summaryrefslogtreecommitdiffstats
path: root/security/nss/lib/freebl/mpi/doc
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 01:47:29 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-19 01:47:29 +0000
commit0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d (patch)
treea31f07c9bcca9d56ce61e9a1ffd30ef350d513aa /security/nss/lib/freebl/mpi/doc
parentInitial commit. (diff)
downloadfirefox-esr-0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d.tar.xz
firefox-esr-0ebf5bdf043a27fd3dfb7f92e0cb63d88954c44d.zip
Adding upstream version 115.8.0esr.upstream/115.8.0esr
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'security/nss/lib/freebl/mpi/doc')
-rw-r--r--security/nss/lib/freebl/mpi/doc/LICENSE11
-rw-r--r--security/nss/lib/freebl/mpi/doc/LICENSE-MPL3
-rw-r--r--security/nss/lib/freebl/mpi/doc/basecvt.pod65
-rwxr-xr-xsecurity/nss/lib/freebl/mpi/doc/build30
-rw-r--r--security/nss/lib/freebl/mpi/doc/div.txt64
-rw-r--r--security/nss/lib/freebl/mpi/doc/expt.txt94
-rw-r--r--security/nss/lib/freebl/mpi/doc/gcd.pod28
-rw-r--r--security/nss/lib/freebl/mpi/doc/invmod.pod34
-rw-r--r--security/nss/lib/freebl/mpi/doc/isprime.pod63
-rw-r--r--security/nss/lib/freebl/mpi/doc/lap.pod36
-rw-r--r--security/nss/lib/freebl/mpi/doc/mpi-test.pod51
-rw-r--r--security/nss/lib/freebl/mpi/doc/mul.txt77
-rw-r--r--security/nss/lib/freebl/mpi/doc/pi.txt53
-rw-r--r--security/nss/lib/freebl/mpi/doc/prime.txt6542
-rw-r--r--security/nss/lib/freebl/mpi/doc/prng.pod38
-rw-r--r--security/nss/lib/freebl/mpi/doc/redux.txt86
-rw-r--r--security/nss/lib/freebl/mpi/doc/sqrt.txt50
-rw-r--r--security/nss/lib/freebl/mpi/doc/square.txt72
-rw-r--r--security/nss/lib/freebl/mpi/doc/timing.txt213
19 files changed, 7610 insertions, 0 deletions
diff --git a/security/nss/lib/freebl/mpi/doc/LICENSE b/security/nss/lib/freebl/mpi/doc/LICENSE
new file mode 100644
index 0000000000..35cca68ce9
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/LICENSE
@@ -0,0 +1,11 @@
+Within this directory, each of the file listed below is licensed under
+the terms given in the file LICENSE-MPL, also in this directory.
+
+basecvt.pod
+gcd.pod
+invmod.pod
+isprime.pod
+lap.pod
+mpi-test.pod
+prime.txt
+prng.pod
diff --git a/security/nss/lib/freebl/mpi/doc/LICENSE-MPL b/security/nss/lib/freebl/mpi/doc/LICENSE-MPL
new file mode 100644
index 0000000000..41dc2327f1
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/LICENSE-MPL
@@ -0,0 +1,3 @@
+This Source Code Form is subject to the terms of the Mozilla Public
+License, v. 2.0. If a copy of the MPL was not distributed with this
+file, You can obtain one at http://mozilla.org/MPL/2.0/.
diff --git a/security/nss/lib/freebl/mpi/doc/basecvt.pod b/security/nss/lib/freebl/mpi/doc/basecvt.pod
new file mode 100644
index 0000000000..c3d87fbc7e
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/basecvt.pod
@@ -0,0 +1,65 @@
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+=head1 NAME
+
+ basecvt - radix conversion for arbitrary precision integers
+
+=head1 SYNOPSIS
+
+ basecvt <ibase> <obase> [values]
+
+=head1 DESCRIPTION
+
+The B<basecvt> program is a command-line tool for converting integers
+of arbitrary precision from one radix to another. The current version
+supports radix values from 2 (binary) to 64, inclusive. The first two
+command line arguments specify the input and output radix, in base 10.
+Any further arguments are taken to be integers notated in the input
+radix, and these are converted to the output radix. The output is
+written, one integer per line, to standard output.
+
+When reading integers, only digits considered "valid" for the input
+radix are considered. Processing of an integer terminates when an
+invalid input digit is encountered. So, for example, if you set the
+input radix to 10 and enter '10ACF', B<basecvt> would assume that you
+had entered '10' and ignore the rest of the string.
+
+If no values are provided, no output is written, but the program
+simply terminates with a zero exit status. Error diagnostics are
+written to standard error in the event of out-of-range radix
+specifications. Regardless of the actual values of the input and
+output radix, the radix arguments are taken to be in base 10 (decimal)
+notation.
+
+=head1 DIGITS
+
+For radices from 2-10, standard ASCII decimal digits 0-9 are used for
+both input and output. For radices from 11-36, the ASCII letters A-Z
+are also included, following the convention used in hexadecimal. In
+this range, input is accepted in either upper or lower case, although
+on output only lower-case letters are used.
+
+For radices from 37-62, the output includes both upper- and lower-case
+ASCII letters, and case matters. In this range, case is distinguished
+both for input and for output values.
+
+For radices 63 and 64, the characters '+' (plus) and '/' (forward
+solidus) are also used. These are derived from the MIME base64
+encoding scheme. The overall encoding is not the same as base64,
+because the ASCII digits are used for the bottom of the range, and the
+letters are shifted upward; however, the output will consist of the
+same character set.
+
+This input and output behaviour is inherited from the MPI library used
+by B<basecvt>, and so is not configurable at runtime.
+
+=head1 SEE ALSO
+
+ dec2hex(1), hex2dec(1)
+
+=head1 AUTHOR
+
+ Michael J. Fromberger <sting@linguist.dartmouth.edu>
+ Thayer School of Engineering, Hanover, New Hampshire, USA
diff --git a/security/nss/lib/freebl/mpi/doc/build b/security/nss/lib/freebl/mpi/doc/build
new file mode 100755
index 0000000000..4d75b1e5a2
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/build
@@ -0,0 +1,30 @@
+#!/bin/sh
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+VERS="1.7p6"
+SECT="1"
+NAME="MPI Tools"
+
+echo "Building manual pages ..."
+case $# in
+ 0)
+ files=`ls *.pod`
+ ;;
+ *)
+ files=$*
+ ;;
+esac
+
+for name in $files
+do
+ echo -n "$name ... "
+# sname=`noext $name`
+ sname=`basename $name .pod`
+ pod2man --section="$SECT" --center="$NAME" --release="$VERS" $name > $sname.$SECT
+ echo "(done)"
+done
+
+echo "Finished building."
+
diff --git a/security/nss/lib/freebl/mpi/doc/div.txt b/security/nss/lib/freebl/mpi/doc/div.txt
new file mode 100644
index 0000000000..c13fb6ef18
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/div.txt
@@ -0,0 +1,64 @@
+Division
+
+This describes the division algorithm used by the MPI library.
+
+Input: a, b; a > b
+Compute: Q, R; a = Qb + R
+
+The input numbers are normalized so that the high-order digit of b is
+at least half the radix. This guarantees that we have a reasonable
+way to guess at the digits of the quotient (this method was taken from
+Knuth, vol. 2, with adaptations).
+
+To normalize, test the high-order digit of b. If it is less than half
+the radix, multiply both a and b by d, where:
+
+ radix - 1
+ d = -----------
+ bmax + 1
+
+...where bmax is the high-order digit of b. Otherwise, set d = 1.
+
+Given normalize values for a and b, let the notation a[n] denote the
+nth digit of a. Let #a be the number of significant figures of a (not
+including any leading zeroes).
+
+ Let R = 0
+ Let p = #a - 1
+
+ while(p >= 0)
+ do
+ R = (R * radix) + a[p]
+ p = p - 1
+ while(R < b and p >= 0)
+
+ if(R < b)
+ break
+
+ q = (R[#R - 1] * radix) + R[#R - 2]
+ q = q / b[#b - 1]
+
+ T = b * q
+
+ while(T > L)
+ q = q - 1
+ T = T - b
+ endwhile
+
+ L = L - T
+
+ Q = (Q * radix) + q
+
+ endwhile
+
+At this point, Q is the quotient, and R is the normalized remainder.
+To denormalize R, compute:
+
+ R = (R / d)
+
+At this point, you are finished.
+
+------------------------------------------------------------------
+ This Source Code Form is subject to the terms of the Mozilla Public
+ # License, v. 2.0. If a copy of the MPL was not distributed with this
+ # file, You can obtain one at http://mozilla.org/MPL/2.0/.
diff --git a/security/nss/lib/freebl/mpi/doc/expt.txt b/security/nss/lib/freebl/mpi/doc/expt.txt
new file mode 100644
index 0000000000..bd9d6f1960
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/expt.txt
@@ -0,0 +1,94 @@
+Exponentiation
+
+For exponentiation, the MPI library uses a simple and fairly standard
+square-and-multiply method. The algorithm is this:
+
+Input: a, b
+Output: a ** b
+
+ s = 1
+
+ while(b != 0)
+ if(b is odd)
+ s = s * a
+ endif
+
+ b = b / 2
+
+ x = x * x
+ endwhile
+
+ return s
+
+The modular exponentiation is done the same way, except replacing:
+
+ s = s * a
+
+with
+ s = (s * a) mod m
+
+and replacing
+
+ x = x * x
+
+with
+
+ x = (x * x) mod m
+
+Here is a sample exponentiation using the MPI library, as compared to
+the same problem solved by the Unix 'bc' program on my system:
+
+Computation of 2,381,283 ** 235
+
+'bc' says:
+
+4385CA4A804D199FBEAD95FAD0796FAD0D0B51FC9C16743C45568C789666985DB719\
+4D90E393522F74C9601262C0514145A49F3B53D00983F95FDFCEA3D0043ECEF6227E\
+6FB59C924C3EE74447B359B5BF12A555D46CB819809EF423F004B55C587D6F0E8A55\
+4988036A42ACEF9F71459F97CEF6E574BD7373657111648626B1FF8EE15F663B2C0E\
+6BBE5082D4CDE8E14F263635AE8F35DB2C280819517BE388B5573B84C5A19C871685\
+FD408A6471F9D6AFAF5129A7548EAE926B40874B340285F44765BF5468CE20A13267\
+CD88CE6BC786ACED36EC7EA50F67FF27622575319068A332C3C0CB23E26FB55E26F4\
+5F732753A52B8E2FB4D4F42D894242613CA912A25486C3DEC9C66E5DB6182F6C1761\
+CF8CD0D255BE64B93836B27D452AE38F950EB98B517D4CF50D48F0165EF0CCCE1F5C\
+49BF18219FDBA0EEDD1A7E8B187B70C2BAED5EC5C6821EF27FAFB1CFF70111C52235\
+5E948B93A015AA1AE152B110BB5658CB14D3E45A48BFE7F082C1182672A455A695CD\
+A1855E8781E625F25B41B516E77F589FA420C3B058861EA138CF7A2C58DB3C7504FD\
+D29554D78237834CC5AE710D403CC4F6973D5012B7E117A8976B14A0B5AFA889BD47\
+92C461F0F96116F00A97AE9E83DC5203680CAF9A18A062566C145650AB86BE4F907F\
+A9F7AB4A700B29E1E5BACCD6DCBFA513E10832815F710807EED2E279081FEC61D619\
+AB270BEB3D3A1787B35A9DD41A8766CF21F3B5C693B3BAB1C2FA14A4ED202BC35743\
+E5CBE2391624D4F8C9BFBBC78D69764E7C6C5B11BF005677BFAD17D9278FFC1F158F\
+1B3683FF7960FA0608103792C4163DC0AF3E06287BB8624F8FE3A0FFBDF82ACECA2F\
+CFFF2E1AC93F3CA264A1B
+
+MPI says:
+
+4385CA4A804D199FBEAD95FAD0796FAD0D0B51FC9C16743C45568C789666985DB719\
+4D90E393522F74C9601262C0514145A49F3B53D00983F95FDFCEA3D0043ECEF6227E\
+6FB59C924C3EE74447B359B5BF12A555D46CB819809EF423F004B55C587D6F0E8A55\
+4988036A42ACEF9F71459F97CEF6E574BD7373657111648626B1FF8EE15F663B2C0E\
+6BBE5082D4CDE8E14F263635AE8F35DB2C280819517BE388B5573B84C5A19C871685\
+FD408A6471F9D6AFAF5129A7548EAE926B40874B340285F44765BF5468CE20A13267\
+CD88CE6BC786ACED36EC7EA50F67FF27622575319068A332C3C0CB23E26FB55E26F4\
+5F732753A52B8E2FB4D4F42D894242613CA912A25486C3DEC9C66E5DB6182F6C1761\
+CF8CD0D255BE64B93836B27D452AE38F950EB98B517D4CF50D48F0165EF0CCCE1F5C\
+49BF18219FDBA0EEDD1A7E8B187B70C2BAED5EC5C6821EF27FAFB1CFF70111C52235\
+5E948B93A015AA1AE152B110BB5658CB14D3E45A48BFE7F082C1182672A455A695CD\
+A1855E8781E625F25B41B516E77F589FA420C3B058861EA138CF7A2C58DB3C7504FD\
+D29554D78237834CC5AE710D403CC4F6973D5012B7E117A8976B14A0B5AFA889BD47\
+92C461F0F96116F00A97AE9E83DC5203680CAF9A18A062566C145650AB86BE4F907F\
+A9F7AB4A700B29E1E5BACCD6DCBFA513E10832815F710807EED2E279081FEC61D619\
+AB270BEB3D3A1787B35A9DD41A8766CF21F3B5C693B3BAB1C2FA14A4ED202BC35743\
+E5CBE2391624D4F8C9BFBBC78D69764E7C6C5B11BF005677BFAD17D9278FFC1F158F\
+1B3683FF7960FA0608103792C4163DC0AF3E06287BB8624F8FE3A0FFBDF82ACECA2F\
+CFFF2E1AC93F3CA264A1B
+
+Diff says:
+% diff bc.txt mp.txt
+%
+
+------------------------------------------------------------------
+ This Source Code Form is subject to the terms of the Mozilla Public
+ # License, v. 2.0. If a copy of the MPL was not distributed with this
+ # file, You can obtain one at http://mozilla.org/MPL/2.0/.
diff --git a/security/nss/lib/freebl/mpi/doc/gcd.pod b/security/nss/lib/freebl/mpi/doc/gcd.pod
new file mode 100644
index 0000000000..b5b8fa34fd
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/gcd.pod
@@ -0,0 +1,28 @@
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+=head1 NAME
+
+ gcd - compute greatest common divisor of two integers
+
+=head1 SYNOPSIS
+
+ gcd <a> <b>
+
+=head1 DESCRIPTION
+
+The B<gcd> program computes the greatest common divisor of two
+arbitrary-precision integers I<a> and I<b>. The result is written in
+standard decimal notation to the standard output.
+
+If I<b> is zero, B<gcd> will print an error message and exit.
+
+=head1 SEE ALSO
+
+invmod(1), isprime(1), lap(1)
+
+=head1 AUTHOR
+
+ Michael J. Fromberger <sting@linguist.dartmouth.edu>
+ Thayer School of Engineering, Hanover, New Hampshire, USA
diff --git a/security/nss/lib/freebl/mpi/doc/invmod.pod b/security/nss/lib/freebl/mpi/doc/invmod.pod
new file mode 100644
index 0000000000..0194f44884
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/invmod.pod
@@ -0,0 +1,34 @@
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+=head1 NAME
+
+ invmod - compute modular inverse of an integer
+
+=head1 SYNOPSIS
+
+ invmod <a> <m>
+
+=head1 DESCRIPTION
+
+The B<invmod> program computes the inverse of I<a>, modulo I<m>, if
+that inverse exists. Both I<a> and I<m> are arbitrary-precision
+integers in decimal notation. The result is written in standard
+decimal notation to the standard output.
+
+If there is no inverse, the message:
+
+ No inverse
+
+...will be printed to the standard output (an inverse exists if and
+only if the greatest common divisor of I<a> and I<m> is 1).
+
+=head1 SEE ALSO
+
+gcd(1), isprime(1), lap(1)
+
+=head1 AUTHOR
+
+ Michael J. Fromberger <sting@linguist.dartmouth.edu>
+ Thayer School of Engineering, Hanover, New Hampshire, USA
diff --git a/security/nss/lib/freebl/mpi/doc/isprime.pod b/security/nss/lib/freebl/mpi/doc/isprime.pod
new file mode 100644
index 0000000000..a8ec1f7ee3
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/isprime.pod
@@ -0,0 +1,63 @@
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+=head1 NAME
+
+ isprime - probabilistic primality testing
+
+=head1 SYNOPSIS
+
+ isprime <a>
+
+=head1 DESCRIPTION
+
+The B<isprime> program attempts to determine whether the arbitrary
+precision integer I<a> is prime. It first tests I<a> for divisibility
+by the first 170 or so small primes, and assuming I<a> is not
+divisible by any of these, applies 15 iterations of the Rabin-Miller
+probabilistic primality test.
+
+If the program discovers that the number is composite, it will print:
+
+ Not prime (reason)
+
+Where I<reason> is either:
+
+ divisible by small prime x
+
+Or:
+
+ failed nth pseudoprime test
+
+In the first case, I<x> indicates the first small prime factor that
+was found. In the second case, I<n> indicates which of the
+pseudoprime tests failed (numbered from 1)
+
+If this happens, the number is definitely not prime. However, if the
+number succeeds, this message results:
+
+ Probably prime, 1 in 4^15 chance of false positive
+
+If this happens, the number is prime with very high probability, but
+its primality has not been absolutely proven, only demonstrated to a
+very convincing degree.
+
+The value I<a> can be input in standard decimal notation, or, if it is
+prefixed with I<Ox>, it will be read as hexadecimal.
+
+=head1 ENVIRONMENT
+
+You can control how many iterations of Rabin-Miller are performed on
+the candidate number by setting the I<RM_TESTS> environment variable
+to an integer value before starting up B<isprime>. This will change
+the output slightly if the number passes all the tests.
+
+=head1 SEE ALSO
+
+gcd(1), invmod(1), lap(1)
+
+=head1 AUTHOR
+
+ Michael J. Fromberger <sting@linguist.dartmouth.edu>
+ Thayer School of Engineering, Hanover, New Hampshire, USA
diff --git a/security/nss/lib/freebl/mpi/doc/lap.pod b/security/nss/lib/freebl/mpi/doc/lap.pod
new file mode 100644
index 0000000000..47539fbbf9
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/lap.pod
@@ -0,0 +1,36 @@
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+=head1 NAME
+
+ lap - compute least annihilating power of a number
+
+=head1 SYNOPSIS
+
+ lap <a> <m>
+
+=head1 DESCRIPTION
+
+The B<lap> program computes the order of I<a> modulo I<m>, for
+arbitrary precision integers I<a> and I<m>. The B<order> of I<a>
+modulo I<m> is defined as the smallest positive value I<n> for which
+I<a> raised to the I<n>th power, modulo I<m>, is equal to 1. The
+order may not exist, if I<m> is composite.
+
+=head1 RESTRICTIONS
+
+This program is very slow, especially for large moduli. It is
+intended as a way to help find primitive elements in a modular field,
+but it does not do so in a particularly inefficient manner. It was
+written simply to help verify that a particular candidate does not
+have an obviously short cycle mod I<m>.
+
+=head1 SEE ALSO
+
+gcd(1), invmod(1), isprime(1)
+
+=head1 AUTHOR
+
+ Michael J. Fromberger <sting@linguist.dartmouth.edu>
+ Thayer School of Engineering, Hanover, New Hampshire, USA
diff --git a/security/nss/lib/freebl/mpi/doc/mpi-test.pod b/security/nss/lib/freebl/mpi/doc/mpi-test.pod
new file mode 100644
index 0000000000..b05f866e5e
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/mpi-test.pod
@@ -0,0 +1,51 @@
+# This Source Code Form is subject to the terms of the Mozilla Public
+# License, v. 2.0. If a copy of the MPL was not distributed with this
+# file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+=head1 NAME
+
+ mpi-test - automated test program for MPI library
+
+=head1 SYNOPSIS
+
+ mpi-test <suite-name> [quiet]
+ mpi-test list
+ mpi-test help
+
+=head1 DESCRIPTION
+
+The B<mpi-test> program is a general unit test driver for the MPI
+library. It is used to verify that the library works as it is
+supposed to on your architecture. As with most such things, passing
+all the tests in B<mpi-test> does not guarantee the code is correct,
+but if any of them fail, there are certainly problems.
+
+Each major function of the library can be tested individually. For a
+list of the test suites understood by B<mpi-test>, run it with the
+I<list> command line option:
+
+ mpi-test list
+
+This will display a list of the available test suites and a brief
+synopsis of what each one does. For a brief overview of this
+document, run B<mpi-test> I<help>.
+
+B<mpi-test> exits with a zero status if the selected test succeeds, or
+a nonzero status if it fails. If a I<suite-name> which is not
+understood by B<mpi-test> is given, a diagnostic is printed to the
+standard error, and the program exits with a result code of 2. If a
+test fails, the result code will be 1, and a diagnostic is ordinarily
+printed to the standard error. However, if the I<quiet> option is
+provided, these diagnostics will be suppressed.
+
+=head1 RESTRICTIONS
+
+Only a few canned test cases are provided. The solutions have been
+verified using the GNU bc(1) program, so bugs there may cause problems
+here; however, this is very unlikely, so if a test fails, it is almost
+certainly my fault, not bc(1)'s.
+
+=head1 AUTHOR
+
+ Michael J. Fromberger <sting@linguist.dartmouth.edu>
+ Thayer School of Engineering, Hanover, New Hampshire, USA
diff --git a/security/nss/lib/freebl/mpi/doc/mul.txt b/security/nss/lib/freebl/mpi/doc/mul.txt
new file mode 100644
index 0000000000..975f56ddbe
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/mul.txt
@@ -0,0 +1,77 @@
+Multiplication
+
+This describes the multiplication algorithm used by the MPI library.
+
+This is basically a standard "schoolbook" algorithm. It is slow --
+O(mn) for m = #a, n = #b -- but easy to implement and verify.
+Basically, we run two nested loops, as illustrated here (R is the
+radix):
+
+k = 0
+for j <- 0 to (#b - 1)
+ for i <- 0 to (#a - 1)
+ w = (a[j] * b[i]) + k + c[i+j]
+ c[i+j] = w mod R
+ k = w div R
+ endfor
+ c[i+j] = k;
+ k = 0;
+endfor
+
+It is necessary that 'w' have room for at least two radix R digits.
+The product of any two digits in radix R is at most:
+
+ (R - 1)(R - 1) = R^2 - 2R + 1
+
+Since a two-digit radix-R number can hold R^2 - 1 distinct values,
+this insures that the product will fit into the two-digit register.
+
+To insure that two digits is enough for w, we must also show that
+there is room for the carry-in from the previous multiplication, and
+the current value of the product digit that is being recomputed.
+Assuming each of these may be as big as R - 1 (and no larger,
+certainly), two digits will be enough if and only if:
+
+ (R^2 - 2R + 1) + 2(R - 1) <= R^2 - 1
+
+Solving this equation shows that, indeed, this is the case:
+
+ R^2 - 2R + 1 + 2R - 2 <= R^2 - 1
+
+ R^2 - 1 <= R^2 - 1
+
+This suggests that a good radix would be one more than the largest
+value that can be held in half a machine word -- so, for example, as
+in this implementation, where we used a radix of 65536 on a machine
+with 4-byte words. Another advantage of a radix of this sort is that
+binary-level operations are easy on numbers in this representation.
+
+Here's an example multiplication worked out longhand in radix-10,
+using the above algorithm:
+
+ a = 999
+ b = x 999
+ -------------
+ p = 98001
+
+w = (a[jx] * b[ix]) + kin + c[ix + jx]
+c[ix+jx] = w % RADIX
+k = w / RADIX
+ product
+ix jx a[jx] b[ix] kin w c[i+j] kout 000000
+0 0 9 9 0 81+0+0 1 8 000001
+0 1 9 9 8 81+8+0 9 8 000091
+0 2 9 9 8 81+8+0 9 8 000991
+ 8 0 008991
+1 0 9 9 0 81+0+9 0 9 008901
+1 1 9 9 9 81+9+9 9 9 008901
+1 2 9 9 9 81+9+8 8 9 008901
+ 9 0 098901
+2 0 9 9 0 81+0+9 0 9 098001
+2 1 9 9 9 81+9+8 8 9 098001
+2 2 9 9 9 81+9+9 9 9 098001
+
+------------------------------------------------------------------
+ This Source Code Form is subject to the terms of the Mozilla Public
+ # License, v. 2.0. If a copy of the MPL was not distributed with this
+ # file, You can obtain one at http://mozilla.org/MPL/2.0/.
diff --git a/security/nss/lib/freebl/mpi/doc/pi.txt b/security/nss/lib/freebl/mpi/doc/pi.txt
new file mode 100644
index 0000000000..a6ef91137f
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/pi.txt
@@ -0,0 +1,53 @@
+This file describes how pi is computed by the program in 'pi.c' (see
+the utils subdirectory).
+
+Basically, we use Machin's formula, which is what everyone in the
+world uses as a simple method for computing approximations to pi.
+This works for up to a few thousand digits without too much effort.
+Beyond that, though, it gets too slow.
+
+Machin's formula states:
+
+ pi := 16 * arctan(1/5) - 4 * arctan(1/239)
+
+We compute this in integer arithmetic by first multiplying everything
+through by 10^d, where 'd' is the number of digits of pi we wanted to
+compute. It turns out, the last few digits will be wrong, but the
+number that are wrong is usually very small (ordinarly only 2-3).
+Having done this, we compute the arctan() function using the formula:
+
+ 1 1 1 1 1
+ arctan(1/x) := --- - ----- + ----- - ----- + ----- - ...
+ x 3 x^3 5 x^5 7 x^7 9 x^9
+
+This is done iteratively by computing the first term manually, and
+then iteratively dividing x^2 and k, where k = 3, 5, 7, ... out of the
+current figure. This is then added to (or subtracted from) a running
+sum, as appropriate. The iteration continues until we overflow our
+available precision and the current figure goes to zero under integer
+division. At that point, we're finished.
+
+Actually, we get a couple extra bits of precision out of the fact that
+we know we're computing y * arctan(1/x), by setting up the multiplier
+as:
+
+ y * 10^d
+
+... instead of just 10^d. There is also a bit of cleverness in how
+the loop is constructed, to avoid special-casing the first term.
+Check out the code for arctan() in 'pi.c', if you are interested in
+seeing how it is set up.
+
+Thanks to Jason P. for this algorithm, which I assembled from notes
+and programs found on his cool "Pile of Pi Programs" page, at:
+
+ http://www.isr.umd.edu/~jasonp/pipage.html
+
+Thanks also to Henrik Johansson <Henrik.Johansson@Nexus.Comm.SE>, from
+whose pi program I borrowed the clever idea of pre-multiplying by x in
+order to avoid a special case on the loop iteration.
+
+------------------------------------------------------------------
+ This Source Code Form is subject to the terms of the Mozilla Public
+ # License, v. 2.0. If a copy of the MPL was not distributed with this
+ # file, You can obtain one at http://mozilla.org/MPL/2.0/.
diff --git a/security/nss/lib/freebl/mpi/doc/prime.txt b/security/nss/lib/freebl/mpi/doc/prime.txt
new file mode 100644
index 0000000000..694797d5f3
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/prime.txt
@@ -0,0 +1,6542 @@
+2
+3
+5
+7
+11
+13
+17
+19
+23
+29
+31
+37
+41
+43
+47
+53
+59
+61
+67
+71
+73
+79
+83
+89
+97
+101
+103
+107
+109
+113
+127
+131
+137
+139
+149
+151
+157
+163
+167
+173
+179
+181
+191
+193
+197
+199
+211
+223
+227
+229
+233
+239
+241
+251
+257
+263
+269
+271
+277
+281
+283
+293
+307
+311
+313
+317
+331
+337
+347
+349
+353
+359
+367
+373
+379
+383
+389
+397
+401
+409
+419
+421
+431
+433
+439
+443
+449
+457
+461
+463
+467
+479
+487
+491
+499
+503
+509
+521
+523
+541
+547
+557
+563
+569
+571
+577
+587
+593
+599
+601
+607
+613
+617
+619
+631
+641
+643
+647
+653
+659
+661
+673
+677
+683
+691
+701
+709
+719
+727
+733
+739
+743
+751
+757
+761
+769
+773
+787
+797
+809
+811
+821
+823
+827
+829
+839
+853
+857
+859
+863
+877
+881
+883
+887
+907
+911
+919
+929
+937
+941
+947
+953
+967
+971
+977
+983
+991
+997
+1009
+1013
+1019
+1021
+1031
+1033
+1039
+1049
+1051
+1061
+1063
+1069
+1087
+1091
+1093
+1097
+1103
+1109
+1117
+1123
+1129
+1151
+1153
+1163
+1171
+1181
+1187
+1193
+1201
+1213
+1217
+1223
+1229
+1231
+1237
+1249
+1259
+1277
+1279
+1283
+1289
+1291
+1297
+1301
+1303
+1307
+1319
+1321
+1327
+1361
+1367
+1373
+1381
+1399
+1409
+1423
+1427
+1429
+1433
+1439
+1447
+1451
+1453
+1459
+1471
+1481
+1483
+1487
+1489
+1493
+1499
+1511
+1523
+1531
+1543
+1549
+1553
+1559
+1567
+1571
+1579
+1583
+1597
+1601
+1607
+1609
+1613
+1619
+1621
+1627
+1637
+1657
+1663
+1667
+1669
+1693
+1697
+1699
+1709
+1721
+1723
+1733
+1741
+1747
+1753
+1759
+1777
+1783
+1787
+1789
+1801
+1811
+1823
+1831
+1847
+1861
+1867
+1871
+1873
+1877
+1879
+1889
+1901
+1907
+1913
+1931
+1933
+1949
+1951
+1973
+1979
+1987
+1993
+1997
+1999
+2003
+2011
+2017
+2027
+2029
+2039
+2053
+2063
+2069
+2081
+2083
+2087
+2089
+2099
+2111
+2113
+2129
+2131
+2137
+2141
+2143
+2153
+2161
+2179
+2203
+2207
+2213
+2221
+2237
+2239
+2243
+2251
+2267
+2269
+2273
+2281
+2287
+2293
+2297
+2309
+2311
+2333
+2339
+2341
+2347
+2351
+2357
+2371
+2377
+2381
+2383
+2389
+2393
+2399
+2411
+2417
+2423
+2437
+2441
+2447
+2459
+2467
+2473
+2477
+2503
+2521
+2531
+2539
+2543
+2549
+2551
+2557
+2579
+2591
+2593
+2609
+2617
+2621
+2633
+2647
+2657
+2659
+2663
+2671
+2677
+2683
+2687
+2689
+2693
+2699
+2707
+2711
+2713
+2719
+2729
+2731
+2741
+2749
+2753
+2767
+2777
+2789
+2791
+2797
+2801
+2803
+2819
+2833
+2837
+2843
+2851
+2857
+2861
+2879
+2887
+2897
+2903
+2909
+2917
+2927
+2939
+2953
+2957
+2963
+2969
+2971
+2999
+3001
+3011
+3019
+3023
+3037
+3041
+3049
+3061
+3067
+3079
+3083
+3089
+3109
+3119
+3121
+3137
+3163
+3167
+3169
+3181
+3187
+3191
+3203
+3209
+3217
+3221
+3229
+3251
+3253
+3257
+3259
+3271
+3299
+3301
+3307
+3313
+3319
+3323
+3329
+3331
+3343
+3347
+3359
+3361
+3371
+3373
+3389
+3391
+3407
+3413
+3433
+3449
+3457
+3461
+3463
+3467
+3469
+3491
+3499
+3511
+3517
+3527
+3529
+3533
+3539
+3541
+3547
+3557
+3559
+3571
+3581
+3583
+3593
+3607
+3613
+3617
+3623
+3631
+3637
+3643
+3659
+3671
+3673
+3677
+3691
+3697
+3701
+3709
+3719
+3727
+3733
+3739
+3761
+3767
+3769
+3779
+3793
+3797
+3803
+3821
+3823
+3833
+3847
+3851
+3853
+3863
+3877
+3881
+3889
+3907
+3911
+3917
+3919
+3923
+3929
+3931
+3943
+3947
+3967
+3989
+4001
+4003
+4007
+4013
+4019
+4021
+4027
+4049
+4051
+4057
+4073
+4079
+4091
+4093
+4099
+4111
+4127
+4129
+4133
+4139
+4153
+4157
+4159
+4177
+4201
+4211
+4217
+4219
+4229
+4231
+4241
+4243
+4253
+4259
+4261
+4271
+4273
+4283
+4289
+4297
+4327
+4337
+4339
+4349
+4357
+4363
+4373
+4391
+4397
+4409
+4421
+4423
+4441
+4447
+4451
+4457
+4463
+4481
+4483
+4493
+4507
+4513
+4517
+4519
+4523
+4547
+4549
+4561
+4567
+4583
+4591
+4597
+4603
+4621
+4637
+4639
+4643
+4649
+4651
+4657
+4663
+4673
+4679
+4691
+4703
+4721
+4723
+4729
+4733
+4751
+4759
+4783
+4787
+4789
+4793
+4799
+4801
+4813
+4817
+4831
+4861
+4871
+4877
+4889
+4903
+4909
+4919
+4931
+4933
+4937
+4943
+4951
+4957
+4967
+4969
+4973
+4987
+4993
+4999
+5003
+5009
+5011
+5021
+5023
+5039
+5051
+5059
+5077
+5081
+5087
+5099
+5101
+5107
+5113
+5119
+5147
+5153
+5167
+5171
+5179
+5189
+5197
+5209
+5227
+5231
+5233
+5237
+5261
+5273
+5279
+5281
+5297
+5303
+5309
+5323
+5333
+5347
+5351
+5381
+5387
+5393
+5399
+5407
+5413
+5417
+5419
+5431
+5437
+5441
+5443
+5449
+5471
+5477
+5479
+5483
+5501
+5503
+5507
+5519
+5521
+5527
+5531
+5557
+5563
+5569
+5573
+5581
+5591
+5623
+5639
+5641
+5647
+5651
+5653
+5657
+5659
+5669
+5683
+5689
+5693
+5701
+5711
+5717
+5737
+5741
+5743
+5749
+5779
+5783
+5791
+5801
+5807
+5813
+5821
+5827
+5839
+5843
+5849
+5851
+5857
+5861
+5867
+5869
+5879
+5881
+5897
+5903
+5923
+5927
+5939
+5953
+5981
+5987
+6007
+6011
+6029
+6037
+6043
+6047
+6053
+6067
+6073
+6079
+6089
+6091
+6101
+6113
+6121
+6131
+6133
+6143
+6151
+6163
+6173
+6197
+6199
+6203
+6211
+6217
+6221
+6229
+6247
+6257
+6263
+6269
+6271
+6277
+6287
+6299
+6301
+6311
+6317
+6323
+6329
+6337
+6343
+6353
+6359
+6361
+6367
+6373
+6379
+6389
+6397
+6421
+6427
+6449
+6451
+6469
+6473
+6481
+6491
+6521
+6529
+6547
+6551
+6553
+6563
+6569
+6571
+6577
+6581
+6599
+6607
+6619
+6637
+6653
+6659
+6661
+6673
+6679
+6689
+6691
+6701
+6703
+6709
+6719
+6733
+6737
+6761
+6763
+6779
+6781
+6791
+6793
+6803
+6823
+6827
+6829
+6833
+6841
+6857
+6863
+6869
+6871
+6883
+6899
+6907
+6911
+6917
+6947
+6949
+6959
+6961
+6967
+6971
+6977
+6983
+6991
+6997
+7001
+7013
+7019
+7027
+7039
+7043
+7057
+7069
+7079
+7103
+7109
+7121
+7127
+7129
+7151
+7159
+7177
+7187
+7193
+7207
+7211
+7213
+7219
+7229
+7237
+7243
+7247
+7253
+7283
+7297
+7307
+7309
+7321
+7331
+7333
+7349
+7351
+7369
+7393
+7411
+7417
+7433
+7451
+7457
+7459
+7477
+7481
+7487
+7489
+7499
+7507
+7517
+7523
+7529
+7537
+7541
+7547
+7549
+7559
+7561
+7573
+7577
+7583
+7589
+7591
+7603
+7607
+7621
+7639
+7643
+7649
+7669
+7673
+7681
+7687
+7691
+7699
+7703
+7717
+7723
+7727
+7741
+7753
+7757
+7759
+7789
+7793
+7817
+7823
+7829
+7841
+7853
+7867
+7873
+7877
+7879
+7883
+7901
+7907
+7919
+7927
+7933
+7937
+7949
+7951
+7963
+7993
+8009
+8011
+8017
+8039
+8053
+8059
+8069
+8081
+8087
+8089
+8093
+8101
+8111
+8117
+8123
+8147
+8161
+8167
+8171
+8179
+8191
+8209
+8219
+8221
+8231
+8233
+8237
+8243
+8263
+8269
+8273
+8287
+8291
+8293
+8297
+8311
+8317
+8329
+8353
+8363
+8369
+8377
+8387
+8389
+8419
+8423
+8429
+8431
+8443
+8447
+8461
+8467
+8501
+8513
+8521
+8527
+8537
+8539
+8543
+8563
+8573
+8581
+8597
+8599
+8609
+8623
+8627
+8629
+8641
+8647
+8663
+8669
+8677
+8681
+8689
+8693
+8699
+8707
+8713
+8719
+8731
+8737
+8741
+8747
+8753
+8761
+8779
+8783
+8803
+8807
+8819
+8821
+8831
+8837
+8839
+8849
+8861
+8863
+8867
+8887
+8893
+8923
+8929
+8933
+8941
+8951
+8963
+8969
+8971
+8999
+9001
+9007
+9011
+9013
+9029
+9041
+9043
+9049
+9059
+9067
+9091
+9103
+9109
+9127
+9133
+9137
+9151
+9157
+9161
+9173
+9181
+9187
+9199
+9203
+9209
+9221
+9227
+9239
+9241
+9257
+9277
+9281
+9283
+9293
+9311
+9319
+9323
+9337
+9341
+9343
+9349
+9371
+9377
+9391
+9397
+9403
+9413
+9419
+9421
+9431
+9433
+9437
+9439
+9461
+9463
+9467
+9473
+9479
+9491
+9497
+9511
+9521
+9533
+9539
+9547
+9551
+9587
+9601
+9613
+9619
+9623
+9629
+9631
+9643
+9649
+9661
+9677
+9679
+9689
+9697
+9719
+9721
+9733
+9739
+9743
+9749
+9767
+9769
+9781
+9787
+9791
+9803
+9811
+9817
+9829
+9833
+9839
+9851
+9857
+9859
+9871
+9883
+9887
+9901
+9907
+9923
+9929
+9931
+9941
+9949
+9967
+9973
+10007
+10009
+10037
+10039
+10061
+10067
+10069
+10079
+10091
+10093
+10099
+10103
+10111
+10133
+10139
+10141
+10151
+10159
+10163
+10169
+10177
+10181
+10193
+10211
+10223
+10243
+10247
+10253
+10259
+10267
+10271
+10273
+10289
+10301
+10303
+10313
+10321
+10331
+10333
+10337
+10343
+10357
+10369
+10391
+10399
+10427
+10429
+10433
+10453
+10457
+10459
+10463
+10477
+10487
+10499
+10501
+10513
+10529
+10531
+10559
+10567
+10589
+10597
+10601
+10607
+10613
+10627
+10631
+10639
+10651
+10657
+10663
+10667
+10687
+10691
+10709
+10711
+10723
+10729
+10733
+10739
+10753
+10771
+10781
+10789
+10799
+10831
+10837
+10847
+10853
+10859
+10861
+10867
+10883
+10889
+10891
+10903
+10909
+10937
+10939
+10949
+10957
+10973
+10979
+10987
+10993
+11003
+11027
+11047
+11057
+11059
+11069
+11071
+11083
+11087
+11093
+11113
+11117
+11119
+11131
+11149
+11159
+11161
+11171
+11173
+11177
+11197
+11213
+11239
+11243
+11251
+11257
+11261
+11273
+11279
+11287
+11299
+11311
+11317
+11321
+11329
+11351
+11353
+11369
+11383
+11393
+11399
+11411
+11423
+11437
+11443
+11447
+11467
+11471
+11483
+11489
+11491
+11497
+11503
+11519
+11527
+11549
+11551
+11579
+11587
+11593
+11597
+11617
+11621
+11633
+11657
+11677
+11681
+11689
+11699
+11701
+11717
+11719
+11731
+11743
+11777
+11779
+11783
+11789
+11801
+11807
+11813
+11821
+11827
+11831
+11833
+11839
+11863
+11867
+11887
+11897
+11903
+11909
+11923
+11927
+11933
+11939
+11941
+11953
+11959
+11969
+11971
+11981
+11987
+12007
+12011
+12037
+12041
+12043
+12049
+12071
+12073
+12097
+12101
+12107
+12109
+12113
+12119
+12143
+12149
+12157
+12161
+12163
+12197
+12203
+12211
+12227
+12239
+12241
+12251
+12253
+12263
+12269
+12277
+12281
+12289
+12301
+12323
+12329
+12343
+12347
+12373
+12377
+12379
+12391
+12401
+12409
+12413
+12421
+12433
+12437
+12451
+12457
+12473
+12479
+12487
+12491
+12497
+12503
+12511
+12517
+12527
+12539
+12541
+12547
+12553
+12569
+12577
+12583
+12589
+12601
+12611
+12613
+12619
+12637
+12641
+12647
+12653
+12659
+12671
+12689
+12697
+12703
+12713
+12721
+12739
+12743
+12757
+12763
+12781
+12791
+12799
+12809
+12821
+12823
+12829
+12841
+12853
+12889
+12893
+12899
+12907
+12911
+12917
+12919
+12923
+12941
+12953
+12959
+12967
+12973
+12979
+12983
+13001
+13003
+13007
+13009
+13033
+13037
+13043
+13049
+13063
+13093
+13099
+13103
+13109
+13121
+13127
+13147
+13151
+13159
+13163
+13171
+13177
+13183
+13187
+13217
+13219
+13229
+13241
+13249
+13259
+13267
+13291
+13297
+13309
+13313
+13327
+13331
+13337
+13339
+13367
+13381
+13397
+13399
+13411
+13417
+13421
+13441
+13451
+13457
+13463
+13469
+13477
+13487
+13499
+13513
+13523
+13537
+13553
+13567
+13577
+13591
+13597
+13613
+13619
+13627
+13633
+13649
+13669
+13679
+13681
+13687
+13691
+13693
+13697
+13709
+13711
+13721
+13723
+13729
+13751
+13757
+13759
+13763
+13781
+13789
+13799
+13807
+13829
+13831
+13841
+13859
+13873
+13877
+13879
+13883
+13901
+13903
+13907
+13913
+13921
+13931
+13933
+13963
+13967
+13997
+13999
+14009
+14011
+14029
+14033
+14051
+14057
+14071
+14081
+14083
+14087
+14107
+14143
+14149
+14153
+14159
+14173
+14177
+14197
+14207
+14221
+14243
+14249
+14251
+14281
+14293
+14303
+14321
+14323
+14327
+14341
+14347
+14369
+14387
+14389
+14401
+14407
+14411
+14419
+14423
+14431
+14437
+14447
+14449
+14461
+14479
+14489
+14503
+14519
+14533
+14537
+14543
+14549
+14551
+14557
+14561
+14563
+14591
+14593
+14621
+14627
+14629
+14633
+14639
+14653
+14657
+14669
+14683
+14699
+14713
+14717
+14723
+14731
+14737
+14741
+14747
+14753
+14759
+14767
+14771
+14779
+14783
+14797
+14813
+14821
+14827
+14831
+14843
+14851
+14867
+14869
+14879
+14887
+14891
+14897
+14923
+14929
+14939
+14947
+14951
+14957
+14969
+14983
+15013
+15017
+15031
+15053
+15061
+15073
+15077
+15083
+15091
+15101
+15107
+15121
+15131
+15137
+15139
+15149
+15161
+15173
+15187
+15193
+15199
+15217
+15227
+15233
+15241
+15259
+15263
+15269
+15271
+15277
+15287
+15289
+15299
+15307
+15313
+15319
+15329
+15331
+15349
+15359
+15361
+15373
+15377
+15383
+15391
+15401
+15413
+15427
+15439
+15443
+15451
+15461
+15467
+15473
+15493
+15497
+15511
+15527
+15541
+15551
+15559
+15569
+15581
+15583
+15601
+15607
+15619
+15629
+15641
+15643
+15647
+15649
+15661
+15667
+15671
+15679
+15683
+15727
+15731
+15733
+15737
+15739
+15749
+15761
+15767
+15773
+15787
+15791
+15797
+15803
+15809
+15817
+15823
+15859
+15877
+15881
+15887
+15889
+15901
+15907
+15913
+15919
+15923
+15937
+15959
+15971
+15973
+15991
+16001
+16007
+16033
+16057
+16061
+16063
+16067
+16069
+16073
+16087
+16091
+16097
+16103
+16111
+16127
+16139
+16141
+16183
+16187
+16189
+16193
+16217
+16223
+16229
+16231
+16249
+16253
+16267
+16273
+16301
+16319
+16333
+16339
+16349
+16361
+16363
+16369
+16381
+16411
+16417
+16421
+16427
+16433
+16447
+16451
+16453
+16477
+16481
+16487
+16493
+16519
+16529
+16547
+16553
+16561
+16567
+16573
+16603
+16607
+16619
+16631
+16633
+16649
+16651
+16657
+16661
+16673
+16691
+16693
+16699
+16703
+16729
+16741
+16747
+16759
+16763
+16787
+16811
+16823
+16829
+16831
+16843
+16871
+16879
+16883
+16889
+16901
+16903
+16921
+16927
+16931
+16937
+16943
+16963
+16979
+16981
+16987
+16993
+17011
+17021
+17027
+17029
+17033
+17041
+17047
+17053
+17077
+17093
+17099
+17107
+17117
+17123
+17137
+17159
+17167
+17183
+17189
+17191
+17203
+17207
+17209
+17231
+17239
+17257
+17291
+17293
+17299
+17317
+17321
+17327
+17333
+17341
+17351
+17359
+17377
+17383
+17387
+17389
+17393
+17401
+17417
+17419
+17431
+17443
+17449
+17467
+17471
+17477
+17483
+17489
+17491
+17497
+17509
+17519
+17539
+17551
+17569
+17573
+17579
+17581
+17597
+17599
+17609
+17623
+17627
+17657
+17659
+17669
+17681
+17683
+17707
+17713
+17729
+17737
+17747
+17749
+17761
+17783
+17789
+17791
+17807
+17827
+17837
+17839
+17851
+17863
+17881
+17891
+17903
+17909
+17911
+17921
+17923
+17929
+17939
+17957
+17959
+17971
+17977
+17981
+17987
+17989
+18013
+18041
+18043
+18047
+18049
+18059
+18061
+18077
+18089
+18097
+18119
+18121
+18127
+18131
+18133
+18143
+18149
+18169
+18181
+18191
+18199
+18211
+18217
+18223
+18229
+18233
+18251
+18253
+18257
+18269
+18287
+18289
+18301
+18307
+18311
+18313
+18329
+18341
+18353
+18367
+18371
+18379
+18397
+18401
+18413
+18427
+18433
+18439
+18443
+18451
+18457
+18461
+18481
+18493
+18503
+18517
+18521
+18523
+18539
+18541
+18553
+18583
+18587
+18593
+18617
+18637
+18661
+18671
+18679
+18691
+18701
+18713
+18719
+18731
+18743
+18749
+18757
+18773
+18787
+18793
+18797
+18803
+18839
+18859
+18869
+18899
+18911
+18913
+18917
+18919
+18947
+18959
+18973
+18979
+19001
+19009
+19013
+19031
+19037
+19051
+19069
+19073
+19079
+19081
+19087
+19121
+19139
+19141
+19157
+19163
+19181
+19183
+19207
+19211
+19213
+19219
+19231
+19237
+19249
+19259
+19267
+19273
+19289
+19301
+19309
+19319
+19333
+19373
+19379
+19381
+19387
+19391
+19403
+19417
+19421
+19423
+19427
+19429
+19433
+19441
+19447
+19457
+19463
+19469
+19471
+19477
+19483
+19489
+19501
+19507
+19531
+19541
+19543
+19553
+19559
+19571
+19577
+19583
+19597
+19603
+19609
+19661
+19681
+19687
+19697
+19699
+19709
+19717
+19727
+19739
+19751
+19753
+19759
+19763
+19777
+19793
+19801
+19813
+19819
+19841
+19843
+19853
+19861
+19867
+19889
+19891
+19913
+19919
+19927
+19937
+19949
+19961
+19963
+19973
+19979
+19991
+19993
+19997
+20011
+20021
+20023
+20029
+20047
+20051
+20063
+20071
+20089
+20101
+20107
+20113
+20117
+20123
+20129
+20143
+20147
+20149
+20161
+20173
+20177
+20183
+20201
+20219
+20231
+20233
+20249
+20261
+20269
+20287
+20297
+20323
+20327
+20333
+20341
+20347
+20353
+20357
+20359
+20369
+20389
+20393
+20399
+20407
+20411
+20431
+20441
+20443
+20477
+20479
+20483
+20507
+20509
+20521
+20533
+20543
+20549
+20551
+20563
+20593
+20599
+20611
+20627
+20639
+20641
+20663
+20681
+20693
+20707
+20717
+20719
+20731
+20743
+20747
+20749
+20753
+20759
+20771
+20773
+20789
+20807
+20809
+20849
+20857
+20873
+20879
+20887
+20897
+20899
+20903
+20921
+20929
+20939
+20947
+20959
+20963
+20981
+20983
+21001
+21011
+21013
+21017
+21019
+21023
+21031
+21059
+21061
+21067
+21089
+21101
+21107
+21121
+21139
+21143
+21149
+21157
+21163
+21169
+21179
+21187
+21191
+21193
+21211
+21221
+21227
+21247
+21269
+21277
+21283
+21313
+21317
+21319
+21323
+21341
+21347
+21377
+21379
+21383
+21391
+21397
+21401
+21407
+21419
+21433
+21467
+21481
+21487
+21491
+21493
+21499
+21503
+21517
+21521
+21523
+21529
+21557
+21559
+21563
+21569
+21577
+21587
+21589
+21599
+21601
+21611
+21613
+21617
+21647
+21649
+21661
+21673
+21683
+21701
+21713
+21727
+21737
+21739
+21751
+21757
+21767
+21773
+21787
+21799
+21803
+21817
+21821
+21839
+21841
+21851
+21859
+21863
+21871
+21881
+21893
+21911
+21929
+21937
+21943
+21961
+21977
+21991
+21997
+22003
+22013
+22027
+22031
+22037
+22039
+22051
+22063
+22067
+22073
+22079
+22091
+22093
+22109
+22111
+22123
+22129
+22133
+22147
+22153
+22157
+22159
+22171
+22189
+22193
+22229
+22247
+22259
+22271
+22273
+22277
+22279
+22283
+22291
+22303
+22307
+22343
+22349
+22367
+22369
+22381
+22391
+22397
+22409
+22433
+22441
+22447
+22453
+22469
+22481
+22483
+22501
+22511
+22531
+22541
+22543
+22549
+22567
+22571
+22573
+22613
+22619
+22621
+22637
+22639
+22643
+22651
+22669
+22679
+22691
+22697
+22699
+22709
+22717
+22721
+22727
+22739
+22741
+22751
+22769
+22777
+22783
+22787
+22807
+22811
+22817
+22853
+22859
+22861
+22871
+22877
+22901
+22907
+22921
+22937
+22943
+22961
+22963
+22973
+22993
+23003
+23011
+23017
+23021
+23027
+23029
+23039
+23041
+23053
+23057
+23059
+23063
+23071
+23081
+23087
+23099
+23117
+23131
+23143
+23159
+23167
+23173
+23189
+23197
+23201
+23203
+23209
+23227
+23251
+23269
+23279
+23291
+23293
+23297
+23311
+23321
+23327
+23333
+23339
+23357
+23369
+23371
+23399
+23417
+23431
+23447
+23459
+23473
+23497
+23509
+23531
+23537
+23539
+23549
+23557
+23561
+23563
+23567
+23581
+23593
+23599
+23603
+23609
+23623
+23627
+23629
+23633
+23663
+23669
+23671
+23677
+23687
+23689
+23719
+23741
+23743
+23747
+23753
+23761
+23767
+23773
+23789
+23801
+23813
+23819
+23827
+23831
+23833
+23857
+23869
+23873
+23879
+23887
+23893
+23899
+23909
+23911
+23917
+23929
+23957
+23971
+23977
+23981
+23993
+24001
+24007
+24019
+24023
+24029
+24043
+24049
+24061
+24071
+24077
+24083
+24091
+24097
+24103
+24107
+24109
+24113
+24121
+24133
+24137
+24151
+24169
+24179
+24181
+24197
+24203
+24223
+24229
+24239
+24247
+24251
+24281
+24317
+24329
+24337
+24359
+24371
+24373
+24379
+24391
+24407
+24413
+24419
+24421
+24439
+24443
+24469
+24473
+24481
+24499
+24509
+24517
+24527
+24533
+24547
+24551
+24571
+24593
+24611
+24623
+24631
+24659
+24671
+24677
+24683
+24691
+24697
+24709
+24733
+24749
+24763
+24767
+24781
+24793
+24799
+24809
+24821
+24841
+24847
+24851
+24859
+24877
+24889
+24907
+24917
+24919
+24923
+24943
+24953
+24967
+24971
+24977
+24979
+24989
+25013
+25031
+25033
+25037
+25057
+25073
+25087
+25097
+25111
+25117
+25121
+25127
+25147
+25153
+25163
+25169
+25171
+25183
+25189
+25219
+25229
+25237
+25243
+25247
+25253
+25261
+25301
+25303
+25307
+25309
+25321
+25339
+25343
+25349
+25357
+25367
+25373
+25391
+25409
+25411
+25423
+25439
+25447
+25453
+25457
+25463
+25469
+25471
+25523
+25537
+25541
+25561
+25577
+25579
+25583
+25589
+25601
+25603
+25609
+25621
+25633
+25639
+25643
+25657
+25667
+25673
+25679
+25693
+25703
+25717
+25733
+25741
+25747
+25759
+25763
+25771
+25793
+25799
+25801
+25819
+25841
+25847
+25849
+25867
+25873
+25889
+25903
+25913
+25919
+25931
+25933
+25939
+25943
+25951
+25969
+25981
+25997
+25999
+26003
+26017
+26021
+26029
+26041
+26053
+26083
+26099
+26107
+26111
+26113
+26119
+26141
+26153
+26161
+26171
+26177
+26183
+26189
+26203
+26209
+26227
+26237
+26249
+26251
+26261
+26263
+26267
+26293
+26297
+26309
+26317
+26321
+26339
+26347
+26357
+26371
+26387
+26393
+26399
+26407
+26417
+26423
+26431
+26437
+26449
+26459
+26479
+26489
+26497
+26501
+26513
+26539
+26557
+26561
+26573
+26591
+26597
+26627
+26633
+26641
+26647
+26669
+26681
+26683
+26687
+26693
+26699
+26701
+26711
+26713
+26717
+26723
+26729
+26731
+26737
+26759
+26777
+26783
+26801
+26813
+26821
+26833
+26839
+26849
+26861
+26863
+26879
+26881
+26891
+26893
+26903
+26921
+26927
+26947
+26951
+26953
+26959
+26981
+26987
+26993
+27011
+27017
+27031
+27043
+27059
+27061
+27067
+27073
+27077
+27091
+27103
+27107
+27109
+27127
+27143
+27179
+27191
+27197
+27211
+27239
+27241
+27253
+27259
+27271
+27277
+27281
+27283
+27299
+27329
+27337
+27361
+27367
+27397
+27407
+27409
+27427
+27431
+27437
+27449
+27457
+27479
+27481
+27487
+27509
+27527
+27529
+27539
+27541
+27551
+27581
+27583
+27611
+27617
+27631
+27647
+27653
+27673
+27689
+27691
+27697
+27701
+27733
+27737
+27739
+27743
+27749
+27751
+27763
+27767
+27773
+27779
+27791
+27793
+27799
+27803
+27809
+27817
+27823
+27827
+27847
+27851
+27883
+27893
+27901
+27917
+27919
+27941
+27943
+27947
+27953
+27961
+27967
+27983
+27997
+28001
+28019
+28027
+28031
+28051
+28057
+28069
+28081
+28087
+28097
+28099
+28109
+28111
+28123
+28151
+28163
+28181
+28183
+28201
+28211
+28219
+28229
+28277
+28279
+28283
+28289
+28297
+28307
+28309
+28319
+28349
+28351
+28387
+28393
+28403
+28409
+28411
+28429
+28433
+28439
+28447
+28463
+28477
+28493
+28499
+28513
+28517
+28537
+28541
+28547
+28549
+28559
+28571
+28573
+28579
+28591
+28597
+28603
+28607
+28619
+28621
+28627
+28631
+28643
+28649
+28657
+28661
+28663
+28669
+28687
+28697
+28703
+28711
+28723
+28729
+28751
+28753
+28759
+28771
+28789
+28793
+28807
+28813
+28817
+28837
+28843
+28859
+28867
+28871
+28879
+28901
+28909
+28921
+28927
+28933
+28949
+28961
+28979
+29009
+29017
+29021
+29023
+29027
+29033
+29059
+29063
+29077
+29101
+29123
+29129
+29131
+29137
+29147
+29153
+29167
+29173
+29179
+29191
+29201
+29207
+29209
+29221
+29231
+29243
+29251
+29269
+29287
+29297
+29303
+29311
+29327
+29333
+29339
+29347
+29363
+29383
+29387
+29389
+29399
+29401
+29411
+29423
+29429
+29437
+29443
+29453
+29473
+29483
+29501
+29527
+29531
+29537
+29567
+29569
+29573
+29581
+29587
+29599
+29611
+29629
+29633
+29641
+29663
+29669
+29671
+29683
+29717
+29723
+29741
+29753
+29759
+29761
+29789
+29803
+29819
+29833
+29837
+29851
+29863
+29867
+29873
+29879
+29881
+29917
+29921
+29927
+29947
+29959
+29983
+29989
+30011
+30013
+30029
+30047
+30059
+30071
+30089
+30091
+30097
+30103
+30109
+30113
+30119
+30133
+30137
+30139
+30161
+30169
+30181
+30187
+30197
+30203
+30211
+30223
+30241
+30253
+30259
+30269
+30271
+30293
+30307
+30313
+30319
+30323
+30341
+30347
+30367
+30389
+30391
+30403
+30427
+30431
+30449
+30467
+30469
+30491
+30493
+30497
+30509
+30517
+30529
+30539
+30553
+30557
+30559
+30577
+30593
+30631
+30637
+30643
+30649
+30661
+30671
+30677
+30689
+30697
+30703
+30707
+30713
+30727
+30757
+30763
+30773
+30781
+30803
+30809
+30817
+30829
+30839
+30841
+30851
+30853
+30859
+30869
+30871
+30881
+30893
+30911
+30931
+30937
+30941
+30949
+30971
+30977
+30983
+31013
+31019
+31033
+31039
+31051
+31063
+31069
+31079
+31081
+31091
+31121
+31123
+31139
+31147
+31151
+31153
+31159
+31177
+31181
+31183
+31189
+31193
+31219
+31223
+31231
+31237
+31247
+31249
+31253
+31259
+31267
+31271
+31277
+31307
+31319
+31321
+31327
+31333
+31337
+31357
+31379
+31387
+31391
+31393
+31397
+31469
+31477
+31481
+31489
+31511
+31513
+31517
+31531
+31541
+31543
+31547
+31567
+31573
+31583
+31601
+31607
+31627
+31643
+31649
+31657
+31663
+31667
+31687
+31699
+31721
+31723
+31727
+31729
+31741
+31751
+31769
+31771
+31793
+31799
+31817
+31847
+31849
+31859
+31873
+31883
+31891
+31907
+31957
+31963
+31973
+31981
+31991
+32003
+32009
+32027
+32029
+32051
+32057
+32059
+32063
+32069
+32077
+32083
+32089
+32099
+32117
+32119
+32141
+32143
+32159
+32173
+32183
+32189
+32191
+32203
+32213
+32233
+32237
+32251
+32257
+32261
+32297
+32299
+32303
+32309
+32321
+32323
+32327
+32341
+32353
+32359
+32363
+32369
+32371
+32377
+32381
+32401
+32411
+32413
+32423
+32429
+32441
+32443
+32467
+32479
+32491
+32497
+32503
+32507
+32531
+32533
+32537
+32561
+32563
+32569
+32573
+32579
+32587
+32603
+32609
+32611
+32621
+32633
+32647
+32653
+32687
+32693
+32707
+32713
+32717
+32719
+32749
+32771
+32779
+32783
+32789
+32797
+32801
+32803
+32831
+32833
+32839
+32843
+32869
+32887
+32909
+32911
+32917
+32933
+32939
+32941
+32957
+32969
+32971
+32983
+32987
+32993
+32999
+33013
+33023
+33029
+33037
+33049
+33053
+33071
+33073
+33083
+33091
+33107
+33113
+33119
+33149
+33151
+33161
+33179
+33181
+33191
+33199
+33203
+33211
+33223
+33247
+33287
+33289
+33301
+33311
+33317
+33329
+33331
+33343
+33347
+33349
+33353
+33359
+33377
+33391
+33403
+33409
+33413
+33427
+33457
+33461
+33469
+33479
+33487
+33493
+33503
+33521
+33529
+33533
+33547
+33563
+33569
+33577
+33581
+33587
+33589
+33599
+33601
+33613
+33617
+33619
+33623
+33629
+33637
+33641
+33647
+33679
+33703
+33713
+33721
+33739
+33749
+33751
+33757
+33767
+33769
+33773
+33791
+33797
+33809
+33811
+33827
+33829
+33851
+33857
+33863
+33871
+33889
+33893
+33911
+33923
+33931
+33937
+33941
+33961
+33967
+33997
+34019
+34031
+34033
+34039
+34057
+34061
+34123
+34127
+34129
+34141
+34147
+34157
+34159
+34171
+34183
+34211
+34213
+34217
+34231
+34253
+34259
+34261
+34267
+34273
+34283
+34297
+34301
+34303
+34313
+34319
+34327
+34337
+34351
+34361
+34367
+34369
+34381
+34403
+34421
+34429
+34439
+34457
+34469
+34471
+34483
+34487
+34499
+34501
+34511
+34513
+34519
+34537
+34543
+34549
+34583
+34589
+34591
+34603
+34607
+34613
+34631
+34649
+34651
+34667
+34673
+34679
+34687
+34693
+34703
+34721
+34729
+34739
+34747
+34757
+34759
+34763
+34781
+34807
+34819
+34841
+34843
+34847
+34849
+34871
+34877
+34883
+34897
+34913
+34919
+34939
+34949
+34961
+34963
+34981
+35023
+35027
+35051
+35053
+35059
+35069
+35081
+35083
+35089
+35099
+35107
+35111
+35117
+35129
+35141
+35149
+35153
+35159
+35171
+35201
+35221
+35227
+35251
+35257
+35267
+35279
+35281
+35291
+35311
+35317
+35323
+35327
+35339
+35353
+35363
+35381
+35393
+35401
+35407
+35419
+35423
+35437
+35447
+35449
+35461
+35491
+35507
+35509
+35521
+35527
+35531
+35533
+35537
+35543
+35569
+35573
+35591
+35593
+35597
+35603
+35617
+35671
+35677
+35729
+35731
+35747
+35753
+35759
+35771
+35797
+35801
+35803
+35809
+35831
+35837
+35839
+35851
+35863
+35869
+35879
+35897
+35899
+35911
+35923
+35933
+35951
+35963
+35969
+35977
+35983
+35993
+35999
+36007
+36011
+36013
+36017
+36037
+36061
+36067
+36073
+36083
+36097
+36107
+36109
+36131
+36137
+36151
+36161
+36187
+36191
+36209
+36217
+36229
+36241
+36251
+36263
+36269
+36277
+36293
+36299
+36307
+36313
+36319
+36341
+36343
+36353
+36373
+36383
+36389
+36433
+36451
+36457
+36467
+36469
+36473
+36479
+36493
+36497
+36523
+36527
+36529
+36541
+36551
+36559
+36563
+36571
+36583
+36587
+36599
+36607
+36629
+36637
+36643
+36653
+36671
+36677
+36683
+36691
+36697
+36709
+36713
+36721
+36739
+36749
+36761
+36767
+36779
+36781
+36787
+36791
+36793
+36809
+36821
+36833
+36847
+36857
+36871
+36877
+36887
+36899
+36901
+36913
+36919
+36923
+36929
+36931
+36943
+36947
+36973
+36979
+36997
+37003
+37013
+37019
+37021
+37039
+37049
+37057
+37061
+37087
+37097
+37117
+37123
+37139
+37159
+37171
+37181
+37189
+37199
+37201
+37217
+37223
+37243
+37253
+37273
+37277
+37307
+37309
+37313
+37321
+37337
+37339
+37357
+37361
+37363
+37369
+37379
+37397
+37409
+37423
+37441
+37447
+37463
+37483
+37489
+37493
+37501
+37507
+37511
+37517
+37529
+37537
+37547
+37549
+37561
+37567
+37571
+37573
+37579
+37589
+37591
+37607
+37619
+37633
+37643
+37649
+37657
+37663
+37691
+37693
+37699
+37717
+37747
+37781
+37783
+37799
+37811
+37813
+37831
+37847
+37853
+37861
+37871
+37879
+37889
+37897
+37907
+37951
+37957
+37963
+37967
+37987
+37991
+37993
+37997
+38011
+38039
+38047
+38053
+38069
+38083
+38113
+38119
+38149
+38153
+38167
+38177
+38183
+38189
+38197
+38201
+38219
+38231
+38237
+38239
+38261
+38273
+38281
+38287
+38299
+38303
+38317
+38321
+38327
+38329
+38333
+38351
+38371
+38377
+38393
+38431
+38447
+38449
+38453
+38459
+38461
+38501
+38543
+38557
+38561
+38567
+38569
+38593
+38603
+38609
+38611
+38629
+38639
+38651
+38653
+38669
+38671
+38677
+38693
+38699
+38707
+38711
+38713
+38723
+38729
+38737
+38747
+38749
+38767
+38783
+38791
+38803
+38821
+38833
+38839
+38851
+38861
+38867
+38873
+38891
+38903
+38917
+38921
+38923
+38933
+38953
+38959
+38971
+38977
+38993
+39019
+39023
+39041
+39043
+39047
+39079
+39089
+39097
+39103
+39107
+39113
+39119
+39133
+39139
+39157
+39161
+39163
+39181
+39191
+39199
+39209
+39217
+39227
+39229
+39233
+39239
+39241
+39251
+39293
+39301
+39313
+39317
+39323
+39341
+39343
+39359
+39367
+39371
+39373
+39383
+39397
+39409
+39419
+39439
+39443
+39451
+39461
+39499
+39503
+39509
+39511
+39521
+39541
+39551
+39563
+39569
+39581
+39607
+39619
+39623
+39631
+39659
+39667
+39671
+39679
+39703
+39709
+39719
+39727
+39733
+39749
+39761
+39769
+39779
+39791
+39799
+39821
+39827
+39829
+39839
+39841
+39847
+39857
+39863
+39869
+39877
+39883
+39887
+39901
+39929
+39937
+39953
+39971
+39979
+39983
+39989
+40009
+40013
+40031
+40037
+40039
+40063
+40087
+40093
+40099
+40111
+40123
+40127
+40129
+40151
+40153
+40163
+40169
+40177
+40189
+40193
+40213
+40231
+40237
+40241
+40253
+40277
+40283
+40289
+40343
+40351
+40357
+40361
+40387
+40423
+40427
+40429
+40433
+40459
+40471
+40483
+40487
+40493
+40499
+40507
+40519
+40529
+40531
+40543
+40559
+40577
+40583
+40591
+40597
+40609
+40627
+40637
+40639
+40693
+40697
+40699
+40709
+40739
+40751
+40759
+40763
+40771
+40787
+40801
+40813
+40819
+40823
+40829
+40841
+40847
+40849
+40853
+40867
+40879
+40883
+40897
+40903
+40927
+40933
+40939
+40949
+40961
+40973
+40993
+41011
+41017
+41023
+41039
+41047
+41051
+41057
+41077
+41081
+41113
+41117
+41131
+41141
+41143
+41149
+41161
+41177
+41179
+41183
+41189
+41201
+41203
+41213
+41221
+41227
+41231
+41233
+41243
+41257
+41263
+41269
+41281
+41299
+41333
+41341
+41351
+41357
+41381
+41387
+41389
+41399
+41411
+41413
+41443
+41453
+41467
+41479
+41491
+41507
+41513
+41519
+41521
+41539
+41543
+41549
+41579
+41593
+41597
+41603
+41609
+41611
+41617
+41621
+41627
+41641
+41647
+41651
+41659
+41669
+41681
+41687
+41719
+41729
+41737
+41759
+41761
+41771
+41777
+41801
+41809
+41813
+41843
+41849
+41851
+41863
+41879
+41887
+41893
+41897
+41903
+41911
+41927
+41941
+41947
+41953
+41957
+41959
+41969
+41981
+41983
+41999
+42013
+42017
+42019
+42023
+42043
+42061
+42071
+42073
+42083
+42089
+42101
+42131
+42139
+42157
+42169
+42179
+42181
+42187
+42193
+42197
+42209
+42221
+42223
+42227
+42239
+42257
+42281
+42283
+42293
+42299
+42307
+42323
+42331
+42337
+42349
+42359
+42373
+42379
+42391
+42397
+42403
+42407
+42409
+42433
+42437
+42443
+42451
+42457
+42461
+42463
+42467
+42473
+42487
+42491
+42499
+42509
+42533
+42557
+42569
+42571
+42577
+42589
+42611
+42641
+42643
+42649
+42667
+42677
+42683
+42689
+42697
+42701
+42703
+42709
+42719
+42727
+42737
+42743
+42751
+42767
+42773
+42787
+42793
+42797
+42821
+42829
+42839
+42841
+42853
+42859
+42863
+42899
+42901
+42923
+42929
+42937
+42943
+42953
+42961
+42967
+42979
+42989
+43003
+43013
+43019
+43037
+43049
+43051
+43063
+43067
+43093
+43103
+43117
+43133
+43151
+43159
+43177
+43189
+43201
+43207
+43223
+43237
+43261
+43271
+43283
+43291
+43313
+43319
+43321
+43331
+43391
+43397
+43399
+43403
+43411
+43427
+43441
+43451
+43457
+43481
+43487
+43499
+43517
+43541
+43543
+43573
+43577
+43579
+43591
+43597
+43607
+43609
+43613
+43627
+43633
+43649
+43651
+43661
+43669
+43691
+43711
+43717
+43721
+43753
+43759
+43777
+43781
+43783
+43787
+43789
+43793
+43801
+43853
+43867
+43889
+43891
+43913
+43933
+43943
+43951
+43961
+43963
+43969
+43973
+43987
+43991
+43997
+44017
+44021
+44027
+44029
+44041
+44053
+44059
+44071
+44087
+44089
+44101
+44111
+44119
+44123
+44129
+44131
+44159
+44171
+44179
+44189
+44201
+44203
+44207
+44221
+44249
+44257
+44263
+44267
+44269
+44273
+44279
+44281
+44293
+44351
+44357
+44371
+44381
+44383
+44389
+44417
+44449
+44453
+44483
+44491
+44497
+44501
+44507
+44519
+44531
+44533
+44537
+44543
+44549
+44563
+44579
+44587
+44617
+44621
+44623
+44633
+44641
+44647
+44651
+44657
+44683
+44687
+44699
+44701
+44711
+44729
+44741
+44753
+44771
+44773
+44777
+44789
+44797
+44809
+44819
+44839
+44843
+44851
+44867
+44879
+44887
+44893
+44909
+44917
+44927
+44939
+44953
+44959
+44963
+44971
+44983
+44987
+45007
+45013
+45053
+45061
+45077
+45083
+45119
+45121
+45127
+45131
+45137
+45139
+45161
+45179
+45181
+45191
+45197
+45233
+45247
+45259
+45263
+45281
+45289
+45293
+45307
+45317
+45319
+45329
+45337
+45341
+45343
+45361
+45377
+45389
+45403
+45413
+45427
+45433
+45439
+45481
+45491
+45497
+45503
+45523
+45533
+45541
+45553
+45557
+45569
+45587
+45589
+45599
+45613
+45631
+45641
+45659
+45667
+45673
+45677
+45691
+45697
+45707
+45737
+45751
+45757
+45763
+45767
+45779
+45817
+45821
+45823
+45827
+45833
+45841
+45853
+45863
+45869
+45887
+45893
+45943
+45949
+45953
+45959
+45971
+45979
+45989
+46021
+46027
+46049
+46051
+46061
+46073
+46091
+46093
+46099
+46103
+46133
+46141
+46147
+46153
+46171
+46181
+46183
+46187
+46199
+46219
+46229
+46237
+46261
+46271
+46273
+46279
+46301
+46307
+46309
+46327
+46337
+46349
+46351
+46381
+46399
+46411
+46439
+46441
+46447
+46451
+46457
+46471
+46477
+46489
+46499
+46507
+46511
+46523
+46549
+46559
+46567
+46573
+46589
+46591
+46601
+46619
+46633
+46639
+46643
+46649
+46663
+46679
+46681
+46687
+46691
+46703
+46723
+46727
+46747
+46751
+46757
+46769
+46771
+46807
+46811
+46817
+46819
+46829
+46831
+46853
+46861
+46867
+46877
+46889
+46901
+46919
+46933
+46957
+46993
+46997
+47017
+47041
+47051
+47057
+47059
+47087
+47093
+47111
+47119
+47123
+47129
+47137
+47143
+47147
+47149
+47161
+47189
+47207
+47221
+47237
+47251
+47269
+47279
+47287
+47293
+47297
+47303
+47309
+47317
+47339
+47351
+47353
+47363
+47381
+47387
+47389
+47407
+47417
+47419
+47431
+47441
+47459
+47491
+47497
+47501
+47507
+47513
+47521
+47527
+47533
+47543
+47563
+47569
+47581
+47591
+47599
+47609
+47623
+47629
+47639
+47653
+47657
+47659
+47681
+47699
+47701
+47711
+47713
+47717
+47737
+47741
+47743
+47777
+47779
+47791
+47797
+47807
+47809
+47819
+47837
+47843
+47857
+47869
+47881
+47903
+47911
+47917
+47933
+47939
+47947
+47951
+47963
+47969
+47977
+47981
+48017
+48023
+48029
+48049
+48073
+48079
+48091
+48109
+48119
+48121
+48131
+48157
+48163
+48179
+48187
+48193
+48197
+48221
+48239
+48247
+48259
+48271
+48281
+48299
+48311
+48313
+48337
+48341
+48353
+48371
+48383
+48397
+48407
+48409
+48413
+48437
+48449
+48463
+48473
+48479
+48481
+48487
+48491
+48497
+48523
+48527
+48533
+48539
+48541
+48563
+48571
+48589
+48593
+48611
+48619
+48623
+48647
+48649
+48661
+48673
+48677
+48679
+48731
+48733
+48751
+48757
+48761
+48767
+48779
+48781
+48787
+48799
+48809
+48817
+48821
+48823
+48847
+48857
+48859
+48869
+48871
+48883
+48889
+48907
+48947
+48953
+48973
+48989
+48991
+49003
+49009
+49019
+49031
+49033
+49037
+49043
+49057
+49069
+49081
+49103
+49109
+49117
+49121
+49123
+49139
+49157
+49169
+49171
+49177
+49193
+49199
+49201
+49207
+49211
+49223
+49253
+49261
+49277
+49279
+49297
+49307
+49331
+49333
+49339
+49363
+49367
+49369
+49391
+49393
+49409
+49411
+49417
+49429
+49433
+49451
+49459
+49463
+49477
+49481
+49499
+49523
+49529
+49531
+49537
+49547
+49549
+49559
+49597
+49603
+49613
+49627
+49633
+49639
+49663
+49667
+49669
+49681
+49697
+49711
+49727
+49739
+49741
+49747
+49757
+49783
+49787
+49789
+49801
+49807
+49811
+49823
+49831
+49843
+49853
+49871
+49877
+49891
+49919
+49921
+49927
+49937
+49939
+49943
+49957
+49991
+49993
+49999
+50021
+50023
+50033
+50047
+50051
+50053
+50069
+50077
+50087
+50093
+50101
+50111
+50119
+50123
+50129
+50131
+50147
+50153
+50159
+50177
+50207
+50221
+50227
+50231
+50261
+50263
+50273
+50287
+50291
+50311
+50321
+50329
+50333
+50341
+50359
+50363
+50377
+50383
+50387
+50411
+50417
+50423
+50441
+50459
+50461
+50497
+50503
+50513
+50527
+50539
+50543
+50549
+50551
+50581
+50587
+50591
+50593
+50599
+50627
+50647
+50651
+50671
+50683
+50707
+50723
+50741
+50753
+50767
+50773
+50777
+50789
+50821
+50833
+50839
+50849
+50857
+50867
+50873
+50891
+50893
+50909
+50923
+50929
+50951
+50957
+50969
+50971
+50989
+50993
+51001
+51031
+51043
+51047
+51059
+51061
+51071
+51109
+51131
+51133
+51137
+51151
+51157
+51169
+51193
+51197
+51199
+51203
+51217
+51229
+51239
+51241
+51257
+51263
+51283
+51287
+51307
+51329
+51341
+51343
+51347
+51349
+51361
+51383
+51407
+51413
+51419
+51421
+51427
+51431
+51437
+51439
+51449
+51461
+51473
+51479
+51481
+51487
+51503
+51511
+51517
+51521
+51539
+51551
+51563
+51577
+51581
+51593
+51599
+51607
+51613
+51631
+51637
+51647
+51659
+51673
+51679
+51683
+51691
+51713
+51719
+51721
+51749
+51767
+51769
+51787
+51797
+51803
+51817
+51827
+51829
+51839
+51853
+51859
+51869
+51871
+51893
+51899
+51907
+51913
+51929
+51941
+51949
+51971
+51973
+51977
+51991
+52009
+52021
+52027
+52051
+52057
+52067
+52069
+52081
+52103
+52121
+52127
+52147
+52153
+52163
+52177
+52181
+52183
+52189
+52201
+52223
+52237
+52249
+52253
+52259
+52267
+52289
+52291
+52301
+52313
+52321
+52361
+52363
+52369
+52379
+52387
+52391
+52433
+52453
+52457
+52489
+52501
+52511
+52517
+52529
+52541
+52543
+52553
+52561
+52567
+52571
+52579
+52583
+52609
+52627
+52631
+52639
+52667
+52673
+52691
+52697
+52709
+52711
+52721
+52727
+52733
+52747
+52757
+52769
+52783
+52807
+52813
+52817
+52837
+52859
+52861
+52879
+52883
+52889
+52901
+52903
+52919
+52937
+52951
+52957
+52963
+52967
+52973
+52981
+52999
+53003
+53017
+53047
+53051
+53069
+53077
+53087
+53089
+53093
+53101
+53113
+53117
+53129
+53147
+53149
+53161
+53171
+53173
+53189
+53197
+53201
+53231
+53233
+53239
+53267
+53269
+53279
+53281
+53299
+53309
+53323
+53327
+53353
+53359
+53377
+53381
+53401
+53407
+53411
+53419
+53437
+53441
+53453
+53479
+53503
+53507
+53527
+53549
+53551
+53569
+53591
+53593
+53597
+53609
+53611
+53617
+53623
+53629
+53633
+53639
+53653
+53657
+53681
+53693
+53699
+53717
+53719
+53731
+53759
+53773
+53777
+53783
+53791
+53813
+53819
+53831
+53849
+53857
+53861
+53881
+53887
+53891
+53897
+53899
+53917
+53923
+53927
+53939
+53951
+53959
+53987
+53993
+54001
+54011
+54013
+54037
+54049
+54059
+54083
+54091
+54101
+54121
+54133
+54139
+54151
+54163
+54167
+54181
+54193
+54217
+54251
+54269
+54277
+54287
+54293
+54311
+54319
+54323
+54331
+54347
+54361
+54367
+54371
+54377
+54401
+54403
+54409
+54413
+54419
+54421
+54437
+54443
+54449
+54469
+54493
+54497
+54499
+54503
+54517
+54521
+54539
+54541
+54547
+54559
+54563
+54577
+54581
+54583
+54601
+54617
+54623
+54629
+54631
+54647
+54667
+54673
+54679
+54709
+54713
+54721
+54727
+54751
+54767
+54773
+54779
+54787
+54799
+54829
+54833
+54851
+54869
+54877
+54881
+54907
+54917
+54919
+54941
+54949
+54959
+54973
+54979
+54983
+55001
+55009
+55021
+55049
+55051
+55057
+55061
+55073
+55079
+55103
+55109
+55117
+55127
+55147
+55163
+55171
+55201
+55207
+55213
+55217
+55219
+55229
+55243
+55249
+55259
+55291
+55313
+55331
+55333
+55337
+55339
+55343
+55351
+55373
+55381
+55399
+55411
+55439
+55441
+55457
+55469
+55487
+55501
+55511
+55529
+55541
+55547
+55579
+55589
+55603
+55609
+55619
+55621
+55631
+55633
+55639
+55661
+55663
+55667
+55673
+55681
+55691
+55697
+55711
+55717
+55721
+55733
+55763
+55787
+55793
+55799
+55807
+55813
+55817
+55819
+55823
+55829
+55837
+55843
+55849
+55871
+55889
+55897
+55901
+55903
+55921
+55927
+55931
+55933
+55949
+55967
+55987
+55997
+56003
+56009
+56039
+56041
+56053
+56081
+56087
+56093
+56099
+56101
+56113
+56123
+56131
+56149
+56167
+56171
+56179
+56197
+56207
+56209
+56237
+56239
+56249
+56263
+56267
+56269
+56299
+56311
+56333
+56359
+56369
+56377
+56383
+56393
+56401
+56417
+56431
+56437
+56443
+56453
+56467
+56473
+56477
+56479
+56489
+56501
+56503
+56509
+56519
+56527
+56531
+56533
+56543
+56569
+56591
+56597
+56599
+56611
+56629
+56633
+56659
+56663
+56671
+56681
+56687
+56701
+56711
+56713
+56731
+56737
+56747
+56767
+56773
+56779
+56783
+56807
+56809
+56813
+56821
+56827
+56843
+56857
+56873
+56891
+56893
+56897
+56909
+56911
+56921
+56923
+56929
+56941
+56951
+56957
+56963
+56983
+56989
+56993
+56999
+57037
+57041
+57047
+57059
+57073
+57077
+57089
+57097
+57107
+57119
+57131
+57139
+57143
+57149
+57163
+57173
+57179
+57191
+57193
+57203
+57221
+57223
+57241
+57251
+57259
+57269
+57271
+57283
+57287
+57301
+57329
+57331
+57347
+57349
+57367
+57373
+57383
+57389
+57397
+57413
+57427
+57457
+57467
+57487
+57493
+57503
+57527
+57529
+57557
+57559
+57571
+57587
+57593
+57601
+57637
+57641
+57649
+57653
+57667
+57679
+57689
+57697
+57709
+57713
+57719
+57727
+57731
+57737
+57751
+57773
+57781
+57787
+57791
+57793
+57803
+57809
+57829
+57839
+57847
+57853
+57859
+57881
+57899
+57901
+57917
+57923
+57943
+57947
+57973
+57977
+57991
+58013
+58027
+58031
+58043
+58049
+58057
+58061
+58067
+58073
+58099
+58109
+58111
+58129
+58147
+58151
+58153
+58169
+58171
+58189
+58193
+58199
+58207
+58211
+58217
+58229
+58231
+58237
+58243
+58271
+58309
+58313
+58321
+58337
+58363
+58367
+58369
+58379
+58391
+58393
+58403
+58411
+58417
+58427
+58439
+58441
+58451
+58453
+58477
+58481
+58511
+58537
+58543
+58549
+58567
+58573
+58579
+58601
+58603
+58613
+58631
+58657
+58661
+58679
+58687
+58693
+58699
+58711
+58727
+58733
+58741
+58757
+58763
+58771
+58787
+58789
+58831
+58889
+58897
+58901
+58907
+58909
+58913
+58921
+58937
+58943
+58963
+58967
+58979
+58991
+58997
+59009
+59011
+59021
+59023
+59029
+59051
+59053
+59063
+59069
+59077
+59083
+59093
+59107
+59113
+59119
+59123
+59141
+59149
+59159
+59167
+59183
+59197
+59207
+59209
+59219
+59221
+59233
+59239
+59243
+59263
+59273
+59281
+59333
+59341
+59351
+59357
+59359
+59369
+59377
+59387
+59393
+59399
+59407
+59417
+59419
+59441
+59443
+59447
+59453
+59467
+59471
+59473
+59497
+59509
+59513
+59539
+59557
+59561
+59567
+59581
+59611
+59617
+59621
+59627
+59629
+59651
+59659
+59663
+59669
+59671
+59693
+59699
+59707
+59723
+59729
+59743
+59747
+59753
+59771
+59779
+59791
+59797
+59809
+59833
+59863
+59879
+59887
+59921
+59929
+59951
+59957
+59971
+59981
+59999
+60013
+60017
+60029
+60037
+60041
+60077
+60083
+60089
+60091
+60101
+60103
+60107
+60127
+60133
+60139
+60149
+60161
+60167
+60169
+60209
+60217
+60223
+60251
+60257
+60259
+60271
+60289
+60293
+60317
+60331
+60337
+60343
+60353
+60373
+60383
+60397
+60413
+60427
+60443
+60449
+60457
+60493
+60497
+60509
+60521
+60527
+60539
+60589
+60601
+60607
+60611
+60617
+60623
+60631
+60637
+60647
+60649
+60659
+60661
+60679
+60689
+60703
+60719
+60727
+60733
+60737
+60757
+60761
+60763
+60773
+60779
+60793
+60811
+60821
+60859
+60869
+60887
+60889
+60899
+60901
+60913
+60917
+60919
+60923
+60937
+60943
+60953
+60961
+61001
+61007
+61027
+61031
+61043
+61051
+61057
+61091
+61099
+61121
+61129
+61141
+61151
+61153
+61169
+61211
+61223
+61231
+61253
+61261
+61283
+61291
+61297
+61331
+61333
+61339
+61343
+61357
+61363
+61379
+61381
+61403
+61409
+61417
+61441
+61463
+61469
+61471
+61483
+61487
+61493
+61507
+61511
+61519
+61543
+61547
+61553
+61559
+61561
+61583
+61603
+61609
+61613
+61627
+61631
+61637
+61643
+61651
+61657
+61667
+61673
+61681
+61687
+61703
+61717
+61723
+61729
+61751
+61757
+61781
+61813
+61819
+61837
+61843
+61861
+61871
+61879
+61909
+61927
+61933
+61949
+61961
+61967
+61979
+61981
+61987
+61991
+62003
+62011
+62017
+62039
+62047
+62053
+62057
+62071
+62081
+62099
+62119
+62129
+62131
+62137
+62141
+62143
+62171
+62189
+62191
+62201
+62207
+62213
+62219
+62233
+62273
+62297
+62299
+62303
+62311
+62323
+62327
+62347
+62351
+62383
+62401
+62417
+62423
+62459
+62467
+62473
+62477
+62483
+62497
+62501
+62507
+62533
+62539
+62549
+62563
+62581
+62591
+62597
+62603
+62617
+62627
+62633
+62639
+62653
+62659
+62683
+62687
+62701
+62723
+62731
+62743
+62753
+62761
+62773
+62791
+62801
+62819
+62827
+62851
+62861
+62869
+62873
+62897
+62903
+62921
+62927
+62929
+62939
+62969
+62971
+62981
+62983
+62987
+62989
+63029
+63031
+63059
+63067
+63073
+63079
+63097
+63103
+63113
+63127
+63131
+63149
+63179
+63197
+63199
+63211
+63241
+63247
+63277
+63281
+63299
+63311
+63313
+63317
+63331
+63337
+63347
+63353
+63361
+63367
+63377
+63389
+63391
+63397
+63409
+63419
+63421
+63439
+63443
+63463
+63467
+63473
+63487
+63493
+63499
+63521
+63527
+63533
+63541
+63559
+63577
+63587
+63589
+63599
+63601
+63607
+63611
+63617
+63629
+63647
+63649
+63659
+63667
+63671
+63689
+63691
+63697
+63703
+63709
+63719
+63727
+63737
+63743
+63761
+63773
+63781
+63793
+63799
+63803
+63809
+63823
+63839
+63841
+63853
+63857
+63863
+63901
+63907
+63913
+63929
+63949
+63977
+63997
+64007
+64013
+64019
+64033
+64037
+64063
+64067
+64081
+64091
+64109
+64123
+64151
+64153
+64157
+64171
+64187
+64189
+64217
+64223
+64231
+64237
+64271
+64279
+64283
+64301
+64303
+64319
+64327
+64333
+64373
+64381
+64399
+64403
+64433
+64439
+64451
+64453
+64483
+64489
+64499
+64513
+64553
+64567
+64577
+64579
+64591
+64601
+64609
+64613
+64621
+64627
+64633
+64661
+64663
+64667
+64679
+64693
+64709
+64717
+64747
+64763
+64781
+64783
+64793
+64811
+64817
+64849
+64853
+64871
+64877
+64879
+64891
+64901
+64919
+64921
+64927
+64937
+64951
+64969
+64997
+65003
+65011
+65027
+65029
+65033
+65053
+65063
+65071
+65089
+65099
+65101
+65111
+65119
+65123
+65129
+65141
+65147
+65167
+65171
+65173
+65179
+65183
+65203
+65213
+65239
+65257
+65267
+65269
+65287
+65293
+65309
+65323
+65327
+65353
+65357
+65371
+65381
+65393
+65407
+65413
+65419
+65423
+65437
+65447
+65449
+65479
+65497
+65519
+65521
diff --git a/security/nss/lib/freebl/mpi/doc/prng.pod b/security/nss/lib/freebl/mpi/doc/prng.pod
new file mode 100644
index 0000000000..6da4d4a9c4
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/prng.pod
@@ -0,0 +1,38 @@
+=head1 NAME
+
+ prng - pseudo-random number generator
+
+=head1 SYNOPSIS
+
+ prng [count]
+
+=head1 DESCRIPTION
+
+B<Prng> generates 32-bit pseudo-random integers using the
+Blum-Blum-Shub (BBS) quadratic residue generator. It is seeded using
+the standard C library's rand() function, which itself seeded from the
+system clock and the process ID number. Thus, the values generated
+are not particularly useful for cryptographic applications, but they
+are in general much better than the typical output of the usual
+multiplicative congruency generator used by most runtime libraries.
+
+You may optionally specify how many random values should be generated
+by giving a I<count> argument on the command line. If you do not
+specify a count, only one random value will be generated. The results
+are output to the standard output in decimal notation, one value per
+line.
+
+=head1 RESTRICTIONS
+
+As stated above, B<prng> uses the C library's rand() function to seed
+the generator, so it is not terribly suitable for cryptographic
+applications. Also note that each time you run the program, a new
+seed is generated, so it is better to run it once with a I<count>
+parameter than it is to run it multiple times to generate several
+values.
+
+=head1 AUTHOR
+
+ Michael J. Fromberger <sting@linguist.dartmouth.edu>
+ Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved
+ Thayer School of Engineering, Dartmouth College, Hanover, NH USA
diff --git a/security/nss/lib/freebl/mpi/doc/redux.txt b/security/nss/lib/freebl/mpi/doc/redux.txt
new file mode 100644
index 0000000000..0df0f0390a
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/redux.txt
@@ -0,0 +1,86 @@
+Modular Reduction
+
+Usually, modular reduction is accomplished by long division, using the
+mp_div() or mp_mod() functions. However, when performing modular
+exponentiation, you spend a lot of time reducing by the same modulus
+again and again. For this purpose, doing a full division for each
+multiplication is quite inefficient.
+
+For this reason, the mp_exptmod() function does not perform modular
+reductions in the usual way, but instead takes advantage of an
+algorithm due to Barrett, as described by Menezes, Oorschot and
+VanStone in their book _Handbook of Applied Cryptography_, published
+by the CRC Press (see Chapter 14 for details). This method reduces
+most of the computation of reduction to efficient shifting and masking
+operations, and avoids the multiple-precision division entirely.
+
+Here is a brief synopsis of Barrett reduction, as it is implemented in
+this library.
+
+Let b denote the radix of the computation (one more than the maximum
+value that can be denoted by an mp_digit). Let m be the modulus, and
+let k be the number of significant digits of m. Let x be the value to
+be reduced modulo m. By the Division Theorem, there exist unique
+integers Q and R such that:
+
+ x = Qm + R, 0 <= R < m
+
+Barrett reduction takes advantage of the fact that you can easily
+approximate Q to within two, given a value M such that:
+
+ 2k
+ b
+ M = floor( ----- )
+ m
+
+Computation of M requires a full-precision division step, so if you
+are only doing a single reduction by m, you gain no advantage.
+However, when multiple reductions by the same m are required, this
+division need only be done once, beforehand. Using this, we can use
+the following equation to compute Q', an approximation of Q:
+
+ x
+ floor( ------ ) M
+ k-1
+ b
+Q' = floor( ----------------- )
+ k+1
+ b
+
+The divisions by b^(k-1) and b^(k+1) and the floor() functions can be
+efficiently implemented with shifts and masks, leaving only a single
+multiplication to be performed to get this approximation. It can be
+shown that Q - 2 <= Q' <= Q, so in the worst case, we can get out with
+two additional subtractions to bring the value into line with the
+actual value of Q.
+
+Once we've got Q', we basically multiply that by m and subtract from
+x, yielding:
+
+ x - Q'm = Qm + R - Q'm
+
+Since we know the constraint on Q', this is one of:
+
+ R
+ m + R
+ 2m + R
+
+Since R < m by the Division Theorem, we can simply subtract off m
+until we get a value in the correct range, which will happen with no
+more than 2 subtractions:
+
+ v = x - Q'm
+
+ while(v >= m)
+ v = v - m
+ endwhile
+
+
+In random performance trials, modular exponentiation using this method
+of reduction gave around a 40% speedup over using the division for
+reduction.
+
+------------------------------------------------------------------
+ This Source Code Form is subject to the terms of the Mozilla Public
+ # License, v. 2.0. If a copy of the MPL was not distributed with this
+ # file, You can obtain one at http://mozilla.org/MPL/2.0/.
diff --git a/security/nss/lib/freebl/mpi/doc/sqrt.txt b/security/nss/lib/freebl/mpi/doc/sqrt.txt
new file mode 100644
index 0000000000..4529cbfc46
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/sqrt.txt
@@ -0,0 +1,50 @@
+Square Root
+
+A simple iterative algorithm is used to compute the greatest integer
+less than or equal to the square root. Essentially, this is Newton's
+linear approximation, computed by finding successive values of the
+equation:
+
+ x[k]^2 - V
+x[k+1] = x[k] - ------------
+ 2 x[k]
+
+...where V is the value for which the square root is being sought. In
+essence, what is happening here is that we guess a value for the
+square root, then figure out how far off we were by squaring our guess
+and subtracting the target. Using this value, we compute a linear
+approximation for the error, and adjust the "guess". We keep doing
+this until the precision gets low enough that the above equation
+yields a quotient of zero. At this point, our last guess is one
+greater than the square root we're seeking.
+
+The initial guess is computed by dividing V by 4, which is a heuristic
+I have found to be fairly good on average. This also has the
+advantage of being very easy to compute efficiently, even for large
+values.
+
+So, the resulting algorithm works as follows:
+
+ x = V / 4 /* compute initial guess */
+
+ loop
+ t = (x * x) - V /* Compute absolute error */
+ u = 2 * x /* Adjust by tangent slope */
+ t = t / u
+
+ /* Loop is done if error is zero */
+ if(t == 0)
+ break
+
+ /* Adjust guess by error term */
+ x = x - t
+ end
+
+ x = x - 1
+
+The result of the computation is the value of x.
+
+------------------------------------------------------------------
+ This Source Code Form is subject to the terms of the Mozilla Public
+ # License, v. 2.0. If a copy of the MPL was not distributed with this
+ # file, You can obtain one at http://mozilla.org/MPL/2.0/.
diff --git a/security/nss/lib/freebl/mpi/doc/square.txt b/security/nss/lib/freebl/mpi/doc/square.txt
new file mode 100644
index 0000000000..edbb97882c
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/square.txt
@@ -0,0 +1,72 @@
+Squaring Algorithm
+
+When you are squaring a value, you can take advantage of the fact that
+half the multiplications performed by the more general multiplication
+algorithm (see 'mul.txt' for a description) are redundant when the
+multiplicand equals the multiplier.
+
+In particular, the modified algorithm is:
+
+k = 0
+for j <- 0 to (#a - 1)
+ w = c[2*j] + (a[j] ^ 2);
+ k = w div R
+
+ for i <- j+1 to (#a - 1)
+ w = (2 * a[j] * a[i]) + k + c[i+j]
+ c[i+j] = w mod R
+ k = w div R
+ endfor
+ c[i+j] = k;
+ k = 0;
+endfor
+
+On the surface, this looks identical to the multiplication algorithm;
+however, note the following differences:
+
+ - precomputation of the leading term in the outer loop
+
+ - i runs from j+1 instead of from zero
+
+ - doubling of a[i] * a[j] in the inner product
+
+Unfortunately, the construction of the inner product is such that we
+need more than two digits to represent the inner product, in some
+cases. In a C implementation, this means that some gymnastics must be
+performed in order to handle overflow, for which C has no direct
+abstraction. We do this by observing the following:
+
+If we have multiplied a[i] and a[j], and the product is more than half
+the maximum value expressible in two digits, then doubling this result
+will overflow into a third digit. If this occurs, we take note of the
+overflow, and double it anyway -- C integer arithmetic ignores
+overflow, so the two digits we get back should still be valid, modulo
+the overflow.
+
+Having doubled this value, we now have to add in the remainders and
+the digits already computed by earlier steps. If we did not overflow
+in the previous step, we might still cause an overflow here. That
+will happen whenever the maximum value expressible in two digits, less
+the amount we have to add, is greater than the result of the previous
+step. Thus, the overflow computation is:
+
+
+ u = 0
+ w = a[i] * a[j]
+
+ if(w > (R - 1)/ 2)
+ u = 1;
+
+ w = w * 2
+ v = c[i + j] + k
+
+ if(u == 0 && (R - 1 - v) < w)
+ u = 1
+
+If there is an overflow, u will be 1, otherwise u will be 0. The rest
+of the parameters are the same as they are in the above description.
+
+------------------------------------------------------------------
+ This Source Code Form is subject to the terms of the Mozilla Public
+ # License, v. 2.0. If a copy of the MPL was not distributed with this
+ # file, You can obtain one at http://mozilla.org/MPL/2.0/.
diff --git a/security/nss/lib/freebl/mpi/doc/timing.txt b/security/nss/lib/freebl/mpi/doc/timing.txt
new file mode 100644
index 0000000000..58f37c9dff
--- /dev/null
+++ b/security/nss/lib/freebl/mpi/doc/timing.txt
@@ -0,0 +1,213 @@
+MPI Library Timing Tests
+
+Hardware/OS
+(A) SGI O2 1 x MIPS R10000 250MHz IRIX 6.5.3
+(B) IBM RS/6000 43P-240 1 x PowerPC 603e 223MHz AIX 4.3
+(C) Dell GX1/L+ 1 x Pentium III 550MHz Linux 2.2.12-20
+(D) PowerBook G3 1 x PowerPC 750 266MHz LinuxPPC 2.2.6-15apmac
+(E) PowerBook G3 1 x PowerPC 750 266MHz MacOS 8.5.1
+(F) PowerBook G3 1 x PowerPC 750 400MHz MacOS 9.0.2
+
+Compiler
+(1) MIPSpro C 7.2.1 -O3 optimizations
+(2) GCC 2.95.1 -O3 optimizations
+(3) IBM AIX xlc -O3 optimizations (version unknown)
+(4) EGCS 2.91.66 -O3 optimizations
+(5) Metrowerks CodeWarrior 5.0 C, all optimizations
+(6) MIPSpro C 7.30 -O3 optimizations
+(7) same as (6), with optimized libmalloc.so
+
+Timings are given in seconds, computed using the C library's clock()
+function. The first column gives the hardware and compiler
+configuration used for the test. The second column indicates the
+number of tests that were aggregated to get the statistics for that
+size. These were compiled using 16 bit digits.
+
+Source data were generated randomly using a fixed seed, so they should
+be internally consistent, but may vary on different systems depending
+on the C library. Also, since the resolution of the timer accessed by
+clock() varies, there may be some variance in the precision of these
+measurements.
+
+Prime Generation (primegen)
+
+128 bits:
+A1 200 min=0.03, avg=0.19, max=0.72, sum=38.46
+A2 200 min=0.02, avg=0.16, max=0.62, sum=32.55
+B3 200 min=0.01, avg=0.07, max=0.22, sum=13.29
+C4 200 min=0.00, avg=0.03, max=0.20, sum=6.14
+D4 200 min=0.00, avg=0.05, max=0.33, sum=9.70
+A6 200 min=0.01, avg=0.09, max=0.36, sum=17.48
+A7 200 min=0.00, avg=0.05, max=0.24, sum=10.07
+
+192 bits:
+A1 200 min=0.05, avg=0.45, max=3.13, sum=89.96
+A2 200 min=0.04, avg=0.39, max=2.61, sum=77.55
+B3 200 min=0.02, avg=0.18, max=1.25, sum=36.97
+C4 200 min=0.01, avg=0.09, max=0.33, sum=18.24
+D4 200 min=0.02, avg=0.15, max=0.54, sum=29.63
+A6 200 min=0.02, avg=0.24, max=1.70, sum=47.84
+A7 200 min=0.01, avg=0.15, max=1.05, sum=30.88
+
+256 bits:
+A1 200 min=0.08, avg=0.92, max=6.13, sum=184.79
+A2 200 min=0.06, avg=0.76, max=5.03, sum=151.11
+B3 200 min=0.04, avg=0.41, max=2.68, sum=82.35
+C4 200 min=0.02, avg=0.19, max=0.69, sum=37.91
+D4 200 min=0.03, avg=0.31, max=1.15, sum=63.00
+A6 200 min=0.04, avg=0.48, max=3.13, sum=95.46
+A7 200 min=0.03, avg=0.37, max=2.36, sum=73.60
+
+320 bits:
+A1 200 min=0.11, avg=1.59, max=6.14, sum=318.81
+A2 200 min=0.09, avg=1.27, max=4.93, sum=254.03
+B3 200 min=0.07, avg=0.82, max=3.13, sum=163.80
+C4 200 min=0.04, avg=0.44, max=1.91, sum=87.59
+D4 200 min=0.06, avg=0.73, max=3.22, sum=146.73
+A6 200 min=0.07, avg=0.93, max=3.50, sum=185.01
+A7 200 min=0.05, avg=0.76, max=2.94, sum=151.78
+
+384 bits:
+A1 200 min=0.16, avg=2.69, max=11.41, sum=537.89
+A2 200 min=0.13, avg=2.15, max=9.03, sum=429.14
+B3 200 min=0.11, avg=1.54, max=6.49, sum=307.78
+C4 200 min=0.06, avg=0.81, max=4.84, sum=161.13
+D4 200 min=0.10, avg=1.38, max=8.31, sum=276.81
+A6 200 min=0.11, avg=1.73, max=7.36, sum=345.55
+A7 200 min=0.09, avg=1.46, max=6.12, sum=292.02
+
+448 bits:
+A1 200 min=0.23, avg=3.36, max=15.92, sum=672.63
+A2 200 min=0.17, avg=2.61, max=12.25, sum=522.86
+B3 200 min=0.16, avg=2.10, max=9.83, sum=420.86
+C4 200 min=0.09, avg=1.44, max=7.64, sum=288.36
+D4 200 min=0.16, avg=2.50, max=13.29, sum=500.17
+A6 200 min=0.15, avg=2.31, max=10.81, sum=461.58
+A7 200 min=0.14, avg=2.03, max=9.53, sum=405.16
+
+512 bits:
+A1 200 min=0.30, avg=6.12, max=22.18, sum=1223.35
+A2 200 min=0.25, avg=4.67, max=16.90, sum=933.18
+B3 200 min=0.23, avg=4.13, max=14.94, sum=825.45
+C4 200 min=0.13, avg=2.08, max=9.75, sum=415.22
+D4 200 min=0.24, avg=4.04, max=20.18, sum=808.11
+A6 200 min=0.22, avg=4.47, max=16.19, sum=893.83
+A7 200 min=0.20, avg=4.03, max=14.65, sum=806.02
+
+Modular Exponentation (metime)
+
+The following results are aggregated from 200 pseudo-randomly
+generated tests, based on a fixed seed.
+
+ base, exponent, and modulus size (bits)
+P/C 128 192 256 320 384 448 512 640 768 896 1024
+------- -----------------------------------------------------------------
+A1 0.015 0.027 0.047 0.069 0.098 0.133 0.176 0.294 0.458 0.680 1.040
+A2 0.013 0.024 0.037 0.053 0.077 0.102 0.133 0.214 0.326 0.476 0.668
+B3 0.005 0.011 0.021 0.036 0.056 0.084 0.121 0.222 0.370 0.573 0.840
+C4 0.002 0.006 0.011 0.020 0.032 0.048 0.069 0.129 0.223 0.344 0.507
+D4 0.004 0.010 0.019 0.034 0.056 0.085 0.123 0.232 0.390 0.609 0.899
+E5 0.007 0.015 0.031 0.055 0.088 0.133 0.183 0.342 0.574 0.893 1.317
+A6 0.008 0.016 0.038 0.042 0.064 0.093 0.133 0.239 0.393 0.604 0.880
+A7 0.005 0.011 0.020 0.036 0.056 0.083 0.121 0.223 0.374 0.583 0.855
+
+Multiplication and Squaring tests, (mulsqr)
+
+The following results are aggregated from 500000 pseudo-randomly
+generated tests, based on a per-run wall-clock seed. Times are given
+in seconds, except where indicated in microseconds (us).
+
+(A1)
+
+bits multiply square ad percent time/mult time/square
+64 9.33 9.15 > 1.9 18.7us 18.3us
+128 10.88 10.44 > 4.0 21.8us 20.9us
+192 13.30 11.89 > 10.6 26.7us 23.8us
+256 14.88 12.64 > 15.1 29.8us 25.3us
+320 18.64 15.01 > 19.5 37.3us 30.0us
+384 23.11 17.70 > 23.4 46.2us 35.4us
+448 28.28 20.88 > 26.2 56.6us 41.8us
+512 34.09 24.51 > 28.1 68.2us 49.0us
+640 47.86 33.25 > 30.5 95.7us 66.5us
+768 64.91 43.54 > 32.9 129.8us 87.1us
+896 84.49 55.48 > 34.3 169.0us 111.0us
+1024 107.25 69.21 > 35.5 214.5us 138.4us
+1536 227.97 141.91 > 37.8 456.0us 283.8us
+2048 394.05 242.15 > 38.5 788.1us 484.3us
+
+(A2)
+
+bits multiply square ad percent time/mult time/square
+64 7.87 7.95 < 1.0 15.7us 15.9us
+128 9.40 9.19 > 2.2 18.8us 18.4us
+192 11.15 10.59 > 5.0 22.3us 21.2us
+256 12.02 11.16 > 7.2 24.0us 22.3us
+320 14.62 13.43 > 8.1 29.2us 26.9us
+384 17.72 15.80 > 10.8 35.4us 31.6us
+448 21.24 18.51 > 12.9 42.5us 37.0us
+512 25.36 21.78 > 14.1 50.7us 43.6us
+640 34.57 29.00 > 16.1 69.1us 58.0us
+768 46.10 37.60 > 18.4 92.2us 75.2us
+896 58.94 47.72 > 19.0 117.9us 95.4us
+1024 73.76 59.12 > 19.8 147.5us 118.2us
+1536 152.00 118.80 > 21.8 304.0us 237.6us
+2048 259.41 199.57 > 23.1 518.8us 399.1us
+
+(B3)
+
+bits multiply square ad percent time/mult time/square
+64 2.60 2.47 > 5.0 5.20us 4.94us
+128 4.43 4.06 > 8.4 8.86us 8.12us
+192 7.03 6.10 > 13.2 14.1us 12.2us
+256 10.44 8.59 > 17.7 20.9us 17.2us
+320 14.44 11.64 > 19.4 28.9us 23.3us
+384 19.12 15.08 > 21.1 38.2us 30.2us
+448 24.55 19.09 > 22.2 49.1us 38.2us
+512 31.03 23.53 > 24.2 62.1us 47.1us
+640 45.05 33.80 > 25.0 90.1us 67.6us
+768 63.02 46.05 > 26.9 126.0us 92.1us
+896 83.74 60.29 > 28.0 167.5us 120.6us
+1024 106.73 76.65 > 28.2 213.5us 153.3us
+1536 228.94 160.98 > 29.7 457.9us 322.0us
+2048 398.08 275.93 > 30.7 796.2us 551.9us
+
+(C4)
+
+bits multiply square ad percent time/mult time/square
+64 1.34 1.28 > 4.5 2.68us 2.56us
+128 2.76 2.59 > 6.2 5.52us 5.18us
+192 4.52 4.16 > 8.0 9.04us 8.32us
+256 6.64 5.99 > 9.8 13.3us 12.0us
+320 9.20 8.13 > 11.6 18.4us 16.3us
+384 12.01 10.58 > 11.9 24.0us 21.2us
+448 15.24 13.33 > 12.5 30.5us 26.7us
+512 19.02 16.46 > 13.5 38.0us 32.9us
+640 27.56 23.54 > 14.6 55.1us 47.1us
+768 37.89 31.78 > 16.1 75.8us 63.6us
+896 49.24 41.42 > 15.9 98.5us 82.8us
+1024 62.59 52.18 > 16.6 125.2us 104.3us
+1536 131.66 107.72 > 18.2 263.3us 215.4us
+2048 226.45 182.95 > 19.2 453.0us 365.9us
+
+(A7)
+
+bits multiply square ad percent time/mult time/square
+64 1.74 1.71 > 1.7 3.48us 3.42us
+128 3.48 2.96 > 14.9 6.96us 5.92us
+192 5.74 4.60 > 19.9 11.5us 9.20us
+256 8.75 6.61 > 24.5 17.5us 13.2us
+320 12.5 8.99 > 28.1 25.0us 18.0us
+384 16.9 11.9 > 29.6 33.8us 23.8us
+448 22.2 15.2 > 31.7 44.4us 30.4us
+512 28.3 19.0 > 32.7 56.6us 38.0us
+640 42.4 28.0 > 34.0 84.8us 56.0us
+768 59.4 38.5 > 35.2 118.8us 77.0us
+896 79.5 51.2 > 35.6 159.0us 102.4us
+1024 102.6 65.5 > 36.2 205.2us 131.0us
+1536 224.3 140.6 > 37.3 448.6us 281.2us
+2048 393.4 244.3 > 37.9 786.8us 488.6us
+
+------------------------------------------------------------------
+ This Source Code Form is subject to the terms of the Mozilla Public
+ # License, v. 2.0. If a copy of the MPL was not distributed with this
+ # file, You can obtain one at http://mozilla.org/MPL/2.0/.