR(*dst, I32)); +} +SI void cast_to_uint_from_fn(F* dst) { + *dst = sk_bit_cast<F>(SK_CONVERTVECTOR(*dst, U32)); +} +#endif + +template <typename T> +SI void abs_fn(T* dst) { + *dst = abs_(*dst); +} + +SI void floor_fn(F* dst) { + *dst = floor_(*dst); +} + +SI void ceil_fn(F* dst) { + *dst = ceil_(*dst); +} + +SI void invsqrt_fn(F* dst) { + *dst = rsqrt(*dst); +} + +#define DECLARE_UNARY_FLOAT(name) \ + STAGE_TAIL(name##_float, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 1); } \ + STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 2); } \ + STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 3); } \ + STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_unary<F, &name##_fn>(dst, dst + 4); } + +#define DECLARE_UNARY_INT(name) \ + STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 1); } \ + STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 2); } \ + STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 3); } \ + STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_unary<I32, &name##_fn>(dst, dst + 4); } + +#define DECLARE_UNARY_UINT(name) \ + STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 1); } \ + STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 2); } \ + STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 3); } \ + STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_unary<U32, &name##_fn>(dst, dst + 4); } + +DECLARE_UNARY_INT(bitwise_not) +DECLARE_UNARY_INT(cast_to_float_from) DECLARE_UNARY_UINT(cast_to_float_from) +DECLARE_UNARY_FLOAT(cast_to_int_from) +DECLARE_UNARY_FLOAT(cast_to_uint_from) +DECLARE_UNARY_FLOAT(abs) DECLARE_UNARY_INT(abs) +DECLARE_UNARY_FLOAT(floor) +DECLARE_UNARY_FLOAT(ceil) +DECLARE_UNARY_FLOAT(invsqrt) + +#undef DECLARE_UNARY_FLOAT +#undef DECLARE_UNARY_INT +#undef DECLARE_UNARY_UINT + +// For complex unary ops, we only provide a 1-slot version to reduce code bloat. +STAGE_TAIL(sin_float, F* dst) { *dst = sin_(*dst); } +STAGE_TAIL(cos_float, F* dst) { *dst = cos_(*dst); } +STAGE_TAIL(tan_float, F* dst) { *dst = tan_(*dst); } +STAGE_TAIL(asin_float, F* dst) { *dst = asin_(*dst); } +STAGE_TAIL(acos_float, F* dst) { *dst = acos_(*dst); } +STAGE_TAIL(atan_float, F* dst) { *dst = atan_(*dst); } +STAGE_TAIL(sqrt_float, F* dst) { *dst = sqrt_(*dst); } +STAGE_TAIL(exp_float, F* dst) { *dst = approx_exp(*dst); } +STAGE_TAIL(exp2_float, F* dst) { *dst = approx_pow2(*dst); } +STAGE_TAIL(log_float, F* dst) { *dst = approx_log(*dst); } +STAGE_TAIL(log2_float, F* dst) { *dst = approx_log2(*dst); } + +STAGE_TAIL(inverse_mat2, F* dst) { + F a00 = dst[0], a01 = dst[1], + a10 = dst[2], a11 = dst[3]; + F det = mad(a00, a11, -a01 * a10), + invdet = rcp_precise(det); + dst[0] = invdet * a11; + dst[1] = -invdet * a01; + dst[2] = -invdet * a10; + dst[3] = invdet * a00; +} + +STAGE_TAIL(inverse_mat3, F* dst) { + F a00 = dst[0], a01 = dst[1], a02 = dst[2], + a10 = dst[3], a11 = dst[4], a12 = dst[5], + a20 = dst[6], a21 = dst[7], a22 = dst[8]; + F b01 = mad(a22, a11, -a12 * a21), + b11 = mad(a12, a20, -a22 * a10), + b21 = mad(a21, a10, -a11 * a20); + F det = mad(a00, b01, mad(a01, b11, a02 * b21)), + invdet = rcp_precise(det); + dst[0] = invdet * b01; + dst[1] = invdet * mad(a02, a21, -a22 * a01); + dst[2] = invdet * mad(a12, a01, -a02 * a11); + dst[3] = invdet * b11; + dst[4] = invdet * mad(a22, a00, -a02 * a20); + dst[5] = invdet * mad(a02, a10, -a12 * a00); + dst[6] = invdet * b21; + dst[7] = invdet * mad(a01, a20, -a21 * a00); + dst[8] = invdet * mad(a11, a00, -a01 * a10); +} + +STAGE_TAIL(inverse_mat4, F* dst) { + F a00 = dst[0], a01 = dst[1], a02 = dst[2], a03 = dst[3], + a10 = dst[4], a11 = dst[5], a12 = dst[6], a13 = dst[7], + a20 = dst[8], a21 = dst[9], a22 = dst[10], a23 = dst[11], + a30 = dst[12], a31 = dst[13], a32 = dst[14], a33 = dst[15]; + F b00 = mad(a00, a11, -a01 * a10), + b01 = mad(a00, a12, -a02 * a10), + b02 = mad(a00, a13, -a03 * a10), + b03 = mad(a01, a12, -a02 * a11), + b04 = mad(a01, a13, -a03 * a11), + b05 = mad(a02, a13, -a03 * a12), + b06 = mad(a20, a31, -a21 * a30), + b07 = mad(a20, a32, -a22 * a30), + b08 = mad(a20, a33, -a23 * a30), + b09 = mad(a21, a32, -a22 * a31), + b10 = mad(a21, a33, -a23 * a31), + b11 = mad(a22, a33, -a23 * a32), + det = mad(b00, b11, b05 * b06) + mad(b02, b09, b03 * b08) - mad(b01, b10, b04 * b07), + invdet = rcp_precise(det); + b00 *= invdet; + b01 *= invdet; + b02 *= invdet; + b03 *= invdet; + b04 *= invdet; + b05 *= invdet; + b06 *= invdet; + b07 *= invdet; + b08 *= invdet; + b09 *= invdet; + b10 *= invdet; + b11 *= invdet; + dst[0] = mad(a11, b11, a13*b09) - a12*b10; + dst[1] = a02*b10 - mad(a01, b11, a03*b09); + dst[2] = mad(a31, b05, a33*b03) - a32*b04; + dst[3] = a22*b04 - mad(a21, b05, a23*b03); + dst[4] = a12*b08 - mad(a10, b11, a13*b07); + dst[5] = mad(a00, b11, a03*b07) - a02*b08; + dst[6] = a32*b02 - mad(a30, b05, a33*b01); + dst[7] = mad(a20, b05, a23*b01) - a22*b02; + dst[8] = mad(a10, b10, a13*b06) - a11*b08; + dst[9] = a01*b08 - mad(a00, b10, a03*b06); + dst[10] = mad(a30, b04, a33*b00) - a31*b02; + dst[11] = a21*b02 - mad(a20, b04, a23*b00); + dst[12] = a11*b07 - mad(a10, b09, a12*b06); + dst[13] = mad(a00, b09, a02*b06) - a01*b07; + dst[14] = a31*b01 - mad(a30, b03, a32*b00); + dst[15] = mad(a20, b03, a22*b00) - a21*b01; +} + +// Binary operations take two adjacent inputs, and write their output in the first position. +template <typename T, void (*ApplyFn)(T*, T*)> +SI void apply_adjacent_binary(T* dst, T* src) { + T* end = src; + do { + ApplyFn(dst, src); + dst += 1; + src += 1; + } while (dst != end); +} + +template <typename T> +SI void add_fn(T* dst, T* src) { + *dst += *src; +} + +template <typename T> +SI void sub_fn(T* dst, T* src) { + *dst -= *src; +} + +template <typename T> +SI void mul_fn(T* dst, T* src) { + *dst *= *src; +} + +template <typename T> +SI void div_fn(T* dst, T* src) { + T divisor = *src; + if constexpr (!std::is_same_v<T, F>) { + // We will crash if we integer-divide against zero. Convert 0 to ~0 to avoid this. + divisor |= sk_bit_cast<T>(cond_to_mask(divisor == 0)); + } + *dst /= divisor; +} + +SI void bitwise_and_fn(I32* dst, I32* src) { + *dst &= *src; +} + +SI void bitwise_or_fn(I32* dst, I32* src) { + *dst |= *src; +} + +SI void bitwise_xor_fn(I32* dst, I32* src) { + *dst ^= *src; +} + +template <typename T> +SI void max_fn(T* dst, T* src) { + *dst = max(*dst, *src); +} + +template <typename T> +SI void min_fn(T* dst, T* src) { + *dst = min(*dst, *src); +} + +template <typename T> +SI void cmplt_fn(T* dst, T* src) { + static_assert(sizeof(T) == sizeof(I32)); + I32 result = cond_to_mask(*dst < *src); + memcpy(dst, &result, sizeof(I32)); +} + +template <typename T> +SI void cmple_fn(T* dst, T* src) { + static_assert(sizeof(T) == sizeof(I32)); + I32 result = cond_to_mask(*dst <= *src); + memcpy(dst, &result, sizeof(I32)); +} + +template <typename T> +SI void cmpeq_fn(T* dst, T* src) { + static_assert(sizeof(T) == sizeof(I32)); + I32 result = cond_to_mask(*dst == *src); + memcpy(dst, &result, sizeof(I32)); +} + +template <typename T> +SI void cmpne_fn(T* dst, T* src) { + static_assert(sizeof(T) == sizeof(I32)); + I32 result = cond_to_mask(*dst != *src); + memcpy(dst, &result, sizeof(I32)); +} + +SI void atan2_fn(F* dst, F* src) { + *dst = atan2_(*dst, *src); +} + +SI void pow_fn(F* dst, F* src) { + *dst = approx_powf(*dst, *src); +} + +SI void mod_fn(F* dst, F* src) { + *dst = *dst - *src * floor_(*dst / *src); +} + +#define DECLARE_N_WAY_BINARY_FLOAT(name) \ + STAGE_TAIL(name##_n_floats, SkRasterPipeline_BinaryOpCtx* ctx) { \ + apply_adjacent_binary<F, &name##_fn>((F*)ctx->dst, (F*)ctx->src); \ + } + +#define DECLARE_BINARY_FLOAT(name) \ + STAGE_TAIL(name##_float, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 1); } \ + STAGE_TAIL(name##_2_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 2); } \ + STAGE_TAIL(name##_3_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 3); } \ + STAGE_TAIL(name##_4_floats, F* dst) { apply_adjacent_binary<F, &name##_fn>(dst, dst + 4); } \ + DECLARE_N_WAY_BINARY_FLOAT(name) + +#define DECLARE_N_WAY_BINARY_INT(name) \ + STAGE_TAIL(name##_n_ints, SkRasterPipeline_BinaryOpCtx* ctx) { \ + apply_adjacent_binary<I32, &name##_fn>((I32*)ctx->dst, (I32*)ctx->src); \ + } + +#define DECLARE_BINARY_INT(name) \ + STAGE_TAIL(name##_int, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 1); } \ + STAGE_TAIL(name##_2_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 2); } \ + STAGE_TAIL(name##_3_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 3); } \ + STAGE_TAIL(name##_4_ints, I32* dst) { apply_adjacent_binary<I32, &name##_fn>(dst, dst + 4); } \ + DECLARE_N_WAY_BINARY_INT(name) + +#define DECLARE_N_WAY_BINARY_UINT(name) \ + STAGE_TAIL(name##_n_uints, SkRasterPipeline_BinaryOpCtx* ctx) { \ + apply_adjacent_binary<U32, &name##_fn>((U32*)ctx->dst, (U32*)ctx->src); \ + } + +#define DECLARE_BINARY_UINT(name) \ + STAGE_TAIL(name##_uint, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 1); } \ + STAGE_TAIL(name##_2_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 2); } \ + STAGE_TAIL(name##_3_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 3); } \ + STAGE_TAIL(name##_4_uints, U32* dst) { apply_adjacent_binary<U32, &name##_fn>(dst, dst + 4); } \ + DECLARE_N_WAY_BINARY_UINT(name) + +// Many ops reuse the int stages when performing uint arithmetic, since they're equivalent on a +// two's-complement machine. (Even multiplication is equivalent in the lower 32 bits.) +DECLARE_BINARY_FLOAT(add) DECLARE_BINARY_INT(add) +DECLARE_BINARY_FLOAT(sub) DECLARE_BINARY_INT(sub) +DECLARE_BINARY_FLOAT(mul) DECLARE_BINARY_INT(mul) +DECLARE_BINARY_FLOAT(div) DECLARE_BINARY_INT(div) DECLARE_BINARY_UINT(div) + DECLARE_BINARY_INT(bitwise_and) + DECLARE_BINARY_INT(bitwise_or) + DECLARE_BINARY_INT(bitwise_xor) +DECLARE_BINARY_FLOAT(mod) +DECLARE_BINARY_FLOAT(min) DECLARE_BINARY_INT(min) DECLARE_BINARY_UINT(min) +DECLARE_BINARY_FLOAT(max) DECLARE_BINARY_INT(max) DECLARE_BINARY_UINT(max) +DECLARE_BINARY_FLOAT(cmplt) DECLARE_BINARY_INT(cmplt) DECLARE_BINARY_UINT(cmplt) +DECLARE_BINARY_FLOAT(cmple) DECLARE_BINARY_INT(cmple) DECLARE_BINARY_UINT(cmple) +DECLARE_BINARY_FLOAT(cmpeq) DECLARE_BINARY_INT(cmpeq) +DECLARE_BINARY_FLOAT(cmpne) DECLARE_BINARY_INT(cmpne) + +// Sufficiently complex ops only provide an N-way version, to avoid code bloat from the dedicated +// 1-4 slot versions. +DECLARE_N_WAY_BINARY_FLOAT(atan2) +DECLARE_N_WAY_BINARY_FLOAT(pow) + +#undef DECLARE_BINARY_FLOAT +#undef DECLARE_BINARY_INT +#undef DECLARE_BINARY_UINT +#undef DECLARE_N_WAY_BINARY_FLOAT +#undef DECLARE_N_WAY_BINARY_INT +#undef DECLARE_N_WAY_BINARY_UINT + +// Dots can be represented with multiply and add ops, but they are so foundational that it's worth +// having dedicated ops. +STAGE_TAIL(dot_2_floats, F* dst) { + dst[0] = mad(dst[0], dst[2], + dst[1] * dst[3]); +} + +STAGE_TAIL(dot_3_floats, F* dst) { + dst[0] = mad(dst[0], dst[3], + mad(dst[1], dst[4], + dst[2] * dst[5])); +} + +STAGE_TAIL(dot_4_floats, F* dst) { + dst[0] = mad(dst[0], dst[4], + mad(dst[1], dst[5], + mad(dst[2], dst[6], + dst[3] * dst[7]))); +} + +// Refract always operates on 4-wide incident and normal vectors; for narrower inputs, the code +// generator fills in the input columns with zero, and discards the extra output columns. +STAGE_TAIL(refract_4_floats, F* dst) { + // Algorithm adapted from https://registry.khronos.org/OpenGL-Refpages/gl4/html/refract.xhtml + F *incident = dst + 0; + F *normal = dst + 4; + F eta = dst[8]; + + F dotNI = mad(normal[0], incident[0], + mad(normal[1], incident[1], + mad(normal[2], incident[2], + normal[3] * incident[3]))); + + F k = 1.0 - eta * eta * (1.0 - dotNI * dotNI); + F sqrt_k = sqrt_(k); + + for (int idx = 0; idx < 4; ++idx) { + dst[idx] = if_then_else(k >= 0, + eta * incident[idx] - (eta * dotNI + sqrt_k) * normal[idx], + F(0)); + } +} + +// Ternary operations work like binary ops (see immediately above) but take two source inputs. +template <typename T, void (*ApplyFn)(T*, T*, T*)> +SI void apply_adjacent_ternary(T* dst, T* src0, T* src1) { + T* end = src0; + do { + ApplyFn(dst, src0, src1); + dst += 1; + src0 += 1; + src1 += 1; + } while (dst != end); +} + +SI void mix_fn(F* a, F* x, F* y) { + // We reorder the arguments here to match lerp's GLSL-style order (interpolation point last). + *a = lerp(*x, *y, *a); +} + +SI void mix_fn(I32* a, I32* x, I32* y) { + // We reorder the arguments here to match if_then_else's expected order (y before x). + *a = if_then_else(*a, *y, *x); +} + +SI void smoothstep_fn(F* edge0, F* edge1, F* x) { + F t = clamp_01_((*x - *edge0) / (*edge1 - *edge0)); + *edge0 = t * t * (3.0 - 2.0 * t); +} + +#define DECLARE_N_WAY_TERNARY_FLOAT(name) \ + STAGE_TAIL(name##_n_floats, SkRasterPipeline_TernaryOpCtx* ctx) { \ + apply_adjacent_ternary<F, &name##_fn>((F*)ctx->dst, (F*)ctx->src0, (F*)ctx->src1); \ + } + +#define DECLARE_TERNARY_FLOAT(name) \ + STAGE_TAIL(name##_float, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+1, p+2); } \ + STAGE_TAIL(name##_2_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+2, p+4); } \ + STAGE_TAIL(name##_3_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+3, p+6); } \ + STAGE_TAIL(name##_4_floats, F* p) { apply_adjacent_ternary<F, &name##_fn>(p, p+4, p+8); } \ + DECLARE_N_WAY_TERNARY_FLOAT(name) + +#define DECLARE_TERNARY_INT(name) \ + STAGE_TAIL(name##_int, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+1, p+2); } \ + STAGE_TAIL(name##_2_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+2, p+4); } \ + STAGE_TAIL(name##_3_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+3, p+6); } \ + STAGE_TAIL(name##_4_ints, I32* p) { apply_adjacent_ternary<I32, &name##_fn>(p, p+4, p+8); } \ + STAGE_TAIL(name##_n_ints, SkRasterPipeline_TernaryOpCtx* ctx) { \ + apply_adjacent_ternary<I32, &name##_fn>((I32*)ctx->dst, (I32*)ctx->src0, (I32*)ctx->src1); \ + } + +DECLARE_N_WAY_TERNARY_FLOAT(smoothstep) +DECLARE_TERNARY_FLOAT(mix) +DECLARE_TERNARY_INT(mix) + +#undef DECLARE_N_WAY_TERNARY_FLOAT +#undef DECLARE_TERNARY_FLOAT +#undef DECLARE_TERNARY_INT + +STAGE(gauss_a_to_rgba, NoCtx) { + // x = 1 - x; + // exp(-x * x * 4) - 0.018f; + // ... now approximate with quartic + // + const float c4 = -2.26661229133605957031f; + const float c3 = 2.89795351028442382812f; + const float c2 = 0.21345567703247070312f; + const float c1 = 0.15489584207534790039f; + const float c0 = 0.00030726194381713867f; + a = mad(a, mad(a, mad(a, mad(a, c4, c3), c2), c1), c0); + r = a; + g = a; + b = a; +} + +// A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling. +STAGE(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) { + // (cx,cy) are the center of our sample. + F cx = r, + cy = g; + + // All sample points are at the same fractional offset (fx,fy). + // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets. + F fx = fract(cx + 0.5f), + fy = fract(cy + 0.5f); + + // We'll accumulate the color of all four samples into {r,g,b,a} directly. + r = g = b = a = 0; + + for (float py = -0.5f; py <= +0.5f; py += 1.0f) + for (float px = -0.5f; px <= +0.5f; px += 1.0f) { + // (x,y) are the coordinates of this sample point. + F x = cx + px, + y = cy + py; + + // ix_and_ptr() will clamp to the image's bounds for us. + const uint32_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, x,y); + + F sr,sg,sb,sa; + from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa); + + // In bilinear interpolation, the 4 pixels at +/- 0.5 offsets from the sample pixel center + // are combined in direct proportion to their area overlapping that logical query pixel. + // At positive offsets, the x-axis contribution to that rectangle is fx, + // or (1-fx) at negative x. Same deal for y. + F sx = (px > 0) ? fx : 1.0f - fx, + sy = (py > 0) ? fy : 1.0f - fy, + area = sx * sy; + + r += sr * area; + g += sg * area; + b += sb * area; + a += sa * area; + } +} + +// A specialized fused image shader for clamp-x, clamp-y, non-sRGB sampling. +STAGE(bicubic_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) { + // (cx,cy) are the center of our sample. + F cx = r, + cy = g; + + // All sample points are at the same fractional offset (fx,fy). + // They're the 4 corners of a logical 1x1 pixel surrounding (x,y) at (0.5,0.5) offsets. + F fx = fract(cx + 0.5f), + fy = fract(cy + 0.5f); + + // We'll accumulate the color of all four samples into {r,g,b,a} directly. + r = g = b = a = 0; + + const float* w = ctx->weights; + const F scaley[4] = {bicubic_wts(fy, w[0], w[4], w[ 8], w[12]), + bicubic_wts(fy, w[1], w[5], w[ 9], w[13]), + bicubic_wts(fy, w[2], w[6], w[10], w[14]), + bicubic_wts(fy, w[3], w[7], w[11], w[15])}; + const F scalex[4] = {bicubic_wts(fx, w[0], w[4], w[ 8], w[12]), + bicubic_wts(fx, w[1], w[5], w[ 9], w[13]), + bicubic_wts(fx, w[2], w[6], w[10], w[14]), + bicubic_wts(fx, w[3], w[7], w[11], w[15])}; + + F sample_y = cy - 1.5f; + for (int yy = 0; yy <= 3; ++yy) { + F sample_x = cx - 1.5f; + for (int xx = 0; xx <= 3; ++xx) { + F scale = scalex[xx] * scaley[yy]; + + // ix_and_ptr() will clamp to the image's bounds for us. + const uint32_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, sample_x, sample_y); + + F sr,sg,sb,sa; + from_8888(gather(ptr, ix), &sr,&sg,&sb,&sa); + + r = mad(scale, sr, r); + g = mad(scale, sg, g); + b = mad(scale, sb, b); + a = mad(scale, sa, a); + + sample_x += 1; + } + sample_y += 1; + } +} + +// ~~~~~~ skgpu::Swizzle stage ~~~~~~ // + +STAGE(swizzle, void* ctx) { + auto ir = r, ig = g, ib = b, ia = a; + F* o[] = {&r, &g, &b, &a}; + char swiz[4]; + memcpy(swiz, &ctx, sizeof(swiz)); + + for (int i = 0; i < 4; ++i) { + switch (swiz[i]) { + case 'r': *o[i] = ir; break; + case 'g': *o[i] = ig; break; + case 'b': *o[i] = ib; break; + case 'a': *o[i] = ia; break; + case '0': *o[i] = F(0); break; + case '1': *o[i] = F(1); break; + default: break; + } + } +} + +namespace lowp { +#if defined(JUMPER_IS_SCALAR) || defined(SK_DISABLE_LOWP_RASTER_PIPELINE) + // If we're not compiled by Clang, or otherwise switched into scalar mode (old Clang, manually), + // we don't generate lowp stages. All these nullptrs will tell SkJumper.cpp to always use the + // highp float pipeline. + #define M(st) static void (*st)(void) = nullptr; + SK_RASTER_PIPELINE_OPS_LOWP(M) + #undef M + static void (*just_return)(void) = nullptr; + + static void start_pipeline(size_t,size_t,size_t,size_t, SkRasterPipelineStage*) {} + +#else // We are compiling vector code with Clang... let's make some lowp stages! + +#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + using U8 = SK_VECTORTYPE(uint8_t, 16); + using U16 = SK_VECTORTYPE(uint16_t, 16); + using I16 = SK_VECTORTYPE(int16_t, 16); + using I32 = SK_VECTORTYPE(int32_t, 16); + using U32 = SK_VECTORTYPE(uint32_t, 16); + using I64 = SK_VECTORTYPE(int64_t, 16); + using U64 = SK_VECTORTYPE(uint64_t, 16); + using F = SK_VECTORTYPE(float, 16); +#else + using U8 = SK_VECTORTYPE(uint8_t, 8); + using U16 = SK_VECTORTYPE(uint16_t, 8); + using I16 = SK_VECTORTYPE(int16_t, 8); + using I32 = SK_VECTORTYPE(int32_t, 8); + using U32 = SK_VECTORTYPE(uint32_t, 8); + using I64 = SK_VECTORTYPE(int64_t, 8); + using U64 = SK_VECTORTYPE(uint64_t, 8); + using F = SK_VECTORTYPE(float, 8); +#endif + +static constexpr size_t N = sizeof(U16) / sizeof(uint16_t); + +// Once again, some platforms benefit from a restricted Stage calling convention, +// but others can pass tons and tons of registers and we're happy to exploit that. +// It's exactly the same decision and implementation strategy as the F stages above. +#if JUMPER_NARROW_STAGES + struct Params { + size_t dx, dy, tail; + U16 dr,dg,db,da; + }; + using Stage = void (ABI*)(Params*, SkRasterPipelineStage* program, U16 r, U16 g, U16 b, U16 a); +#else + using Stage = void (ABI*)(size_t tail, SkRasterPipelineStage* program, + size_t dx, size_t dy, + U16 r, U16 g, U16 b, U16 a, + U16 dr, U16 dg, U16 db, U16 da); +#endif + +static void start_pipeline(const size_t x0, const size_t y0, + const size_t xlimit, const size_t ylimit, + SkRasterPipelineStage* program) { + auto start = (Stage)program->fn; + for (size_t dy = y0; dy < ylimit; dy++) { + #if JUMPER_NARROW_STAGES + Params params = { x0,dy,0, 0,0,0,0 }; + for (; params.dx + N <= xlimit; params.dx += N) { + start(¶ms, program, 0,0,0,0); + } + if (size_t tail = xlimit - params.dx) { + params.tail = tail; + start(¶ms, program, 0,0,0,0); + } + #else + size_t dx = x0; + for (; dx + N <= xlimit; dx += N) { + start( 0, program, dx,dy, 0,0,0,0, 0,0,0,0); + } + if (size_t tail = xlimit - dx) { + start(tail, program, dx,dy, 0,0,0,0, 0,0,0,0); + } + #endif + } +} + +#if JUMPER_NARROW_STAGES + static void ABI just_return(Params*, SkRasterPipelineStage*, U16,U16,U16,U16) {} +#else + static void ABI just_return(size_t, SkRasterPipelineStage*,size_t,size_t, + U16,U16,U16,U16, U16,U16,U16,U16) {} +#endif + +// All stages use the same function call ABI to chain into each other, but there are three types: +// GG: geometry in, geometry out -- think, a matrix +// GP: geometry in, pixels out. -- think, a memory gather +// PP: pixels in, pixels out. -- think, a blend mode +// +// (Some stages ignore their inputs or produce no logical output. That's perfectly fine.) +// +// These three STAGE_ macros let you define each type of stage, +// and will have (x,y) geometry and/or (r,g,b,a, dr,dg,db,da) pixel arguments as appropriate. + +#if JUMPER_NARROW_STAGES + #define STAGE_GG(name, ARG) \ + SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y); \ + static void ABI name(Params* params, SkRasterPipelineStage* program, \ + U16 r, U16 g, U16 b, U16 a) { \ + auto x = join<F>(r,g), \ + y = join<F>(b,a); \ + name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y); \ + split(x, &r,&g); \ + split(y, &b,&a); \ + auto fn = (Stage)(++program)->fn; \ + fn(params, program, r,g,b,a); \ + } \ + SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y) + + #define STAGE_GP(name, ARG) \ + SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \ + U16& r, U16& g, U16& b, U16& a, \ + U16& dr, U16& dg, U16& db, U16& da); \ + static void ABI name(Params* params, SkRasterPipelineStage* program, \ + U16 r, U16 g, U16 b, U16 a) { \ + auto x = join<F>(r,g), \ + y = join<F>(b,a); \ + name##_k(Ctx{program}, params->dx,params->dy,params->tail, x,y, r,g,b,a, \ + params->dr,params->dg,params->db,params->da); \ + auto fn = (Stage)(++program)->fn; \ + fn(params, program, r,g,b,a); \ + } \ + SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \ + U16& r, U16& g, U16& b, U16& a, \ + U16& dr, U16& dg, U16& db, U16& da) + + #define STAGE_PP(name, ARG) \ + SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \ + U16& r, U16& g, U16& b, U16& a, \ + U16& dr, U16& dg, U16& db, U16& da); \ + static void ABI name(Params* params, SkRasterPipelineStage* program, \ + U16 r, U16 g, U16 b, U16 a) { \ + name##_k(Ctx{program}, params->dx,params->dy,params->tail, r,g,b,a, \ + params->dr,params->dg,params->db,params->da); \ + auto fn = (Stage)(++program)->fn; \ + fn(params, program, r,g,b,a); \ + } \ + SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \ + U16& r, U16& g, U16& b, U16& a, \ + U16& dr, U16& dg, U16& db, U16& da) +#else + #define STAGE_GG(name, ARG) \ + SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y); \ + static void ABI name(size_t tail, SkRasterPipelineStage* program, \ + size_t dx, size_t dy, \ + U16 r, U16 g, U16 b, U16 a, \ + U16 dr, U16 dg, U16 db, U16 da) { \ + auto x = join<F>(r,g), \ + y = join<F>(b,a); \ + name##_k(Ctx{program}, dx,dy,tail, x,y); \ + split(x, &r,&g); \ + split(y, &b,&a); \ + auto fn = (Stage)(++program)->fn; \ + fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \ + } \ + SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F& x, F& y) + + #define STAGE_GP(name, ARG) \ + SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \ + U16& r, U16& g, U16& b, U16& a, \ + U16& dr, U16& dg, U16& db, U16& da); \ + static void ABI name(size_t tail, SkRasterPipelineStage* program, \ + size_t dx, size_t dy, \ + U16 r, U16 g, U16 b, U16 a, \ + U16 dr, U16 dg, U16 db, U16 da) { \ + auto x = join<F>(r,g), \ + y = join<F>(b,a); \ + name##_k(Ctx{program}, dx,dy,tail, x,y, r,g,b,a, dr,dg,db,da); \ + auto fn = (Stage)(++program)->fn; \ + fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \ + } \ + SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, F x, F y, \ + U16& r, U16& g, U16& b, U16& a, \ + U16& dr, U16& dg, U16& db, U16& da) + + #define STAGE_PP(name, ARG) \ + SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \ + U16& r, U16& g, U16& b, U16& a, \ + U16& dr, U16& dg, U16& db, U16& da); \ + static void ABI name(size_t tail, SkRasterPipelineStage* program, \ + size_t dx, size_t dy, \ + U16 r, U16 g, U16 b, U16 a, \ + U16 dr, U16 dg, U16 db, U16 da) { \ + name##_k(Ctx{program}, dx,dy,tail, r,g,b,a, dr,dg,db,da); \ + auto fn = (Stage)(++program)->fn; \ + fn(tail, program, dx,dy, r,g,b,a, dr,dg,db,da); \ + } \ + SI void name##_k(ARG, size_t dx, size_t dy, size_t tail, \ + U16& r, U16& g, U16& b, U16& a, \ + U16& dr, U16& dg, U16& db, U16& da) +#endif + +// ~~~~~~ Commonly used helper functions ~~~~~~ // + +/** + * Helpers to to properly rounded division (by 255). The ideal answer we want to compute is slow, + * thanks to a division by a non-power of two: + * [1] (v + 127) / 255 + * + * There is a two-step process that computes the correct answer for all inputs: + * [2] (v + 128 + ((v + 128) >> 8)) >> 8 + * + * There is also a single iteration approximation, but it's wrong (+-1) ~25% of the time: + * [3] (v + 255) >> 8; + * + * We offer two different implementations here, depending on the requirements of the calling stage. + */ + +/** + * div255 favors speed over accuracy. It uses formula [2] on NEON (where we can compute it as fast + * as [3]), and uses [3] elsewhere. + */ +SI U16 div255(U16 v) { +#if defined(JUMPER_IS_NEON) + // With NEON we can compute [2] just as fast as [3], so let's be correct. + // First we compute v + ((v+128)>>8), then one more round of (...+128)>>8 to finish up: + return vrshrq_n_u16(vrsraq_n_u16(v, v, 8), 8); +#else + // Otherwise, use [3], which is never wrong by more than 1: + return (v+255)/256; +#endif +} + +/** + * div255_accurate guarantees the right answer on all platforms, at the expense of performance. + */ +SI U16 div255_accurate(U16 v) { +#if defined(JUMPER_IS_NEON) + // Our NEON implementation of div255 is already correct for all inputs: + return div255(v); +#else + // This is [2] (the same formulation as NEON), but written without the benefit of intrinsics: + v += 128; + return (v+(v/256))/256; +#endif +} + +SI U16 inv(U16 v) { return 255-v; } + +SI U16 if_then_else(I16 c, U16 t, U16 e) { return (t & sk_bit_cast<U16>(c)) | (e & ~sk_bit_cast<U16>(c)); } +SI U32 if_then_else(I32 c, U32 t, U32 e) { return (t & sk_bit_cast<U32>(c)) | (e & ~sk_bit_cast<U32>(c)); } + +SI U16 max(U16 x, U16 y) { return if_then_else(x < y, y, x); } +SI U16 min(U16 x, U16 y) { return if_then_else(x < y, x, y); } + +SI U16 from_float(float f) { return f * 255.0f + 0.5f; } + +SI U16 lerp(U16 from, U16 to, U16 t) { return div255( from*inv(t) + to*t ); } + +template <typename D, typename S> +SI D convert(S src) { + return SK_CONVERTVECTOR(src, D); +} + +#define cast convert + +template <typename D, typename S> +SI void split(S v, D* lo, D* hi) { + static_assert(2*sizeof(D) == sizeof(S), ""); + memcpy(lo, (const char*)&v + 0*sizeof(D), sizeof(D)); + memcpy(hi, (const char*)&v + 1*sizeof(D), sizeof(D)); +} +template <typename D, typename S> +SI D join(S lo, S hi) { + static_assert(sizeof(D) == 2*sizeof(S), ""); + D v; + memcpy((char*)&v + 0*sizeof(S), &lo, sizeof(S)); + memcpy((char*)&v + 1*sizeof(S), &hi, sizeof(S)); + return v; +} + +SI F if_then_else(I32 c, F t, F e) { + return sk_bit_cast<F>( (sk_bit_cast<I32>(t) & c) | (sk_bit_cast<I32>(e) & ~c) ); +} +SI F max(F x, F y) { return if_then_else(x < y, y, x); } +SI F min(F x, F y) { return if_then_else(x < y, x, y); } + +SI I32 if_then_else(I32 c, I32 t, I32 e) { + return (t & c) | (e & ~c); +} +SI I32 max(I32 x, I32 y) { return if_then_else(x < y, y, x); } +SI I32 min(I32 x, I32 y) { return if_then_else(x < y, x, y); } + +SI F mad(F f, F m, F a) { return f*m+a; } +SI U32 trunc_(F x) { return cast<U32>(cast<I32>(x)); } + +// Use approximate instructions and one Newton-Raphson step to calculate 1/x. +SI F rcp_precise(F x) { +#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + __m256 lo,hi; + split(x, &lo,&hi); + return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi)); +#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) + __m128 lo,hi; + split(x, &lo,&hi); + return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi)); +#elif defined(JUMPER_IS_NEON) + float32x4_t lo,hi; + split(x, &lo,&hi); + return join<F>(SK_OPTS_NS::rcp_precise(lo), SK_OPTS_NS::rcp_precise(hi)); +#else + return 1.0f / x; +#endif +} +SI F sqrt_(F x) { +#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + __m256 lo,hi; + split(x, &lo,&hi); + return join<F>(_mm256_sqrt_ps(lo), _mm256_sqrt_ps(hi)); +#elif defined(JUMPER_IS_SSE2) || defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) + __m128 lo,hi; + split(x, &lo,&hi); + return join<F>(_mm_sqrt_ps(lo), _mm_sqrt_ps(hi)); +#elif defined(SK_CPU_ARM64) + float32x4_t lo,hi; + split(x, &lo,&hi); + return join<F>(vsqrtq_f32(lo), vsqrtq_f32(hi)); +#elif defined(JUMPER_IS_NEON) + auto sqrt = [](float32x4_t v) { + auto est = vrsqrteq_f32(v); // Estimate and two refinement steps for est = rsqrt(v). + est *= vrsqrtsq_f32(v,est*est); + est *= vrsqrtsq_f32(v,est*est); + return v*est; // sqrt(v) == v*rsqrt(v). + }; + float32x4_t lo,hi; + split(x, &lo,&hi); + return join<F>(sqrt(lo), sqrt(hi)); +#else + return F{ + sqrtf(x[0]), sqrtf(x[1]), sqrtf(x[2]), sqrtf(x[3]), + sqrtf(x[4]), sqrtf(x[5]), sqrtf(x[6]), sqrtf(x[7]), + }; +#endif +} + +SI F floor_(F x) { +#if defined(SK_CPU_ARM64) + float32x4_t lo,hi; + split(x, &lo,&hi); + return join<F>(vrndmq_f32(lo), vrndmq_f32(hi)); +#elif defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + __m256 lo,hi; + split(x, &lo,&hi); + return join<F>(_mm256_floor_ps(lo), _mm256_floor_ps(hi)); +#elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) + __m128 lo,hi; + split(x, &lo,&hi); + return join<F>(_mm_floor_ps(lo), _mm_floor_ps(hi)); +#else + F roundtrip = cast<F>(cast<I32>(x)); + return roundtrip - if_then_else(roundtrip > x, F(1), F(0)); +#endif +} + +// scaled_mult interprets a and b as number on [-1, 1) which are numbers in Q15 format. Functionally +// this multiply is: +// (2 * a * b + (1 << 15)) >> 16 +// The result is a number on [-1, 1). +// Note: on neon this is a saturating multiply while the others are not. +SI I16 scaled_mult(I16 a, I16 b) { +#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + return _mm256_mulhrs_epi16(a, b); +#elif defined(JUMPER_IS_SSE41) || defined(JUMPER_IS_AVX) + return _mm_mulhrs_epi16(a, b); +#elif defined(SK_CPU_ARM64) + return vqrdmulhq_s16(a, b); +#elif defined(JUMPER_IS_NEON) + return vqrdmulhq_s16(a, b); +#else + const I32 roundingTerm = 1 << 14; + return cast<I16>((cast<I32>(a) * cast<I32>(b) + roundingTerm) >> 15); +#endif +} + +// This sum is to support lerp where the result will always be a positive number. In general, +// a sum like this would require an additional bit, but because we know the range of the result +// we know that the extra bit will always be zero. +SI U16 constrained_add(I16 a, U16 b) { + #if defined(SK_DEBUG) + for (size_t i = 0; i < N; i++) { + // Ensure that a + b is on the interval [0, UINT16_MAX] + int ia = a[i], + ib = b[i]; + // Use 65535 here because fuchsia's compiler evaluates UINT16_MAX - ib, which is + // 65536U - ib, as an uint32_t instead of an int32_t. This was forcing ia to be + // interpreted as an uint32_t. + SkASSERT(-ib <= ia && ia <= 65535 - ib); + } + #endif + return b + cast<U16>(a); +} + +SI F fract(F x) { return x - floor_(x); } +SI F abs_(F x) { return sk_bit_cast<F>( sk_bit_cast<I32>(x) & 0x7fffffff ); } + +// ~~~~~~ Basic / misc. stages ~~~~~~ // + +STAGE_GG(seed_shader, NoCtx) { + static constexpr float iota[] = { + 0.5f, 1.5f, 2.5f, 3.5f, 4.5f, 5.5f, 6.5f, 7.5f, + 8.5f, 9.5f,10.5f,11.5f,12.5f,13.5f,14.5f,15.5f, + }; + x = cast<F>(I32(dx)) + sk_unaligned_load<F>(iota); + y = cast<F>(I32(dy)) + 0.5f; +} + +STAGE_GG(matrix_translate, const float* m) { + x += m[0]; + y += m[1]; +} +STAGE_GG(matrix_scale_translate, const float* m) { + x = mad(x,m[0], m[2]); + y = mad(y,m[1], m[3]); +} +STAGE_GG(matrix_2x3, const float* m) { + auto X = mad(x,m[0], mad(y,m[1], m[2])), + Y = mad(x,m[3], mad(y,m[4], m[5])); + x = X; + y = Y; +} +STAGE_GG(matrix_perspective, const float* m) { + // N.B. Unlike the other matrix_ stages, this matrix is row-major. + auto X = mad(x,m[0], mad(y,m[1], m[2])), + Y = mad(x,m[3], mad(y,m[4], m[5])), + Z = mad(x,m[6], mad(y,m[7], m[8])); + x = X * rcp_precise(Z); + y = Y * rcp_precise(Z); +} + +STAGE_PP(uniform_color, const SkRasterPipeline_UniformColorCtx* c) { + r = c->rgba[0]; + g = c->rgba[1]; + b = c->rgba[2]; + a = c->rgba[3]; +} +STAGE_PP(uniform_color_dst, const SkRasterPipeline_UniformColorCtx* c) { + dr = c->rgba[0]; + dg = c->rgba[1]; + db = c->rgba[2]; + da = c->rgba[3]; +} +STAGE_PP(black_color, NoCtx) { r = g = b = 0; a = 255; } +STAGE_PP(white_color, NoCtx) { r = g = b = 255; a = 255; } + +STAGE_PP(set_rgb, const float rgb[3]) { + r = from_float(rgb[0]); + g = from_float(rgb[1]); + b = from_float(rgb[2]); +} + +// No need to clamp against 0 here (values are unsigned) +STAGE_PP(clamp_01, NoCtx) { + r = min(r, 255); + g = min(g, 255); + b = min(b, 255); + a = min(a, 255); +} + +STAGE_PP(clamp_gamut, NoCtx) { + a = min(a, 255); + r = min(r, a); + g = min(g, a); + b = min(b, a); +} + +STAGE_PP(premul, NoCtx) { + r = div255_accurate(r * a); + g = div255_accurate(g * a); + b = div255_accurate(b * a); +} +STAGE_PP(premul_dst, NoCtx) { + dr = div255_accurate(dr * da); + dg = div255_accurate(dg * da); + db = div255_accurate(db * da); +} + +STAGE_PP(force_opaque , NoCtx) { a = 255; } +STAGE_PP(force_opaque_dst, NoCtx) { da = 255; } + +STAGE_PP(swap_rb, NoCtx) { + auto tmp = r; + r = b; + b = tmp; +} +STAGE_PP(swap_rb_dst, NoCtx) { + auto tmp = dr; + dr = db; + db = tmp; +} + +STAGE_PP(move_src_dst, NoCtx) { + dr = r; + dg = g; + db = b; + da = a; +} + +STAGE_PP(move_dst_src, NoCtx) { + r = dr; + g = dg; + b = db; + a = da; +} + +STAGE_PP(swap_src_dst, NoCtx) { + std::swap(r, dr); + std::swap(g, dg); + std::swap(b, db); + std::swap(a, da); +} + +// ~~~~~~ Blend modes ~~~~~~ // + +// The same logic applied to all 4 channels. +#define BLEND_MODE(name) \ + SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \ + STAGE_PP(name, NoCtx) { \ + r = name##_channel(r,dr,a,da); \ + g = name##_channel(g,dg,a,da); \ + b = name##_channel(b,db,a,da); \ + a = name##_channel(a,da,a,da); \ + } \ + SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da) + + BLEND_MODE(clear) { return 0; } + BLEND_MODE(srcatop) { return div255( s*da + d*inv(sa) ); } + BLEND_MODE(dstatop) { return div255( d*sa + s*inv(da) ); } + BLEND_MODE(srcin) { return div255( s*da ); } + BLEND_MODE(dstin) { return div255( d*sa ); } + BLEND_MODE(srcout) { return div255( s*inv(da) ); } + BLEND_MODE(dstout) { return div255( d*inv(sa) ); } + BLEND_MODE(srcover) { return s + div255( d*inv(sa) ); } + BLEND_MODE(dstover) { return d + div255( s*inv(da) ); } + BLEND_MODE(modulate) { return div255( s*d ); } + BLEND_MODE(multiply) { return div255( s*inv(da) + d*inv(sa) + s*d ); } + BLEND_MODE(plus_) { return min(s+d, 255); } + BLEND_MODE(screen) { return s + d - div255( s*d ); } + BLEND_MODE(xor_) { return div255( s*inv(da) + d*inv(sa) ); } +#undef BLEND_MODE + +// The same logic applied to color, and srcover for alpha. +#define BLEND_MODE(name) \ + SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da); \ + STAGE_PP(name, NoCtx) { \ + r = name##_channel(r,dr,a,da); \ + g = name##_channel(g,dg,a,da); \ + b = name##_channel(b,db,a,da); \ + a = a + div255( da*inv(a) ); \ + } \ + SI U16 name##_channel(U16 s, U16 d, U16 sa, U16 da) + + BLEND_MODE(darken) { return s + d - div255( max(s*da, d*sa) ); } + BLEND_MODE(lighten) { return s + d - div255( min(s*da, d*sa) ); } + BLEND_MODE(difference) { return s + d - 2*div255( min(s*da, d*sa) ); } + BLEND_MODE(exclusion) { return s + d - 2*div255( s*d ); } + + BLEND_MODE(hardlight) { + return div255( s*inv(da) + d*inv(sa) + + if_then_else(2*s <= sa, 2*s*d, sa*da - 2*(sa-s)*(da-d)) ); + } + BLEND_MODE(overlay) { + return div255( s*inv(da) + d*inv(sa) + + if_then_else(2*d <= da, 2*s*d, sa*da - 2*(sa-s)*(da-d)) ); + } +#undef BLEND_MODE + +// ~~~~~~ Helpers for interacting with memory ~~~~~~ // + +template <typename T> +SI T* ptr_at_xy(const SkRasterPipeline_MemoryCtx* ctx, size_t dx, size_t dy) { + return (T*)ctx->pixels + dy*ctx->stride + dx; +} + +template <typename T> +SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, F x, F y) { + // Exclusive -> inclusive. + const F w = sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->width ) - 1), + h = sk_bit_cast<float>( sk_bit_cast<uint32_t>(ctx->height) - 1); + + const F z = std::numeric_limits<float>::min(); + + x = min(max(z, x), w); + y = min(max(z, y), h); + + x = sk_bit_cast<F>(sk_bit_cast<U32>(x) - (uint32_t)ctx->roundDownAtInteger); + y = sk_bit_cast<F>(sk_bit_cast<U32>(y) - (uint32_t)ctx->roundDownAtInteger); + + *ptr = (const T*)ctx->pixels; + return trunc_(y)*ctx->stride + trunc_(x); +} + +template <typename T> +SI U32 ix_and_ptr(T** ptr, const SkRasterPipeline_GatherCtx* ctx, I32 x, I32 y) { + // This flag doesn't make sense when the coords are integers. + SkASSERT(ctx->roundDownAtInteger == 0); + // Exclusive -> inclusive. + const I32 w = ctx->width - 1, + h = ctx->height - 1; + + U32 ax = cast<U32>(min(max(0, x), w)), + ay = cast<U32>(min(max(0, y), h)); + + *ptr = (const T*)ctx->pixels; + return ay * ctx->stride + ax; +} + +template <typename V, typename T> +SI V load(const T* ptr, size_t tail) { + V v = 0; + switch (tail & (N-1)) { + case 0: memcpy(&v, ptr, sizeof(v)); break; + #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + case 15: v[14] = ptr[14]; [[fallthrough]]; + case 14: v[13] = ptr[13]; [[fallthrough]]; + case 13: v[12] = ptr[12]; [[fallthrough]]; + case 12: memcpy(&v, ptr, 12*sizeof(T)); break; + case 11: v[10] = ptr[10]; [[fallthrough]]; + case 10: v[ 9] = ptr[ 9]; [[fallthrough]]; + case 9: v[ 8] = ptr[ 8]; [[fallthrough]]; + case 8: memcpy(&v, ptr, 8*sizeof(T)); break; + #endif + case 7: v[ 6] = ptr[ 6]; [[fallthrough]]; + case 6: v[ 5] = ptr[ 5]; [[fallthrough]]; + case 5: v[ 4] = ptr[ 4]; [[fallthrough]]; + case 4: memcpy(&v, ptr, 4*sizeof(T)); break; + case 3: v[ 2] = ptr[ 2]; [[fallthrough]]; + case 2: memcpy(&v, ptr, 2*sizeof(T)); break; + case 1: v[ 0] = ptr[ 0]; + } + return v; +} +template <typename V, typename T> +SI void store(T* ptr, size_t tail, V v) { + switch (tail & (N-1)) { + case 0: memcpy(ptr, &v, sizeof(v)); break; + #if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + case 15: ptr[14] = v[14]; [[fallthrough]]; + case 14: ptr[13] = v[13]; [[fallthrough]]; + case 13: ptr[12] = v[12]; [[fallthrough]]; + case 12: memcpy(ptr, &v, 12*sizeof(T)); break; + case 11: ptr[10] = v[10]; [[fallthrough]]; + case 10: ptr[ 9] = v[ 9]; [[fallthrough]]; + case 9: ptr[ 8] = v[ 8]; [[fallthrough]]; + case 8: memcpy(ptr, &v, 8*sizeof(T)); break; + #endif + case 7: ptr[ 6] = v[ 6]; [[fallthrough]]; + case 6: ptr[ 5] = v[ 5]; [[fallthrough]]; + case 5: ptr[ 4] = v[ 4]; [[fallthrough]]; + case 4: memcpy(ptr, &v, 4*sizeof(T)); break; + case 3: ptr[ 2] = v[ 2]; [[fallthrough]]; + case 2: memcpy(ptr, &v, 2*sizeof(T)); break; + case 1: ptr[ 0] = v[ 0]; + } +} + +#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + template <typename V, typename T> + SI V gather(const T* ptr, U32 ix) { + return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]], + ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], + ptr[ix[ 8]], ptr[ix[ 9]], ptr[ix[10]], ptr[ix[11]], + ptr[ix[12]], ptr[ix[13]], ptr[ix[14]], ptr[ix[15]], }; + } + + template<> + F gather(const float* ptr, U32 ix) { + __m256i lo, hi; + split(ix, &lo, &hi); + + return join<F>(_mm256_i32gather_ps(ptr, lo, 4), + _mm256_i32gather_ps(ptr, hi, 4)); + } + + template<> + U32 gather(const uint32_t* ptr, U32 ix) { + __m256i lo, hi; + split(ix, &lo, &hi); + + return join<U32>(_mm256_i32gather_epi32((const int*)ptr, lo, 4), + _mm256_i32gather_epi32((const int*)ptr, hi, 4)); + } +#else + template <typename V, typename T> + SI V gather(const T* ptr, U32 ix) { + return V{ ptr[ix[ 0]], ptr[ix[ 1]], ptr[ix[ 2]], ptr[ix[ 3]], + ptr[ix[ 4]], ptr[ix[ 5]], ptr[ix[ 6]], ptr[ix[ 7]], }; + } +#endif + + +// ~~~~~~ 32-bit memory loads and stores ~~~~~~ // + +SI void from_8888(U32 rgba, U16* r, U16* g, U16* b, U16* a) { +#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + // Swap the middle 128-bit lanes to make _mm256_packus_epi32() in cast_U16() work out nicely. + __m256i _01,_23; + split(rgba, &_01, &_23); + __m256i _02 = _mm256_permute2x128_si256(_01,_23, 0x20), + _13 = _mm256_permute2x128_si256(_01,_23, 0x31); + rgba = join<U32>(_02, _13); + + auto cast_U16 = [](U32 v) -> U16 { + __m256i _02,_13; + split(v, &_02,&_13); + return _mm256_packus_epi32(_02,_13); + }; +#else + auto cast_U16 = [](U32 v) -> U16 { + return cast<U16>(v); + }; +#endif + *r = cast_U16(rgba & 65535) & 255; + *g = cast_U16(rgba & 65535) >> 8; + *b = cast_U16(rgba >> 16) & 255; + *a = cast_U16(rgba >> 16) >> 8; +} + +SI void load_8888_(const uint32_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { +#if 1 && defined(JUMPER_IS_NEON) + uint8x8x4_t rgba; + switch (tail & (N-1)) { + case 0: rgba = vld4_u8 ((const uint8_t*)(ptr+0) ); break; + case 7: rgba = vld4_lane_u8((const uint8_t*)(ptr+6), rgba, 6); [[fallthrough]]; + case 6: rgba = vld4_lane_u8((const uint8_t*)(ptr+5), rgba, 5); [[fallthrough]]; + case 5: rgba = vld4_lane_u8((const uint8_t*)(ptr+4), rgba, 4); [[fallthrough]]; + case 4: rgba = vld4_lane_u8((const uint8_t*)(ptr+3), rgba, 3); [[fallthrough]]; + case 3: rgba = vld4_lane_u8((const uint8_t*)(ptr+2), rgba, 2); [[fallthrough]]; + case 2: rgba = vld4_lane_u8((const uint8_t*)(ptr+1), rgba, 1); [[fallthrough]]; + case 1: rgba = vld4_lane_u8((const uint8_t*)(ptr+0), rgba, 0); + } + *r = cast<U16>(sk_bit_cast<U8>(rgba.val[0])); + *g = cast<U16>(sk_bit_cast<U8>(rgba.val[1])); + *b = cast<U16>(sk_bit_cast<U8>(rgba.val[2])); + *a = cast<U16>(sk_bit_cast<U8>(rgba.val[3])); +#else + from_8888(load<U32>(ptr, tail), r,g,b,a); +#endif +} +SI void store_8888_(uint32_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { + r = min(r, 255); + g = min(g, 255); + b = min(b, 255); + a = min(a, 255); + +#if 1 && defined(JUMPER_IS_NEON) + uint8x8x4_t rgba = {{ + cast<U8>(r), + cast<U8>(g), + cast<U8>(b), + cast<U8>(a), + }}; + switch (tail & (N-1)) { + case 0: vst4_u8 ((uint8_t*)(ptr+0), rgba ); break; + case 7: vst4_lane_u8((uint8_t*)(ptr+6), rgba, 6); [[fallthrough]]; + case 6: vst4_lane_u8((uint8_t*)(ptr+5), rgba, 5); [[fallthrough]]; + case 5: vst4_lane_u8((uint8_t*)(ptr+4), rgba, 4); [[fallthrough]]; + case 4: vst4_lane_u8((uint8_t*)(ptr+3), rgba, 3); [[fallthrough]]; + case 3: vst4_lane_u8((uint8_t*)(ptr+2), rgba, 2); [[fallthrough]]; + case 2: vst4_lane_u8((uint8_t*)(ptr+1), rgba, 1); [[fallthrough]]; + case 1: vst4_lane_u8((uint8_t*)(ptr+0), rgba, 0); + } +#else + store(ptr, tail, cast<U32>(r | (g<<8)) << 0 + | cast<U32>(b | (a<<8)) << 16); +#endif +} + +STAGE_PP(load_8888, const SkRasterPipeline_MemoryCtx* ctx) { + load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &r,&g,&b,&a); +} +STAGE_PP(load_8888_dst, const SkRasterPipeline_MemoryCtx* ctx) { + load_8888_(ptr_at_xy<const uint32_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da); +} +STAGE_PP(store_8888, const SkRasterPipeline_MemoryCtx* ctx) { + store_8888_(ptr_at_xy<uint32_t>(ctx, dx,dy), tail, r,g,b,a); +} +STAGE_GP(gather_8888, const SkRasterPipeline_GatherCtx* ctx) { + const uint32_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, x,y); + from_8888(gather<U32>(ptr, ix), &r, &g, &b, &a); +} + +// ~~~~~~ 16-bit memory loads and stores ~~~~~~ // + +SI void from_565(U16 rgb, U16* r, U16* g, U16* b) { + // Format for 565 buffers: 15|rrrrr gggggg bbbbb|0 + U16 R = (rgb >> 11) & 31, + G = (rgb >> 5) & 63, + B = (rgb >> 0) & 31; + + // These bit replications are the same as multiplying by 255/31 or 255/63 to scale to 8-bit. + *r = (R << 3) | (R >> 2); + *g = (G << 2) | (G >> 4); + *b = (B << 3) | (B >> 2); +} +SI void load_565_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b) { + from_565(load<U16>(ptr, tail), r,g,b); +} +SI void store_565_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b) { + r = min(r, 255); + g = min(g, 255); + b = min(b, 255); + + // Round from [0,255] to [0,31] or [0,63], as if x * (31/255.0f) + 0.5f. + // (Don't feel like you need to find some fundamental truth in these... + // they were brute-force searched.) + U16 R = (r * 9 + 36) / 74, // 9/74 ≈ 31/255, plus 36/74, about half. + G = (g * 21 + 42) / 85, // 21/85 = 63/255 exactly. + B = (b * 9 + 36) / 74; + // Pack them back into 15|rrrrr gggggg bbbbb|0. + store(ptr, tail, R << 11 + | G << 5 + | B << 0); +} + +STAGE_PP(load_565, const SkRasterPipeline_MemoryCtx* ctx) { + load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b); + a = 255; +} +STAGE_PP(load_565_dst, const SkRasterPipeline_MemoryCtx* ctx) { + load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db); + da = 255; +} +STAGE_PP(store_565, const SkRasterPipeline_MemoryCtx* ctx) { + store_565_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b); +} +STAGE_GP(gather_565, const SkRasterPipeline_GatherCtx* ctx) { + const uint16_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, x,y); + from_565(gather<U16>(ptr, ix), &r, &g, &b); + a = 255; +} + +SI void from_4444(U16 rgba, U16* r, U16* g, U16* b, U16* a) { + // Format for 4444 buffers: 15|rrrr gggg bbbb aaaa|0. + U16 R = (rgba >> 12) & 15, + G = (rgba >> 8) & 15, + B = (rgba >> 4) & 15, + A = (rgba >> 0) & 15; + + // Scale [0,15] to [0,255]. + *r = (R << 4) | R; + *g = (G << 4) | G; + *b = (B << 4) | B; + *a = (A << 4) | A; +} +SI void load_4444_(const uint16_t* ptr, size_t tail, U16* r, U16* g, U16* b, U16* a) { + from_4444(load<U16>(ptr, tail), r,g,b,a); +} +SI void store_4444_(uint16_t* ptr, size_t tail, U16 r, U16 g, U16 b, U16 a) { + r = min(r, 255); + g = min(g, 255); + b = min(b, 255); + a = min(a, 255); + + // Round from [0,255] to [0,15], producing the same value as (x*(15/255.0f) + 0.5f). + U16 R = (r + 8) / 17, + G = (g + 8) / 17, + B = (b + 8) / 17, + A = (a + 8) / 17; + // Pack them back into 15|rrrr gggg bbbb aaaa|0. + store(ptr, tail, R << 12 + | G << 8 + | B << 4 + | A << 0); +} + +STAGE_PP(load_4444, const SkRasterPipeline_MemoryCtx* ctx) { + load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &r,&g,&b,&a); +} +STAGE_PP(load_4444_dst, const SkRasterPipeline_MemoryCtx* ctx) { + load_4444_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &dr,&dg,&db,&da); +} +STAGE_PP(store_4444, const SkRasterPipeline_MemoryCtx* ctx) { + store_4444_(ptr_at_xy<uint16_t>(ctx, dx,dy), tail, r,g,b,a); +} +STAGE_GP(gather_4444, const SkRasterPipeline_GatherCtx* ctx) { + const uint16_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, x,y); + from_4444(gather<U16>(ptr, ix), &r,&g,&b,&a); +} + +SI void from_88(U16 rg, U16* r, U16* g) { + *r = (rg & 0xFF); + *g = (rg >> 8); +} + +SI void load_88_(const uint16_t* ptr, size_t tail, U16* r, U16* g) { +#if 1 && defined(JUMPER_IS_NEON) + uint8x8x2_t rg; + switch (tail & (N-1)) { + case 0: rg = vld2_u8 ((const uint8_t*)(ptr+0) ); break; + case 7: rg = vld2_lane_u8((const uint8_t*)(ptr+6), rg, 6); [[fallthrough]]; + case 6: rg = vld2_lane_u8((const uint8_t*)(ptr+5), rg, 5); [[fallthrough]]; + case 5: rg = vld2_lane_u8((const uint8_t*)(ptr+4), rg, 4); [[fallthrough]]; + case 4: rg = vld2_lane_u8((const uint8_t*)(ptr+3), rg, 3); [[fallthrough]]; + case 3: rg = vld2_lane_u8((const uint8_t*)(ptr+2), rg, 2); [[fallthrough]]; + case 2: rg = vld2_lane_u8((const uint8_t*)(ptr+1), rg, 1); [[fallthrough]]; + case 1: rg = vld2_lane_u8((const uint8_t*)(ptr+0), rg, 0); + } + *r = cast<U16>(U8(rg.val[0])); + *g = cast<U16>(U8(rg.val[1])); +#else + from_88(load<U16>(ptr, tail), r,g); +#endif +} + +SI void store_88_(uint16_t* ptr, size_t tail, U16 r, U16 g) { + r = min(r, 255); + g = min(g, 255); + +#if 1 && defined(JUMPER_IS_NEON) + uint8x8x2_t rg = {{ + cast<U8>(r), + cast<U8>(g), + }}; + switch (tail & (N-1)) { + case 0: vst2_u8 ((uint8_t*)(ptr+0), rg ); break; + case 7: vst2_lane_u8((uint8_t*)(ptr+6), rg, 6); [[fallthrough]]; + case 6: vst2_lane_u8((uint8_t*)(ptr+5), rg, 5); [[fallthrough]]; + case 5: vst2_lane_u8((uint8_t*)(ptr+4), rg, 4); [[fallthrough]]; + case 4: vst2_lane_u8((uint8_t*)(ptr+3), rg, 3); [[fallthrough]]; + case 3: vst2_lane_u8((uint8_t*)(ptr+2), rg, 2); [[fallthrough]]; + case 2: vst2_lane_u8((uint8_t*)(ptr+1), rg, 1); [[fallthrough]]; + case 1: vst2_lane_u8((uint8_t*)(ptr+0), rg, 0); + } +#else + store(ptr, tail, cast<U16>(r | (g<<8)) << 0); +#endif +} + +STAGE_PP(load_rg88, const SkRasterPipeline_MemoryCtx* ctx) { + load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), tail, &r, &g); + b = 0; + a = 255; +} +STAGE_PP(load_rg88_dst, const SkRasterPipeline_MemoryCtx* ctx) { + load_88_(ptr_at_xy<const uint16_t>(ctx, dx, dy), tail, &dr, &dg); + db = 0; + da = 255; +} +STAGE_PP(store_rg88, const SkRasterPipeline_MemoryCtx* ctx) { + store_88_(ptr_at_xy<uint16_t>(ctx, dx, dy), tail, r, g); +} +STAGE_GP(gather_rg88, const SkRasterPipeline_GatherCtx* ctx) { + const uint16_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, x, y); + from_88(gather<U16>(ptr, ix), &r, &g); + b = 0; + a = 255; +} + +// ~~~~~~ 8-bit memory loads and stores ~~~~~~ // + +SI U16 load_8(const uint8_t* ptr, size_t tail) { + return cast<U16>(load<U8>(ptr, tail)); +} +SI void store_8(uint8_t* ptr, size_t tail, U16 v) { + v = min(v, 255); + store(ptr, tail, cast<U8>(v)); +} + +STAGE_PP(load_a8, const SkRasterPipeline_MemoryCtx* ctx) { + r = g = b = 0; + a = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail); +} +STAGE_PP(load_a8_dst, const SkRasterPipeline_MemoryCtx* ctx) { + dr = dg = db = 0; + da = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail); +} +STAGE_PP(store_a8, const SkRasterPipeline_MemoryCtx* ctx) { + store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), tail, a); +} +STAGE_GP(gather_a8, const SkRasterPipeline_GatherCtx* ctx) { + const uint8_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, x,y); + r = g = b = 0; + a = cast<U16>(gather<U8>(ptr, ix)); +} +STAGE_PP(store_r8, const SkRasterPipeline_MemoryCtx* ctx) { + store_8(ptr_at_xy<uint8_t>(ctx, dx,dy), tail, r); +} + +STAGE_PP(alpha_to_gray, NoCtx) { + r = g = b = a; + a = 255; +} +STAGE_PP(alpha_to_gray_dst, NoCtx) { + dr = dg = db = da; + da = 255; +} +STAGE_PP(alpha_to_red, NoCtx) { + r = a; + a = 255; +} +STAGE_PP(alpha_to_red_dst, NoCtx) { + dr = da; + da = 255; +} + +STAGE_PP(bt709_luminance_or_luma_to_alpha, NoCtx) { + a = (r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator. + r = g = b = 0; +} +STAGE_PP(bt709_luminance_or_luma_to_rgb, NoCtx) { + r = g = b =(r*54 + g*183 + b*19)/256; // 0.2126, 0.7152, 0.0722 with 256 denominator. +} + +// ~~~~~~ Coverage scales / lerps ~~~~~~ // + +STAGE_PP(load_src, const uint16_t* ptr) { + r = sk_unaligned_load<U16>(ptr + 0*N); + g = sk_unaligned_load<U16>(ptr + 1*N); + b = sk_unaligned_load<U16>(ptr + 2*N); + a = sk_unaligned_load<U16>(ptr + 3*N); +} +STAGE_PP(store_src, uint16_t* ptr) { + sk_unaligned_store(ptr + 0*N, r); + sk_unaligned_store(ptr + 1*N, g); + sk_unaligned_store(ptr + 2*N, b); + sk_unaligned_store(ptr + 3*N, a); +} +STAGE_PP(store_src_a, uint16_t* ptr) { + sk_unaligned_store(ptr, a); +} +STAGE_PP(load_dst, const uint16_t* ptr) { + dr = sk_unaligned_load<U16>(ptr + 0*N); + dg = sk_unaligned_load<U16>(ptr + 1*N); + db = sk_unaligned_load<U16>(ptr + 2*N); + da = sk_unaligned_load<U16>(ptr + 3*N); +} +STAGE_PP(store_dst, uint16_t* ptr) { + sk_unaligned_store(ptr + 0*N, dr); + sk_unaligned_store(ptr + 1*N, dg); + sk_unaligned_store(ptr + 2*N, db); + sk_unaligned_store(ptr + 3*N, da); +} + +// ~~~~~~ Coverage scales / lerps ~~~~~~ // + +STAGE_PP(scale_1_float, const float* f) { + U16 c = from_float(*f); + r = div255( r * c ); + g = div255( g * c ); + b = div255( b * c ); + a = div255( a * c ); +} +STAGE_PP(lerp_1_float, const float* f) { + U16 c = from_float(*f); + r = lerp(dr, r, c); + g = lerp(dg, g, c); + b = lerp(db, b, c); + a = lerp(da, a, c); +} +STAGE_PP(scale_native, const uint16_t scales[]) { + auto c = sk_unaligned_load<U16>(scales); + r = div255( r * c ); + g = div255( g * c ); + b = div255( b * c ); + a = div255( a * c ); +} + +STAGE_PP(lerp_native, const uint16_t scales[]) { + auto c = sk_unaligned_load<U16>(scales); + r = lerp(dr, r, c); + g = lerp(dg, g, c); + b = lerp(db, b, c); + a = lerp(da, a, c); +} + +STAGE_PP(scale_u8, const SkRasterPipeline_MemoryCtx* ctx) { + U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail); + r = div255( r * c ); + g = div255( g * c ); + b = div255( b * c ); + a = div255( a * c ); +} +STAGE_PP(lerp_u8, const SkRasterPipeline_MemoryCtx* ctx) { + U16 c = load_8(ptr_at_xy<const uint8_t>(ctx, dx,dy), tail); + r = lerp(dr, r, c); + g = lerp(dg, g, c); + b = lerp(db, b, c); + a = lerp(da, a, c); +} + +// Derive alpha's coverage from rgb coverage and the values of src and dst alpha. +SI U16 alpha_coverage_from_rgb_coverage(U16 a, U16 da, U16 cr, U16 cg, U16 cb) { + return if_then_else(a < da, min(cr, min(cg,cb)) + , max(cr, max(cg,cb))); +} +STAGE_PP(scale_565, const SkRasterPipeline_MemoryCtx* ctx) { + U16 cr,cg,cb; + load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb); + U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); + + r = div255( r * cr ); + g = div255( g * cg ); + b = div255( b * cb ); + a = div255( a * ca ); +} +STAGE_PP(lerp_565, const SkRasterPipeline_MemoryCtx* ctx) { + U16 cr,cg,cb; + load_565_(ptr_at_xy<const uint16_t>(ctx, dx,dy), tail, &cr,&cg,&cb); + U16 ca = alpha_coverage_from_rgb_coverage(a,da, cr,cg,cb); + + r = lerp(dr, r, cr); + g = lerp(dg, g, cg); + b = lerp(db, b, cb); + a = lerp(da, a, ca); +} + +STAGE_PP(emboss, const SkRasterPipeline_EmbossCtx* ctx) { + U16 mul = load_8(ptr_at_xy<const uint8_t>(&ctx->mul, dx,dy), tail), + add = load_8(ptr_at_xy<const uint8_t>(&ctx->add, dx,dy), tail); + + r = min(div255(r*mul) + add, a); + g = min(div255(g*mul) + add, a); + b = min(div255(b*mul) + add, a); +} + + +// ~~~~~~ Gradient stages ~~~~~~ // + +// Clamp x to [0,1], both sides inclusive (think, gradients). +// Even repeat and mirror funnel through a clamp to handle bad inputs like +Inf, NaN. +SI F clamp_01_(F v) { return min(max(0, v), 1); } + +STAGE_GG(clamp_x_1 , NoCtx) { x = clamp_01_(x); } +STAGE_GG(repeat_x_1, NoCtx) { x = clamp_01_(x - floor_(x)); } +STAGE_GG(mirror_x_1, NoCtx) { + auto two = [](F x){ return x+x; }; + x = clamp_01_(abs_( (x-1.0f) - two(floor_((x-1.0f)*0.5f)) - 1.0f )); +} + +SI I16 cond_to_mask_16(I32 cond) { return cast<I16>(cond); } + +STAGE_GG(decal_x, SkRasterPipeline_DecalTileCtx* ctx) { + auto w = ctx->limit_x; + sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w))); +} +STAGE_GG(decal_y, SkRasterPipeline_DecalTileCtx* ctx) { + auto h = ctx->limit_y; + sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= y) & (y < h))); +} +STAGE_GG(decal_x_and_y, SkRasterPipeline_DecalTileCtx* ctx) { + auto w = ctx->limit_x; + auto h = ctx->limit_y; + sk_unaligned_store(ctx->mask, cond_to_mask_16((0 <= x) & (x < w) & (0 <= y) & (y < h))); +} +STAGE_GG(clamp_x_and_y, SkRasterPipeline_CoordClampCtx* ctx) { + x = min(ctx->max_x, max(ctx->min_x, x)); + y = min(ctx->max_y, max(ctx->min_y, y)); +} +STAGE_PP(check_decal_mask, SkRasterPipeline_DecalTileCtx* ctx) { + auto mask = sk_unaligned_load<U16>(ctx->mask); + r = r & mask; + g = g & mask; + b = b & mask; + a = a & mask; +} + +SI void round_F_to_U16(F R, F G, F B, F A, U16* r, U16* g, U16* b, U16* a) { + auto round = [](F x) { return cast<U16>(x * 255.0f + 0.5f); }; + + *r = round(min(max(0, R), 1)); + *g = round(min(max(0, G), 1)); + *b = round(min(max(0, B), 1)); + *a = round(A); // we assume alpha is already in [0,1]. +} + +SI void gradient_lookup(const SkRasterPipeline_GradientCtx* c, U32 idx, F t, + U16* r, U16* g, U16* b, U16* a) { + + F fr, fg, fb, fa, br, bg, bb, ba; +#if defined(JUMPER_IS_HSW) || defined(JUMPER_IS_SKX) + if (c->stopCount <=8) { + __m256i lo, hi; + split(idx, &lo, &hi); + + fr = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), lo), + _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[0]), hi)); + br = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), lo), + _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[0]), hi)); + fg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), lo), + _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[1]), hi)); + bg = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), lo), + _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[1]), hi)); + fb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), lo), + _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[2]), hi)); + bb = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), lo), + _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[2]), hi)); + fa = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), lo), + _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->fs[3]), hi)); + ba = join<F>(_mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), lo), + _mm256_permutevar8x32_ps(_mm256_loadu_ps(c->bs[3]), hi)); + } else +#endif + { + fr = gather<F>(c->fs[0], idx); + fg = gather<F>(c->fs[1], idx); + fb = gather<F>(c->fs[2], idx); + fa = gather<F>(c->fs[3], idx); + br = gather<F>(c->bs[0], idx); + bg = gather<F>(c->bs[1], idx); + bb = gather<F>(c->bs[2], idx); + ba = gather<F>(c->bs[3], idx); + } + round_F_to_U16(mad(t, fr, br), + mad(t, fg, bg), + mad(t, fb, bb), + mad(t, fa, ba), + r,g,b,a); +} + +STAGE_GP(gradient, const SkRasterPipeline_GradientCtx* c) { + auto t = x; + U32 idx = 0; + + // N.B. The loop starts at 1 because idx 0 is the color to use before the first stop. + for (size_t i = 1; i < c->stopCount; i++) { + idx += if_then_else(t >= c->ts[i], U32(1), U32(0)); + } + + gradient_lookup(c, idx, t, &r, &g, &b, &a); +} + +STAGE_GP(evenly_spaced_gradient, const SkRasterPipeline_GradientCtx* c) { + auto t = x; + auto idx = trunc_(t * (c->stopCount-1)); + gradient_lookup(c, idx, t, &r, &g, &b, &a); +} + +STAGE_GP(evenly_spaced_2_stop_gradient, const SkRasterPipeline_EvenlySpaced2StopGradientCtx* c) { + auto t = x; + round_F_to_U16(mad(t, c->f[0], c->b[0]), + mad(t, c->f[1], c->b[1]), + mad(t, c->f[2], c->b[2]), + mad(t, c->f[3], c->b[3]), + &r,&g,&b,&a); +} + +STAGE_GP(bilerp_clamp_8888, const SkRasterPipeline_GatherCtx* ctx) { + // Quantize sample point and transform into lerp coordinates converting them to 16.16 fixed + // point number. + I32 qx = cast<I32>(floor_(65536.0f * x + 0.5f)) - 32768, + qy = cast<I32>(floor_(65536.0f * y + 0.5f)) - 32768; + + // Calculate screen coordinates sx & sy by flooring qx and qy. + I32 sx = qx >> 16, + sy = qy >> 16; + + // We are going to perform a change of parameters for qx on [0, 1) to tx on [-1, 1). + // This will put tx in Q15 format for use with q_mult. + // Calculate tx and ty on the interval of [-1, 1). Give {qx} and {qy} are on the interval + // [0, 1), where {v} is fract(v), we can transform to tx in the following manner ty follows + // the same math: + // tx = 2 * {qx} - 1, so + // {qx} = (tx + 1) / 2. + // Calculate {qx} - 1 and {qy} - 1 where the {} operation is handled by the cast, and the - 1 + // is handled by the ^ 0x8000, dividing by 2 is deferred and handled in lerpX and lerpY in + // order to use the full 16-bit resolution. + I16 tx = cast<I16>(qx ^ 0x8000), + ty = cast<I16>(qy ^ 0x8000); + + // Substituting the {qx} by the equation for tx from above into the lerp equation where v is + // the lerped value: + // v = {qx}*(R - L) + L, + // v = 1/2*(tx + 1)*(R - L) + L + // 2 * v = (tx + 1)*(R - L) + 2*L + // = tx*R - tx*L + R - L + 2*L + // = tx*(R - L) + (R + L). + // Since R and L are on [0, 255] we need them on the interval [0, 1/2] to get them into form + // for Q15_mult. If L and R where in 16.16 format, this would be done by dividing by 2^9. In + // code, we can multiply by 2^7 to get the value directly. + // 2 * v = tx*(R - L) + (R + L) + // 2^-9 * 2 * v = tx*(R - L)*2^-9 + (R + L)*2^-9 + // 2^-8 * v = 2^-9 * (tx*(R - L) + (R + L)) + // v = 1/2 * (tx*(R - L) + (R + L)) + auto lerpX = [&](U16 left, U16 right) -> U16 { + I16 width = cast<I16>(right - left) << 7; + U16 middle = (right + left) << 7; + // The constrained_add is the most subtle part of lerp. The first term is on the interval + // [-1, 1), and the second term is on the interval is on the interval [0, 1) because + // both terms are too high by a factor of 2 which will be handled below. (Both R and L are + // on [0, 1/2), but the sum R + L is on the interval [0, 1).) Generally, the sum below + // should overflow, but because we know that sum produces an output on the + // interval [0, 1) we know that the extra bit that would be needed will always be 0. So + // we need to be careful to treat this sum as an unsigned positive number in the divide + // by 2 below. Add +1 for rounding. + U16 v2 = constrained_add(scaled_mult(tx, width), middle) + 1; + // Divide by 2 to calculate v and at the same time bring the intermediate value onto the + // interval [0, 1/2] to set up for the lerpY. + return v2 >> 1; + }; + + const uint32_t* ptr; + U32 ix = ix_and_ptr(&ptr, ctx, sx, sy); + U16 leftR, leftG, leftB, leftA; + from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA); + + ix = ix_and_ptr(&ptr, ctx, sx+1, sy); + U16 rightR, rightG, rightB, rightA; + from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA); + + U16 topR = lerpX(leftR, rightR), + topG = lerpX(leftG, rightG), + topB = lerpX(leftB, rightB), + topA = lerpX(leftA, rightA); + + ix = ix_and_ptr(&ptr, ctx, sx, sy+1); + from_8888(gather<U32>(ptr, ix), &leftR,&leftG,&leftB,&leftA); + + ix = ix_and_ptr(&ptr, ctx, sx+1, sy+1); + from_8888(gather<U32>(ptr, ix), &rightR,&rightG,&rightB,&rightA); + + U16 bottomR = lerpX(leftR, rightR), + bottomG = lerpX(leftG, rightG), + bottomB = lerpX(leftB, rightB), + bottomA = lerpX(leftA, rightA); + + // lerpY plays the same mathematical tricks as lerpX, but the final divide is by 256 resulting + // in a value on [0, 255]. + auto lerpY = [&](U16 top, U16 bottom) -> U16 { + I16 width = cast<I16>(bottom - top); + U16 middle = bottom + top; + // Add + 0x80 for rounding. + U16 blend = constrained_add(scaled_mult(ty, width), middle) + 0x80; + + return blend >> 8; + }; + + r = lerpY(topR, bottomR); + g = lerpY(topG, bottomG); + b = lerpY(topB, bottomB); + a = lerpY(topA, bottomA); +} + +STAGE_GG(xy_to_unit_angle, NoCtx) { + F xabs = abs_(x), + yabs = abs_(y); + + F slope = min(xabs, yabs)/max(xabs, yabs); + F s = slope * slope; + + // Use a 7th degree polynomial to approximate atan. + // This was generated using sollya.gforge.inria.fr. + // A float optimized polynomial was generated using the following command. + // P1 = fpminimax((1/(2*Pi))*atan(x),[|1,3,5,7|],[|24...|],[2^(-40),1],relative); + F phi = slope + * (0.15912117063999176025390625f + s + * (-5.185396969318389892578125e-2f + s + * (2.476101927459239959716796875e-2f + s + * (-7.0547382347285747528076171875e-3f)))); + + phi = if_then_else(xabs < yabs, 1.0f/4.0f - phi, phi); + phi = if_then_else(x < 0.0f , 1.0f/2.0f - phi, phi); + phi = if_then_else(y < 0.0f , 1.0f - phi , phi); + phi = if_then_else(phi != phi , F(0) , phi); // Check for NaN. + x = phi; +} +STAGE_GG(xy_to_radius, NoCtx) { + x = sqrt_(x*x + y*y); +} + +// ~~~~~~ Compound stages ~~~~~~ // + +STAGE_PP(srcover_rgba_8888, const SkRasterPipeline_MemoryCtx* ctx) { + auto ptr = ptr_at_xy<uint32_t>(ctx, dx,dy); + + load_8888_(ptr, tail, &dr,&dg,&db,&da); + r = r + div255( dr*inv(a) ); + g = g + div255( dg*inv(a) ); + b = b + div255( db*inv(a) ); + a = a + div255( da*inv(a) ); + store_8888_(ptr, tail, r,g,b,a); +} + +// ~~~~~~ skgpu::Swizzle stage ~~~~~~ // + +STAGE_PP(swizzle, void* ctx) { + auto ir = r, ig = g, ib = b, ia = a; + U16* o[] = {&r, &g, &b, &a}; + char swiz[4]; + memcpy(swiz, &ctx, sizeof(swiz)); + + for (int i = 0; i < 4; ++i) { + switch (swiz[i]) { + case 'r': *o[i] = ir; break; + case 'g': *o[i] = ig; break; + case 'b': *o[i] = ib; break; + case 'a': *o[i] = ia; break; + case '0': *o[i] = U16(0); break; + case '1': *o[i] = U16(255); break; + default: break; + } + } +} + +#undef cast + +#endif//defined(JUMPER_IS_SCALAR) controlling whether we build lowp stages +} // namespace lowp + +/* This gives us SK_OPTS::lowp::N if lowp::N has been set, or SK_OPTS::N if it hasn't. */ +namespace lowp { static constexpr size_t lowp_N = N; } + +/** Allow outside code to access the Raster Pipeline pixel stride. */ +constexpr size_t raster_pipeline_lowp_stride() { return lowp::lowp_N; } +constexpr size_t raster_pipeline_highp_stride() { return N; } + +} // namespace SK_OPTS_NS + +#undef SI + +#endif//SkRasterPipeline_opts_DEFINED |