summaryrefslogtreecommitdiffstats
path: root/intl/icu/source/i18n/nfrs.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 01:47:29 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 01:47:29 +0000
commit0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d (patch)
treea31f07c9bcca9d56ce61e9a1ffd30ef350d513aa /intl/icu/source/i18n/nfrs.cpp
parentInitial commit. (diff)
downloadfirefox-esr-0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d.tar.xz
firefox-esr-0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d.zip
Adding upstream version 115.8.0esr.upstream/115.8.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'intl/icu/source/i18n/nfrs.cpp')
-rw-r--r--intl/icu/source/i18n/nfrs.cpp1035
1 files changed, 1035 insertions, 0 deletions
diff --git a/intl/icu/source/i18n/nfrs.cpp b/intl/icu/source/i18n/nfrs.cpp
new file mode 100644
index 0000000000..1f4b9b9d29
--- /dev/null
+++ b/intl/icu/source/i18n/nfrs.cpp
@@ -0,0 +1,1035 @@
+// © 2016 and later: Unicode, Inc. and others.
+// License & terms of use: http://www.unicode.org/copyright.html
+/*
+******************************************************************************
+* Copyright (C) 1997-2015, International Business Machines
+* Corporation and others. All Rights Reserved.
+******************************************************************************
+* file name: nfrs.cpp
+* encoding: UTF-8
+* tab size: 8 (not used)
+* indentation:4
+*
+* Modification history
+* Date Name Comments
+* 10/11/2001 Doug Ported from ICU4J
+*/
+
+#include "nfrs.h"
+
+#if U_HAVE_RBNF
+
+#include "unicode/uchar.h"
+#include "nfrule.h"
+#include "nfrlist.h"
+#include "patternprops.h"
+#include "putilimp.h"
+
+#ifdef RBNF_DEBUG
+#include "cmemory.h"
+#endif
+
+enum {
+ /** -x */
+ NEGATIVE_RULE_INDEX = 0,
+ /** x.x */
+ IMPROPER_FRACTION_RULE_INDEX = 1,
+ /** 0.x */
+ PROPER_FRACTION_RULE_INDEX = 2,
+ /** x.0 */
+ DEFAULT_RULE_INDEX = 3,
+ /** Inf */
+ INFINITY_RULE_INDEX = 4,
+ /** NaN */
+ NAN_RULE_INDEX = 5,
+ NON_NUMERICAL_RULE_LENGTH = 6
+};
+
+U_NAMESPACE_BEGIN
+
+#if 0
+// euclid's algorithm works with doubles
+// note, doubles only get us up to one quadrillion or so, which
+// isn't as much range as we get with longs. We probably still
+// want either 64-bit math, or BigInteger.
+
+static int64_t
+util_lcm(int64_t x, int64_t y)
+{
+ x.abs();
+ y.abs();
+
+ if (x == 0 || y == 0) {
+ return 0;
+ } else {
+ do {
+ if (x < y) {
+ int64_t t = x; x = y; y = t;
+ }
+ x -= y * (x/y);
+ } while (x != 0);
+
+ return y;
+ }
+}
+
+#else
+/**
+ * Calculates the least common multiple of x and y.
+ */
+static int64_t
+util_lcm(int64_t x, int64_t y)
+{
+ // binary gcd algorithm from Knuth, "The Art of Computer Programming,"
+ // vol. 2, 1st ed., pp. 298-299
+ int64_t x1 = x;
+ int64_t y1 = y;
+
+ int p2 = 0;
+ while ((x1 & 1) == 0 && (y1 & 1) == 0) {
+ ++p2;
+ x1 >>= 1;
+ y1 >>= 1;
+ }
+
+ int64_t t;
+ if ((x1 & 1) == 1) {
+ t = -y1;
+ } else {
+ t = x1;
+ }
+
+ while (t != 0) {
+ while ((t & 1) == 0) {
+ t = t >> 1;
+ }
+ if (t > 0) {
+ x1 = t;
+ } else {
+ y1 = -t;
+ }
+ t = x1 - y1;
+ }
+
+ int64_t gcd = x1 << p2;
+
+ // x * y == gcd(x, y) * lcm(x, y)
+ return x / gcd * y;
+}
+#endif
+
+static const char16_t gPercent = 0x0025;
+static const char16_t gColon = 0x003a;
+static const char16_t gSemicolon = 0x003b;
+static const char16_t gLineFeed = 0x000a;
+
+static const char16_t gPercentPercent[] =
+{
+ 0x25, 0x25, 0
+}; /* "%%" */
+
+static const char16_t gNoparse[] =
+{
+ 0x40, 0x6E, 0x6F, 0x70, 0x61, 0x72, 0x73, 0x65, 0
+}; /* "@noparse" */
+
+NFRuleSet::NFRuleSet(RuleBasedNumberFormat *_owner, UnicodeString* descriptions, int32_t index, UErrorCode& status)
+ : name()
+ , rules(0)
+ , owner(_owner)
+ , fractionRules()
+ , fIsFractionRuleSet(false)
+ , fIsPublic(false)
+ , fIsParseable(true)
+{
+ for (int32_t i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) {
+ nonNumericalRules[i] = nullptr;
+ }
+
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ UnicodeString& description = descriptions[index]; // !!! make sure index is valid
+
+ if (description.length() == 0) {
+ // throw new IllegalArgumentException("Empty rule set description");
+ status = U_PARSE_ERROR;
+ return;
+ }
+
+ // if the description begins with a rule set name (the rule set
+ // name can be omitted in formatter descriptions that consist
+ // of only one rule set), copy it out into our "name" member
+ // and delete it from the description
+ if (description.charAt(0) == gPercent) {
+ int32_t pos = description.indexOf(gColon);
+ if (pos == -1) {
+ // throw new IllegalArgumentException("Rule set name doesn't end in colon");
+ status = U_PARSE_ERROR;
+ } else {
+ name.setTo(description, 0, pos);
+ while (pos < description.length() && PatternProps::isWhiteSpace(description.charAt(++pos))) {
+ }
+ description.remove(0, pos);
+ }
+ } else {
+ name.setTo(UNICODE_STRING_SIMPLE("%default"));
+ }
+
+ if (description.length() == 0) {
+ // throw new IllegalArgumentException("Empty rule set description");
+ status = U_PARSE_ERROR;
+ }
+
+ fIsPublic = name.indexOf(gPercentPercent, 2, 0) != 0;
+
+ if ( name.endsWith(gNoparse,8) ) {
+ fIsParseable = false;
+ name.truncate(name.length()-8); // remove the @noparse from the name
+ }
+
+ // all of the other members of NFRuleSet are initialized
+ // by parseRules()
+}
+
+void
+NFRuleSet::parseRules(UnicodeString& description, UErrorCode& status)
+{
+ // start by creating a Vector whose elements are Strings containing
+ // the descriptions of the rules (one rule per element). The rules
+ // are separated by semicolons (there's no escape facility: ALL
+ // semicolons are rule delimiters)
+
+ if (U_FAILURE(status)) {
+ return;
+ }
+
+ // ensure we are starting with an empty rule list
+ rules.deleteAll();
+
+ // dlf - the original code kept a separate description array for no reason,
+ // so I got rid of it. The loop was too complex so I simplified it.
+
+ UnicodeString currentDescription;
+ int32_t oldP = 0;
+ while (oldP < description.length()) {
+ int32_t p = description.indexOf(gSemicolon, oldP);
+ if (p == -1) {
+ p = description.length();
+ }
+ currentDescription.setTo(description, oldP, p - oldP);
+ NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status);
+ oldP = p + 1;
+ }
+
+ // for rules that didn't specify a base value, their base values
+ // were initialized to 0. Make another pass through the list and
+ // set all those rules' base values. We also remove any special
+ // rules from the list and put them into their own member variables
+ int64_t defaultBaseValue = 0;
+
+ // (this isn't a for loop because we might be deleting items from
+ // the vector-- we want to make sure we only increment i when
+ // we _didn't_ delete anything from the vector)
+ int32_t rulesSize = rules.size();
+ for (int32_t i = 0; i < rulesSize; i++) {
+ NFRule* rule = rules[i];
+ int64_t baseValue = rule->getBaseValue();
+
+ if (baseValue == 0) {
+ // if the rule's base value is 0, fill in a default
+ // base value (this will be 1 plus the preceding
+ // rule's base value for regular rule sets, and the
+ // same as the preceding rule's base value in fraction
+ // rule sets)
+ rule->setBaseValue(defaultBaseValue, status);
+ }
+ else {
+ // if it's a regular rule that already knows its base value,
+ // check to make sure the rules are in order, and update
+ // the default base value for the next rule
+ if (baseValue < defaultBaseValue) {
+ // throw new IllegalArgumentException("Rules are not in order");
+ status = U_PARSE_ERROR;
+ return;
+ }
+ defaultBaseValue = baseValue;
+ }
+ if (!fIsFractionRuleSet) {
+ ++defaultBaseValue;
+ }
+ }
+}
+
+/**
+ * Set one of the non-numerical rules.
+ * @param rule The rule to set.
+ */
+void NFRuleSet::setNonNumericalRule(NFRule *rule) {
+ int64_t baseValue = rule->getBaseValue();
+ if (baseValue == NFRule::kNegativeNumberRule) {
+ delete nonNumericalRules[NEGATIVE_RULE_INDEX];
+ nonNumericalRules[NEGATIVE_RULE_INDEX] = rule;
+ }
+ else if (baseValue == NFRule::kImproperFractionRule) {
+ setBestFractionRule(IMPROPER_FRACTION_RULE_INDEX, rule, true);
+ }
+ else if (baseValue == NFRule::kProperFractionRule) {
+ setBestFractionRule(PROPER_FRACTION_RULE_INDEX, rule, true);
+ }
+ else if (baseValue == NFRule::kDefaultRule) {
+ setBestFractionRule(DEFAULT_RULE_INDEX, rule, true);
+ }
+ else if (baseValue == NFRule::kInfinityRule) {
+ delete nonNumericalRules[INFINITY_RULE_INDEX];
+ nonNumericalRules[INFINITY_RULE_INDEX] = rule;
+ }
+ else if (baseValue == NFRule::kNaNRule) {
+ delete nonNumericalRules[NAN_RULE_INDEX];
+ nonNumericalRules[NAN_RULE_INDEX] = rule;
+ }
+}
+
+/**
+ * Determine the best fraction rule to use. Rules matching the decimal point from
+ * DecimalFormatSymbols become the main set of rules to use.
+ * @param originalIndex The index into nonNumericalRules
+ * @param newRule The new rule to consider
+ * @param rememberRule Should the new rule be added to fractionRules.
+ */
+void NFRuleSet::setBestFractionRule(int32_t originalIndex, NFRule *newRule, UBool rememberRule) {
+ if (rememberRule) {
+ fractionRules.add(newRule);
+ }
+ NFRule *bestResult = nonNumericalRules[originalIndex];
+ if (bestResult == nullptr) {
+ nonNumericalRules[originalIndex] = newRule;
+ }
+ else {
+ // We have more than one. Which one is better?
+ const DecimalFormatSymbols *decimalFormatSymbols = owner->getDecimalFormatSymbols();
+ if (decimalFormatSymbols->getSymbol(DecimalFormatSymbols::kDecimalSeparatorSymbol).charAt(0)
+ == newRule->getDecimalPoint())
+ {
+ nonNumericalRules[originalIndex] = newRule;
+ }
+ // else leave it alone
+ }
+}
+
+NFRuleSet::~NFRuleSet()
+{
+ for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) {
+ if (i != IMPROPER_FRACTION_RULE_INDEX
+ && i != PROPER_FRACTION_RULE_INDEX
+ && i != DEFAULT_RULE_INDEX)
+ {
+ delete nonNumericalRules[i];
+ }
+ // else it will be deleted via NFRuleList fractionRules
+ }
+}
+
+static UBool
+util_equalRules(const NFRule* rule1, const NFRule* rule2)
+{
+ if (rule1) {
+ if (rule2) {
+ return *rule1 == *rule2;
+ }
+ } else if (!rule2) {
+ return true;
+ }
+ return false;
+}
+
+bool
+NFRuleSet::operator==(const NFRuleSet& rhs) const
+{
+ if (rules.size() == rhs.rules.size() &&
+ fIsFractionRuleSet == rhs.fIsFractionRuleSet &&
+ name == rhs.name) {
+
+ // ...then compare the non-numerical rule lists...
+ for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) {
+ if (!util_equalRules(nonNumericalRules[i], rhs.nonNumericalRules[i])) {
+ return false;
+ }
+ }
+
+ // ...then compare the rule lists...
+ for (uint32_t i = 0; i < rules.size(); ++i) {
+ if (*rules[i] != *rhs.rules[i]) {
+ return false;
+ }
+ }
+ return true;
+ }
+ return false;
+}
+
+void
+NFRuleSet::setDecimalFormatSymbols(const DecimalFormatSymbols &newSymbols, UErrorCode& status) {
+ for (uint32_t i = 0; i < rules.size(); ++i) {
+ rules[i]->setDecimalFormatSymbols(newSymbols, status);
+ }
+ // Switch the fraction rules to mirror the DecimalFormatSymbols.
+ for (int32_t nonNumericalIdx = IMPROPER_FRACTION_RULE_INDEX; nonNumericalIdx <= DEFAULT_RULE_INDEX; nonNumericalIdx++) {
+ if (nonNumericalRules[nonNumericalIdx]) {
+ for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) {
+ NFRule *fractionRule = fractionRules[fIdx];
+ if (nonNumericalRules[nonNumericalIdx]->getBaseValue() == fractionRule->getBaseValue()) {
+ setBestFractionRule(nonNumericalIdx, fractionRule, false);
+ }
+ }
+ }
+ }
+
+ for (uint32_t nnrIdx = 0; nnrIdx < NON_NUMERICAL_RULE_LENGTH; nnrIdx++) {
+ NFRule *rule = nonNumericalRules[nnrIdx];
+ if (rule) {
+ rule->setDecimalFormatSymbols(newSymbols, status);
+ }
+ }
+}
+
+#define RECURSION_LIMIT 64
+
+void
+NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const
+{
+ if (recursionCount >= RECURSION_LIMIT) {
+ // stop recursion
+ status = U_INVALID_STATE_ERROR;
+ return;
+ }
+ const NFRule *rule = findNormalRule(number);
+ if (rule) { // else error, but can't report it
+ rule->doFormat(number, toAppendTo, pos, ++recursionCount, status);
+ }
+}
+
+void
+NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos, int32_t recursionCount, UErrorCode& status) const
+{
+ if (recursionCount >= RECURSION_LIMIT) {
+ // stop recursion
+ status = U_INVALID_STATE_ERROR;
+ return;
+ }
+ const NFRule *rule = findDoubleRule(number);
+ if (rule) { // else error, but can't report it
+ rule->doFormat(number, toAppendTo, pos, ++recursionCount, status);
+ }
+}
+
+const NFRule*
+NFRuleSet::findDoubleRule(double number) const
+{
+ // if this is a fraction rule set, use findFractionRuleSetRule()
+ if (isFractionRuleSet()) {
+ return findFractionRuleSetRule(number);
+ }
+
+ if (uprv_isNaN(number)) {
+ const NFRule *rule = nonNumericalRules[NAN_RULE_INDEX];
+ if (!rule) {
+ rule = owner->getDefaultNaNRule();
+ }
+ return rule;
+ }
+
+ // if the number is negative, return the negative number rule
+ // (if there isn't a negative-number rule, we pretend it's a
+ // positive number)
+ if (number < 0) {
+ if (nonNumericalRules[NEGATIVE_RULE_INDEX]) {
+ return nonNumericalRules[NEGATIVE_RULE_INDEX];
+ } else {
+ number = -number;
+ }
+ }
+
+ if (uprv_isInfinite(number)) {
+ const NFRule *rule = nonNumericalRules[INFINITY_RULE_INDEX];
+ if (!rule) {
+ rule = owner->getDefaultInfinityRule();
+ }
+ return rule;
+ }
+
+ // if the number isn't an integer, we use one of the fraction rules...
+ if (number != uprv_floor(number)) {
+ // if the number is between 0 and 1, return the proper
+ // fraction rule
+ if (number < 1 && nonNumericalRules[PROPER_FRACTION_RULE_INDEX]) {
+ return nonNumericalRules[PROPER_FRACTION_RULE_INDEX];
+ }
+ // otherwise, return the improper fraction rule
+ else if (nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX]) {
+ return nonNumericalRules[IMPROPER_FRACTION_RULE_INDEX];
+ }
+ }
+
+ // if there's a default rule, use it to format the number
+ if (nonNumericalRules[DEFAULT_RULE_INDEX]) {
+ return nonNumericalRules[DEFAULT_RULE_INDEX];
+ }
+
+ // and if we haven't yet returned a rule, use findNormalRule()
+ // to find the applicable rule
+ int64_t r = util64_fromDouble(number + 0.5);
+ return findNormalRule(r);
+}
+
+const NFRule *
+NFRuleSet::findNormalRule(int64_t number) const
+{
+ // if this is a fraction rule set, use findFractionRuleSetRule()
+ // to find the rule (we should only go into this clause if the
+ // value is 0)
+ if (fIsFractionRuleSet) {
+ return findFractionRuleSetRule((double)number);
+ }
+
+ // if the number is negative, return the negative-number rule
+ // (if there isn't one, pretend the number is positive)
+ if (number < 0) {
+ if (nonNumericalRules[NEGATIVE_RULE_INDEX]) {
+ return nonNumericalRules[NEGATIVE_RULE_INDEX];
+ } else {
+ number = -number;
+ }
+ }
+
+ // we have to repeat the preceding two checks, even though we
+ // do them in findRule(), because the version of format() that
+ // takes a long bypasses findRule() and goes straight to this
+ // function. This function does skip the fraction rules since
+ // we know the value is an integer (it also skips the default
+ // rule, since it's considered a fraction rule. Skipping the
+ // default rule in this function is also how we avoid infinite
+ // recursion)
+
+ // {dlf} unfortunately this fails if there are no rules except
+ // special rules. If there are no rules, use the default rule.
+
+ // binary-search the rule list for the applicable rule
+ // (a rule is used for all values from its base value to
+ // the next rule's base value)
+ int32_t hi = rules.size();
+ if (hi > 0) {
+ int32_t lo = 0;
+
+ while (lo < hi) {
+ int32_t mid = (lo + hi) / 2;
+ if (rules[mid]->getBaseValue() == number) {
+ return rules[mid];
+ }
+ else if (rules[mid]->getBaseValue() > number) {
+ hi = mid;
+ }
+ else {
+ lo = mid + 1;
+ }
+ }
+ if (hi == 0) { // bad rule set, minimum base > 0
+ return nullptr; // want to throw exception here
+ }
+
+ NFRule *result = rules[hi - 1];
+
+ // use shouldRollBack() to see whether we need to invoke the
+ // rollback rule (see shouldRollBack()'s documentation for
+ // an explanation of the rollback rule). If we do, roll back
+ // one rule and return that one instead of the one we'd normally
+ // return
+ if (result->shouldRollBack(number)) {
+ if (hi == 1) { // bad rule set, no prior rule to rollback to from this base
+ return nullptr;
+ }
+ result = rules[hi - 2];
+ }
+ return result;
+ }
+ // else use the default rule
+ return nonNumericalRules[DEFAULT_RULE_INDEX];
+}
+
+/**
+ * If this rule is a fraction rule set, this function is used by
+ * findRule() to select the most appropriate rule for formatting
+ * the number. Basically, the base value of each rule in the rule
+ * set is treated as the denominator of a fraction. Whichever
+ * denominator can produce the fraction closest in value to the
+ * number passed in is the result. If there's a tie, the earlier
+ * one in the list wins. (If there are two rules in a row with the
+ * same base value, the first one is used when the numerator of the
+ * fraction would be 1, and the second rule is used the rest of the
+ * time.
+ * @param number The number being formatted (which will always be
+ * a number between 0 and 1)
+ * @return The rule to use to format this number
+ */
+const NFRule*
+NFRuleSet::findFractionRuleSetRule(double number) const
+{
+ // the obvious way to do this (multiply the value being formatted
+ // by each rule's base value until you get an integral result)
+ // doesn't work because of rounding error. This method is more
+ // accurate
+
+ // find the least common multiple of the rules' base values
+ // and multiply this by the number being formatted. This is
+ // all the precision we need, and we can do all of the rest
+ // of the math using integer arithmetic
+ int64_t leastCommonMultiple = rules[0]->getBaseValue();
+ int64_t numerator;
+ {
+ for (uint32_t i = 1; i < rules.size(); ++i) {
+ leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue());
+ }
+ numerator = util64_fromDouble(number * (double)leastCommonMultiple + 0.5);
+ }
+ // for each rule, do the following...
+ int64_t tempDifference;
+ int64_t difference = util64_fromDouble(uprv_maxMantissa());
+ int32_t winner = 0;
+ for (uint32_t i = 0; i < rules.size(); ++i) {
+ // "numerator" is the numerator of the fraction if the
+ // denominator is the LCD. The numerator if the rule's
+ // base value is the denominator is "numerator" times the
+ // base value divided bythe LCD. Here we check to see if
+ // that's an integer, and if not, how close it is to being
+ // an integer.
+ tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple;
+
+
+ // normalize the result of the above calculation: we want
+ // the numerator's distance from the CLOSEST multiple
+ // of the LCD
+ if (leastCommonMultiple - tempDifference < tempDifference) {
+ tempDifference = leastCommonMultiple - tempDifference;
+ }
+
+ // if this is as close as we've come, keep track of how close
+ // that is, and the line number of the rule that did it. If
+ // we've scored a direct hit, we don't have to look at any more
+ // rules
+ if (tempDifference < difference) {
+ difference = tempDifference;
+ winner = i;
+ if (difference == 0) {
+ break;
+ }
+ }
+ }
+
+ // if we have two successive rules that both have the winning base
+ // value, then the first one (the one we found above) is used if
+ // the numerator of the fraction is 1 and the second one is used if
+ // the numerator of the fraction is anything else (this lets us
+ // do things like "one third"/"two thirds" without having to define
+ // a whole bunch of extra rule sets)
+ if ((unsigned)(winner + 1) < rules.size() &&
+ rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) {
+ double n = ((double)rules[winner]->getBaseValue()) * number;
+ if (n < 0.5 || n >= 2) {
+ ++winner;
+ }
+ }
+
+ // finally, return the winning rule
+ return rules[winner];
+}
+
+/**
+ * Parses a string. Matches the string to be parsed against each
+ * of its rules (with a base value less than upperBound) and returns
+ * the value produced by the rule that matched the most characters
+ * in the source string.
+ * @param text The string to parse
+ * @param parsePosition The initial position is ignored and assumed
+ * to be 0. On exit, this object has been updated to point to the
+ * first character position this rule set didn't consume.
+ * @param upperBound Limits the rules that can be allowed to match.
+ * Only rules whose base values are strictly less than upperBound
+ * are considered.
+ * @return The numerical result of parsing this string. This will
+ * be the matching rule's base value, composed appropriately with
+ * the results of matching any of its substitutions. The object
+ * will be an instance of Long if it's an integral value; otherwise,
+ * it will be an instance of Double. This function always returns
+ * a valid object: If nothing matched the input string at all,
+ * this function returns new Long(0), and the parse position is
+ * left unchanged.
+ */
+#ifdef RBNF_DEBUG
+#include <stdio.h>
+
+static void dumpUS(FILE* f, const UnicodeString& us) {
+ int len = us.length();
+ char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
+ if (buf != nullptr) {
+ us.extract(0, len, buf);
+ buf[len] = 0;
+ fprintf(f, "%s", buf);
+ uprv_free(buf); //delete[] buf;
+ }
+}
+#endif
+
+UBool
+NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, uint32_t nonNumericalExecutedRuleMask, Formattable& result) const
+{
+ // try matching each rule in the rule set against the text being
+ // parsed. Whichever one matches the most characters is the one
+ // that determines the value we return.
+
+ result.setLong(0);
+
+ // dump out if there's no text to parse
+ if (text.length() == 0) {
+ return 0;
+ }
+
+ ParsePosition highWaterMark;
+ ParsePosition workingPos = pos;
+
+#ifdef RBNF_DEBUG
+ fprintf(stderr, "<nfrs> %x '", this);
+ dumpUS(stderr, name);
+ fprintf(stderr, "' text '");
+ dumpUS(stderr, text);
+ fprintf(stderr, "'\n");
+ fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0);
+#endif
+ // Try each of the negative rules, fraction rules, infinity rules and NaN rules
+ for (int i = 0; i < NON_NUMERICAL_RULE_LENGTH; i++) {
+ if (nonNumericalRules[i] && ((nonNumericalExecutedRuleMask >> i) & 1) == 0) {
+ // Mark this rule as being executed so that we don't try to execute it again.
+ nonNumericalExecutedRuleMask |= 1 << i;
+
+ Formattable tempResult;
+ UBool success = nonNumericalRules[i]->doParse(text, workingPos, 0, upperBound, nonNumericalExecutedRuleMask, tempResult);
+ if (success && (workingPos.getIndex() > highWaterMark.getIndex())) {
+ result = tempResult;
+ highWaterMark = workingPos;
+ }
+ workingPos = pos;
+ }
+ }
+#ifdef RBNF_DEBUG
+ fprintf(stderr, "<nfrs> continue other with text '");
+ dumpUS(stderr, text);
+ fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex());
+#endif
+
+ // finally, go through the regular rules one at a time. We start
+ // at the end of the list because we want to try matching the most
+ // sigificant rule first (this helps ensure that we parse
+ // "five thousand three hundred six" as
+ // "(five thousand) (three hundred) (six)" rather than
+ // "((five thousand three) hundred) (six)"). Skip rules whose
+ // base values are higher than the upper bound (again, this helps
+ // limit ambiguity by making sure the rules that match a rule's
+ // are less significant than the rule containing the substitutions)/
+ {
+ int64_t ub = util64_fromDouble(upperBound);
+#ifdef RBNF_DEBUG
+ {
+ char ubstr[64];
+ util64_toa(ub, ubstr, 64);
+ char ubstrhex[64];
+ util64_toa(ub, ubstrhex, 64, 16);
+ fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex);
+ }
+#endif
+ for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) {
+ if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) {
+ continue;
+ }
+ Formattable tempResult;
+ UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, nonNumericalExecutedRuleMask, tempResult);
+ if (success && workingPos.getIndex() > highWaterMark.getIndex()) {
+ result = tempResult;
+ highWaterMark = workingPos;
+ }
+ workingPos = pos;
+ }
+ }
+#ifdef RBNF_DEBUG
+ fprintf(stderr, "<nfrs> exit\n");
+#endif
+ // finally, update the parse position we were passed to point to the
+ // first character we didn't use, and return the result that
+ // corresponds to that string of characters
+ pos = highWaterMark;
+
+ return 1;
+}
+
+void
+NFRuleSet::appendRules(UnicodeString& result) const
+{
+ uint32_t i;
+
+ // the rule set name goes first...
+ result.append(name);
+ result.append(gColon);
+ result.append(gLineFeed);
+
+ // followed by the regular rules...
+ for (i = 0; i < rules.size(); i++) {
+ rules[i]->_appendRuleText(result);
+ result.append(gLineFeed);
+ }
+
+ // followed by the special rules (if they exist)
+ for (i = 0; i < NON_NUMERICAL_RULE_LENGTH; ++i) {
+ NFRule *rule = nonNumericalRules[i];
+ if (nonNumericalRules[i]) {
+ if (rule->getBaseValue() == NFRule::kImproperFractionRule
+ || rule->getBaseValue() == NFRule::kProperFractionRule
+ || rule->getBaseValue() == NFRule::kDefaultRule)
+ {
+ for (uint32_t fIdx = 0; fIdx < fractionRules.size(); fIdx++) {
+ NFRule *fractionRule = fractionRules[fIdx];
+ if (fractionRule->getBaseValue() == rule->getBaseValue()) {
+ fractionRule->_appendRuleText(result);
+ result.append(gLineFeed);
+ }
+ }
+ }
+ else {
+ rule->_appendRuleText(result);
+ result.append(gLineFeed);
+ }
+ }
+ }
+}
+
+// utility functions
+
+int64_t util64_fromDouble(double d) {
+ int64_t result = 0;
+ if (!uprv_isNaN(d)) {
+ double mant = uprv_maxMantissa();
+ if (d < -mant) {
+ d = -mant;
+ } else if (d > mant) {
+ d = mant;
+ }
+ UBool neg = d < 0;
+ if (neg) {
+ d = -d;
+ }
+ result = (int64_t)uprv_floor(d);
+ if (neg) {
+ result = -result;
+ }
+ }
+ return result;
+}
+
+uint64_t util64_pow(uint32_t base, uint16_t exponent) {
+ if (base == 0) {
+ return 0;
+ }
+ uint64_t result = 1;
+ uint64_t pow = base;
+ while (true) {
+ if ((exponent & 1) == 1) {
+ result *= pow;
+ }
+ exponent >>= 1;
+ if (exponent == 0) {
+ break;
+ }
+ pow *= pow;
+ }
+ return result;
+}
+
+static const uint8_t asciiDigits[] = {
+ 0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u,
+ 0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u,
+ 0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu,
+ 0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u,
+ 0x77u, 0x78u, 0x79u, 0x7au,
+};
+
+static const char16_t kUMinus = (char16_t)0x002d;
+
+#ifdef RBNF_DEBUG
+static const char kMinus = '-';
+
+static const uint8_t digitInfo[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0,
+ 0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u,
+ 0x88u, 0x89u, 0, 0, 0, 0, 0, 0,
+ 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u,
+ 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u,
+ 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u,
+ 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0,
+ 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u,
+ 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u,
+ 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u,
+ 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0,
+};
+
+int64_t util64_atoi(const char* str, uint32_t radix)
+{
+ if (radix > 36) {
+ radix = 36;
+ } else if (radix < 2) {
+ radix = 2;
+ }
+ int64_t lradix = radix;
+
+ int neg = 0;
+ if (*str == kMinus) {
+ ++str;
+ neg = 1;
+ }
+ int64_t result = 0;
+ uint8_t b;
+ while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) {
+ result *= lradix;
+ result += (int32_t)b;
+ }
+ if (neg) {
+ result = -result;
+ }
+ return result;
+}
+
+int64_t util64_utoi(const char16_t* str, uint32_t radix)
+{
+ if (radix > 36) {
+ radix = 36;
+ } else if (radix < 2) {
+ radix = 2;
+ }
+ int64_t lradix = radix;
+
+ int neg = 0;
+ if (*str == kUMinus) {
+ ++str;
+ neg = 1;
+ }
+ int64_t result = 0;
+ char16_t c;
+ uint8_t b;
+ while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) {
+ result *= lradix;
+ result += (int32_t)b;
+ }
+ if (neg) {
+ result = -result;
+ }
+ return result;
+}
+
+uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw)
+{
+ if (radix > 36) {
+ radix = 36;
+ } else if (radix < 2) {
+ radix = 2;
+ }
+ int64_t base = radix;
+
+ char* p = buf;
+ if (len && (w < 0) && (radix == 10) && !raw) {
+ w = -w;
+ *p++ = kMinus;
+ --len;
+ } else if (len && (w == 0)) {
+ *p++ = (char)raw ? 0 : asciiDigits[0];
+ --len;
+ }
+
+ while (len && w != 0) {
+ int64_t n = w / base;
+ int64_t m = n * base;
+ int32_t d = (int32_t)(w-m);
+ *p++ = raw ? (char)d : asciiDigits[d];
+ w = n;
+ --len;
+ }
+ if (len) {
+ *p = 0; // null terminate if room for caller convenience
+ }
+
+ len = p - buf;
+ if (*buf == kMinus) {
+ ++buf;
+ }
+ while (--p > buf) {
+ char c = *p;
+ *p = *buf;
+ *buf = c;
+ ++buf;
+ }
+
+ return len;
+}
+#endif
+
+uint32_t util64_tou(int64_t w, char16_t* buf, uint32_t len, uint32_t radix, UBool raw)
+{
+ if (radix > 36) {
+ radix = 36;
+ } else if (radix < 2) {
+ radix = 2;
+ }
+ int64_t base = radix;
+
+ char16_t* p = buf;
+ if (len && (w < 0) && (radix == 10) && !raw) {
+ w = -w;
+ *p++ = kUMinus;
+ --len;
+ } else if (len && (w == 0)) {
+ *p++ = (char16_t)raw ? 0 : asciiDigits[0];
+ --len;
+ }
+
+ while (len && (w != 0)) {
+ int64_t n = w / base;
+ int64_t m = n * base;
+ int32_t d = (int32_t)(w-m);
+ *p++ = (char16_t)(raw ? d : asciiDigits[d]);
+ w = n;
+ --len;
+ }
+ if (len) {
+ *p = 0; // null terminate if room for caller convenience
+ }
+
+ len = (uint32_t)(p - buf);
+ if (*buf == kUMinus) {
+ ++buf;
+ }
+ while (--p > buf) {
+ char16_t c = *p;
+ *p = *buf;
+ *buf = c;
+ ++buf;
+ }
+
+ return len;
+}
+
+
+U_NAMESPACE_END
+
+/* U_HAVE_RBNF */
+#endif